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COMPATIBLE CONTACT STRUCTURES OF FIBERED SEIFERT LINKS

IN HOMOLOGY 3-SPHERES
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Abstract. We study compatible contact structures of fibered Seifert multilinks in ho-
mology 3-spheres and especially give a necessary and sufficient condition for the contact struc-
ture to be tight in the case where the Seifert fibration is positively twisted. As a corollary we
determine the strongly quasipositivity of fibered Seifert links in S3. We also study the com-
patible contact structures of cablings along links in any 3-manifolds.

1. Introduction. A contact structure on a closed, oriented, smooth 3-manifold M is
the kernel of a 1-form α on M satisfying α ∧ dα �= 0 everywhere. In this paper, we only
consider a positive contact form, i.e., a contact form α with α∧dα > 0. In [31], Thurston and
Winkelnkemper used open book decompositions to show the existence of contact structures on
any 3-manifolds. In [12], Giroux then focused on their idea, introduced the notion of contact
structures supported by open book decompositions, and studied the correspondence between
contact structures up to contactomorphisms and open book decompositions up to plumbings
of positive Hopf bands (cf. [10]). Instead of the terminology “supported”, we will say that the
contact structure is “compatible” with an open book decomposition and vice versa.

In the study of open book decompositions of 3-manifolds, it is important to determine if
the compatible contact structure is tight or overtwisted since it gives a rough classification of
open book decompositions by Giroux’s correspondence. An explicit construction sometimes
helps us to determine the tightness. For example, in [9, 21], Etgü and Ozbagci gave explicit
descriptions of contact structures transverse to the fibers of circle bundles and certain Seifert
fibered manifolds and proved that such contact structures are Stein fillable. Stein fillable
contact structures are known to be tight by Eliashberg and Gromov [7, 13].

The purpose of this paper is to give an explicit construction of contact structures com-
patible with fibered Seifert links in homology 3-spheres. We hereafter use the terminology
“fibered link” instead of “open book decomposition”. Following the book of Eisenbud and
Neumann [5], we denote a Seifert fibered homology 3-sphere as Σ(a1, a2, . . . , ak), where
ai’s are the denominators of the Seifert invariants. The Seifert fibration has different prop-
erties depending on the sign of the product a1a2 · · · ak; if a1a2 · · · ak > 0 then the fibers
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of the Seifert fibration are twisted positively, as those of the positive Hopf fibration, and if
a1a2 · · · ak < 0 then they are negatively twisted.

A Seifert link L in Σ(a1, . . . , ak) is an oriented link whose exterior admits a Seifert fibra-
tion. A multilink L(m) is a link each of whose link components is equipped with a non-zero
integer, called the multiplicity, where m = (m1, . . . ,mn) represents the set of multiplicities.
Note that we assign an orientation to each link component previously, called a working orien-

tation, and the multiplicity is read with respect to this orientation. A multilink L(m) is said
to be fibered if its complement admits a fibration over S1 such that the homology class of
the union of oriented simple closed curves on the boundary of a small tubular neighborhood
of each link component induced from a fiber surface is pi [mi] + mi[li], where (mi, li) is a
meridian-longitude pair of that component chosen such that the orientation of the longitude
agrees with its working orientation, mi is the multiplicity and pi is some integer. Note that
a multilink is a usual link if all the multiplicities are in {−1, 1}. The criterion in [5, Theo-
rem 11.1] determines the fiberedness of a Seifert multilink in Σ(a1, . . . , ak), from which we
can see that Seifert multilinks are fibered in most cases (see Theorem 2.1 below).

Now we assign an orientation to the fibers of the Seifert fibration under the assumption
a1a2 · · · ak �= 0, which we call the orientation of the Seifert fibration. If the orientations of
all the components of L(m) coincide with, or are opposite to, the orientation of the Seifert
fibration then we say that the orientation of L(m) is canonical.

In this paper we prove the following results.

THEOREM 1.1. Let L(m) be a fibered Seifert multilink in Σ(a1, a2, . . . , ak) with

a1 · · · ak > 0. If the orientation of L(m) is canonical then the compatible contact structure is

Stein fillable. Otherwise it is overtwisted.

The case a1a2 · · · ak < 0 will also be discussed in this paper. As a consequence of our
constructions in both cases, we determine the tightness of fibered Seifert links in S3.

THEOREM 1.2. Let L be a fibered Seifert link in S3 = Σ(a1, a2). Then the compatible

contact structure of L is tight if and only if L is one of the following cases:

(1) a1a2 > 0 and the orientation of L is canonical.

(2) L is an oriented link described in Figure 1 with k ≥ 1.

FIGURE 1. Fibered Seifert links in Case (2).
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With a small additional effort, we can remove the fiberedness assumption by replacing
‘tightness’ by ‘strongly quasipositivity’ (see Section 7 for the definition of strongly quasipos-
itive links).

COROLLARY 1.3. Let L be a non-splittable Seifert link in S3. Then, L is strongly

quasipositive if and only if it is in Case (1) or (2) above, or in Case (3) stated below:

(3) L is a negative torus link consisting of even number of link components half of

which have reversed orientations.

Here a link L in S3 is called splittable if S3 \L contains an incompressible 2-sphere. The
only splittable Seifert links are trivial links with several components.

The technique of cabling with contact structure can be used for studying cablings along
fibered links in arbitrary 3-manifolds. Let L(m) be a fibered multilink in an oriented, closed,
smooth 3-manifold M with cabling in a solid torus N in M , and L′(m′) a fibered multilink
obtained from L(m) by retracting N to its core curve. Note that L′(m′) is always fibered.
We say that a cabling is positive if L(m) ∩ N intersects the fiber surface of L′(m′) positively
transversely, and otherwise it is called negative.

THEOREM 1.4. Let L(m) be a fibered multilink in an oriented, closed, smooth 3-

manifold M with cabling in a solid torus N in M , and L′(m′) the fibered multilink obtained

from L(m) by retracting N to its core curve. Let ξ and ξ ′ denote the contact structures on M

compatible with L(m) and L′(m′), respectively.

(1) If ξ ′ is tight and the cabling is positive, then ξ is tight.

(2) If ξ ′ is tight, the cabling is negative and L(m) ∩ N has at least two components,
then ξ is overtwisted.

(3) If ξ ′ is tight, the cabling is negative, L(m) ∩ N is connected, p ≥ 2 and q ≤ −2,
then ξ is overtwisted.

(4) If ξ ′ is overtwisted then ξ is also overtwisted.

Here p and q are the coefficients of the slope qm + pl of the cabling with respect to the

meridian-longitude pair (m, l) on ∂N which will be fixed in Subsection 8.1.

The compatible contact structures of cablings of multilinks are studied independently by
Baker, Etnyre and van Horn-Morris [2]. In their paper, a fibered multilink is called a rational
open book decomposition. The case M = S3 had been studied by Hedden in [16] using a
different method.

This paper is organized as follows. In Section 2, we fix the notation of Seifert fibered
homology 3-spheres and Seifert multilinks following the book [5]. We introduce the notion
of compatible contact structures for multilinks in Section 3. The case a1 · · · ak > 0 is studied
in Section 4, including the proof of Theorem 1.1, and the case a1 · · · ak < 0 is in Section 5,
where we give an explicit construction of contact structures and some criterion for detecting
overtwisted disks. We then prove Theorem 1.2 in Section 6 and Corollary 1.3 in Section 7.
In Section 8, we give the definitions of positive and negative cablings and the proof of Theo-
rem 1.4. A conjecture about strongly quasipositive orientation is posed in the end of Section 7.
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2. Preliminaries. In the following, intX and ∂X represent the interior and the bound-
ary of a topological space X, respectively.

2.1. Notation of Seifert fibered homology 3-spheres. Let Σ be a homology
3-sphere. We use the topological description of Seifert links in [5, p. 60]. Let S = S2 \

int(D2
1 ∪ · · · ∪ D2

k ) be a 2-sphere with k holes and make an oriented, closed, smooth 3-
manifold Σ from S ×S1 by gluing solid tori (D2 ×S1)1, . . . , (D

2 ×S1)k along the boundary
∂(S × S1). To fix the notation, we first choose a section Ssec of π : S × S1 → S and set

Qi = (−∂Ssec) ∩ (D2 × S1)i and

H = typical oriented fiber of π in ∂(D2 × S1)i .

Suppose that the gluing map of (D2 × S1)i to S × S1 is given so that aiQi + biH is null-
homologous in (D2 ×S1)i , where (ai, bi) ∈ Z

2 \ {(0, 0)} and gcd(|ai|, |bi |) = 1. To make the
obtained 3-manifold Σ to be a homology 3-sphere, the integers ai’s and bi’s should satisfy the
equality

∑k
i=1 bia1 · · · ai−1ai+1 · · · ak = ±1. Following [5], in this paper, we always choose

the coefficients ai’s and bi’s so that
∑k

i=1 bia1 · · · ai−1ai+1 · · · ak = 1 by replacing (ai, bi)

by (−ai,−bi) for some i if necessary. Note that this equality ensures that if one of ai’s is
zero then all the other ai’s satisfy |ai | = 1, and if ai �= 0 for all i = 1, . . . , k then each pair
(i, j) with i �= j satisfies gcd(|ai |, |aj |) = 1. Since the 3-manifold Σ does not depend on the
ambiguity of the choice of bi’s, we may denote it as Σ = Σ(a1, . . . , ak).

The core curve Si of each solid torus (D2 × S1)i is a fiber of the Seifert fibration after
the gluings. We assign to Si an orientation in such a way that the linking number of Si and
aiQi + biH equals 1. This orientation is called the working orientation.

