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ABSTRACT

To find whether a set of reduced density matrixes come from a common multi-party state is a
hard and important problem. In this paper, (1) we introduce a method to find out some polytopes
in one-party eigenvalue-space which are sufficient conditions of this problem. (2) We point out that
there are some relations between the compatible conditions and the entanglement of pure states. And
we show this idea more clearly in the three-qubit case. (3) We investigate the relations between the
compatibility problem and the invariants of a matrix-set under some groups. Furthermore, we show
that it is one of the reasons why the compatibility problems which involve the multi-party density
matrixes are much more difficult than the one-party case.

PACS number(s): 03.67.-a, 03.65.Ta

1 Introduction

Any N-party quantum state, pure or mixed, can be represented as a positive Hermitian operator
ρ12···N . From this positive operator, we can easily get a set of positive operators {ρ1, ρ2, · · · , ρ12, · · · ,
ρ12···j} by tracing out some particles. But the inverse problem is far more difficult. To judge whether
a given set of positive operators {ρ1, ρ2, · · · , ρ12, · · · , ρ12···j} come from a common positive operator
ρ12···n is what we concern about in this paper. This problem is called compatibility problem.1 Since
the general problem is too difficult to solve, we simplify this problem to some special situations. We
focus on the following problems which have theoretical and practical importance.

1. The compatibility problem between a set of one-party reduced density matrixes {ρ1, ρ2, · · · ,
ρN} and a N-party pure state |ΨN 〉. That is, whether there exists a pure state |ΨN 〉 such that its
reduced density matrixes are the given ones. The pure-state constraint is a strong one on the positive
N -party matrix ρ12···N , this constraint makes this problem meaningful and much easy to solve. If there
is no constraint on the N -party density matrix, this problem is trivial. Obviously, there are some other
methods to make this problem nontrivial, such as giving the eigenvalue-spectrum of the N -party matrix
ρ12···N , but this constraint is more difficult than the former.2
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2. The compatibility problem between a set of two-party reduced density matrixes and a pure state
|ΨN 〉. In this problem the pure-state constraint is no longer a condition to make the problem nontrivial,
but to make the problem more simple. In any case, the two-party compatibility problem is not trivial.

The problem 1 is much more simple than problem 2 and 3. There are some evidences2 that problem
1 only involves the eigenvalues of the reduced density matrixes. And some necessary and sufficient
conditions on C⊗N2

3,4 and C3⊗C3 ⊗C3
5 systems have been found. But for problem 2 and problem 3,

there is no such conditions yet, and these problems do not only involve the eigenvalues of the reduced
density matrixes.

Why the compatibility problem is important? First, the compatibility problems have close relations
to many-body entanglement which is the central problem of quantum information theory.6—9 It is clear
that if there is no entanglement between particles, all of the compatibility problems are trivial. Since
the entanglement makes the compatibility problem meaningful and difficult, it is not surprise to obtain
some useful entanglement information from the compatible conditions. We can show this more clearly
in Sec. III. In addition, the compatible conditions can also help us to understand the structure of pure
states,10,11 this can also be found in Sec. III.

Second, the compatibility problem is also important in condensed matter physics and chemical
physics.1,12 Since almost all the interactions in condensed matter physics are local (nearest neighbor
interaction), and many physical variants (for example the correlation function) only concerned with
a few of particles. We only need only several particles reduced density matrixes and not the whole
state of the system. The number of the particles is determined by the form of the interaction (for
nearest neighbor interaction, we only need the 2-particle reduced density matrixes). If we get all of
the compatible conditions, we can design powerful variational methods to substantially simplify the
computation of many physical variants.

2 Sufficient conditions for one-party reduced density

matrixes

We begin with choosing a set of states which have the similar properties as set (1). We construct
the set by a recursive way. Firstly, we construct the set B2

d in the space Cd ⊗ Cd as

|00〉 , |11〉 , · · · , |dd〉 .

