
Compatible Class Encoding in Roth-Karp Decomposition for Two-Output LUT Architecture

Juinn-Dar Huang, Jing-Yang Jou and Wen-Zen Shen

Department of Electronics Engineering,
National Chiao Tung University,

Hsinchu, Taiwan, R.O.C.

Abstract 1. How to select the lambda set?
2. How to encode the compatible classes? Roth-Karp decomposition is one of the most popular

techniques for LUT-based FPGA technology mapping because
it can decompose a node into a set of nodes with fewer numbers
of fanins. In this paper, we show how to formulate the
compatible class encoding problem in Roth-Karp
decomposition as a symbolic-output encoding problem in order
to exploit the feature of the two-output LUT architecture.
Based on this formulation, we also develop an encoding
algorithm to minimize the number of LUT's required to
implement the logic circuit. Experimental results show that our
encoding algorithm can produce promising results in the logic
synthesis environment for the two-output LUT architecture.

The algorithm proposed in [11] provides a heuristic to choose a
good lambda set. Another algorithm proposed in [10]
formulates Problem 2 as a symbolic-input encoding problem.
However, both of these two algorithms only consider the single-
output LUT architecture. In this paper, we propose a new
formulation for Problem 2 and develop a new compatible class
encoding algorithm which can fully exploit the feature of the
two-output LUT architecture.

This paper is organized as follows. Section 2 describes the
compatible class encoding problem in Roth-Karp decomposition.
In Section 3, our new encoding algorithm which addresses the
two-output LUT architecture is given in detail. Section 4
shows experimental results and the concluding remarks are
given in Section 5.

1. Introduction
Field Programmable Gate Arrays (FPGA's) are modern

logic devices which can be programmed by the users to
implement their own logic circuits. Because of the short
turnaround time compared with that of the standard ASIC
process, they become increasingly popular in rapid system
prototyping recently. Many FPGA architectures have been
proposed and the Look-Up Table(LUT)-based architecture is
the most popular one. It consists of many configurable LUT's
and each LUT can implement any k-input function. Besides,
there is another similar LUT-based FPGA architecture which
implements not only single-output functions but also two-output
functions. A LUT of this architecture can implement either one
k-input function or two (k-1)-input functions with totally k
inputs. For example, in Xilinx XC3000 architecture[1], k is
equal to 5.

2. Compatible Class Encoding
Definition 2.1:

Let X and Y be two sets of binary variables, X ∩ Y = ∅;

B x and B y are Cartesian products spanned by X and Y,
respectively. Then, given a completely specified function F :

B x × B y → B, we say that x
1
, x

2
 ∈ B x are compatible with

respect to F, denoted as x
1
 ~ x

2
 , if ∀ y ∈ B y , (x

1
, y) and (x

2
, y)

∈ B x × B y such that F(x
1
, y) = F(x

2
, y). +

Each element ∈ B x is called a ll minterm . All mutually
compatible λ minterms can be grouped together to form a
compatible class, and all compatible classes are pairwisely
disjoint.

Many algorithms developed for LUT-based FPGA
technology mapping have been proposed in previous studies[2-
11]. Most of these algorithms first decompose the given
Boolean network to be k-feasible. A Boolean network is said to
be k-feasible if all nodes in the network are k-feasible, and a
node is said to be k-feasible if the number of its fanins is no
more than k. Hence, the corresponding circuit can be directly
realized by an one-to-one mapping between nodes and LUT's.
If there are some nodes that are not k-feasible, they then need to
be decomposed to be a set of k-feasible nodes. Many proposed
decomposition techniques, such as AND-OR decomposition,
cofactoring, disjoint decomposition, if-then-else DAG,
communication complexity reduction[12], and Roth-Karp
decomposition[13], are widely used here. In this paper, we
only focus on Roth-Karp decomposition.

