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ABSTRACT

One-pass three..dinmnsional (3-D) depth migration potentially offers more ac-

curate imaging results than does conventional two-pass 3-D migration, in vari-

able velocity Inedia. Conventional one-pass 3-D migration, done with the method

of finite-difference inline and crosslinc splitting, however, creates large errors in

imaging complex structures due to paraxial wave-equation approximation of the

one-way wave equation, inline-crossline si)litting , and finite-difference grid disI)er-
sion.

After analyzing the finite-difference errors in conventional 3-D poststack wave

field extrapolation, the paper presents a method that compensates for the errors

and ),ct still preserves the efficiency of the conventional finite-difference splitting

method. For frequency-space 3-D finite-difference migration and modeling, tlm

compensation operator is implemented using the l)hase-shift method, or phase-

shift plus interpolation method, depending on the extent of lateral velocity vari_>

tions. The comi)ensation operator increases the accuracy of handling stee I) dips,

suppresses the inline and crossline splitting error, and reduces finite-difference

grid dispersions. Numerical calculations show that the quality of 3-D migration

and 3-D modeling is improved significantly with the finite-difference error coln-

pensation method presented in this paper.

INTRODUCTION

Single-pass, as oi)i)osed to t.wo-pass, 3-D wave-('qllat, ion migration, has b(_c.n a(l-

rotated for imaging of common-midlmint (CMP) st.acked 3-D seislni(' data. t'()r s()lll('.

years, primarily where velocity varies both vertically and la.terally (Yiln_az, 1987).

Finite-difference ilnt)lementat, ioIls of one-I)ass 3-D migration often ns(, rh(; i111ine(:r)

and crossline (l/) sI)litting t(_chniqlle in ea('h step of wave fi('l(l extral)()lati()n (Br()wll,

1983). While the sI)lit,t.iIlg t('chnique affords COml)ut.ational effici(,ncy, k11()wlt(,rr()rs ()t'

1



Li Finite Diffcrcnce ET'Tvrs

positioning steeply dipping refl_'ctors result, especially when tlle x- and y- directions

are away from tlle dominant dip direction of the area.

Many approaclms had been taken in the past 10 years to overcome the 1)roblem

of mispositioning steep dips due to the x-y splitting ill 3-D migration. Ristow (1980)

suggested further splitting along the two diagonal directions (x = +y), besides split-

ting along x and y in each downward extrapolation step. Kitchenside (1988) used

the method of phase-shift migration plus finite-dlfference residual wave-field extrap-

olation to reduce the error due to splitting, braves a.,.d Clayton (1990) proposed

implementing a phase-correction operator using finite-differences with damping func-

tion (to ensure stability) in their" 3-D paraxial wave-equation modeling of seismic w_tvc

field. Hale (1990) proposed a 3-D, explicit finite-difference migration using McClellan

transformations, as an alternative to x-y splitting,

Instead of using l)hase-shift migration plus finite-difference resichml wave-field ex-

trapolation in Kitchenside's approach, I use the conventional finite-difference migra-

tion plus phase-shift residual wave-field extrapolation to improve the accuracy of 3-D

finite-difference migration. Without any changes to the existing conventional one-pass

3-D implicit finite-difference migration in tile migration part, I simI)ly add the error

compensation a.s a phase-shift filter at certain steps of downward extrapolation. The

method prcseIlted in this paper compensates not only for the splitting error, but also

for steep-dip positioning error and finite-difference dispersion error, by using Gazclag's

(1978) method of phase shift, where, instead of using the wave equation, I use what I

shall call the finite-difference-error compensation equation. In the presence of strong

lateral velocity variations, again, the method of Gazdag's phase shift plus interpo-

lation (Gazdag and Sguazzero, 1984) is used to implement the finite-difference-error

compensation equation.

PARAXIAL EQUATIONS and INLINE-CROSSLINE SPLITTING

The 3-D acoustic wave equation for upcoming waves in the frequency-space domain

(w,x, y, z) can be written as,

OP iw _ v2(x,y,z) 0 2 O_y2)0"--_ - v(x_y,z) 1 + co_. (_x2 + P, (1)

where P = P(w,x,y,z) is the wave field, w is radial frequency, x is the lateral

coordinate along the inline direction, y is the lateral coordinate along the crossline

dire,/tion, z is depth, and v(x, y, z) is velocity.