Let (mi, li) be the preferred meridian-longitude pair of the link complement Σ\Si chosen
such that the orientation of the longitude li agrees with the working orientation of Si . Then
(mi, li) and (Qi,H) are related by the following equations (see [5, Lemma 7.5]):

(2.1)

(

mi

li

)

=

(

ai bi

−σi δi

) (

Qi

H

)

and

(

Qi

H

)

=

(

δi −bi

σi ai

) (

mi

li

)

,

where σi = a1 · · · âi · · · ak and δi =
∑

j �=i bja1 · · · âi · · · âj · · · ak . Note that they satisfy
aiδi + biσi = 1.

Set A = a1 · · · ak. In the case A �= 0, the orientation of the Seifert fibration in S ×

S1 → S canonically extends into the fibers in (D2 × S1)i for each i = 1, . . . , k, namely
the orientation of the Seifert fibration of Σ(a1, . . . , ak) becomes well-defined. Note that the
working orientation on Si coincides with the orientation of the Seifert fibration if and only if
ai > 0.

2.2. Fibered multilinks. We give the definition of fibered multilinks in 3-manifolds.
The same notion appears in [2], where the fibration is called a rational open book decompo-

sition.
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Let M be an oriented, closed, smooth 3-manifold and L an unoriented link in M with n

link components. We first assign an orientation to each link component of L, which we also
call a working orientation. A multilink L(m) in M is a link each of whose components is
equipped with a non-zero integer, called the multiplicity, where m = (m1, . . . ,mn) represents
the set of multiplicities. A multilink L(m) is called fibered if there is a fibration M \ L → S1

such that the homology class of the union of oriented simple closed curves on the boundary of
a small tubular neighborhood of each link component induced from a fiber surface is pi[mi]+

mi [li], where (mi, li) is a meridian-longitude pair of that component chosen such that the
orientation of the longitude agrees with its working orientation, mi is the multiplicity and pi

is some integer (cf. [5, p. 28–29]).

2.3. Fibered Seifert multilinks. In the case A �= 0, a Seifert link L in Σ(a1, . . . , ak)

is a union of finite number of fibers of the Seifert fibration. We had introduced the working
orientation for each link component Si of L in Subsection 2.1. Using this working orientation,
we assign a multiplicity to each Si and make L a Seifert multilink. We denote this multilink
as

L(m) = (Σ(a1, . . . , ak),m1S1 ∪ · · · ∪ mnSn) ,

where 1 ≤ n ≤ k. In this paper, we call a trivial knot with multiplicity a trivial multilink

and a Hopf link with multiplicities a Hopf multilink. The Milnor fibrations of singularities

of complex polynomials f (z1, z2) = z
|m1|
1 and f (z1, z2) = z

|m1|
1 z

|m2|
2 at the origin and their

mirror images show that trivial multilinks and Hopf multilinks are fibered. The fiberedness of
other Seifert multilinks are determined by the following theorem.

THEOREM 2.1 (Eisenbud-Neumann, [5]). Suppose that L(m) is a Seifert multilink

other than a trivial multilink and a Hopf multilink. Then L(m) is fibered if and only if it

satisfies
∑n

i=1 miσi �= 0.

The proof can be found in [5, p. 89–90]. From this theorem, we can see that Seifert
multilinks are fibered in most cases.

Suppose that L(m) is fibered. The interiors of the fiber surfaces of L(m) intersect the
fibers of the Seifert fibration transversely except for the case where L(m) is a Hopf multi-
link (see [5, Theorem 11.2] and the proof therein). As mentioned in [5, Proposition 7.3], a
Seifert multilink is invertible and this involution changes L(m) into L(−m). In particular,
this reverses the sign of the intersection of the interiors of the fiber surfaces and the fibers of
the Seifert fibration. In this paper, by choosing one of L(m) and L(−m) suitably, we often
assume that the intersection is positive. We name it the positive transverse property and write
it (PTP) for short.

DEFINITION 2.2. Suppose A �= 0. A link component miSi of a fibered Seifert mul-
tilink L(m) with (PTP) is called positive (resp. negative) if its orientation is consistent with
(resp. opposite to) the orientation of the Seifert fibration. If the orientations of the link com-
ponents of L(m) are either all positive or all negative then we say that the orientation of L(m)

is canonical.
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3. Fibered multilinks and contact structures.

3.1. A Lutz tube. We first introduce terminologies in 3-dimensional contact topology
briefly, see for instance [22, 11] for general references.

A contact structure on M is the 2-plane field given by the kernel of a 1-form α satisfying
α ∧ dα �= 0 everywhere on M . In this paper, we only consider a contact structure given by
the kernel of a 1-form α satisfying α ∧ dα > 0, called a positive contact form. A vector field
Rα on M determined by the conditions dα(Rα, ·) ≡ 0 and α(Rα) ≡ 1 is called the Reeb

vector field of α. The 3-manifold M equipped with a contact structure ξ is called a contact

manifold and denoted as (M, ξ). Two contact manifolds (M1, ξ1) and (M2, ξ2) are said to be
contactomorphic if there exists a diffeomorphism ϕ : M1 → M2 such that dϕ : T M1 → T M2

satisfies dϕ(ξ1) = ξ2. A disk D in (M, ξ) is called overtwisted if D is tangent to ξ at each
point on ∂D. If (M, ξ) has an overtwisted disk then we say that ξ is overtwisted and otherwise
that ξ is tight. A typical example of overtwisted contact structures is given as follows: Let α

be the contact form on R
3 given by

α = cos rdz + r sin rdθ ,

where (r, θ, z) are coordinates of R
3 with polar coordinates (r, θ). The contact structure ker α

is as shown in Figure 2. We can find an overtwisted disk in the tube {(r, θ, z) ; |r| ≤ π + ε},
where ε > 0 is a sufficiently small real number. Hence, this contact structure is overtwisted.

FIGURE 2. A typical example of overtwisted contact structures.

Now we introduce an effective way to describe a contact structure on D2 × S1. Let α

be a 1-form on D2 × S1 given by α = h2dµ − h1dλ, where (r, µ, λ) are coordinates of
D2 × S1 with polar coordinates (r, µ) of D2, and h1 and h2 are real-valued smooth functions
with parameter r . We have

dα = h′
2dr ∧ dµ − h′

1dr ∧ dλ ,

α ∧ dα = (h′
1h2 − h1h

′
2)dr ∧ dµ ∧ dλ ,

where h′
1 and h′

2 are the derivatives of h1 and h2 with parameter r , respectively. Hence, α is a
positive contact form if and only if h′

1h2 − h1h
′
2 > 0. We now plot (h1, h2) on the xy-plane.

Since (h2,−h1) represents a vector normal to the 2-plane of the contact structure ker α, we



COMPATIBLE CONTACT STRUCTURES OF FIBERED SEIFERT LINKS 31

can regard the line connecting (0, 0) and (h1, h2) as the slope of ker α. The Reeb vector field
Rα of α is given as

Rα =
1

h′
1h2 − h1h

′
2

(

h′
1

∂

∂µ
+ h′

2
∂

∂λ

)

.

The parameter r varies from 0 to 1, namely from {(0, 0)} × S1 to the boundary of D2 × S1,
and the pair of functions (h1(r), h2(r)) defines a curve γ on the xy-plane. In summary, the
curve γ has the following properties:

• Since h′
1h2 −h1h

′
2 > 0, (0, 0) �∈ γ ([0, 1]) and γ moves in the clockwise orientation.

• The line connecting (0, 0) and (h1, h2) represents the slope of ker α and the vector
(h2,−h1) represents the positive side of ker α.

• The speed vector (h′
1, h

′
2) is parallel to Rα and points in the same direction.

See Figure 3. To make α a well-defined contact form in a neighborhood of r = 0, we choose γ

near r = 0 such that (h1, h2) = (−c, r2) or (h1, h2) = (c,−r2) with some positive constant
c, so that α has the form α = r2dµ + cdλ or α = −(r2dµ + cdλ) near r = 0, respectively.

FIGURE 3. How to read ξ = ker α and Rα from the curve γ (r) = (h1(r), h2(r)).

If the curve γ intersects the positive x-axis, then the contact structure ker α on D2 × S1

has an overtwisted disk, similar to Figure 2, whose boundary corresponds to the intersection
point of γ and the positive x-axis. In this paper, we call the tube (D2 × S1, ker α) a Lutz tube

and use it frequently to show the existence of an overtwisted disk.

3.2. Contact structures compatible with multilinks. The notion of compatible con-
tact structures of fibered links can be generalized to fibered multilinks canonically. This idea
also appears in [2]. Let M be a closed, oriented, smooth 3-manifold.

DEFINITION 3.1. A fibered multilink L(m) in M is said to be compatible with a con-
tact structure ξ = ker α on M if L(m) is positively transverse to ξ and dα is a volume form
on the interiors of the fiber surfaces of L(m).

The next lemma gives a useful interpretation of the notion of compatible contact struc-
tures in terms of Reeb vector fields. In this paper we mainly use this characterization.



32 M. ISHIKAWA

LEMMA 3.2. A fibered multilink L(m) in M is compatible with a contact structure ξ

on M if and only if there exists a contact form α on M with ξ = ker α such that the Reeb vector

field Rα is tangent to L(m) and positively transverse to the interiors of the fiber surfaces of

L(m), and its orientation is consistent with that of L(m) induced from the fiber surfaces.

PROOF. The proof for a fibered link in [10, Lemma 3.5] works in this case also. ✷

Now we introduce two fundamental facts concerning compatible contact structures of
fibered multilinks, following the fibered link case.

PROPOSITION 3.3. Any fibered multilink in M admits a compatible contact structure.

Although the proof is analogous to the one in [31], since an explicit contact form of the
compatible contact structure will be needed in the proof of Lemma 8.4 later, we prove the
assertion here with presenting the contact form. A similar proof can be found in [2].