Theorem 2.1:

Given two functions
v

α : B x → W and G : W × B y → B,
such that

∀ (x, y) ∈ B x × B y , F(x, y) = G(
v

α (x), y) (1)
holds if and only if

∀ x
1
, x

2
 ∈ B x ,

v

α (x
1
) =

v

α (x
2
) ⇒ x

1
 ~ x

2
(2) +

v

α is a function with binary inputs and a symbolic output.

X is called the bound (ll) set. Y is called the free (mm) set.
Property 2.1:

The number of the admissible values in W, |W|, must be no

less than the number of compatible classes in X. +

From Property 2.1, minimum |W| is equal to the number of
compatible classes in X and can be obtained by redefining Eq.
(2) as:Given the LUT-based FPGA as the target architecture, two

interesting problems in Roth-Karp decomposition should be
noticed: ∀ x

1
, x

2
 ∈ B x ,

v

α (x
1
) =

v

α (x
2
) ⇔ x

1
 ~ x

2
(2')

In order to implement
v

α by binary logic, the symbolic-
output encoding for W has to be performed. At least t =

 log2
w binary-output functions, α

1
, α

2
, ..., and α

t
, are

required to encode
v

α . Hence, Eq. (1) can be rewritten as:

The admissible values of W are defined to be the id's of the
compatible classes. Thus,

v

α maps each λ minterm to the id of

the compatible class it belongs. In this example, 3 (log2
5)

binary-output functions α
1
, α

2
, and α

3
, are needed to

implement
v

α . Suppose these symbolic values are randomly
encoded without any strategy; for instance, each symbolic value
is encoded with its binary bit pattern. Then, the encoding of

v

α
and the resulting Boolean functions are shown below:

F(x, y) = G'(α
1
(x), α

2
(x), ..., α

t
(x), y) (1')

It is clear that the disjoint Roth-Karp decomposition can be
used to reduce the number of fanins of a function under the
condition of t < |X|.

class id α3 α2 α1 x1x2From the above discussion, we find that Roth-Karp
decomposition only requires that λ minterms belonging to the
same compatible class are encoded with the same code, i.e., if
x

1
 ~ x

2
, then

v

α (x
1
) =

v

α (x
2
). In other words, to have a correct

Roth-Karp decomposition, we only need to assign a unique
code to each compatible class and do not have to care what the
code is. However, different encoding combinations for the
compatible classes will result in different α

1
, α

2
, ..., α

t
, and G'.

0 0 0 0 00 01 11 10
1 0 0 1 00 0 0 0 0
2 0 1 0 x3x4 01 1 0 0 0
3 0 1 1 11 0 0 0 0
4 1 0 0 10 0 0 0 0

α3 1 2 3 4= x x x x

x1x2 x1x2

00 01 11 10 00 01 11 10There is a compatible class encoding strategy being
proposed in [10]. It models the compatible class encoding
problem as the classical symbolic-input encoding problem.
Many existing techniques are then used to encode the
compatible classes for minimizing the literal counts of G'.
Because it assumes that the better decomposition quality can be
obtained if the resulting G' is simple, i.e., has smaller number
of literals. However, this strategy only concentrates on single-
output functions. Furthermore, it did not properly take
advantage of the feature of either the single-output or the two-
output LUT architecture.

00 1 0 0 1 00 0 1 1 0
x3x4 01 0 1 0 1 x3x4 01 0 0 0 1

11 0 1 1 0 11 1 0 0 1
10 0 1 0 1 10 0 1 1 0

α2 2 3 4 1 2 3 1 2 4

1 2 3 1 2 4 2 3 4

= + +
+ + +

x x x x x x x x x

x x x x x x x x x

α1 2 4 1 2 4

2 3 4

= +
+
x x x x x

x x x

Obviously, three LUT's are required to implement these α
functions since all of them depend on all four input variables.
Example 2:

To exploit the property of the two-output LUT architecture,
we formulate the compatible class encoding problem as:

As in Example 1, a better encoding of
v

α is used here. The

encoding of
v

α and the resulting Boolean functions are shown
below:

 To find a set of compatible class encoding patterns to encode
as many αα functions to be independent of at least one of their
input variables as possible. class id α3 α2 α1 x1x2

0 1 1 0 00 01 11 10Thus, two α functions which are independent of at least one
of their input variables can be merged into a two-output k-LUT.
In fact, our formulation of this encoding problem is a kind of
the symbolic-output encoding because we encode the symbolic
output variable W into binary-output encoding functions α

1
,

α
2
, ..., and α

t
.