To solve equation (1) in the (w, x, y, z) domain numerically, the square-root oper-

ator must be expanded and approximated with a certain order of paraxial equation,

depep.ding on the accuracy of approx;mation. Using the continuous fractional expan-

sion (Claerbout, 1985) of the square, root operator and factorization of the exI)ansion

(Ma, 1982), equation (1) can be approximated with the following para,xial equa.tion

of order 2n,

i .... "'"'11........ _ I .......... 11I III Illll .............................. iV,lint......
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= k aiSsz + l/' (2)
Oz v(z, y, z) i=l 1 + _iS '

where ai and fli arc expailsion coefficients given by Lee and Suh (1985), S = S,..+ Su

_,,_dS_ = (v_(:,,,y,z)lw2)O_/O._ "2, S_ = (v2(._,y,z)/w_)O_/Oy _.

The higher the order 2n, the better equation (2) approximates equation (1) in

handling steep dips. In practice, the paraxial equation with n= 1 yields good accuracy

for dips up to 65 degrees (Yilmaz, 1987). Equation (2) can be solved using a splitting

method, resulting in the following sequence of (n + 1) equations,

OP iw

0---2 = v(x,y,z) P'

OP iw al S

o---2 = v(x,y,z) l + P '

OP iw a2S

0-_- = v(x,y, z) 1 +/32S P ' (3)

OP iw a,S
= P

Oz v(x, y, z) 1 + 13,,S

3-D migration er modeling involves extrapolation of the wave field using equation

(1). Therefore, when using the splitting method, we need to solve the above (n + 1)

equations in each step of extrapolation. The solution of each equation in (3) is

used as boundary condition to solve for the next equation in (3), until ali (n + 1)

equations are solved for any single step of wave field extra polat.ion. Solving tlm tirst

equation in (3) is simply a multiplication of the wave field P by a pl,_se-shift operator

z)).

The la.st n equations in (3) all have the same form but with different constallt

coefficients a'_ and/_i. Let's examine the numerical solution to a representative one

of them,

OP iw aS

cg--z v(x, y, z ) 1 +/3S P' (4)

In the w-x-y domain, implicit finite-difference scheme: are usually used to solve the

l)araxial wave equation, because of their unconditional nmnerietfl stal)ility (Clacrl)out,

! 985). However, direct solution of equation (4) by an iml;licit finite-(liifcrenc(' scllclll(_

will require solving a large (nx. ny x nx. ny) ,_parsc-matrix equati(m, witll cnorm()lls

computational eff_ ' (Claerbout, 1985) A more pract, ical but less accurat(_ lll(_thod

is to use furttmr splitting of eqllation (4) along inline x and crossline y (lirc(:ti(,lls
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(Brown, 1983). That is, instead of solving equation (4) in each step of extr_ti)ol,_tion,

we solve successively

OP iw aS_

0--2 = v(x, Y, z) 1 + flS_ P '

OP iw a'S u

0--_-, = v(x, y, z) 1 + flS_ r' (5)

Now, using an implicit finite-difference scheme, we solve a (nx x nx) matrix equa-

tion for different y's (difference lines) and then solve for a (ny x ny) matrix equation

for different x's (difference CMP positions). The computational count in doing so is

proportional to nx. ny, a significant reduction from the direct solution method (i.e.,

without the x-y splitting). The approximation made in the x-y splitting method,

however, will cause significant errors in handling steep dips, espec.ially along diagonal

lines x = +y, as analyzed in the next section.

ERROR ANALYSIS AND COMPENSATION

Equation (5) is obtained by first approximating equation (4) with the following

differential equation,

OP ..."_ iw a(S_ + Su) + 2aflS_S u p
v(x,y,z)1+9(& + G) +

_ iw aS_ iw aSy

- v(x, y,z) 1 + flS, P + v(x,y,z) 1 + flS u P ' (6)

and then use splitting to separate the x-dependent and y-dependent operators. The

approximation is valid only if S_Sy is zero or sufficient small.