PROOF. Let L(m) be a fibered multilink in M with n link components m1S1, . . . ,mnSn

and N(Si ) a small compact tubular neighborhood of Si in M for i = 1, . . . , n. We denote
by Ft the fiber surface of L(m) over t ∈ S1 = [0, 1]/0 ∼ 1 and choose a diffeomorphism
φt : F0 → Ft of the fibration of L(m) in such a way that

φt (ri, µi , λi) =

(

ri , µi +
t

|mi |
, λi

)

in N(Si ), where (ri, µi , λi) are coordinates of N(Si) = D2 ×S1 chosen such that (ri , µi) are
the polar coordinates of D2 and the orientation of λ agrees with that of the corresponding link
component of L(m). For convenience, we set the coordinates (ri , µi) such that the radius of
D2 is 1.

Let θi be the coordinate function on the curve −(F0 \ int N(Si )) given as θi = −λi .
Then, as in [31], we can find a 1-form β on F0 ∩ (S × S1) such that dβ is a volume form
on F0 ∩ (S × S1) and β = −(1/ri)dθi near ∂N(Si). The manifold M is constructed from
F0 × [0, 1] by identifying (x, 1) ∼ (φ1(x), 0) for each x ∈ F0 and then filling the boundary
components by the solid tori N(Si)’s. According to this construction, we define a 1-form α0

on S × S1 as

α0 = (1 − t)β + tφ∗
1 (β) + Rdt ,

with R > 0, which is given near ∂N(Si) as

(3.1) α0 = −
1

ri
dθi + Rdt =

1

ri
dλi + R(vidµi − uidλi) ,

where (ui, vi) is a vector representing the oriented boundary of F0 \ int N(Si) on ∂N(Si) with
coordinates (µi, λi); in other words, (vi ,−ui) is a vector positively normal to F0 on ∂N(Si).
Note that vi > 0. We choose R sufficiently large so that α0 becomes a positive contact form
on S × S1.

For each N(Si ), we extend α0 into N(Si) by describing a curve γ (ri) on the xy-plane
explained in Subsection 3.1. The endpoint (h1(1), h2(1)) of γ (ri) is given as (h1(1), h2(1)) =
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(Rui − 1, Rvi) and the speed vector γ ′(ri) at ri = 1 is (h′
1(ri), h

′
2(ri)) = (1, 0). Hence, we

can describe a curve γ (ri) representing a positive contact form on N(Si ) such that
• (h1, h2) = (−c, r2) near r = 0 with c > 0,
• γ (1) and γ ′(1) satisfy the above conditions, and
• γ ′(ri) rotates monotonously.

Thus the contact form α0 is extended into N(Si ). We denote the obtained contact form on M

as α.
Since the fibers of the Seifert fibration intersect Ft ∩ (S × S1) positively transversely,

ker α is compatible with L(m) on S × S1. In each N(Si), we can isotope Ft into the position
shown in Figure 4 such that ker α is compatible with L(m). This completes the proof. ✷

FIGURE 4. The compatibility in the neighborhood N(Si).

PROPOSITION 3.4. If two contact structures on M are compatible with the same

fibered multilink in M then they are contactomorphic.

PROOF. The proof for a fibered link in [12] works in this case also (cf. [22, Proposi-
tion 9.2.7]). ✷

4. Case a1a2 · · · ak > 0.

4.1. Explicit construction of the contact structure. Throughout this section, we
always assume A = a1 · · · ak > 0. Theorem 1.1 follows from the explicit construction of
compatible contact structures described below.

PROPOSITION 4.1. Let L(m) = (Σ,m1S1 ∪ · · · ∪mnSn) be a fibered Seifert multilink

in a homology 3-sphere Σ = Σ(a1, . . . , ak) with A > 0. Assume (PTP). Then there exists a

positive contact form α on Σ with the following properties:

(1) L(m) is compatible with the contact structure ξ = ker α.

(2) The Reeb vector field Rα of α is tangent to the fibers of the Seifert fibration on

S × S1.
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(3) The neighborhood (D2 × S1)i of each negative component miSi of L(m) contains

a Lutz tube. In particular, it contains an overtwisted disk.

(4) On the other (D2 × S1)i’s, ker α is transverse to the fibers of the Seifert fibration.

REMARK 4.2. The most canonical way to construct a contact structure compatible
with a given fibered link is to use the fiber surface as done in [31]. However this is difficult
in our situation because there is no systematic way to describe the fiber surface. The idea of
the proof of Theorem 1.1 is that we choose the contact form such that its Reeb vector field
is tangent to the fibers of the Seifert fibration everywhere except in small neighborhoods of
the negative components. This makes sure that the contact structure is compatible with the
fibered multilink in the most part. The rest is done by describing possible local positions of
the fiber surfaces along the exceptional components.

REMARK 4.3. The existence of S1-invariant contact forms on orientable Seifert
fibered 3-manifolds is known in [18]. The existence of a contact structure transverse to the
fibers of a Seifert fibration had been studied in [29] for circle bundles over closed surfaces
and in [19] for Seifert fibered 3-manifolds. The transverse contact structures are always Stein
fillable as mentioned in [4, Theorem 4.2] (cf. 9, 21). This fact will be used in the proof of
Theorem 1.1.

To prove Proposition 4.1, we apply the argument in the proof in [31] to the Seifert fibra-
tion. We denote the boundary component (−∂S) ∩ D2

i of S by Ci .

LEMMA 4.4. Suppose A > 0 and let Ui be a collar neighborhood of Ci in S with

coordinates (ri , θi) ∈ [1, 2) × S1 satisfying {(ri, θi) ; ri = 1} = Ci . Then there exists a

1-form β on S which satisfies the following properties:

(1) dβ > 0 on S.

(2) If bi/ai ≤ 0 then β = Riridθi with −bi/ai < Ri near Ci on Ui .

(3) If bi/ai > 0 then β = (Ri/ri)dθi with −bi/ai < Ri < 0 near Ci on Ui .

PROOF. Since
∑k

i=1(−bi/ai) = −1/A < 0, we can choose R1, . . . , Rk such that they

satisfy the inequalities in (2) and (3) and the inequality
∑k

i=1 Ri < 0. Let Ω be a volume
form on S which satisfies

•
∫

S
Ω = −

∑k
i=1 Ri > 0,

• Ω = Ridri ∧ dθi near Ci with bi/ai ≤ 0, and
• Ω = −(Ri/r2

i )dri ∧ dθi near Ci with bi/ai > 0.

Let η be any 1-form on S which equals Riridθi if bi/ai ≤ 0 and (Ri/ri)dθi if bi/ai > 0 near
Ci . By Stokes’ theorem, we have

∫

S

(Ω − dη) =

∫

S

Ω −

∫

∂S

η =

∫

S

Ω +

k
∑

i=1

∫

Ci

Ridθi

=

∫

S

Ω +

k
∑

i=1

Ri = 0 .
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Here Ci is oriented as −∂S. The closed 2-form Ω − dη represents the trivial class in coho-
mology vanishing near ∂S. By de Rham’s theorem, there is a 1-form γ on S vanishing near
∂S and satisfying dγ = Ω − dη. Define β = η + γ , then dβ = Ω is a volume form on S

and β satisfies properties (2) and (3) near ∂S as required. ✷

We prepare two further lemmas which will be used for constructing the contact form on
(D2 ×S1)i . Let B = [1, 2)×S1 ×S1 ⊂ S ×S1 be a neighborhood of a boundary component
of S × S1 with coordinates (r, θ, t). We glue D2 × S1 to B as

µm + λl = (aµ − σλ)Q + (bµ + δλ)H ,

where (m, l) is a standard meridian-longitude pair of ∂D2 × S1 ⊂ D2 × S1, Q is the oriented
curve given by {1} × S1 × {a point} ⊂ ∂B, H is a typical fiber of the projection [1, 2) × S1 ×

S1 → [2, 1) × S1 which omits the third entry, and a, b, σ, δ ∈ Z are given according to the
relations (2.1). The fibers H = σm + al of the Seifert fibration on ∂D2 × S1 are canonically
extended to the interior of D2 × S1.

LEMMA 4.5. Suppose a �= 0 and either (i) 0 ≤ −b/a < R and α0 = Rrdθ + dt or

(ii) −b/a < R < 0 and α0 = (R/r)dθ + dt , where α0 is a contact form on B. Then there

exists a contact form α on B ∪ (D2 × S1) with the following properties:

(1) α = α0 on B.

(2) ker α is transverse to the fibers of the Seifert fibration in D2 × S1.

(3) Rα is tangent to {(0, 0)} × S1 and the direction of Rα is consistent with the orien-

tation of the Seifert fibration.

(4) Rα rotates monotonously with respect to the parameter r ∈ [0, 1].

PROOF. We consider Case (i). Let σ and δ be integers satisfying the relations (2.1).
Denote the gluing map of D2 × S1 to B by ϕ, then we have

ϕ∗α0 = Rrd(aµ − σλ) + d(bµ + δλ) = (b + aRr)dµ + (δ − σRr)dλ

= a

(
b

a
+ Rr

)

dµ +
1

a

(

1 − aσ

(
b

a
+ Rr

))

dλ .
(4.1)

If a > 0 then a(b/a + Rr) > 0 near r = 1. Hence, on the xy-plane, the point (h1(1), h2(1))

lies in the region y > 0. Since Rα0 is positively transverse to ker α0 at r = 1, we can describe
a smooth curve γ (r) = (h1(r), h2(r)) on the xy-plane representing a positive contact form
on B ∪ (D2 × S1) such that

• (h1, h2) = (−c, r2) near r = 0 with c > 0,
• h2dµ − h1dλ = ϕ∗α0 near r = 1, and
• γ ′(r) rotates monotonously,

as shown in Figure 5. This satisfies the required properties.
If a < 0 then a(b/a + Rr) < 0 near r = 1 and hence the point (h1(1), h2(1)) lies in the

region y < 0. We choose a smooth curve γ (r) such that

• (h1, h2) = (c,−r2) near r = 0 with c > 0,
• h2dµ − h1dλ = ϕ∗α0 near r = 1, and
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FIGURE 5. Curves representing contact forms on D2 × S1 in Lemma 4.5 (the figures are in the case a > 0).