1 0 0 0 00 1 0 0 1
2 1 0 0 x3x4 01 0 1 1 0
3 0 1 0 11 0 1 1 0
4 0 0 1 10 1 0 0 1

α3 2 4 2 4= +x x x x

x1x2 x1x2

00 01 11 10 00 01 11 10
3. Our Compatible Class Encoding Algorithm

00 0 0 0 0 00 0 0 0 0 For the easy illustration, the LUT used in this section is
either a 4-LUT or a two-output 4-LUT.

x3x4 01 0 0 1 1 x3x4 01 1 0 0 0
11 0 0 0 0 11 0 0 0 0

Example 1: 10 1 1 0 0 10 0 0 0 0
Given a compatible class encoding function

v

α with a set of

inputs X as the λ set and a symbolic output variable W:
α2 1 3 4 1 3 4= +x x x x x x α1 1 2 3 4= x x x x

We find that α
3
 is independent of x

1
 and x

3
, and α

2
 is

independent of x
2
, respectively. Therefore, α

3
 and α

2
 can be

merged into a two-output LUT. Two instead of three LUT's are
thus required to implement these α functions.

v

α : , where B Wx → X x , x ,x , x W1 2 3 4= { } and = {0,1,2,3,4}

x1x2

00 01 11 10
00 2 1 1 2

Now we give some definitions and derive some properties
from them. Based on these definitions and properties, our
compatible class encoding algorithm is then constructed.

x3x4 01 4 2 0 3
11 1 2 2 1
10 0 3 1 2

W

Definition 3.1: {(02:134)}. After discarding two useless ISx's (∅ and W) and
exploiting the equivalence relation among dichotomies, the size
of Set_Dx is given by Property 3.4:

An independent set with respect to an input variable x,
denoted as ISx, is defined as a set of class id's such that there
exists a binary-input/output function α being independent of x
where

Property 3.4:

| _ |
| _ |

_

Set D
Set IS

x
x

Set MISx

= − = −2

2

2 2

2 +
the ON - set of , { | is a minterm where () }α α λ α = ON m m m ISx

v

∈ .+
Example 3: Property 3.5:

In Example 1, {0, 2} is an ISx
1
. Because we can find a

function α3 2 4 2 4= +x x x x as illustrated in Example 2 satisfies

Definition 3.1.

A dichotomy Dx = (l:r) can be used to make the encoding
function α

i
 independent of x if the i-th bit of the code of the

compatible class c is equal to:

{1 ,
0 .

if the id of
if the id of

c l
c r

∈
∈

+

Definition 3.2:
An ISx is a minimum independent set with respect to the

input variable x, denoted as MISx, if and only if Example 6:
In Example 1, there exists a dichotomy, D = (02:134) ∈

Set_Dx
1
. If α

3
 is encoded by D:

∀ ⊂ ≠ ∅ ⇒T, and is no lo .T ISx T T ISxnger an +

Example 4:
In Example 1, {0, 2} and {1, 3, 4} are two MISx

1
's by

Definition 3.2.
class id α3 α2 α1 x1x2

0 1 - - 00 01 11 10
1 0 - - 00 1 0 0 1Property 3.1:
2 1 - - x3x4 01 0 1 1 0Given two λ minterms m and m' where m' is the same with

m except that it is complemented at the position of variable x.
Let

v

α (m) = k and
v

α (m') = k', then k and k' must belong to the

same MISx by Definition 3.1. +

3 0 - - 11 0 1 1 0
4 0 - - 10 1 0 0 1

α3 2 4 2 4= +x x x x

It is clear that α
3
 is independent of x

1
 under this encoding

pattern.