Substituting equation (6) (with corresponding a_ and fl_) for the second, the third,

... and the last equations in (3), we recognize that equation (1) is actually replaced

with the following equation,

OP iw k aiS_ __, aiSy0-7 = z) [1+ + lP. (7), i=ll+fliS_ i=ll+fliSy

Let's defne the finite-difference error E as the difference between the original

single square-root operator and the sum of tile two split finite-difference operators

plus 1, given below,

E = _I+S,+Su-[I+:_._I+_,S_.+z.., 1. (8)i=1 . i=1 1 + fliSu
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As will be explained later in this section, tile physical meaning of E is tile tim-

ing error (in seconds) created per second of downward extrapolation in the finite-

difference Inethod. Given the (tip angle (0) of reflector and the inline azimuth angle

(¢) (the angle between the x axis and the dip direction of the reflector) as shown in

Figure 1, one can extend the Sx-O relation in 2-D (Claerbout, 1985) to obtain the

(Sx, Sy)-(O, ¢)relation in 3-D,

S_ = (cos¢. sinO) 2 ,

= 2. (9)

Therefore, E can be rewritten as,

E = VI1 - cos2¢sin20 - sin2¢sineO

aicos 2¢sin _0 o_isin2 ¢sin20

-(1 + _ 1 + _icos2¢sin20 + _ 1 + _isin2¢sin20 ) " (10)i=1 i=1

FIG. 1. 3-D model of a single dipping reflector. 0 is the dip angle of tlm reflector. ¢
is the azimuth angle between line of interest and dip of reflector.

Figure 2 shows a contour plot of E (when n ---+c_) as function of 0 and ¢. When

n --, e_, E accounts only for the finite-difference x-y splitting error and can be written

E = VI1 - cos2Osin20 - sin_'¢sin20

-(VI1 cos2¢sin20 + y/1 ,si,,, Csin 0 1). (11)
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Clearly, the inline and crossline splitting error increases as the dip angle 0 incre_uses,

and is largest along tlm diagonal lines x = -by (¢=45 degrees) when dip 0 is fixed.

The fact that the phase error va,ries with azimuth means that waves propagate with

different velocities along different azimuth directions, a numerical anisotropy due to

the inline and erossline splitting. The anisotropy of wave propagation will cause

mispositioning of migrated dipping reflectors and hence misleading interpretation of

complicated structures. For example, for a reflector (Iii) of 65 degrees, the timing

error after one second of downward extrapolation of the surface data will be 123 ms.

dip (degrees)
20 40 60 80

I I ' -

I I

I

20- - - - -! - - -
!

lD
lD

40-

o o I c5 c5 ,=; c5c5c5
I

6o-

80- -_ - -1 - - -

FIO. 2. Contour plot of inline and erossline splitting error. Th.e splitting error is
defined as the time error (s) per one second of downward extrapolation.

To compensate for the finite-difference errors and yet still retain the efficiency of

the splitting method, we need to solve an extra ph,use-compensation equation at each

step of wave field extrapolation,

0--_ = v(x, !1,z) E P (12)

The finite-difference error compensation equation in (12) can be solved using any

of several familiar numerical nmthods used to solve wave equations. The square-root

operator in E have to be expanded and approximated to a certain or(lcr of parax-

ial equation, if the finite-difference method is to be llsed. For example, expanding

the operator E in equation (8) and ignoring higher-order terms gives the first-order

paraxial equation for the e_ror compensation.,

6
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OP .v 3(x,y,z) 02 02

O----zz= -'l. wn Ox2 Oy2 P . (13)

Solving equation (13) using a first-order h)rward explicit finite-difference scheme along

the z axis will result in an unconditionally unstable solution, because the norm of the

transfer function is alway greater than or equal to 1. Damping of growing amI)litudes

must be applied in order to ensure stability (Graves and Clayton, 1990), if the explicit

scheme is to be used. hnplicit schemes (without x-y splitting), on the other hand,

though unconditionally stable, require relatively heavy computation, which wc tried

to avoid by using the x-y splitting method to solve equation (4) in the first place.

Since the error E is small in a single step of wave field extrapolation, the effect of

the compensation process is similar to that of residual migration (Rothman, 1985),

in that waves propagate very little in one extrapolation step. Therefore, when lateral

velocity variation is moderate, it is reasonable to use a reference velocity v,(z) (for

example, velocity averaged over (x, y)) to replace v(x,y,z)in equation (12) and thus

benefit from a phase-shift solution,

iw

P(z + Az) = P(z) exp(;-_) EAz) . (14)

Since a phase-shift operator which is a linear function of frequency w corresponds

to a time shift in the time domain, we recognize that E is actually the timing error of

the fini tc-difference splitting for one Az/v (or timing error per one second of downward

extrapolation).