• γ ′(r) rotates monotonously.

Note that such a curve γ (r) is given by the π-rotation of the figures in Figure 5. The contact
form α on B ∪ (D2 × S1) defined by this curve satisfies the required properties as before.

The proof for Case (ii) is similar. ✷

LEMMA 4.6. Let α0 be a contact form on B given by either (i) α0 = Rrdθ + dt

with R > 0 or (ii) α0 = (R/r)dθ + dt with R < 0. Then there exists a contact form α on

B ∪ (D2 × S1) with the following properties:

(1) α = α0 on B.

(2) ker α is transverse to the fibers of the Seifert fibration in D2 × S1 except on a torus

{r1} × S1 × S1 embedded in D2 × S1 for some r1 ∈ (0, 1).

(3) Rα is tangent to {(0, 0)} × S1 and the direction of Rα is opposite to the orientation

of the Seifert fibration.

(4) Rα rotates monotonously with respect to the parameter r ∈ [0, 1].

Furthermore, if R satisfies R > −b/a then (D2 × S1, ker α) contains a Lutz tube.

FIGURE 6. Curves representing contact forms on D2 × S1 in Lemma 4.6.
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PROOF. The proof is analogous to the proof of Lemma 4.5. In Case (i) with a > 0,
we choose a curve γ on the xy-plane such that (h1, h2) = (c,−r2) near r = 0 with c > 0
as shown in Figure 6. This satisfies the required properties. If R > −b/a then a Lutz tube
appears at r = r2 as described on the right in the figure. The proofs in the case a < 0 and
Case (ii) are similar. ✷

PROOF OF PROPOSITION 4.1. Let α0 be the 1-form on S×S1 defined by α0 = β +dt ,
where β is a 1-form constructed in Lemma 4.4 and t is the coordinate of S1, which is assumed
to be consistent with the orientation of the Seifert fibration. Since β ∧ dβ is a 3-form on S,
we have β ∧ dβ = 0 and

α0 ∧ dα0 = β ∧ dβ + dt ∧ dβ = dβ ∧ dt > 0 .

Thus α0 is a positive contact form on S×S1 and its Reeb vector field is given by Rα0 = ∂/∂t .
Note that, since Rα0 is tangent to the fibers of π : S × S1 → S in the same direction, (PTP)
implies that Rα0 is positively transverse to the fiber surfaces of L(m) in S × S1.

Now we extend α0 into (D2 × S1)i in the following way. If either miSi is a positive
component or i > n then we use the construction of a contact form in Lemma 4.5, otherwise
we use the construction in Lemma 4.6. We denote the extended contact form on Σ by α.

From the construction, we only need to check property (1) in the assertion. Due to
Lemma 3.2, it is enough to check if Rα is tangent to L(m) in the same direction and posi-
tively transverse to the interiors of the fiber surfaces of L(m). This positive transversality had
already been established in S × S1.

We first check the positive transversality in the neighborhood (D2 × S1)i of a positive
component miSi . Figure 7 shows the mutual positions of the fiber surfaces F , the oriented
fibers H of the Seifert fibration and the Reeb vector field Rα on (D2 ×S1)i in the case ai > 0.
The orientations of the link component miSi and the fibers H are as shown in the figure since
miSi is a positive component, ai > 0, σi > 0, and H is given as H = σimi + ai li . The

FIGURE 7. The compatibility in the neighborhood (D2 × S1)i of a positive component miSi in the case ai > 0.
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Reeb vector field Rα had already been given in the above construction. Now there are three
possibilities of the framing of the fiber surface F , namely it is either positive, negative, or
parallel to miSi . The case of positive framing is described on the left in the figure and the
case of negative framing is on the right. The parallel case is omitted. In either case, we can
isotope the fiber surfaces F in (D2 ×S1)i so that it satisfies property (1). Note that the vectors
of Rα on the right figure in Figure 7 are directed under the fiber surface. The proof in the case
ai < 0 is similar, in which case the figures are those in Figure 7 with replacing (mi, li) by
(−mi,−li).

Property (1) in (D2 × S1)i with i > n can also be checked from the figure because the
fiber surfaces in (D2 × S1)i consist of horizontal disks.

Suppose that miSi is a negative component. We assume that ai > 0. Then the orienta-
tions of the link component miSi and the fibers H become as shown in Figure 8. There is only
one possibility of the framing of the fiber surface F , which is shown in the figure, otherwise
they do not satisfy (PTP) on the boundary of (D2 × S1)i . As shown in the figure, we can
isotope the fiber surface F in (D2 ×S1)i so that it satisfies property (1). The proof in the case
ai < 0 is similar and the figure is as in Figure 8 with replacing (mi, li) by (−mi,−li). ✷

FIGURE 8. The compatibility on the neighborhood (D2 × S1)i of a negative component miSi in the case ai > 0.

4.2. Proof of Theorem 1.1. The next lemma will be used in the proof of Theorem 1.1.

LEMMA 4.7. If A > 0 then every fibered Seifert multilink has at least one positive

component.

PROOF. Let F be a fiber surface of a fibered Seifert multilink L(m) and assume that
L(m) has no positive component. The fibers of the Seifert fibration are given as H = σimi +

ai li , where σiai = A > 0. Let γi = uimi + vi li be the oriented boundary ∂(F ∩ (D2 ×

S1)i) \ miSi , where ui ∈ Z and vi ∈ Z \ {0} are chosen such that the number of connected
components of ∂(F ∩ (D2 ×S1)i) \miSi is equal to gcd(|ui |, |vi |) in the case ui �= 0 and |vi |
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otherwise. From (PTP), we have the inequality I (γi ,H) = uiai−viσi > 0, where I (γi ,H) is
the algebraic intersection number of γi and H on ∂(D2 × S1)i . Furthermore, the fiber surface
F along miSi is given as shown in Figure 9 and we can verify the inequality aivi > 0 from
these figures.

FIGURE 9. The framing of F along miSi .

For each i = 1, . . . , n,

uimi + vi li = (aiui − σivi)Qi + (biui + δivi)H .

The union of these curves is homologous to the boundary of the fiber surface because it is a
Seifert surface, and hence the sum

∑n
i=1(uimi + vi li) is null-homologous in the complement

Σ\L(m). This complement is obtained from S×S1 by gluing (D2×S1)i , for i = n+1, . . . , k,
in such a way that aiQi + biH corresponds to the meridian of (D2 × S1)i . Hence there exists
a non-zero vector (wn+1, . . . , wk) which satisfies

n
∑

i=1

((aiui − σivi)Qi + (biui + δivi)H) +

k
∑

i=n+1

wi(aiQi + biH) = 0 .

Since
∑k

i=1 Qi = 0 in H1(S × S1) is the unique relation which we can use for vanishing
the coefficients of Qi ’s, all coefficients of Qi ’s must be the same value. Hence we have the
equality

n
∑

i=1

(

Qi +
biui + δivi

aiui − σivi

H

)

+

k
∑

i=n+1

(

Qi +
bi

ai

H

)

= 0 ,



40 M. ISHIKAWA

which implies

0 =

n
∑

i=1

biui + δivi

aiui − σivi

+

k
∑

i=n+1

bi

ai

=

n
∑

i=1

(
bi

ai

+
vi

ai(aiui − σivi)

)

+

k
∑

i=n+1

bi

ai

=
1

A
+

n
∑

i=1

vi

ai(aiui − σivi)
.

(4.2)

However the right-hand side of this equation must be strictly positive since aiui − σivi > 0
and aivi > 0, which is a contradiction. ✷

PROOF OF THEOREM 1.1. We first remark that it is enough to observe the tightness for
a specific contact form whose contact structure is compatible with L(m) by Proposition 3.4.
Assume that L(m) is not a Hopf multilink in S3. If all components of L(m) are negative
then it does not satisfy (PTP) by Lemma 4.7. In this case, we reverse the orientation of L(m)

as L(−m) so that all components become positive. If all components of L(m) are positive,
then the compatible contact structure constructed according to the recipe in Proposition 4.1 is
positively transverse to the fibers of the Seifert fibration everywhere. In particular, it is known
that such a contact structure is always tight (see [20] and [19, Corollary 2.2]). Moreover, since
the monodromy of the fibration of L(m) is periodic, according to [4, Theorem 4.2], we can
conclude that the contact structure is Stein fillable.

Suppose that L(m) has at least one positive component and one negative component. In
this case, even if we reverse the orientation of L(m) by involution, L(m) still has a negative
component. Therefore, in either case, the contact structure ker α has an overtwisted disk by
property (3) in Proposition 4.1.

Finally we consider the case where L(m) is a Hopf multilink. Let m1S1 and m2S2 denote
the multilink components of L(m), i.e., L(m) = (Σ(1, 1),m1S1 ∪ m2S2). If m1 + m2 �= 0
then L(m) satisfies (PTP) up to the reversal of the orientation of L(m). Hence the above
proof works in this case. Suppose that m1 + m2 = 0. Note that the fiber surface of this
multilink is tangent to the fibers of the Seifert fibration of Σ(1, 1), though we can choose
another Seifert fibration such that (PTP) is satisfied. Since the orientation of L(m) is not
canonical, it is enough to check that the compatible contact structure is overtwisted. This
follows immediately since the fiber surface of L(m) is a disjoint union of the fiber surfaces of
a negative Hopf link and the compatible contact structure is same as that of the negative Hopf
link. ✷

5. Case a1a2 · · · ak < 0.

5.1. Explicit construction of the contact structure. Throughout this section, we
assume A = a1 · · · ak < 0. We start from the following lemma.