Property 3.2:
Two MISx's are either identical or disjoint, and the union

set of all MISx's is W. + Because we do not care which variable x that α
i
 is

independent of, dichotomies from different Set_Dx's can be
merged into a set Set_D. Then, we formulate the compatible
class encoding problem to satisfy the following three encoding
constraints:

From Property 3.1 and 3.2, we can easily develop an
algorithm to find all MIS's for a given variable x.
Example 5:

The set, Set_MISx, containing all MIS's with respect to
each variable x of Example 1 is shown below, respectively. 1. Each compatible class must be encoded with a distinct code.
Set MISx_

1
= {{0,2},{1,3,4}} Set MISx_

3
= {{0,2},{1,3,4}} 2. Only minimum number(t) of encoding bits are allowed to

be used.Set MISx_
2

= {{0,3},{1,2,4}} Set MISx_
4

= {{0,1,2,3,4}}
3. Use as many dichotomies for the encoding as possible.

Property 3.3:
Constraint 1 is given to satisfy the definition of Roth-Karp

decomposition. Constraint 2 is given to minimize the number
of LUT's used to implement α functions. Constraint 3 is given
to exploit the feature of the two-output LUT architecture.

Each combination of an arbitrary number of MISx's
represents an ISx. So the size of the set Set_ISx containing all

ISx's is equal to 2
Set MISx_

. +

Thus, Set_ISx can be derived from Set_MISx by applying
Property 3.3. For example, Set_ISx

1
 in Example 1 is {∅, {0, 2},

{1, 3, 4}, {0, 1, 2, 3, 4}}. Notice that ∅ and {0, 1, 2, 3, 4} (W)
are discarded since they are useless for encoding purpose
described later. At this point, we introduce a terminology,
dichotomy, which is first used for symbolic-input encoding in
[14]. The notion of dichotomy is slightly modified here for
convenience.

While merging Set_Dx's into Set_D, if two equivalent
dichotomies, D

1
 and D

2
, are from two different Set_Dx

1
 and

Set_Dx
2
, respectively, then α

i
 encoded by either D

1
 or D

2
 is

independent of both x
1
 and x

2
. In this case, the number of

fanins of α
i
 can be further reduced and the number of

interconnection nets required for routing is also reduced.
Therefore, a dichotomy which is independent of the most inputs
should be chosen for encoding first.Definition 3.3:

A procedure, Exhaustive_Search_Encoding, is developed to
encode the compatible classes under three constraints described
above. It first tries to find the maximum number(t) of
dichotomies for encoding to satisfy Constraint 1 and 2. If it
fails, it reduces the number of encoding dichotomies by 1 and
tries again. This procedure guarantees to get the optimum
encoding solution, i.e., the maximum number of dichotomies
can be found to encode α functions without violating Constraint
1 and 2.

A dichotomy with respect to x, Dx, is given by an ordered

pair, denoted as (l:r), where l is an ISx and r is W- ISx. +

Definition 3.4:
Two dichotomies, D

1
 = (l

1
:r

1
) and D

2
 = (l

2
:r

2
), are

equivalent if (l
1
 = l

2
 and r

1
 = r

2
) or (l

1
 = r

2
 and r

1
 = l

2
). +

From Definition 3.3 and 3.4, a set of distinct, i.e., non-
equivalent, dichotomies with respect to x, Set_Dx, can be
generated from ISx. For instance, Set_Dx

1
 in Example 1 is

Example 7: 4. Experimental Results
By reexamining Example 1, we find that two dichotomies

(02:134) and (03:124) can be found by
Exhaustive_Search_Encoding to encode α

3
 and α

2
, respectively.

α
1
 is then encoded to satisfy Constraint 1. Therefore, the

encoding result is identical with that illustrated in Example 2.

