
8 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.4, NO.1 MAY 2010

Compensated CIC-Cosine Decimation Filter

Gordana Jovanovic Dolecek and Fernando Javier Trejo Torres, Non-members

ABSTRACT

This paper presents efficient modification of the
CICcosine decimation filter. The second order com-
pensator filter is introduced at low rate in order to
improve the passband of interest of the overall fil-
ter. The coefficients of the compensator filter are
presented in a canonical signed digits (CSD) form,
and can be implemented using only adders and shifts.
Consequently, the resulting filter is a multiplierfree
filter and exhibits a high attenuation in the stopband,
as well as a low passband droop.

Keywords: Decimation filter, Compensator, CIC
filter, Cosine filter.

1. INTRODUCTION

The process of converting the given rate of a signal
into a different rate is called sampling rate conversion
(SRC). The reduction of a sampling rate is called
decimation, and is accomplished in two stages, fil-
tering and downsampling. Hogenauer [1] introduced
a very simple decimation filter called cascaded inte-
grator comb (CIC) filter, which consists of cascaded
integrators and differentiators separated by a down-
sampler, as shown in Fig. 1. The transfer function of
the resulting decimation filter is given as

H (z) =
[

1
M

(
1 − z-M

1 − z−1

)]K

. (1)

where M is the decimation factor and K represents
the number of cascaded filters.
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where M is the decimation factor and K represents the 
number of cascaded filters.  
 

 
 

Fig.1: CIC decimation filter. 
 

The above decimation filter is attractive in many 
applications because of its very low complexity. It is 
usually used at the first stage of decimation [1]. However, 
this decimation filter exhibits several drawbacks. The 
integrator section works at the high input data rate 
resulting in a larger chip area and higher power 
consumption especially when the decimation factor is 
high.  In order to resolve this problem the non-recursive  

structure of (1) can be used [2], [3]. More details on a 
comparison of the performances of the recursive and non-
recursive implementations are given in [2]. Additionally, 
the magnitude response of the CIC filter has a high droop 
in the desired passband and low stopband attenuation. 
The decimation factor R of the next decimation stage 
determines the frequency ωc, where the worst passband 
distortion occurs, and the frequency ωA, where the worst 
case aliasing occurs [4]. The normalized frequencies ωc/π 
and ωA/π  are at 
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Several structures have been proposed to design CIC 
filters with improved frequency response as for example 
[4-11]. Usually methods deal to improve either passband 
[5-6], or stopband [7-10]. 

The goal of this work is to propose a simple 
multiplierless decimation filter with no filtering at high 
input rate, and with a desired high stopband attenuation 
and a desired low passband droop. To this end we 
propose to compensate the passband droop of the 
cascaded CIC-cosine decimation filter [10], introducing a 
simple compensator at the low rate. The rest of the paper 
is organized as follows. In Section 2 we propose the new 
second order compensator filter which is illustrated with 
two examples. Section 3 briefly introduces the cascaded 
CIC-cosine decimation filter from [10]. The proposed 
modified compensated CIC-cosine decimation filter is 
described in section 3, and illustrated with one example. 

 

2. PROPOSED COMPENSATION FILTER 
The transfer function of the proposed compensation 

filter is given by 
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where a and b are real valued constants, and M is 
decimation factor. Using a multirate identity this filter 
can be moved to a low rate which is M times less than 
high input rate becoming a second order filter. 

The magnitude response of (3) is expressed as 
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Next issue is to define the coefficients a and b. To this 
end we consider magnitude response of Eq. (4) in two 
frequency points ω=0, and ω=ωc, where the worst 
passband distortion occurs, defined in Eq. (2). In ω=0 the 

Fig.1: CIC decimation filter.

The above decimation filter is attractive in many
applications because of its very low complexity. It
is usually used at the first stage of decimation [1].
However, this decimation filter exhibits several draw-
backs. The integrator section works at the high input
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data rate resulting in a larger chip area and higher
power consumption especially when the decimation
factor is high. In order to resolve this problem the
non-recursive structure of (1) can be used [2], [3].
More details on a comparison of the performances of
the recursive and nonrecursive implementations are
given in [2]. Additionally, the magnitude response of
the CIC filter has a high droop in the desired pass-
band and low stopband attenuation. The decimation
factor R of the next decimation stage determines the
frequency ωc, where the worst passband distortion
occurs, and the frequency ωA, where the worst case
aliasing occurs [4]. The normalized frequencies ωc/π
and ωA/π are at

ωc
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MR
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Several structures have been proposed to design CIC
filters with improved frequency response as for exam-
ple [4-11]. Usually methods deal to improve either
passband [5-6], or stopband [7-10].