If the desired set Bk
d in the space C⊗kd are

|ϕ1〉 , |ϕ2〉 , · · · , |ϕm〉 .

then we construct the set Bk+1
d in the space C⊗k+1d as

|0〉 ⊗ Ik(|ϕ1〉 , |ϕ2〉 , · · · , |ϕm〉),

|1〉 ⊗Ek(|ϕ1〉 , |ϕ2〉 , · · · , |ϕm〉),

|2〉 ⊗E2
k(|ϕ1〉 , |ϕ2〉 , · · · , |ϕm〉), (1)

...

|d− 1〉 ⊗Ed−1
k (|ϕ1〉 , |ϕ2〉 , · · · , |ϕm〉).

where {Ik, Ek, · · ·E
d−1
k } is a cyclic group on the particle k whose order is d, Ik is the identity of this

group, and Ek |i〉k = |i− 1〉k (i = 1, 2, · · · , d− 1), Ek |0〉k = |d− 1〉k , Ek |i〉l = |i〉l (k �= l). From this
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construction, we know that the number of the states in the set C⊗Nd is dN−1. We can get the following

theorem about the set in the space C⊗Nd

Theorem 1: There are no two different states which have more than N − 2 identical particles in
the same state.

We can point out that the set constructed by our method is the maximal one which satisfies the
theorem 1. And adding any state into this basis set will make the theorem not be hold. As the above
special case, there are some other sets satisfy the same conditions. All of the maximal sets can also
be found by operating an element Ek

1 ⊗ El
2 · · · ⊗ Em

N of the group Gc(d, d · · · , d) on the original set
(5). Here {Ik, Ek, · · ·E

d−1
k } is a cycle group operating on the kth particle as before. It is obvious that

not every element of this group operate on the initial basis will generate a new set, there are many
degenerate cases.

Since the number of parameters in the states space which spanned by BN
d is far more than the

number of the eigenvalues in the one-party density matrix eigenvalues space, it is difficult to get the
explicit form of the eigenvalue space. But we can also use these states to get a polytope in the
eigenvalues space of the one-party density matrixes. Any state in the space spanned by the set BN

d

can be written as |ϕ〉 =
∑

d
N−1

i=1
αi |ϕi〉 . For the property of this set, any eigenvalues of one-party

density matrix can be expressed as the sum of some coefficients’ square |αi|
2
. That is, the eigenvalues

of one-party density matrixes of |ϕ〉 are linear combination of |αi|
2
. For convenience, we define a vector

V which is a point in the eigenvalues space. This vector V can be divided into N segments, the ith
segments is constructed by d eigenvalues of the ith one-party reduced density matrix. We also define
another vector V ′ = (|α1|

2
, |α2|

2
, · · · , |αdN−1 |2) which is a point in the dN−1−dimension space. Now

we denote the set in the eigenvalues space, which can be gotten by the space spanned by BN

d
, as Q

and the set which is formed by V
′

as P . We note that the coefficients |αi|
2
must satisfy the conditions

∑d
N−1

i=1
|αi|

2
= 1. So all of the vectors V

′

construct the standard simplex in (dN−1 − 1)-dimension

space. Since the eigenvalues of one-party density matrixes are linear combination of |αi|
2
, Q can be

found by operating a linear transformation on the set P . Using the simple property of the projection
of the polytopes, we know that the set Q is also a polytope whose dimension is rank(M) where matrix
M is the linear transformation between P and Q. Here the rank of the matrix M is just the number
of independent eigenvalues of one-party density matrixes, that is N(d − 1). From this conclusion, we
can find that the polytope which we have found before is not trivial, at least, it is not a zero measure
set in eigenvalue-space. Even more, we have the following proposition from the projection theory13

Proposition : Let π : P −→ Q be a projection of polytopes. Then for every face of Q, F , the
preimage π−1(F ) = {y ∈ P : π(y) ∈ F} is a face of P . Furthermore, if F ,G are faces of Q, then F⊆ G

holds if and only if π−1(F ) ⊆ π−1(G).

Now from this proposition, we can find that all of the vertexes of the projection polytope Q are
projection of some faces of the initial polytope P . If the vertex A of Q is the projection of a face
B of P . Since we know the linear transformation M , it is easy to find the coordinates of A( A is a
vertex of Q) through the coordinates of the vertexes of B(B is a face of P ). So we can find all of the
vertexes of Q by the vertexes of P . Since P is the standard simplex in (dN−1 − 1)-dimension space,
we know all of it’s vertexes. They are (100 · · · 00), (010 · · · 00), · · · (00 · · · 01) and there are one to one
correspondence between them and the basis in (5). There are no degenerate on these vertexes under the
linear transformation A. So we can construct a direct one to one correspondence between the vertexes
of the projection polytope Q and the basis set (5). That is, we project every basis |Ψ〉 = |i1i2 · · · iN 〉 to
the vertex whose coordinates are {{i1}, {i2}, · · · {iN} where {ij} means that only the (ij)th eigenvalue
is 1 and the others are zeroes. So we can get a polytope Q with dN−1 vertexes. For every set, we can
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find a polytope Qi. Of course, some polytopes are the same, some are overlapped. Then we can get
the largest set which guarantees the existence of a pure state by union all of the polytopes, that is,

Q = ∪dN

j=1Qj .