The algorithm described above has been implemented in
SIS environment which is developed by UC Berkeley[15].
Besides, our algorithm is integrated into a version of Roth-Karp
decomposition[11], which has the lambda set selection strategy,
to enhance its performance. In order to investigate the quality
of our encoding algorithm, denoted as Algorithm 3, two
experiments are conducted over a large set of MCNC and
ISCAS benchmark circuits to compare the results with those of
another two versions of Roth-Karp decomposition. Algorithm 1
has neither the lambda set selection strategy nor the compatible
class encoding strategy and is used in mis-pga[3]. Algorithm 2
has only the lambda set selection strategy and is implemented
in [11]. The target architecture is the Xilinx XC3000 FPGA
which can implement either one 5-input function or two 4-input
functions with totally 5 inputs as described above. The initial
networks of one experiment are two-level circuits and are
obtained by performing the SIS script:

The time efficiency of this procedure is not that good.
Suppose there are d dichotomies being used to encode t bits,
then the worst case, in which no one can be used for encoding,

takes C C Ct
d

t
d d+ + +−1 1L iterations when d > t. We find that the

number of iterations dramatically increases as d increases.
Thus, a more efficient algorithm should be developed for the
practical usage. Consider an example that the numbers of the
compatible classes and dichotomies are 6 and 5, respectively. t
is then equal to 3 in this case. The search space of finding the
optimum encoding solution for this example is shown in Fig. 1.
Any path from node S to the nodes of the third level in the tree
represents a possible combination of three dichotomies.
Similarly, any path from node S to the nodes of the second
level in the tree represents a possible combination of two
dichotomies.

collapse
simplify -d -m nocomp

The initial networks of another experiment are multi-level
circuits and are obtained by performing the SIS standard multi-
level optimization script. After obtaining the initial networks,
the same mapping script:

1

5

S

3

4 5

5

54

5

54 5

2

5433

4 5

4

5

2

543 iterations3C
5

iterations2C
5

iterations1
1

C
5 xl_k_decomp /*various algorithms applied here */

xl_partition -tm
xl_cover
xl_merge -l

is used in both experiments. This script first decomposes the
network to be 5-feasible. Algorithm 1, 2, and 3 are applied
here. Thus, each node can be implemented by a 5-LUT. Then,
it tries to merge pairs of nodes which can be implemented by
two-output 5-LUT's as many as possible. Both experiments run
on a SUN SPARC 5 workstation and the results are shown in
Table I and II, respectively.

Fig. 1 : The search space of finding the maximum number of
dichotomies for the encoding.

In this example, 25 iterations are required to find the
optimum solution in the worst case. Suppose that the first
dichotomy is (0:12345), we find that it is impossible to
distinguish class 1~5 no matter what the remaining dichotomies
are because only two more bits are allowed to use. Thus, the
subtree rooted at the first dichotomy can be pruned without
affecting the search of the optimum solution. This pruning
algorithm is illustrated in Fig. 2.

Table I shows the results on 16 two-level Benchmarks. On
average, Algorithm 3 requires 41% and 20% fewer LUT's than
that of Algorithm 1 and 2, respectively. Moreover, Algorithm 3
is also very time-efficient. It only requires 14% and 90% CPU
time than that of Algorithm 1 and 2, respectively. Table II
shows the results on 26 multi-level benchmarks. We find that
Algorithm 2 and 3 produce almost the same results. On
average, they both require 32% fewer LUT's than that of
Algorithm 1, and also take 15~20% less CPU time than that of
Algorithm 1 in this experiment.

1

5

S

3

4 5

5

54

5

54 5

2

5433

4 5

4

5

2

543

=(0:12345)

Pruned

These two experiments show that our encoding strategy can
provide greater improvement for circuits starting with two-level
forms but no significant improvement for circuits starting with
multi-level forms. It is because that node functions of the
multi-level circuits optimized by SIS are simpler and have
fewer inputs than node functions of the two-level circuits. The
similar reason has also been suggested in [10]. Therefore, our
encoding strategy does not make much difference for multi-
level circuits after choosing a good lambda set for decomposing
functions.