The goal of this work is to propose a simple mul-
tiplierless decimation filter with no filtering at high
input rate, and with a desired high stopband attenu-
ation and a desired low passband droop. To this end
we propose to compensate the passband droop of the
cascaded CIC-cosine decimation filter [10], introduc-
ing a simple compensator at the low rate. The rest of
the paper is organized as follows. In Section 2 we pro-
pose the new second order compensator filter which
is illustrated with two examples. Section 3 briefly
introduces the cascaded CIC-cosine decimation filter
from [10]. The proposed modified compensated CIC-
cosine decimation filter is described in section 3, and
illustrated with one example.

2. PROPOSED COMPENSATION FILTER

The transfer function of the proposed compensa-
tion filter is given by

HCOMP

(
zM

)
= a + bz-M + az-2M. (3)

where a and b are real valued constants, and M is
decimation factor. Using a multirate identity this fil-
ter can be moved to a low rate which is M times less
than high input rate becoming a second order filter.
The magnitude response of (3) is expressed as
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∣∣HCOMP

(
ejMω

)∣∣ = |2acos (Mω) + b| . (4)

Next issue is to define the coefficients a and b. To
this end we consider magnitude response of Eq. (4)
in two frequency points ω=0, and ω = ωc, where the
worst passband distortion occurs, defined in Eq. (2).
In ω=0 the desired magnitude characteristic has the
value 1, resulting in the following equation

2a + b = 1. (5)

In order to compensate the passband droop δc at the
frequency ωc, we have from Eq. (4)

2acos (Mωc) + b = 1/δc. (6)

Denoting

δcomp = 1/δc. (7)

we have

[
2

2cos (Mc)
1
1
]

=
[

1

δcomp

]
. (8)

Solving (8) we get the coefficients a and b as

desired magnitude characteristic has the value 1, resulting 
in the following equation 
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In following, the coefficients a and b from (9) are 
quantized as shown in the next relations 
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where k is the quantization factor, aq and bq are the 
corresponding quantized coefficients, and ⎣x⎦ represents 
the integer part of x. The relation (5) must also hold for 
the quantized values of a and b resulting in the condition 

                                 12 =+ qq ba .                              (11) 

Starting with k=2 the values of k are increased until the 
condition (11) is satisfied. If the passband droop is within 
the desired limit, the corresponding quantized coefficients 
aq and bq are presented in canonical signed digit (CSD) 
form [12-15]. 
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where aCSD, and bCSD are the CSD representations of the 
quantized coefficients aq, bq of the proposed 
compensation filter (3). 

Otherwise, the procedure is continued until the desired 
passband compensation is obtained. This procedure is 
programmed in MATLAB, and the corresponding block 
diagram is shown in Fig. 2.  
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Fig.2: Block diagram of the compensator filter design. 
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Example 1: Consider the design of compensator for 
cascaded CIC decimation filter with M=4, K=4, and 
decimation factor of second stage is R= 8. The passband 
droop of CIC filter at normalized frequency ωc/π is 
0.2095792dB. 

However, we want to have a resulting passband droop 
less than 0.01dB.  

From Eq. (7), it follows 
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the integer part of x. The relation (5) must also
hold for the quantized values of a and b resulting in
the condition

2aq + bq = 1. (11)

Starting with k=2 the values of k are increased
until the condition (11) is satisfied. If the passband
droop is within the desired limit, the correspond-
ing quantized coefficients aq and bq are presented in
canonical signed digit (CSD) form [12-15].
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where aCSD, and bCSD are the CSD representations
of the quantized coefficients aq, bq of the proposed
compensation filter (3).
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Example 1: Consider the design of compensator for
cascaded CIC decimation filter with M=4, K=4, and
decimation factor of second stage is R= 8. The pass-
band droop of CIC filter at normalized frequency
ωc/π is 0.2095792dB.

However, we want to have a resulting passband
droop less than 0.01dB.
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in Table I.  
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Starting with k=2 we find the quantized values shown
in Table I.