3 Relations between the compatibility problems and

entanglement

The necessary and sufficient compatible conditions between N one-party reduced qubit density
matrixes and a pure state in C⊗N

2
are in the following

N∑

i�=k,i=1

λ
↑
1
(i) ≥ λ

↑
1
(k) (k = 1, 2, · · · , N), (2)

where λ
↑
1
(i) is the smaller eigenvalue of the one-party density matrix ρi. These conditions are first

gotten by Higuchi.3 The points that satisfy these conditions form a polytopes, Bravyi4 first given all
of the vertexes of this polytopes, they are vectors

(00 · · · 0), (
1

2

1

2
0 · · · 0), (

1

2

1

2

1

2
0 · · · 0), · · · , (

1

2

1

2
· · ·

1

2
). (3)

and any particle permutation of these vertexes. For convenience in the following, we denote Ak(k ≥ 2)
as the vertexes set gotten by exchanging any of particles in the vertex (1

2
· · · 1

2
0 · · · 0) (there are k 1

2
in

this vertex), especially, the set A1 is a one-point set {(00 · · · 0)}. To make it clear, we first focus on the
three-qubit case. In this case, we can draw these conditions in a three-dimension smaller-eigenvalue
space (Fig 1). For pure states in the C⊗3

2
, there is a classification which is given by Acin et al.22

They divided the pure states into several classes. We can find from figure 1 that some classes of this
classification have clear geometric meanings, they are some faces of this polytopes. The following facts
can be found in this figure, the detailed proofs of these facts are given in the Appendix.

1. All the separable states (type 1) are on the point A (000), and vice versa.

2. All the biseparable states (type 2a), i.e. one of the particle does not entangled with the other
two particles, are on the line AB1, AB2 and AB3, and vice versa.

3. All the generalized GHZ states (type 2b) are on the line AC. And for every point on the line
AC, we can find a generalized GHZ state which have the given eigenvalues.

4. All the tri-Bell states (type 3a) are on the triangles � B2B3A,� B1B3A,� B1B2A and �
B1B2B3. And for every point in these triangles, we can find a tri-Bell state which have the given
eigenvalues.

5. All the extended GHZ states (type 3b) are on the triangles � CB3A,� CB2A and � CB1A. And
for every point in these triangles, we can find a extended GHZ state which have the given eigenvalues.

6. All the W states23(type 4a) are in the tetrahedron AB1B2B3, and for every point in this
tetrahedron, we can find a W state which have the given eigenvalues. This fact does not mean that
the W state in the three-qubit pure-state space has none zero measure, since the projection from the
state space to the smaller-eigenvalue space is not linear.
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From these facts, the relations between the compatible polytopes of the one-party reduced density
matrixes and the classification or entanglement of the three-qubit case are clear. Almost all of the types
classified by Acin are corresponded with some geometry body. We also can see that there are some
overlaps between the different types, this is due to the degenerate of the one-party reduced density
matrixes. We believe that the degeneracy will be deleted if we get all of the necessary and sufficient
conditions of any k-party reduced density matrixes.

4 Compatible problems and invariants

It is not surprised to find that the compatible conditions between a set of density matrixes and a
multi-party state have close relations with the invariants of a set of matrixes under some groups. If
we want to solve the compatible problem, we must find out all of the invariants. We can see in the
following that this is a very difficult problem. Firstly, we point out that if three two-qubit density
matrixes can come from a pure state, then we can find all of the invariants of the three-qubit pure
state under U(2) ⊗ U(2) ⊗ U(2) group from these matrixes. As Sudbery27,28 et al. point out that
there are five independent invariants for three-qubit pure states under U(2) ⊗ U(2) ⊗ U(2) group.
They are tr(ρ2A), tr(ρ

2
B), tr(ρ

2
C), tr(ρB ⊗ ρAρAB) and τA,BC = τA(BC) − τAB − τAC, where τAB is

the concurrence15 of two-qubit density matrix ρAB, τA(BC) is equal to det(A) under the pure state
situation.24 By the definition of these invariants, they can be completely determined by these reduced
density matrixes. Of course, the pure state is determined uniquely under the local unitary. Generally,
if all of the invariants of a pure state can be determined by some reduce density matrixes, then the
pure state can be determined by the reduced density matrixes uniquely.