It turns out that my approach is similar to that of Kitchenside (1988). Kitcllenside

implemented the first square root operator (the 3-D wave equation) in equation (8)

with the phase-shift migration using a minimum velocity v_(z). He then combined

the remaining operators in equation (8) (using velocity v_(z)) with the operators in

equation (1) (using velocity v(x, y, z)) to obtain a residual wave-field extrapolation

equation. Instead of using the implicit finite-difference method, he solved the resid-

ual wave-field extrapolation equation by the explicit finite-difference method. Since tt

laterally invariant velocity function is used in implementing the operators in equation

(8), naturally, I choose to use the accurate phase-shift operator for every operator

in equation (8), which leaves the migration part of solving equation (3) unclmnged

from the conventional implicit finite-difference method. One major advantage of my

, approach is that the commonly-used, conventional, 3-D finite-difference migration

need not be changed and the error compensation only applies as a phase-shift filter

at certain depth steps. Both Kitchenside's and my approaches will have the accuracy

of the phase-shift migration (i.e., without steep-dip limitation, no x-y splitting error,

and no finite-difference dispersion), when velocity is a function of depth only. When

velocity varies laterally, we both can use Gazdag's method of phase-shift plus inter-

polation (Gazdag and Sguazzero, 1984) to get better accuracy. However, since I use

the phase-shift method to solve the residual phase-error compensation equation (12)

while Kitchenside uses the pha_se-shift nwthod to solve the wave equat, ioll (1), the
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error of my approa.ch, using the I)hase-shift plus interl)ola, tion, shall be sma.ller than

that of Kitchenside's approach, when velocity w_rics btterally. As will bc explainc(1

later, the residual error compensation can be applied every few depth steps of extrap-

olation while the 3-D wave equation in Kitclwnside's a.pproach has to be solved ew:ry

depth stet_, therefore, my approach is also more efficient than that of Kitchenside.

It is important that all the aspects, including the Crank-Nicolson scheme' (Cla.er-

bout, 1985), the finite-difference approxinm.tion of derivatives (Claerbout, 1985), and

the so-called 1/6 trick (Cla¢;rbout, 1985), of the conventional implicit finite-difference

solution to equation (3) be taken into consideration when solving equation (12). Al-

tc," some algebra, the solution to equation (12), if the conventional implicit finite-

dill'erenee method is used in migration, is given by,

n aj + ii,j n Cj nt- idj

P(z+ _) = _xv[,:(kz _ )Zxzl×H ×H ×p(=) (_5)v,(z) ,= ai-i-bi .= cj - idj '

where,

k_= (v.-_

1-[TA.z "2+ N(_'"-tal)ulk_\ OJ / ,I

aj = AZ '

b_= %0 ' (16)

1- [,r_xy2+ _j(_.-_21_.__. ,
cj = Az '

?.2

dj = v_(z)ajk__
2W

7 in equation (16) is the so-called 1/6-trick value used to improve the accuracy of using

the second-order finite-difference to al)proximate the second spatial derivative, with

typical 7 value of 0.14. k_ and _2 are approximations to the true lateral wavemnnbcrs

that result from the second-order finite-difference approximations of the derivative

operators -02Ox 2 and -02/0'y 2, respectively, as expressed below (Claerbout, 1985),

_..'2 2- 2co,(1,=,Az)
IrT, Ax 2

_.2 2- 2_.o,(k_zxy) (1z)
ky = Ay 2 .

Figure 3 shows the impulse response of the finite-difference-error ('Oml)ensa,tioll

operator computed by the phase-shift Inettmd, for a frequency of 20 Hz and a dcI)th

8
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step of 100 m. Tile operator is anisotropic, with maximum data a(ljustnlent along

the diagonal lines and nd action along either x = 0 or y = 0 lines. The effective ttrea

over which the operator applies become smaller as frequency becomes higher and as

the depth step becomes smaller. In practice, the error compensation operator need

be applied only once every few depth extrapolation steps. Because of the narrowness

of the effectivo width of the operator, a 2-D convolutional method, can also be used

efficiently to handle lateral velocity variation, but caution must be taken to _Lvoi(t

numerical instability.

inline(x) inline(x)
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

i--

-30 ; -30

FIG. 3. Impulse response of the finite-difference splitting-error compensation oI)erator
for a frequency of 20 Hz and a compensation step of100 m. Sampling intervals along x,
y and z are 12.5 m. Velocity is constant, 2000 m/s, in the model. Data manipulation
takes place mostly along the diagonal directions of the x-y plane, where x is the

inline coordinate and y is the crossline coordinate. (a) real part of the response; (b)
imaginary part of the response.