The condition (11) is satisfied only for the values
of k=3 and k=5, shown bold in Table I.

However, for k=3 the passband droop does not sat-
isfy the desired specifications. For k =5 the desired
passband specification is satisfied. Therefore using k
=5 we find the corresponding CSD terms for quan-
tized coefficients and the transfer function is given by
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The passband details of the CIC and the proposed
compensated CIC filters are shown in Fig. 3.

There exists a trade-off between the desired pass-

corresponding CSD terms for quantized coefficients and 
the transfer function is given by 
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Table I: Quantized Factors and Coefficients. 
k aq bq Ac(dB) 
2 0 1.25  
3 -0.125 1.25 -0.0458388 
4 -0. 125 1.3125  
5 -0.15625 1.3125 -0.005381495 

The passband details of the CIC and the proposed 
compensated CIC filters are shown in Fig. 3. 
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Fig. 3: Example 1. 
 

There exists a trade-off between the desired passband 
droop and the number of the CSD terms of coefficients a 
and b. 

Next example compares the proposed compensation filter 
with that recently proposed in literature [5]. 

Example 2: Consider the design of a CIC decimation 
filter for the design parameters M=11, K=5, [5]. 

From [5], the normalized passband and stopband 
frequencies of interest are ωc/π=0.035455 and 
ωAl/π=0.146364. The corresponding passband droop and 
stopband attenuation of the CIC filter are -2.7288dB and 
AAl=-63.9441dB, respectively. 

The compensation filter from [5] has the corresponding 
passband droop 0.01597dB, and stopband attenuation -
61.199338dB, respectively. 

 Using the proposed compensator for the quantized 
factor k=8, we got the passband droop of -0.01475dB and 
the stopband attenuation of -61.215311dB. The 

compensation filter with the corresponding CSD terms of 
quantized coefficients is given by 
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The passband details for CIC filter, the proposed 
compensated CIC, and compensated CIC from [5] are 
given in Fig.4. 
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Fig. 4: Example 2. 

Note that the proposed compensator results in a slightly 
better passband characteristic. 

3. CIC-COSINE DECIMATION FILTER 
 
Considering the case when the down-sampling factor 

can be expressed as  
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K
N

i

M

i

i

j
j

zHzH
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∏

=

∏
−

=

1
)()(

1

0

                 (18) 
where 

    1  ;

1

11)( 01

0

1
1

0 =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

∏

∏
∏

−

=

=
−

=

−

−

M

z

z
M

zH i

j
j

i

j
ji

j
j

M

M

i

M

i .   (19) 

  
Using Eqs. (18) and (19) we express the modified CIC 
filter )(zHm  as, [10] 
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band droop and the number of the CSD terms of co-
efficients a and b.

Next example compares the proposed compensation
filter with that recently proposed in literature [5].

Example 2: Consider the design of a CIC deci-
mation filter for the design parameters M=11, K=5,
[5].

From [5], the normalized passband and stop-
band frequencies of interest are ωc/π=0.035455 and
ωAl/π=0.146364. The corresponding passband droop
and stopband attenuation of the CIC filter are -
2.7288dB and AAl=-63.9441dB, respectively.

The compensation filter from [5] has the corre-
sponding passband droop 0.01597dB, and stopband
attenuation - 61.199338dB, respectively.

Using the proposed compensator for the quantized
factor k=8, we got the passband droop of -0.01475dB
and the stopband attenuation of -61.215311dB. The
compensation filter with the corresponding CSD
terms of quantized coefficients is given by

HCOMP-CSD

(
z11

)
=

(
−2−2 − 2−5 + 2−8

) (
1 + z−22

)
+

(
21 − 2−1 + 2−4 − 2−7

)
z−11.(16)

The passband details for CIC filter, the proposed
compensated CIC, and compensated CIC from [5] are
given in Fig.4.

corresponding CSD terms for quantized coefficients and 
the transfer function is given by 
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Table I: Quantized Factors and Coefficients. 
k aq bq Ac(dB) 
2 0 1.25  
3 -0.125 1.25 -0.0458388 
4 -0. 125 1.3125  
5 -0.15625 1.3125 -0.005381495 

The passband details of the CIC and the proposed 
compensated CIC filters are shown in Fig. 3. 
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Note that the proposed compensator results in a slightly 
better passband characteristic. 
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Note that the proposed compensator results in a
slightly better passband characteristic.