LEMMA 5.1. If A < 0 then every fibered Seifert multilink has at least one negative

component.
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FIGURE 10. The framing of F along miSi .

PROOF. The proof is analogous to that of Lemma 4.7. In the present case, the framing of
the fiber surface F along miSi becomes as shown in Figure 10, from which we have aivi < 0.
Hence the right-hand side of equation (4.2) is strictly negative since aiui − σivi > 0 and
aivi < 0. This is a contradiction. ✷

The main assertion in this section is the following.

PROPOSITION 5.2. Let L(m) = (Σ,m1S1 ∪ · · · ∪mnSn) be a fibered Seifert multilink

L(m) in a homology 3-sphere Σ = Σ(a1, . . . , ak) with A < 0. Assume (PTP). Fix an index

i0 of some negative component of L(m). Then there exists a positive contact form α on Σ with

the following properties:

(1) L(m) is compatible with the contact structure ξ = ker α.

(2) The Reeb vector field Rα of α is tangent to the fibers of the Seifert fibration on

S × S1.

(3) The neighborhood (D2 × S1)i of each negative component miSi , except mi0Si0 ,
contains a Lutz tube. In particular, it contains an overtwisted disk.

(4) On the other (D2 × S1)i ’s, except i = i0, ker α is transverse to the fibers of the

Seifert fibration.

In particular, if L(m) has at least two negative components then the contact structure ker α is

overtwisted.

Before proving this proposition, we prepare a lemma similar to Lemma 4.4.

LEMMA 5.3. Suppose A < 0 and fix an index i0. Let Ui be a collar neighborhood of

Ci in S with coordinates (ri , θi) ∈ [1, 2) × S1 satisfying {(ri, θi) ; ri = 1} = Ci . Then there

exists a 1-form β on S which satisfies the following properties:

(1) dβ > 0 on S.

(2) If bi/ai ≤ 0 and i �= i0 then β = Riridθi with −bi/ai < Ri near Ci on Ui .
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(3) If bi/ai > 0 and i �= i0 then β = (Ri/ri)dθi with −bi/ai < Ri < 0 near Ci on

Ui .

(4) If bi0/ai0 − 1/A < 0 then β = Ri0ri0dθi0 with 0 < Ri0 < −bi0/ai0 + 1/A near Ci0

on Ui0 .

(5) If bi0/ai0 − 1/A ≥ 0 then β = (Ri0/ri0)dθi0 with Ri0 < −bi0/ai0 + 1/A near Ci0

on Ui0 .

PROOF. Since
∑

i �=i0
(−bi/ai) + (−bi0/ai0 + 1/A) = 0, we can choose R1, . . . , Rk

such that they satisfy the above inequalities and the inequality
∑k

i=1 Ri < 0. The 1-form β

required can be constructed from these Ri’s in the same way as in the proof of Lemma 4.4. ✷

PROOF OF PROPOSITION 5.2. We make a contact form α0 on S × S1 from the 1-form
β in Lemma 5.3 and extend it to (D2 × S1)i as in the proof of Proposition 4.1. Properties (2),
(3), (4) in the assertion follow from this construction. Let α denote the obtained contact form
on M .

Suppose that i �= i0, miSi is a positive component and ai > 0. From equation (4.1), we
have h1(1) < 0, h2(1) > 0, h′

1(1) < 0 and h′
2(1) > 0. Hence the mutual positions of the

fiber surface F , the oriented fibers H of the Seifert fibration and the Reeb vector field Rα on
(D2 × S1)i become as shown on the left in Figure 11. The contact structure α in this case is
determined by the curve described on the right. From these figures, we can easily check that
these satisfy property (1) in the assertion.

FIGURE 11. The mutual positions of F , H and Rα in the case where miSi is a positive component.

If miSi is negative and ai > 0 then we have the same inequalities. Hence their mutual
positions become as shown in Figure 12 and property (1) holds. If i = i0 then h2(1) > 0
may not hold, but this does not make any problem since mi0Si0 is a negative component. Thus
property (1) holds.

The proof is analogous in the case ai < 0. ✷
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FIGURE 12. The mutual positions of F , H and Rα in the case where miSi is a negative component.

5.2. Some criterion to detect overtwisted disks. In this subsection, we show two
lemmas which give sufficient conditions for the contact structure in Proposition 5.2 to be
overtwisted.

LEMMA 5.4. Suppose A < 0 and let mi0Si0 be a negative component of L(m). Sup-

pose further that there exists ai1 among a1, . . . , ak which satisfies the inequality

1

|ai1 |

(
1

|ai0|
−

1

|ai1 |

)

> −
1

A
.

Then the contact structure in Proposition 5.2 is overtwisted.

PROOF. From the inequality in the assumption, we have |ai1 | > |ai0 |. In particular,
i0 �= i1. We can assume that mi1Si1 is a positive component, since otherwise the contact
structure is overtwisted by Proposition 5.2. We will find R1, . . . , Rk in Lemma 5.3 which
satisfy

|ai0 |

(

Ri0 +
bi0

ai0

)

= −|ai1 |

(

Ri1 +
bi1

ai1

)

< 0 .

Set X = Ri0 +bi0/ai0 and Y = Ri1 +bi1/ai1 . They should satisfy the conditions in Lemma 5.3,
that is, X − 1/A < 0 and Y > 0.

For a sufficiently small ε > 0, we set Ri ’s for i �= i0, i1 such that they satisfy the
conditions in Lemma 5.3 and the equality

∑

i �=i0,i1

(

Ri +
bi

ai

)

= ε .
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In the case k = 2, we set ε = 0. We need the inequality
∑k

i=1 Ri < 0 and hence X and Y

should satisfy

0 >
∑

i �=i0,i1

Ri + Ri0 + Ri1 = ε −
∑

i �=i0,i1

bi

ai
+ Ri0 + Ri1 = ε −

1

A
+ X + Y .

Now we assume that the following inequality holds:

(5.1) |bi0 + ai0Ri0 | = −|ai0|X <
1

|ai0 |
.

The difference of the slopes of a meridional disk and a Legendrian curve on ∂(D2 × S1)i0 is
given as

(ai0Qi0 + bi0H)

ai0

− (Qi0 − Ri0H) =

(
bi0

ai0

+ Ri0

)

H .

Since bi0/ai0 + Ri0 = X < 1/A < 0, the slope of the Legendrian curve is a bit higher than
that of the meridional disk as shown in Figure 13. Let γ be the boundary of the meridional
disk. Since the distance of two neighboring intersection points of H and γ is 1/|ai0 |, inequal-
ity (5.1) ensures that we can isotope γ on ∂(D2 × S1)i0 so that it is Legendrian except for a
short vertical interval of length |bi0 + ai0Ri0 |. We denote by ∆i0 the meridional disk bounded
by this isotoped γ .

FIGURE 13. The slopes of a meridional disk and a Legendrian curve on the boundary of (D2 × S1)i0 .

We also obtain a similar disk ∆i1 in (D2 × S1)i1 , assuming the inequality

|bi1 + ai1Ri1 | = |ai1 |Y <
1

|ai1 |
.

In this case, the slope of the Legendrian curve is a bit lower than that of the meridional disk
since bi1/ai1 + Ri1 = Y > 0 (cf. Figure 15).
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In summary, we have assumed for a point (X, Y ) to satisfy the following conditions:

(5.2)

























|ai0 |X + |ai1 |Y = 0 ,

X + Y < −ε +
1

A
,

−
1

a2
i0

< X <
1

A
,

0 < Y <
1

a2
i1

.

Note that we always have the inequality −1/a2
i0

< 1/A, because 1/|ai1|(1/|ai0| − 1/|ai1|) >

−1/A implies |ai0 | < |ai1 | and hence

−
1

a2
i0

< −
1

|ai0||ai1 |
≤

1

A
.

Now we describe the region on the XY -plane where (X, Y ) satisfies the inequalities in
the above conditions, which is shown in Figure 14. Note that we used the inequality

1

a2
i0

−
1

a2
i1

>
1

|ai1 |

(
1

|ai0 |
−

1

|ai1 |

)

> −
1

A

when we described this region. The equality and inequalities in (5.2) have a solution if and
only if the line |ai0 |X + |ai1 |Y = 0 intersects this region, i.e., the inequality

|ai0 |

(

−
1

a2
i1

+
1

A

)

+ |ai1 |

(
1

a2
i1

)

> 0

holds, and this follows from the assumption. Thus the embedded disks ∆i0 and ∆i1 exist.

FIGURE 14. The region where (X, Y ) satisfies the required inequalities.

Finally we connect these disks by a band B whose two sides are Legendrian as shown
in Figure 15. We here explain this more precisely. We first remark that the lengths of the two
short vertical intervals on the boundaries of ∆i0 and ∆i1 are the same since

|bi0 + ai0Ri0 | = −|ai0 |X = |ai1 |Y = |bi1 + ai1Ri1 | .