Fig. 2 : An example of the pruning strategy on the search space
of the dichotomies.

Hence, the pruning algorithm can be formally described as:
At any node of the search space of the dichotomies, if all the
compatible classes cannot be partitioned into sets whose sizes

are no more than 2remaining bits by using the current dichotomy,
then the subtree rooted at this node is pruned.

This pruning algorithm also guarantees to get the optimum
encoding solution and executes more efficiently than the
procedure Exhaustive_Search_Encoding.

5. Conclusions
In this paper, we discuss the compatible class encoding

problem in Roth-Karp decomposition for two-output LUT

architecture. We show how to formulate this problem as a
symbolic-output encoding problem. Based on this formulation,
we also develop an encoding algorithm and integrate it into a
version of Roth-Karp decomposition with the lambda set
selection strategy. Experiment results show that our new
encoding algorithm can efficiently use fewer LUT's to
implement circuits starting with two-level forms for the two-
output LUT architecture. By investigating the optimization
strategy of current logic synthesis systems, our new encoding
technique is very useful in both two-level and multi-level logic
synthesis systems targeting for the two-output LUT-based
FPGA.

Table I : The experimental results of two-level circuits.
Algorithm 1 Algorithm 2 Algorithm 3

CKT name #in #out #LUT time #LUT time #LUT time

5xp1 7 10 17 3.8 15 2.6 15 1.6
9sym 9 1 7 2.2 7 3.5 7 4.7
alu2 10 6 109 86.7 74 27.3 54 23.4

apex4 9 19 8951827.6 409 125.8 393 132.1
b9 41 21 99 28.2 82 22.0 54 18.6
clip 9 5 70 28.8 33 9.2 24 13.4

count 35 16 78 22.4 50 30.4 50 29.3
duke2 22 29 7111521.5 661 231.6 339 167.8
e64 65 65 528 39.2 520 62.9 520 65.1

f51m 8 8 20 1.7 12 1.8 12 2.7
misex1 8 7 14 1.7 13 3.1 11 2.4

References misex2 25 18 41 5.7 36 4.6 34 5.7
rd73 7 13 7 2.3 7 4.0 7 3.5[1] Xilinx Inc., 2100, Logic Drive, San Jose, CA-95124, The

Programmable Logic Data Book. rd84 8 4 12 5.5 12 11.7 12 12.7
[2] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A.

Sangiovanni-Vincentelli, "Logic Synthesis for Programmable Gate
Arrays," in Proc. 27th Design Automation Conf., June 1990, pp.620-
625.

sao2 10 14 50 11.1 32 6.3 32 9.1
z4ml 7 14 8 1.3 5 1.0 5 0.7

Total 2666 3589.7 1968 547.8 1569 492.8
Normalized 1 1 1 0.74 0.15 0.59 0.14[3] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,

"Improved Logic Synthesis Algorithms for Table Look Up
Architectures," in Proc. Int. Conf. Computer-Aided Design, Nov.
1991, pp.564-567.

Normalized 2 1.35 6.55 1 1 0.80 0.90

Table II : The experimental results of multi-level circuits.[4] R. J. Francis, J. Rose, and K. Chung, "Chortle : A Technology
Mapping Program for Lookup Table-Based Field Programmable Gate
Arrays," in Proc. 27th Design Automation Conf., June 1990, pp.613-
619.

Algorithm 1 Algorithm 2 Algorithm 3
CKT name #in #out #LUT time #LUT time #LUT time

5xp1 7 10 20 3.1 19 2.2 19 2.7
[5] R. J. Francis, J. Rose, and Z. Vranesic, "Chortle-crf : Fast Technology

Mapping for Lookup Table-Based FPGA's," in Proc. 28th Design
Automation Conf., June 1991, pp.227-233.