3. CIC-COSINE DECIMATION FILTER

Considering the case when the down-sampling fac-
tor can be expressed as

M = M1M2M3...MN . (17)
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we can rewrite Eq. (1) as

H (z) =

[
N∏
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Hi

(
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Qi-1
j=0 Mj

)]K

. (18)
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Note that the proposed compensator results in a slightly 
better passband characteristic. 
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Using Eqs. (18) and (19) we express the modified CIC 
filter )(zHm  as, [10] 
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where ki is the number of the cascaded filters Hi. 
 
We use the cosine prefilters introduced in [16] to improve 

(19)

Using Eqs. (18) and (19) we express the modified
CIC filter Hm(z) as, [10]

Hm (z) = Hk1
1 (z) .Hk2

2

(
zM1

)
...HkN

N

(
zM1...MN-1

)
. (20)

where ki is the number of the cascaded filters Hi.

We use the cosine prefilters introduced in [16] to
improve the frequency characteristic of the modified
CIC filter (20).

HCCOS (z) =
K∏

i=1

KCOS

(
zNi

)
. (21)

where [16].

HCOS

(
zN

)
= 0.125

(
1 + z-2N

) (
1 + z-N

)2
. (22)

In general we have [10]

Ni =
M

2i+1
. (23)

The transfer function of the cascaded modified CIC
and cosine prefilters is

HmCCOS (z) = Hm (z)
K∏

i=1

Hni

COS

(
zNi

)
. (24)

where ni is the number of cascaded cosine prefilters,
and NK = M1.

For more details see [10].

4. PROPOSED DECIMATION FILTER

The proposed filter is the cascade of the modified
CICcosine filter HmCCOS(z) [10] and the compensator
filter introduced in Section 2.

G (z) = HmCCOS (z) HCOMP-CSD

(
zM

)
. (25)

At first we design the modified CIC-cosine filter
HmCCOS(z) [10] in order to satisfy the desired stop-
band attenuation. Next, we find the passband droop
δc in the frequency of interest ω = ωc of the designed
modified CIC-cosine filter. Using (7) we compute
δcomp and solving equations (8) we get the coefficients
a and b of the compensator. Finally, the coefficients
a and b are expressed in CSD form as explained in
Section 2.

The method is illustrated in Example 3.
Example 3: We design decimation filter for

M=32, which has passband droop at the frequency of
interest less than 0.002dB, and stopband attenuation
in the frequency of interest at least of 110 dB. First we
design CIC-cosine filter choosing M1=2, M2=4 and
M3=4 yielding

H1 (z) =
1
2

(
1 − z−2

1 − z−1

)
, H2

(
z2

)
=

1
4

(
1 − z−8

1 − z−2

)
,

H3

(
z8

)
= 1

4

(
1−z−32

1−z−8

)
. (26)

In the next, we cascade filters H1(z), H2(z2) and
H3(z8) as shown in the following equation

Hm (z) = H4
1 (z)H2

2

(
z2

)
H2

3

(
z8

)
. (27)

The stopband attenuation of this filter is further im-
proved introducing cascade of the expanded cosine
filters

HCCOS (z) = H2
COS

(
z8

)
H4

COS

(
z4

)
H4

COS

(
z2

)
. (28)

where

HCOS

(
zN

)
= 0.125

(
1 + z-2N

) (
1 + z-N

)2
. (29)

From (2) using R=8 the passband and stopband
frequencies of interest are

ωc/π = 0.00390625

ωA/π = 0.05859375. (30)

Stopband attenuation in the frequency of inter-
est is AAl=-116.7993dB, i.e., it is satisfied. However
the passband droop is -0.3162dB. In order to improve
passband, we design compensation filter as described
in Section 2.

Solving (9) we get the coefficients

the frequency characteristic of the modified CIC filter 
(20). 
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where ni is the number of cascaded cosine prefilters, and  
NK=M1. 

For more details see [10]. 
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In the next, we cascade filters H1(z), H2(z2) and 

H3(z8) as shown in the following equation 
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The stopband attenuation of this filter is further 
improved introducing cascade of the expanded cosine 
filters 
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Stopband attenuation in the frequency of interest is 
AAl=-116.7993dB, i.e., it is satisfied. However the 
passband droop is -0.3162dB. In order to improve 
passband, we design compensation filter as described in 
Section 2.  