46 M. ISHIKAWA

Let p0, q0 be the endpoints of the vertical interval of the boundary of ∆i0 and let p1 and
q1 be those of ∆i1 . Choose a vertical annulus W = H × [0, 1] between (D2 × S1)i0 and
(D2 × S1)i1 as shown in Figure 15 and let FW denote the foliation on W determined by ξ .
Note that FW is non-singular and every leaf of FW connects the connected components of
∂W because ξ is transverse to H . By shifting ∆i0 if necessary, we can assume that p0 and
p1 are the endpoints of the same leaf of FW . Since the lengths of the short vertical intervals
are the same, by shifting both of ∆i0 and ∆i1 simultaneously, we can find positions of ∆i0

and ∆i1 such that p0 and p1 are the endpoints of a leaf of FW and q0 and q1 are also the
endpoints of another leaf of FW . Now we choose the band B to be a curved rectangle such
that its boundary consists of these leaves and the short vertical intervals and it is tangent to
the contact structure ξ along the leaves of FW on the boundary as shown in Figure 15. The
union ∆i0 ∪B ∪∆i1 is a disk embedded in Σ with a polygonal Legendrian boundary. We then
isotope it in a neighborhood of the corners of the polygonal Legendrian boundary so that it
becomes a smooth embedded disk with smooth Legendrian boundary. From the construction,
the contact structure ξ is tangent to this disk along its boundary. Hence it is an overtwisted
disk. ✷

FIGURE 15. The band B.

LEMMA 5.5. Suppose A < 0 and let mi0Si0 be a negative component of L(m). Sup-

pose further that there exist ai1 and ai2 satisfying |ai0 | < |ai2| < |ai1 |. Then the contact

structure in Proposition 5.2 is overtwisted.

PROOF. We have the inequality

−
|ai1 |

A
≤

1

|ai0ai2 |
=

(
1

|ai0 |
−

1

|ai2 |

)
1

|ai2 | − |ai0 |
≤

1

|ai0 |
−

1

|ai2 |
<

1

|ai0 |
−

1

|ai1 |

and hence the assertion follows from Lemma 5.4. ✷

EXAMPLE 5.6. Suppose that gcd(|p|, |q|) = 1 and pq < 0.
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(1) (Σ,L) = (Σ(1, p, q),−S1) is a (p, q)-torus knot in S3. Here the component −S1

must be negative because of Lemma 5.1. If |p|, |q| ≥ 2 then there exists an overtwisted disk
by Lemma 5.5. If either |p| = 1 or |q| = 1 then L is a trivial knot in S3 and its compatible
contact structure is tight. Actually, this does not satisfy the condition in Lemma 5.4.

(2) (Σ,L) = (Σ(p, q), S1 ∪ −S2) is a positive Hopf link in S3. It is well-known that
its compatible contact structure is tight, and this actually does not satisfy the condition in
Lemma 5.4.

6. Fibered Seifert links in S3. In this section, we study Seifert links in S3. The
classification of Seifert links in S3 was done by Burde and Murasugi [3], in which they proved
that a link is a Seifert link in S3 if and only if it is either a union of a finite number of fibers
of the Seifert fibration in Σ(p, q) with pq �= 0 or a link described in Figure 1 with arbitrary
orientations (cf. [5, p. 62]). The classification of contact structures on S3 had been done by
Eliashberg [6, 8]. In particular, it is known that S3 admits a unique tight contact structure up
to contactomorphism, so-called the standard contact structure.

PROOF OF THEOREM 1.2. In this proof, we use the letters p and q instead of a1 and a2,
respectively. The assertion in the case pq > 0 follows from Theorem 1.1. Suppose pq < 0.
We first prove the assertion in the case where all components of L are negative. In this case,
(PTP) is satisfied by Lemma 5.1. If L has more than one link components then the contact
structure is overtwisted by the last assertion in Proposition 5.2. Suppose that L consists of
only one component, then L is either a trivial knot or a (p, q)-torus knot with pq < 0. It is
well-known that the contact structure of a trivial knot is tight, and that the contact structure of
a (p, q)-torus knot with pq < 0 is overtwisted if and only if it is not a trivial knot. Thus the
assertion follows in this case.

Next we consider the case where L has at least one positive component. Note that L

also has one negative component by Lemma 5.1. We can assume that the number of negative
components of L is one, otherwise the contact structure is overtwisted by the last assertion in
Proposition 5.2.

We decompose the argument into three cases:
(1) The two exceptional fibers of Σ(p, q) are both components of L. That is,

L = (Σ(1, . . . , 1
︸ ︷︷ ︸

n−2

, p, q),m1S1 ∪ · · · ∪ mn−2Sn−2 ∪ mn−1Sn−1 ∪ mnSn) .

(2) One of the two exceptional fibers of Σ(p, q) is a component of L. That is,

L = (Σ(1, . . . , 1
︸ ︷︷ ︸

n−1

, p, q),m1S1 ∪ · · · ∪ mn−1Sn−1 ∪ mnSn) .

(3) Neither of the two exceptional fibers of Σ(p, q) is a component of L. That is,

L = (Σ(1, . . . , 1
︸ ︷︷ ︸

n

, p, q),m1S1 ∪ · · · ∪ mnSn) .

Here mi ∈ {−1,+1} since L is a fibered link.
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We first consider Case (1). If n = 2 then L is a positive Hopf link in S3. Suppose
n ≥ 3 and that either Sn−1 or Sn, say Sn−1, is a negative component. The linking number
of mn−1Sn−1 and all the other components of L is (n − 2)|q| + 1. Note that n − 2 is the
number of the link components of L along non-exceptional fibers. For a fiber surface F of
L, the oriented boundary ∂(F ∩ (D2 × S1)n−1) \ mn−1Sn−1 on ∂(D2 × S1)n−1 is given as
γ = ±(−((n− 2)|q|+ 1)mn−1 + ln−1), where the sign ± is + if p > 0 and − otherwise (see
Figure 16). Here the surface on the right is described by applying the Seifert’s algorithm to
the diagram on the left.

FIGURE 16. The framing of the Seifert surface in Case (1) with negative component mn−1Sn−1 and p > 0.

Since H = qmn−1 + pln−1, (PTP) implies the inequality I (γ,H) = ∓(((n − 2)|q| +

1)p + q) > 0, where I (γ,H) is the algebraic intersection number of γ and H on ∂(D2 ×

S1)n−1. However,

I (γ,H) = ∓(((n − 2)|q| + 1)p + q) = (n − 2)pq ∓ (p + q)

= (p ∓ 1)(q ∓ 1) + (n − 3)pq − 1 < 0

since (p ∓ 1)(q ∓ 1) ≤ 0 and (n − 3)pq ≤ 0 for n ≥ 3. This is a contradiction.
Suppose n ≥ 3 and a regular fiber is a negative component of L. The linking number of

mn−1Sn−1 and all the other components of L is −(n − 4)|q| − 1 and the oriented boundary
∂(F ∩(D2×S1)n−1)\mn−1Sn−1 on ∂(D2×S1)n−1 becomes γ = ±((−(n−4)|q|−1)mn−1−

ln−1) (see Figure 17). Thus, I (γ,H) = ∓(((n − 4)|q| + 1)p − q) = (n − 4)pq ∓ p ± q . If
|p|, |q| ≥ 2 then the contact structure of L is overtwisted by Lemma 5.5. If either |p| or |q|

equals 1 then

(n − 4)pq ∓ p ± q = (n − 3)pq − (p ∓ 1)(q ± 1) − 1 < 0

since (p ∓ 1)(q ± 1) = 0. Hence (PTP) does not hold.



COMPATIBLE CONTACT STRUCTURES OF FIBERED SEIFERT LINKS 49

FIGURE 17. The framing of the Seifert surface in Case (1) with a non-exceptional fiber being the negative
component.

Next we consider Case (2). If n = 1 then L is a trivial knot in S3. Suppose n ≥ 2 and
that Sn is a negative component. Since

I (γ,H) = ∓((n − 1)|q|p + q) = (n − 1)pq ∓ q = (n − 1)pq + |q| ≤ 0 ,

(PTP) does not hold (cf. Figure 16 with deleting the component mnSn and replacing the num-
ber (n − 2)|q| by (n − 1)|q| and the indices n − 1 by n). We remark that the equality holds
when n = 2 and |p| = 1, and if |q| = 1 in addition then L becomes a positive Hopf link.
Nevertheless, we can ignore this case because the fibration of a positive Hopf link is not given
by this Seifert fibration.

Suppose n ≥ 2 and a regular fiber is a negative component of L, then

I (γ,H) = ∓((n − 3)|q|p − q) = (n − 3)pq ± q = (n − 3)pq − |q|

(cf. Figure 17 with deleting the component mnSn and replacing the number (n − 3)|q| by
(n − 2)|q| and the indices n − 1 by n). This is positive if and only if n = 2 and |p| ≥ 2,
in which case if |q| ≥ 2 then the contact structure of L is overtwisted by Lemma 5.5, and if
|q| = 1 then L is a positive Hopf link and its contact structure is tight.

Finally we consider Case (3). If n = 1 then it is a (p, q)-torus knot and we know that its
contact structure is tight if and only if it is a trivial knot. If n = 2 then L is a positive Hopf link,
otherwise L is not fibered. If n ≥ 3 and |p|, |q| ≥ 2 then its contact structure is overtwisted
by Lemma 5.5. So, we can suppose that n ≥ 3 and either |p| or |q| equals 1. Choose a positive
component mi1Si1 of L, then the oriented boundary ∂(F∩(D2×S1)i1)\mi1Si1 on ∂(D2×S1)i1
is given as γ = −(n−3)|q|mi1 − li1 (see Figure 18). Since I (γ,H) = −(n−3)|q|+pq < 0,
(PTP) does not hold.
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FIGURE 18. The framing of the Seifert surface in Case (3).