The accuracy of using equation (14) with one reference velocity va to comI)ens_tte

for the finite-difference splitting errors in the presence of lateral velocity variation

is the same ms that of using Kitchenside's inethod. When lateral velocity variation

is large, Gazdag's method of phase-shift plus interpolation (Gazdag and Sguazzcro,

1984) can be used to solve equation (12). Defining n, to be number of reference

velocities used to solve equati_ " (14), and Ai and Oi to be the amplitude and the

I)hase of the solution Pi(z + Az) to equation (14) using refercaee veh>city vi, we can

then use polynomial interpolation of the n_ individual solutions Pi(z + Az) to obtain

the solution P(z + Az) = A cxp(iO) at location (x,y,z),
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A = Voti.t(V, ,

0 -- polzT_.t(kd,(_,,,na,va(x,y,z)) , (18)

where polint is the polynomial interpolation function, V, -- (vi (z), v2(z), ..., v,,, (z))

is the reference velocity vector, A., - (AI,A_,...,A,_) is the a nlplitude vector and

®, = (O1 ®_,, On°) is the phase vector. The interpola.tion is performed along' a, ,, ..._ _la

axis because, _ indicated in equation (13), the leading term in the phase error due

to the finite-difference splitting is proportiollal to v3..

Figure 4 shows the percentage of root-mean-squared (rms) relative phase error

(after applying tile constant-velocity phase-shift compensation) _ a fimction of per-

centage of lateral velocity variation, along tile diagonal line (¢=45 degrees) with dip

angle of 45 degrees, for n_=l, 3 and 5. The rms rela,tive phase error Pr,,,, is defined
a8

P"'' "- (vm_ - vmi,,) .,v.,,. ,. p(v) dr, (19)

where v,_ is the maximum velocity, v,,,i,_is the minimum velocity, p(v) is the correct

phase computed using the wave equation (1), p.,pm(v) is the phase computed using tlm

splitting equation (7), p_o_v(v) is the phase interpolated from the n, phases computed

from the compensation equation (14). The lateral velocity variation vl,,t is defined as,

Vmax -- ?_min

vl.t = . (20)
Vmi n

The original percentage error using the conventional splitting method, in this case, is

3.53. Therefore, as shown in Figure 4, even for 100 percent lateral velocity variation,

the relative pttase error is 2.,5 percent if only one constant-velocity phase-shift com-

pensation (i.e., without interpolation) is used, still a reduction of 30 percent of phase

error from the conventional finite-difference splitting method (without the phase com-

pensation). The relative phase error drops to 0.35 percent, if five reference velocities

are used in the phase compensation to giw_,the interpolated phase. Figure 4 helps us

determine the number of reference velocities needed, for given aceeptabh_ phase error

and given la;,eral velocity variation.

In media of strong lateral w_.locity wtriation, the 3-D migration with my a.1)l)roacl.I

of compensating finite-difference splitting error has higher accuracy than Gazdag's

method of I)hase shift plus interpolation, because interpolation is a.I)plied to the com-

putation of the residual I)hase error ( that is much smaller than the l)hasc itself) while,

Gazdag applied interpolation to the compu_,ation of the I)ha,se. If the rcsi(lllal 1)hase

error compensation is done every 10 depth steps with three reference w'locit, ies, the

cost of 3-D migration using my method will be that of {,he conventiona,1 3-D fillit,c-

difference migration plus 3/10 of tha.t of single-w:locity 3-D 1)htu_e-shift lnigrat.ion.

10
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different numbers of reference velocities

__ 2.5

ot...t.-.

(D

¢ 2.0 /J

o_ 1.5

O

10-
til
r-

0.50-

o_ 0 i

0 50 1 )0

percentage of lateral velocity variation

FIG. 4. Percentage of _lle remaining phase error _s a function of percentage of
lateral velocity variation for azimuth angle of 45 degrees and dip angle of 45 degrees.
Number of reference velocities used in the error compensation, shown in the highest,
the middle, and the lowest curves, is one, three and five, respectively.