Solving (9) we get the coefficients   
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.   
Table II shows the corresponding quantized values aq 

and bq. 
 

Table II: Quantized Factors and Coefficients. 
 

k aq bq 
2 0 1.25 
3 -0.125 1.375 
4 -0.1875 1.4375 
5 -0.21875 1.46875 
6 -0.234375 1.484375 
7 -0.2421875 1.484375 

 
The condition (11) is satisfied only for k=7 resulting 

in the corresponding passband droop of -0.001723dB, 
which satisfies the desired specification. Consequently, 
we present quantized coefficients for k=7 in CSD terms  
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Using multirate identities we have efficient structure 

shown in Fig. 5.  
Overall magnitude response is shown in Fig. 6.a 

along with that of the CIC-cosine filter. 
Corresponding passband zoom is shown in Fig. 6.b.  
Fig. 6.c illustrates attenuation in the neighborhood of 

the first zero. 
 
5. CONCLUSIONS 
 
We proposed here the multistage decimation filter 

based on the CIC-cosine decimation filter and the 
symmetric second order compensator. The coefficients of 
the compensator are obtained solving two simple 

(31)
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Table II shows the corresponding quantized values
aq and bq. The condition (11) is satisfied only for

Table 1: Quantized Factors and Coefficients.
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In the next, we cascade filters H1(z), H2(z2) and 

H3(z8) as shown in the following equation 
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Stopband attenuation in the frequency of interest is 
AAl=-116.7993dB, i.e., it is satisfied. However the 
passband droop is -0.3162dB. In order to improve 
passband, we design compensation filter as described in 
Section 2.  

Solving (9) we get the coefficients   
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Table II shows the corresponding quantized values aq 

and bq. 
 

Table II: Quantized Factors and Coefficients. 
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4 -0.1875 1.4375 
5 -0.21875 1.46875 
6 -0.234375 1.484375 
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The condition (11) is satisfied only for k=7 resulting 

in the corresponding passband droop of -0.001723dB, 
which satisfies the desired specification. Consequently, 
we present quantized coefficients for k=7 in CSD terms  
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Using multirate identities we have efficient structure 

shown in Fig. 5.  
Overall magnitude response is shown in Fig. 6.a 

along with that of the CIC-cosine filter. 
Corresponding passband zoom is shown in Fig. 6.b.  
Fig. 6.c illustrates attenuation in the neighborhood of 

the first zero. 
 
5. CONCLUSIONS 
 
We proposed here the multistage decimation filter 

based on the CIC-cosine decimation filter and the 
symmetric second order compensator. The coefficients of 
the compensator are obtained solving two simple 

k=7 resulting in the corresponding passband droop
of -0.001723dB, which satisfies the desired specifica-
tion. Consequently, we present quantized coefficients
for k=7 in CSD terms

Using multirate identities we have efficient struc-
ture shown in Fig. 5.

Overall magnitude response is shown in Fig. 6.a
along with that of the CIC-cosine filter.

Corresponding passband zoom is shown in Fig.
6.b.

Fig. 6.c illustrates attenuation in the neighbor-
hood of the first zero.

5. CONCLUSIONS

We proposed here the multistage decimation fil-
ter based on the CIC-cosine decimation filter and
the symmetric second order compensator. The coef-
ficients of the compensator are obtained solving two
simple equations, and expressed in CSD terms which
can be implemented using only adders and shifts. As
a result the proposed filter is a multiplier free fil-
ter. There is a trade-off between the desired com-
pensation of the passband droop, and the complexity
of the CSD representation. Number of adders may
be further reduced using sub-expression elimination
(CSE) for the CSD represented coefficients [15]. In
contrast to methods [5-6], the proposed compensa-
tion filter design is simpler, and the filter coefficients
can control the desired passband droop of the over-
all decimation filter. The overall filter exhibits a low
passband droop, and high stopband attenuation at
the frequencies of interest. Additionally, using the
polyphase decomposition, the filters at the first stage
can be moved at the lower rate. Therefore, there is
no filtering at high input rate.

 
 

Fig. 5: Efficient structure for Example 3. 
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