Secondly, we point out why the compatible problem of the multi-party density problem is much
more difficult than the one-party problem. To make this idea more clear, we introduce the following
definition.

Definition: A set of reduced matrixes S = {ρI1 , ρI2 , · · · , ρIk} is called locally equivalent to another
set of reduced matrixes S

′

= {ρ
′

I1
, ρ

′

I2
, · · · , ρ

′

Ik
} (where Ij(j = 1, 2, · · · , k) are subset of {1, 2, · · ·n}), if

there exists local unitary operators U1, U2, · · · , Un such that ρIj = U
†
Ij
ρ

′

Ij
UIj (j = 1, 2, · · · k) where UIj

is the tensor product of Ui(i ∈ Ij).

The relations between the compatible problem and this definition are clear, if the reduced matrixes
in the set S are compatible, the matrixes in S

′

are compatible too. So the compatible conditions can
only deal with the invariants of a set of matrixes under the local unitary group. If all of the matrixes in
the set S (S

′

) are one-party density matrixes, this problem is trivial. Whether these two sets are locally
equivalent is completely determined by the eigenvalues of the corresponding density matrixes and these
eigenvalues are the only invariants under the local unitary transformation. But when there are some
multi-party density matrixes in the set, the situation is different. There are two main difficulties. The
first, the invariants of the multi-party density matrixes under the local unitary group are difficult to
find. The second, the things even worse, all of the invariants of the multi-party density matrixes29

under local unitary group are not enough. We need some other conditions. This can be seen in the
following simple example. We consider the set S = {ρ12, ρ23, ρ13} and S

′

= {ρ
′

12, ρ
′

23, ρ
′

13}. If these two
sets are locally equivalent, it is easy to find that density matrixes ρ12 and ρ

′

12
, ρ23 and ρ

′

23
, ρ13 and ρ

′

13

must have the same invariants under the group U1⊗U2, U2⊗U3, U1⊗U3, respectively. These invariants
have already completely solved by Linden et al.

29
. It means that there exist unitary matrixes to make

ρ
′

12
= u

†
11
⊗ u

†
21
ρ12u11 ⊗ u21, ρ

′

23
= u

†
22
⊗ u

†
31
ρ23u22 ⊗ u31 and ρ

′

13
= u

†
12
⊗ u

†
32
ρ23u12 ⊗ u32. But these

conditions can not guarantee u11 = u12, u21 = u22 and u31 = u32. The latter requirements even can
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not get by invariants under some group.

5 Conclusion

In this paper, we introduce a method to find some polytopes in the eigenvalues space of the one-
party density matrixes. This method has been proved to be very strong for the C⊗n

2
space, but whether

it is also strong for the other situation is an open question. Since the complexity of the compatibility
problem comes from entanglement of the state, it is not surprise that we can find some entanglement
information from the compatible conditions. We use the necessary and sufficient conditions of the C⊗n

2

one-party compatibility problem, especially the C⊗3
2

case, to show that we can get some information
indeed. We find there are some correspondences between some classes of the pure states and some
polytope sets. But this correspondence is not exact, there are some overlap between them. This
degenerate phenomena can be viewed as the limits of the one-party density matrixes. If we can find
out all of the compatibility problems, we prefer to believe that we can get almost all of the entanglement
information of the pure states. We also point out that to find out the compatibility problem of the multi-
party density matrixes are much more difficult than the one-party case. The multi-party compatible
problem is not only involved with the invariants of a matrix under local unitary, but also needs some
other invariants which can not get by local group. How to find all of the invariants of a set of matrixes
is another open question, of course, this problem has close relations with entanglement of states.

This work was funded by the National Fundamental Research Program (2001CB309300), the Inno-
vation Funds from Chinese Academy of Sciences (CAS), the National Natural Science Foundation of
China.
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