IMPLEMENTATION AND EXAMPLES

3-D poststack migration downward continues the input CMP stack and obtains
( /'the migrated images from the d)wnward extrapolated wave field at t = 0. During

each step of downward extrapolation of the wave field, the first equation in (3) is

solved first, next, the last n equations in (3) arc solved sequentia.lly using the x-y

splitting method, and, then, every few depth steps the finite-ditference-crror COml)(:lt-

sation equation (12) is solved using the phase-shift method. In the frequency-sl)ace

domain, one-press 3-D depth migration with fillite-differencc-error compensa.tioll is

implemented ms follows.

input 3-D stack P(x, y, z = 0, t)

FFT[ P(x,y,z = O,t) ] = P(x,y,z = O,w)

Q(x,y,z,t = o) = o.

for z = Az, 2Az, ..., z,,,,_

{

for all x,y,w { P(x,y,w) = P(:r,y,w) x cxp( ;_,, A =)}

for all y,w

{

11
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for i=l 77,( OR _ i_ o,s_ p }Oz -- v(z,y,z) I+_,S_

}

for all x,w

{

for i=l,n { ox, _ ,.e c_,s_ p }Oz -- ,,(x,y,z) l+3iS v

}

for certain z steps and allw { a__2'_ /_ E p }Oz -" vCx,y,z)

foran _ { Q(x,_j,z)= Q(x,y,_)+p(x,y,_) }

for all x,y,w { P(x,y,w) = P(z,y,w)-Q(x,y,z)/nw }

}

output 3-D migrated data Q(x, y,z)

As seen here, the image is obtained by summing the downward-continued wave

field along the w axis, giving the wave field at t = 0. The subtraction of in.age

Q from the downward extrapolated wave field P in the la_st step of each downward

extrapolation step reduces the FFT wrapround along the tiine axis (Kjartansson,
1979).

Similarly, implementation of 3-D poststack forward modeling in the frequency-
space domain is as follows.

input 3-D reflectivity Q(x, y, z, t = o)

P(x,y,z = O,w) = O.

for z = z,_,_, zm,_ - Az, ..., Az

{

for all x,y,w { P(x,y,w) = P(x,y,w) x exp( '----w---_Az) }t,(x,y,z)

for ali y, w

{

fori=l n { oP _ i_ _p }' 0"-¥ -- v(x"_,z) l+fliS,

}

for all x, w

12
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{

for/=l n { ol, _ i_ . _,s_, 0--7 - v(_,y,,)1+_,s, P }

}

for certain z steps and allw { o_pp_ i_ E p }Oz -- v(x,y,z)

for all x,y,w { P(x,y,w) = P(x,y,w) + Q(x,y,z) }

}

FFT-l[ P(x,y,z = O,w) ] = P(x,y,z = O,t)

output 3-D stack P(x, y, z = O,t)

' Instead of summing tile downward extrapolated wave field along the frequency

axis as when doing the 3-D migration, the reflectivity function Q is added to the

upward continued wave field F at each depth level to become exploding sources at

t = 0. The surface-recorded, 3-D postst_.ck data are obtained from the wave field

upward extrapolated to z = 0.

Because the finite-difference splitting error in each depth step is small, thougil

cunmlative error may be large, the error compensation can be applied every few

depth steps of extrapolation to reduce the computational effort of the compensation

process. With the compensation step being eight depth-extrapolation steps, tests

showed that the error compensation process increases the total computational cost,
by about 15 percent.

Figure 5 compares impulse responses of 3-D migration without and with tlm error

compensation. An impulse is placed at x = y = 0 and at time t = 28 in the

input 3-D stack. A migration operator with ord.er 2n = 2 is used in bott_ tests.

As expected, the conventional 3-D migration (without error compensation) gives a

result that departs from the ideal - a hemisplmre. The depth slices of the convel_tio,lal

approach display diamond-shape (as opposed to the correct circular) responses caused

by the anisot, ropy of the finite-difference splitting Inethod. Note also the build up of

evanescent energy ncar the center of the iinpulse response. This evanescent energy

becomes dominant at shallow depth slices. With pllase-shift implementation of the

finite-difference error conlpensation operator, on the other hand, the 3-D migration

gives a more nearly circular and correctly positioned impulse response. Also, as

shown in Figure 5. because the phase-shift method propagates only the nonevanescent

energy, the error compensation ha_sthe additional advantage of suppressing evaIlcscent

energy generated by the finite-difference imi)lcmcntation of wave equation migration.

Furthermore, the accuracy of iinaging steep dips is inlproved to 90 degrees, since tl_e

velocity in tlm model is constant.

Figure 6 compares impulse respoxlscs of 3-D modeling without and with tinit('.-

difference error conlpensat.ion. An ilnpulse is spccific(l at x = y = 0 and a.t z = 12 in

13



Li F'i.it,_ l)iJrcr(_.,:c l')rr.rs

inline (x)
,4,"_, -30 -20 -10 0 10 20 30
_ _.' _ .]_..........I........ _J_ J....

_i::;._y:_j_:.2_:_::!_:_.;_.'._.;`..:::?&;:::._`:..::::::_..:;_'_.:._"."._ .....