If pq = 0 then L is as shown in Figure 1, which is a connected sum of a finite number of
Hopf links. The plumbing argument in [32] ensures that the contact structure of such a link is
tight if and only if every summand is a positive Hopf link. This completes the proof. ✷

7. Seifert links in S3 and their strongly quasipositivity. A Seifert surface in S3

is called quasipositive if it is obtained from a finite number of parallel copies of a disk by
attaching positive bands. A link is called strongly quasipositive if it is realized as the boundary
of some quasipositive surface. In other words, a strongly quasipositive link is the closure of a
braid given by the product of words of the form

σi,j = (σi · · · σj−2)σj−1(σi · · ·σj−2)
−1 ,

where σi is a positive generator of braid. See [23, 24, 25, 26, 27, 28] for further studies of
quasipositive surfaces.

It is known by Hedden [15], and Baader and the author [1] in a different way, that the
compatible contact structure of a fibered link in S3 is tight if and only if its fiber surface is
quasipositive. Hence, Theorem 1.2 can be generalized into the non-fibered case as stated in
Corollary 1.3.

PROOF OF COROLLARY 1.3. The assertion had been proved in Theorem 1.2 if L is
fibered. So, hereafter we assume that L is non-fibered. If (a1, a2) = (0, 1) then L must be
a trivial link with several components, which is excluded by the assumption. Suppose that
a1a2 �= 0. We now prove that L is not fibered if and only if it is a positive or negative torus
link, other than a Hopf link, which consists of even number of link components half of which
have reversed orientations.

We first consider the case where both of the fibers of the Seifert fibration corresponding
to a1 and a2 are not components of L. Let k and k′ be the numbers of positive and negative
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components, respectively. Since
∑n

i=1 miσi = (k − k′)a1a2, L is fibered if and only if k = k′

by Theorem 2.1. Thus the assertion follows.
Next we consider the case where one of the fibers corresponding to a1 and a2, say a1, is

a component of L and the other is not. If |a1| = 1 then we can regard such a Seifert link

L = (Σ(1, . . . , 1
︸ ︷︷ ︸

n−1

,±1, a2) ,m1S1 ∪ · · · ∪ mn−1Sn−1 ∪ mnSn)

as

L = (Σ(1, . . . , 1
︸ ︷︷ ︸

n

,±1, a2) ,m1S1 ∪ · · · ∪ mn−1Sn−1 ∪ mnSn) ,

where mi ∈ {−1,+1}. Hence, this is included in the previous case. Assume that |a1| > 1.
Then we have

∑n
i=1 miσi = ka1a2 + mna2 �= 0, where k is some integer and |mn| = 1, and

hence L is always fibered in this case by Theorem 2.1.
Finally we consider the case where both of the fibers corresponding to a1 and a2 are

components of L. In this case,
∑n

i=1 miσi = ka1a2 + mn−1a2 + mna1, where k is some
integer and |mn−1| = |mn| = 1. As in the previous case, we can assume that |a1| > 1 and
|a2| > 1. Since gcd(|a1|, |a2|) = 1, the inequalities |a1| �= |a2| and |a1a2| > |a1| + |a2| hold.
Hence ka1a2 + mn−1a2 + mna1 �= 0, i.e., L is always fibered in this case also.

Thus the non-fibered link L is a positive or negative torus link, other than a Hopf link,
which consists of even number of link components, say 2k, half of which have reversed ori-
entations. Such an L is realized as the boundary of a Seifert surface F consisting of k annuli.

Suppose a1a2 > 0 and let F ′ be one of the annuli of F . The core curve of F ′ constitutes a
positive torus knot, say a (p, q) torus knot with p, q > 0. It is known in [1, Lemma 6.1] that if
F ′ is quasipositive then −1 times the linking number lk(F ′) of the two boundary components
of F ′ is at most the maximal Thurston-Bennequin number TB(K) of the core curve K of the
annulus, i.e., −lk(F ′) ≤ TB(K). It is known in [30] that

TB(K) = (p − 1)q − p = pq − p − q ,

where p is regarded as the number of Seifert circles, which equals the braid index. However,
we can easily check lk(F ′) = −pq , which does not satisfy the inequality −lk(F ′) ≤ T B(K).
Thus F ′ is not quasipositive. Now assume that L is strongly quasipositive. Then, by definition,
there exists a quasipositive surface bounded by L. However this surface contains the above
non-quasipositive annulus as an essential subsurface, which contradicts the Characterization
Theorem of quasipositive surfaces in [23]. Thus L is not strongly quasipositive.

If a1a2 < 0 then the link L is in Case (3) in the assertion. Suppose that the core curves
of annuli of F constitute a (kp, kq) torus link with p > 0 and q < 0. Using ambient isotopy
move in S3, we can assume that p ≤ |q|. In the case where p = |q|, we set the surface F in
the position as shown in Figure 19, which shows that the surface is quasipositive. If p < |q|,
we need to add more crossings, though we can check that the surface is still quasipositive as
shown in Figure 20. This completes the proof. ✷

We close this section with a conjecture arising from the fact in Corollary 1.3.



52 M. ISHIKAWA

FIGURE 19. The surface F in the case (p, q) = (3,−3).

FIGURE 20. The surface F in the case (p, q) = (3,−4).

CONJECTURE 7.1. Any non-splittable unoriented link in S3 has at most two strongly

quasipositive orientations.

Here a strongly quasipositive orientation means an orientation assigned to the unoriented
link such that the obtained oriented link becomes strongly quasipositive. As in Corollary 1.3,
this conjecture is true for all Seifert links in S3. We will prove the same assertion for fibered,
positively-twisted graph links in S3 in the subsequent paper [17].

8. Cablings.

8.1. Definition of positive and negative cablings. A cabling is an operation which
produces a new link L in a 3-manifold from an old one L′ by replacing a small tubular neigh-
borhood of a component of L′ by a solid torus containing a torus link parallel to the boundary
of the solid torus. We define this operation for multilinks as follows: Let M be an oriented,
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closed, smooth 3-manifold and L(m) a fibered multilink in M . Suppose that there exists a
solid torus N in M such that each L(m) ∩ N is a torus multilink in N with consistent orien-
tation, i.e., a multilink in N lying on a torus parallel to the boundary ∂N all of whose link
components have consistent orientations. We replace the torus multilink components of L(m)

in N by its core curve S, extend the fiber surfaces of L(m) by the retraction of N to S, and
define the multiplicity of S from these fiber surfaces canonically. We denote the obtained mul-
tilink in M by L′(m′). Note that L′(m′) is always fibered. In other words, L(m) is a multilink
obtained from L′(m′) by replacing a small tubular neighborhood of a link component S of
L′(m′) by a solid torus N containing a torus multilink with suitable multiplicities.

Next we define the notion of positive and negative cablings. We set L(m) ∩ N and
L′(m′) in M simultaneously such that the core curve of N coincides with the link component
of L′(m′) in N , and check the intersection of L(m) ∩ N with the fiber surface of L′(m′).

LEMMA 8.1. L(m) ∩ N intersects the fiber surface of L′(m′) transversely.

PROOF. By [5, Theorem 4.2], the fibration of L(m) is decomposed into two fibered
multilinks L′(m′) and L′′(m′′) by the splice decomposition, each of whose fibrations is in-
duced from that of L(m). The multilink L(m) ∩ N is parallel to the fibers H of the Seifert
fibration of L′′(m′′). Hence, it is enough to show that H is transverse to the fiber surface of
L′(m′), and this follows immediately since H is transverse to the fiber surfaces of L′′(m′′). ✷

DEFINITION 8.2. A cabling is called positive if L(m) ∩ N intersects the fiber surface
of L′(m′) positively transversely. If the intersection is negative then the cabling is called
negative.

To discuss the framing of the cabling, we fix a basis of ∂N as follows: Let m be an
oriented meridian on ∂N positively transverse to the fiber surface F of L(m), and l an oriented
simple closed curve on ∂N such that I (m, l) = 1, where I (m, l) is the algebraic intersection
number of m and l on ∂N . Each connected component of the oriented boundary of F \ intN
on ∂(M \ int N) is given as γ = um + vl, where (u, v) ∈ Z × N are assumed to be coprime.

Now we embed N into S3 along a trivial knot such that (m, l) becomes the preferred
meridian-longitude pair of this trivial knot. We then add the core curve Sn of S3 \ int N as an
additional link component to L(m)∩N embedded in S3, extend the fiber surfaces of L(m) by
the retraction of S3 \ int N to Sn, and define the multiplicity mn of Sn from these fiber surfaces
canonically. The obtained multilink can be represented as

Lp,q(mp,q) = (Σ(1, . . . , 1
︸ ︷︷ ︸

n−1

, εq, ε p) ,m1S1 ∪ · · · ∪ mn−1Sn−1 ∪ εnmnSn) ,

where p > 0,

ε =

{

1 if the cabling is positive

−1 if the cabling is negative ,
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and

εn =

{

−1 if the cabling is negative and q > 0

1 otherwise

(cf. Figure 21). The sign ε is chosen such that I (H, γ ) > 0, where H is the fibers of the
Seifert fibration on ∂(D2 × S1)n and I (H, γ ) is the algebraic intersection number of H and
γ on ∂N . This is checked as follows: H = ε p mn + ε q ln = ε q m + ε p l on ∂N and
I (H, γ ) = ε (qv − pu). If the cabling is positive then we have qv − pu > 0. If it is negative
then qv − pu < 0. In either case, we have I (H, γ ) > 0. This inequality means that H

intersects F positively transversely. The sign εn is needed since the working orientation of
Sn changes depending on the mutual positions of 0, q/p and u/v, where 0 is the slope of the
longitude, q/p is the slope of the cabling, and u/v is the slope of the fiber surface.

Let L be the set of longitudes with u ≥ 0 and q �= 0, then there exists a longitude l in L

such that u becomes minimal among them. We always use this meridian-longitude pair (m, l)

in the discussion below. In particular, the case q = 0 is excluded.

FIGURE 21. The left figure shows the fiber surface F in M \ int N and the right one shows L(m) ∩ N in N ⊂ S3.