9sym 9 1 93 23.9 57 19.8 57 21.2
9symml 9 1 79 28.8 60 17.2 58 17.1

alu2 10 6 161 73.5 98 49.5 98 50.3
[6] K. Karplus, "Xmap : A Technology Mapper for Table-Lookup Field

Programmable Gate Arrays," in Proc. 28th Design Automation Conf.,
June 1991, pp.240-243.

alu4 14 8 303 45.6 179 27.1 180 31.7
apex6 135 99 181 11.7 186 15.1 186 22.1
apex7 49 37 48 8.8 51 11.0 51 10.2[7] N. Woo, "A Heuristic Method for FPGA Technology Mapping Based

on the Edge Visibility," in Proc. 28th Design Automation Conf., June
1991, pp.248-251.

b9 41 21 30 5.2 29 4.5 29 4.2
bw 5 28 40 16.9 47 13.3 47 11.5

[8] D. Filo, J. C. Yang, F. Mailhot, and G. D. Micheli, "Technology
Mapping for a Two-Output RAM-based Field-Programmable Gate
Arrays," in Proc. European Design Automation Conf., Feb. 1991,
pp.534-538.

C499 41 32 62 14.1 62 13.5 62 14.2
C880 60 26 134 43.8 84 22.6 84 23.4
clip 9 5 34 6.7 24 6.3 25 5.8

[9] Y. T. Lai, M. Pedram, and Sarma B. K. Vrudhula, "BDD Based
Decomposition of Logic Functions with Application to FPGA
Synthesis," in Proc. 30th Design Automation Conf., June 1993,
pp.642-647.

count 35 16 27 3.5 27 2.7 27 3.0
des 256 245 1539 355.3 871 239.3 865 268.2

duke2 22 29 153 55.7 103 31.9 105 33.0
e64 65 65 56 7.6 56 7.9 56 7.6[10]R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, "Optimum

Functional Decomposition Using Encoding," in Proc. 31st Design
Automation Conf., June 1994, pp.408-414.

f51m 8 8 23 5.2 23 3.8 23 4.1
misex1 8 7 14 2.5 12 2.1 12 2.1

[11]W.-Z. Shen, J.-D. Huang, and S.-M. Chao, "Lambda Set Selection in
Roth-Karp Decomposition for LUT-Based FPGA Technology
Mapping," in Proc. 32nd Design Automation Conf., June 1995,
pp.65-69.

misex2 25 18 28 2.5 28 2.9 28 3.3
misex3 14 14 169 18.8 135 50.1 135 50.2
rd73 7 3 46 15.4 22 12.5 22 12.2
rd84 8 4 107 37.9 57 22.2 56 21.1[12]TingTing Hwang, Robert M. Owens, Mary J. Irwin, and Kuo Hua

Wang, "Logic Synthesis for Field-Programmable Gate Arrays," in
IEEE Trans. on Computer-Aided Design, Oct. 1994, pp.1280-1287.

rot 135 107 159 14.0 152 60.4 152 60.3
sao2 10 4 59 12.3 41 10.6 40 9.2

[13]J. P. Roth, and R. M. Karp, "Minimization Over Boolean Graphs," in
IBM Journal of Research and Development, April 1962, pp.227-238.

vg2 25 8 23 4.1 20 3.7 20 4.1
z4ml 7 4 4 0.2 4 0.2 4 0.2

[14]S. Yang and M. Ciesielski, "Optimum and Suboptimal Algorithm for
Input Encoding and Its Relationship to Logic Minimization," in IEEE
Trans. on Computer-Aided Design, Jan. 1991, pp.4-12.

Total 3592 817.1 2447 652.4 2441 693.0
Normalized 1 1 0.68 0.80 0.68 0.85

Algorithm 1 : R.-K. decomposition in SIS.[15]R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, "MIS : A Multi-Level Logic Optimization System," in IEEE
Trans. on Computer-Aided Design, Nov. 1987, pp.1062-1081.

Algorithm 2 : R.-K. decomposition with λ set selection strategy[11].
Algorithm 3 : Algorithm 2 with compatible class encoding strategy.