•_:_::_.,'.¢..c_:_::,'_.:_:_f_:.'-.'!:'.,.;"i;.._:_i!_.;.'i_,__".:_
G,,j 2:.:.:.:¢:.:.::z..,:".:-',,:.:.":.;.2.,::.:7-"::,_.:-:.:...:.._ .',"..........o::..i&.,.,_,,._,_,:_.,....,,,.:_._i

"::::"_>>-::*'," '._'."_'_ ....... ,_.. •_''. '.".$x_" ..x,:

,__i:i:.::::: :::";':,."::::::::.:.>;._:::¢:"_.:::__,_

_;:_:_;.,::i.3:1:::!:_!.'........:"_t.._::.*::_:i:.,;..... ":

•:.:.:.:.:.,:::.:.:.:.:.:._.,::;::::::.:.:.:...:....::_..... '_:.::¢::.:,:.:....:.-.:::::;:." ., •
.--.. _iii::iiii_:_i!iiii_i_i_.:._"%iiiii!_!i;::i_iiii........ _:ii_i_:ii__#::_ _

• "' --:i:i:i::_..'._i._ :: :_:;:Y:_:."&:::_:_::_:_:;:;:::_::_::::::s:::___

I::::

iiiii_;_i]]i_!!:!_]ii_i!i!:!!_!?!:.!:::.:.:,.".'.;:._i_._:_:E!:!:!:i:.;.... ==========================================:."30 ___

inline (x)

@ -30 -20 -10 0 10 20 30
¢'), I I I I I I I

_N,'_ _,_k./ .':::_'_::::;-:::::""::"':"::':'::::::::::::::::::::::::::::::::::::::::::::::::::::::_',;' ___ '_,:#_i_,,,_:@_:_:;:__/ltl/ii __,,_!
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ,_ _',

D :90 ._::...%.:::_:q...::....:._._!_i_:::::_:_:_.._::_:_._i_#_:_:._._#._:..._.: * ,.,..
..::::i:_:':'_._!:!:_::!::................................................::'_!!_]i !i_!_:_ !_::_:ii!_!_........<+:"".;.'_z$_:!"?,_Z./.:_!,"

.:.:...:,: : :.:...... :.:.:.::.:.:..:,:,:.:.:.:.:.::: :...: ::: : :::: :.:,.:: :: :.:..:: :.....: : : :,:. ::_:,:,::.:',.:'_._,:;._¢ _ ::_¢_:..

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::., ._:_:.::._::.'."

!
10 _:ii!!i_:!_:.,i,iiii!ili::_i!:_.:ii!:i;::_............iiiiiii  ii!!ii;i ,iiliiiiiiii:!iiiii!!iiiiiiiliii{i?iii!filliiiiii!iiiii!!iiiiii! i iliiiiiiii!iiiiiii!i iiii!iiiii!ii!ii

:::::::::::::::::::::;' ._:_:_:__:_________i:___:_::_:::::::_____::::::_:_::___::__:::___.___:;__:::_:_:_:::__:___:_:_':__::__:::_::__:_:__:_____:__:_____.__"•

;:_:i:i:!:_:i:i:i:i:i:i:_:i:!:i:!;_:_:_:_:i:i:_::::...:. ' :: ::::::::::::::::::::::::::::::::::::':-

30-

(b)

F_c. 5. Co,nl)arison of imI),,lse resl)OnSes of 3-D migrations without [(a), (c), and

(e)] and witl_ [(b), (d), and (r)l th(_tinite-dim'_rence error (:ompensation. Sampling

int,ervals along x, y, z and t arc 1, with constant velocity v = 2, in the computation.

A 65-(legree extrai)olat.ion operator is _scd in botl_ cases. (a.) and (b): cube display

of half volume of 3-D impulse reSl)OnSe.
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the inl),lt 3-D reflectivity .,ll()(lcl. Again the I)ara,xial _qua,tion of or(lcr 2'n- 2 is used

i,l l_oth ('as(_s. Figures 6(,:) and 6((1) show the diffractions g(,.,lcra,tcd with the two

al)l>roaches along the (liagonal line :r = y. The error in arriwd till)e of the difh'action

at the edges is as large as al)o,lt 10 tilne samples, though the total t,'a.vcl time is about

45 ti,n,, sa, lll)les, a relative ('l'l'OI"of mo,-c thai1 20 p(,rccnt! With tlm fi,litc-(liffcrcncc-

,'rr(_I"cOnll)('nsation, the i,nl)ulsc resl)onse of the 3-D ,no(lcling is ,norc accu,'atc and

llas less cvancscc,lt cIlergy 1)resent tha,,l does that of the convcntio,ial ai)l)roach.