LEMMA 8.3. For each i = 1, . . . , n − 1, mi is positive if and only if the cabling is

positive.

PROOF. Recall that the orientation of miSi is consistent with that of l. If the cabling
is positive then the working orientation of Si is consistent with that of l. Hence mi > 0. If
it is negative then, since we change the orientation of the fibers of the Seifert fibration by
multiplying ε, the working orientation becomes opposite to that of l. Hence mi < 0. ✷

8.2. Proof of Theorem 1.4.

LEMMA 8.4. Let L(m) be a fibered multilink in an oriented, closed, smooth 3-manifold

M with a cabling in a solid torus N . Then there exists a positive contact form α on M with

the following properties:
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(1) L(m) is compatible with the contact structure ξ = ker α.

(2) On a neighborhood of ∂N , α is given as α = h2(r)dµ − h1(r)dλ, where (r, µ, λ)

are coordinates of N = D2 × S1 chosen such that (r, µ) are the polar coordinates of D2

of radius 1 and (µ, λ) are the coordinates of ∂N with respect to the meridian-longitude pair

(m, l), and h1 and h2 are real-valued smooth functions with a parameter r ∈ [0, 1] such that

u/v − h1(1)/h2(1) > 0 is sufficiently small.

(3) α on N is the restriction of the contact form compatible with the Seifert multilink

Lp,q(mp,q) to S3 \ intN(Sn).

PROOF. Let L′(m′) be the multilink in M before the cabling and let α′ be a contact form
obtained in Proposition 3.3, whose kernel is compatible with L′(m′). On a neighborhood of
∂N , α′ is given as

α′ = Rvdµ +

(
1

r
− Ru

)

dλ

as in equation (3.1). Hence

u

v
−

h1(1)

h2(1)
=

u

v
−

−(1 − Ru)

Rv
=

1

Rv
> 0

can be sufficiently small since we can choose R > 0 sufficiently large.
Next we make a contact form compatible with L(m) from α′ by replacing the form on

N suitably. Let αp,q be a positive contact form on S3 whose kernel is compatible with the
fibered Seifert multilink Lp,q(mp,q) of the cabling. Such a contact form is given explicitly

in Proposition 4.1 and Proposition 5.2. Let (rn, µn, λn) be the coordinates on (D2 × S1)n,
then in a small neighborhood of ∂N , the gluing map of the cabling is given as (r, µ, λ) =

(2 − rn, λn, µn). Hence, on this neighborhood, we have

α = h2(r)dµ − h1(r)dλ = −h1(2 − rn)dµn + h2(2 − rn)dλn .

First consider the case where the cabling in N is positive. In this case, we have H =

εq mn + εp ln = q m + p l since ε = 1, q > 0, u ≥ 0, v > 0 and qv − pu > 0. By
choosing R > 0 sufficiently large, we can assume that H , γ , α′ and αp,q are as shown
in Figure 22. Remark that the contact forms α′ and αp,q in the figure are given with the
coordinates (rn, µn, λn), hence the x-axis represents −h2(2−rn) and the y-axis does −h1(2−

rn). By multiplying a positive constant to αp,q if necessary, we can connect the two contact
forms α′ and αp,q smoothly with keeping the positive transversality of the Reeb vector field
and the interiors of the fiber surfaces.

Next we consider the case where the cabling is negative. Recall that the contact form
constructed according to Lemma 5.3 and Proposition 5.2 depends on the choice of b1, . . . , bk .
By Lemma 8.3 we have mi < 0 for i = 1, . . . , n − 1. We now choose for instance m1S1 as
the negative component with index i0 specified in Lemma 5.3. In this setting, we re-choose
these bi’s such that bn/an ≤ 0, and then choose Rn in Lemma 5.3 (2) sufficiently large so that
the line representing ker αp,q is sufficiently close to H on the xy-plane.

If q < 0 then we have H = εq mn + εp ln = q m + p l since ε = 1, u ≥ 0, v > 0 and
qv − pu > 0. By choosing R > 0 sufficiently large, we can assume that H , γ , α′ and αp,q
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FIGURE 22. Connect α′ and αp,q smoothly (case of positive cabling).

are as shown on the left in Figure 23. If q > 0 then H = εq mn + εp ln = −q m − p l since
ε = −1. Thus they are in the positions as shown on the right in Figure 23. In either case, by
multiplying a positive constant to αp,q if necessary, we can connect the contact forms α′ and
αp,q smoothly as shown in the figures. Thus we obtain the contact form required. ✷

FIGURE 23. Connect α′ and αp,q smoothly (case of negative cabling).

Now we prove Theorem 1.4. We first recall the statement.

THEOREM 1.4. Let L(m) be a fibered multilink in an oriented, closed, smooth 3-

manifold M with cabling in a solid torus N in M , and L′(m′) the fibered multilink obtained

from L(m) by retracting N to its core curve. Let ξ and ξ ′ denote the contact structures on M

compatible with L(m) and L′(m′), respectively.

(1) If ξ ′ is tight and the cabling is positive, then ξ is tight.

(2) If ξ ′ is tight, the cabling is negative and L(m) ∩ N has at least two components,
then ξ is overtwisted.

(3) If ξ ′ is tight, the cabling is negative, L(m) ∩ N is connected, p ≥ 2 and q ≤ −2,
then ξ is overtwisted.

(4) If ξ ′ is overtwisted then ξ is also overtwisted.



COMPATIBLE CONTACT STRUCTURES OF FIBERED SEIFERT LINKS 57

PROOF. We use the contact structure constructed in Lemma 8.4. If ξ ′ is in Case (1) in
the assertion then there exists a one-parameter family which connects ξ and ξ ′. Hence ξ and
ξ ′ are contactomorphic by Gray’s theorem [14]. Suppose that ξ ′ is in Case (2). In this case,
each miSi for i = 1, . . . , n − 1 is a negative component of Lp,q(mp,q) by Lemma 8.3. Thus,
Proposition 5.2 and Lemma 8.4 ensure that there exists a negative component which contains
an overtwisted disk. Suppose ξ ′ is in Case (3). We will use Lemma 5.4 to detect an overtwisted
disk. We assign the index i0 to the link component S1 and the index i1 to the singular fiber
of the Seifert fibration other than Sn. From Figure 22, we can make sure that the proof of
Lemma 8.4 works even if the point representing α′ is sufficiently close to the horizontal axis.
This means that we can choose Rn to be any value in (−bn/an,∞). This is important since,
in the proof of Lemma 5.4, Rn is some value with −bn/an < Rn and we do not know at which
value the overtwisted disk is detected. Since ai0 = 1, we have 1 > 1/|p| + 1/|q|. Hence, we
can detect an overtwisted disk between (D2 × S1)i0 and (D2 × S1)i1 by Lemma 5.4, which is
outside of (D2 ×S1)n. In Case (4), let D denote an overtwisted disk in (M, ξ ′). Since we can
choose N sufficiently small so that ∂D ∩ N = ∅, the overtwisted disk still remains in (M, ξ)

after the cabling. ✷

REMARK 8.5. If p = 1 then L(m) is ambient isotopic to L′(m′). Suppose p ≥ 2. We
have chosen (m, l) such that u ≥ 0 is minimal among L. If the cabling is negative and q ≥ 2
then we can change l �→ l− (q − 1) m such that the cabling is negative and q = 1. Hence this
case is excluded since u is not minimal in L. Now, the remaining case is when ξ ′ is tight, the
cabling is negative, L(m) ∩ N is connected, p ≥ 2 and q ∈ {−1, 1}.

8.3. Cabling along fibered knots. In this last subsection, we apply our result to the
usual cabling without multiplicities. A usual cabling is an operation producing a new link L

in a 3-manifold M from an old one L′ by replacing a small tubular neighborhood of a link
component of L′ by a solid torus containing a torus link parallel to its boundary. We can apply
our result to the case where L′ is a fibered knot, i.e., it has only one link component.

Let L′ be a fibered knot in M and N(L′) its small tubular neighborhood with the
meridian-longitude pair (m′, l′) induced from the fiber surface, namely m

′ is the boundary
of a meridional disk and l

′ is the oriented boundary of a fiber surface of L′.

COROLLARY 8.6. Let L′ be a fibered knot in an oriented, closed, smooth 3-manifold

M and L the link obtained from L′ by cabling a (np, nq)-torus link with respect to (m′, l′), i.e.,
the cabling with slope q m

′+p l
′ and having n components, where p > 0 and gcd(p, |q|) = 1.

Let ξ and ξ ′ denote the contact structure on M compatible with L and L′, respectively.

(1) If ξ ′ is tight and q > 0 then ξ is tight.

(2) If ξ ′ is tight, q < 0 and n ≥ 2 then ξ is overtwisted.

(3) If ξ ′ is tight, p ≥ 2 and q ≤ −2 then ξ is overtwisted.

(4) If ξ ′ is overtwisted then ξ is also overtwisted.
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PROOF. Let L′(m′) be the fibered multilink obtained from L by retracting the solid
torus N(L′) of the cabling to its core curve. Since L′ is a knot, the framing of the fiber
surfaces of L′(m′) coincides with that of the fiber surface of L′. This means that γ = l,
i.e., (u, v) = (0, 1). Hence the cabling is positive in the sense in Definition 8.2 if and only if
q > 0. Note that the case q = 0 is excluded by Lemma 8.1. The assertion is just a restatement
of Theorem 1.4 in this special case. ✷

REMARK 8.7. In the remaining case, i.e., the case where ξ ′ is tight, n = 1, p ≥ 2 and
q = −1, it is known in [2] that the contact structure ξ is tight if and only if M = S3 and L is
a trivial knot (cf. [16] for the case where L′ is a fibered knot in S3).
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