A ln,-_rcgeologically l_lmlsil_le,nlodel is tested and results are shown in Figure _.

The ,llo(lcl has foil," rcflccto,'s, with tlm medium velocity varying linearly with depth,

_'(z) = 1500 + 2 x z('rl_./s). TI_c first reflector is an upward hc,nisplle,'c t,'unca.ted with

a ho,'izontal bed. Th(_ strik('s of the two dipping i,ltcrNccs, with dips of 45 degrees

ml(1 60 (h'grccs, resl)cctivcly, are l)C,,,'l)cndicular to the diagonal line :e = y. Beth

dil)l)ing interfaces are truncated with horizontal beds. The fourth ,'cflector is simply

lmrizomal. The 3-D l)hasc-shift nlethod is llse(1 in forward lnodclilig of tllc wa.ve

ficl(l. 3-D f,',,'que,lcy-slmcC dcl)t.ll lnig,'a,tion of order 2n = 2 witllo_lt a l_(l wit,h finite-

(liffc:'enc('-crrc : con_I)ensa,tio_ i:s_scd in ,nigration of the 3-D stack. Fig_re 7 displays

six r_ws of 1)ict_,'cs, witl_ fo,_r l)icturcs in each row. The pict_rcs in each ,'ow are,

i_ or(icr, t,l_c ,'eflcctor n_odcl, 3-D I)ha.se-shift modeling, co,_vc,_tional 3-D frequency-

Slmce dcl)th migration witl_()_t error con_l)ensation, and 3-D frequency-sl)aCe depth

,_ig,'ation with error cO_nl)C_sati(m. The migration with the coml)cnsation gives more

accurate images and higher dip a,cClll'ttcy of the hemisl)he,'e than dots the n_igration

witl_out the con_l)ensation, _usshown in Figures 7(I)), 7(c) and 7(e). In Fig_rc 7(d),

w,rtical sections at z - 0 show that the 60-degree dipping reflttctor is u_ldcrinigrated

and weakened in the ntigration without the compensation. The anisotropy of the 3-D

,nigrat, io,l due to the inline and c,'osslinc splitting gives tlm dianm,id-shapc ilna, ge of

the original circle on tlm depth slice of migrated 3-D data, as shown in Figure 7(c),

TI_('.a,_isot,'oI)ic c,'ror is S_l)l)resscd by the error COlnpensation process.

CONCLUSION

The acc_I'acy of conventional o,m-stcp, z- 9 splitting, 3-D del)rh n_igration and

Inodclil_g can })c.i_nprovcd ])y doing the finitc-(liffc,'ence-c.rror con_l)cnsation d_ring

tl_c wav_ field extrapolation. \¥he,_ lateral velocity va,'iation is moderate, the com-

I)Cnsatio,_ can be simply (lone usi_g i)hase-shift nmthod. The n_odificd 3-D wt_vc riehl

extral:_olation method r(,tai_s the efficic,_cy of the splitting app,'oach, yet overcomes

l)rol_l(,_lis of I_lisi)ositio_liiig of stce I) (Iii) events _md crcati,ig undesirable dispersion

a_l(l ('\';t_l(,s(:t'_t c_cI'gy i_ ill(} (:o_ve_ti(),_al 3-D wave field extralmlatio_ lnc_tl_o(l.

Pl,asc-sliif't I_l,is i_t(_rl_olati(_l _w,t,hod, or otlmr mimcrical n_ct,hods, s,l('_li_ustlm

2-D convol_ltional _n_t,l_,)(lwiI,li a stal_lc convol_lt,io_l Ol)crator , n_lst l)c used to solve

th_, c()_l)cnsat, ion equation, when strong lateral velocity wu'iations arc l)rcsent in the
_l..l'(!a,.
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FIG. 6. Comp::trison of i_np_flsc responses of 3-D modeling without [(_t), (c), and

(c)] a,nd with [(b), (<1), and (f)] the' finite-difference error compensation. Sampling

int,erwds along x, y, z and t are 1, with COllSt_llt velocity v = 2, in tlm computation.

A 65-degree extrapolation Ol_erator is used in both oa.sos. (a) and (b): cube display

of half volume of 3-D ixnlmlse rcsl_Onses.
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