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Compensation, Incentives, and the Duality
of Risk Aversion and Riskiness

STEPHEN A. ROSS∗

ABSTRACT

The common folklore that giving options to agents will make them more willing to take
risks is false. In fact, no incentive schedule will make all expected utility maximizers
more or less risk averse. This paper finds simple, intuitive, necessary and sufficient
conditions under which incentive schedules make agents more or less risk averse. The
paper uses these to examine the incentive effects of some common structures such as
puts and calls, and it briefly explores the duality between a fee schedule that makes
an agent more or less risk averse, and gambles that increase or decrease risk.

WITH THE GROWING INTEREST in executive compensation and agency problems,
there is a folklore about the relation between the shape of the fee schedule
received by an agent and the agent’s attitudes toward risk that deserves fur-
ther study. As an illustration, many authors take it for granted that giving op-
tions to executives makes them more willing to take risks. DeFusco, Johnson,
and Zorn (1990, p. 618), for example, note that “The asymmetric payoffs of
call options make it more attractive for managers to undertake risky projects.”
In fact, contrary to their intuition, my intuition, and that of most observers,
without further conditions on utility functions beyond monotonicity and risk
aversion, this is not correct. Surprisingly, it is not the case that a convex com-
pensation schedule makes an agent more willing to take risks, that is, less risk
averse; nor does a concave compensation schedule make an agent more risk
averse.

The common folklore clearly has its genesis in the observation from option
pricing theory that an increase in the volatility of an option makes it more valu-
able (see, e.g., Haugen and Senbet (1981), Smith and Watts (1982), and Smith
and Stultz (1985)). This is, however, not the same as making the option more
desirable to a risk-averse investor. One clear problem with the intuition of folk-
lore is that compensation schedules move the evaluation of any given gamble to
a different part of the domain of the original utility function where the utility
function can have greater or lesser risk aversion. For example, suppose that
an option grant is part of an incentive package that raises base compensation.
With such an incentive compensation package, the agent assesses risk from
the vantage point of being wealthier, and an agent can have a very different
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attitude toward risk at a higher level of wealth than at a lower level. But this
is not the only difficulty.

Several others have also noted that an agent’s risk aversion can significantly
affect their view of compensation. In a model with risk aversion, Lambert,
Larcker, and Verrecchia (1991) derive a number of comparative statics results
describing the sensitivity of the agent’s valuation of a compensation package
to variables such as wealth and the degree of risk aversion. Closer to our anal-
ysis, in an intertemporal model where a portfolio manager adjusts to a con-
vex incentive structure, Carpenter (2000) observes that the manager may be-
have in a counterintuitive fashion. More recently, Lewellen (2001) makes a
similar observation in the context of executive compensation schedules. Both
these papers present examples where convex incentive structures do not im-
ply that the manager is more willing to take risks, but the general ques-
tion of why and under what conditions this might occur remains somewhat
mysterious.

Of course, agency theory has long intensively studied the functional rela-
tion between the optimal (efficient) contract and the utility function of the
agent (see, e.g., Ross (1973) or Holmstrom (1979)). Unfortunately, the effort to
characterize optimality—often in highly specific and parametric models—has
crowded out the study of the behavior of the agent given the specific contract
forms of the sort that are commonly observed in practice. In particular, little
is known about the derived risk preferences of agents given common types of
incentive structures. In this paper we will take some first steps toward such
an analysis by finding necessary and sufficient conditions under which the folk
intuition is valid; that is, we will answer the question of when option-like in-
centive schedules lead to increased risk taking. Perhaps more important, we
will develop a notion of compensating variation that disentangles three sepa-
rable effects that a fee schedule has on an agent’s attitudes towards risk. This
result will allow us to draw important distinctions between, say, the incentive
impact of put options and those of call options. Perhaps contrary to our in-
tuitions, we will show that for the usually assumed preferences, put options
make individuals less risk averse, while call options do not. In addition, along
the way we will make some observations on the equivalence between mak-
ing gambles riskier and making agents behave as though they were more risk
averse.

Section I looks in detail at the effect on risk-taking in two special cases; first,
when the fee schedule is a simple call option and, second, when it is equivalent
to a bond position with a short put option. Here we introduce some examples to
illuminate the basic intuitions of the problem and set the stage for the analysis
of Section II. Section II develops the general theory and finds the necessary
and sufficient conditions for a fee schedule to make an agent more or less risk
averse, that is, to concavify or convexify the original utility function. The general
theory orders total compensation schedules by their risk-inducing behavior. In
Section III, we examine how to modify an existing total compensation schedule
so as to make the agent more or less willing to take a risk. Section IV separates
the influence of the fee schedule into three locally independent components: The
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convexity effect, the translation effect, and the magnification effect. Roughly,
the convexity effect is really the statement of the original intuition of folklore,
and the translation and magnification effects are the remaining influences of
an incentive schedule that have to be traded off against convexity to produce
the net effect. Section V briefly explores the duality between a fee schedule that
concavifies a utility function and a schedule that makes the underlying payoff
riskier. The final section, Section VI, concludes the paper with a brief summary
and some suggestions for future research.

I. Some Simple Examples: Put and Call Option Fee Schedules

Consider an executive whose compensation consists of a fixed fee together
with some options on the company’s stock. We will assume, as is usual, that
the options are not fungible and that the executive must hold them to maturity.
For simplicity, we will also ignore the complications of time and model the issue
in a single period world. In many settings—such as a complete market—the
qualitative results we obtain will hold intertemporally as well.

The main argument for giving the executive options is that it will align in-
terests with those of the owners of the firm. Giving options rather than stock
alone may also have important tax benefits. A consequence of an option posi-
tion, though, is that it may appear to make the executive more willing to take
risks, and the argument for this is that obviously raising the volatility raises
the market value of the options. But the executive who cannot simply sell the
options to pocket the increased value must instead evaluate them not with the
linear valuation of the market but, rather, through the filter of their own per-
sonal preferences and trade-off between risk and return. The result, as we will
show, may not be that the manager wants more risk.

If the intuition that a convex fee schedule will make an agent less risk averse
has any force, it should certainly hold when the fee schedule is a simple option.
Suppose, then, that the fee schedule is a fixed wage plus a package of call options
on a number of shares with a total value of x and with a total exercise price of
a. Ignoring the manager’s fixed wage, the variable payoff, f , is the familiar call
option function on the value of the underlying shares,

f (x) = max{x − a, 0}. (1)

Assuming that the agent’s utility function, U, is monotone and concave, then
the derived utility function is given by

U ( f (x)) = U (max{x − a, 0}) = U (x − a), x ≥ a, and = U (0), x ≤ a. (2)

For x ≤ a, the utility function is fixed at U(0). For x ≥ a, it rises as the original
utility function (see Figure 1). For bets that are near a, then, the induced utility
function may well be more risk loving, but for bets in the range where x > a,
the result depends on whether U(x − a) is less risk averse than U(x). This, in
turn, depends on whether or not U has increasing or decreasing risk aversion.
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Figure 1. The utility of put and call incentive schedules.

If a > 0 and U has decreasing risk aversion, then U(x − a) will be more risk
averse than U(x).1

Despite the fact, then, that the value of a call option is an increasing function
of the risk (volatility) of the underlying payoff, nevertheless, the derived utility
function, U(f (x)), is not uniformly less risk averse than U(x). In the case of the
call option, it is less risk averse in some parts of the domain and may well be
more so in others. In Section IV, we will present an example where the fee
schedule is convex, but the derived utility is everywhere more risk averse.

The paradox is resolved by observing that any fee schedule has several
effects—two of which, for shorthand, we will label the convexity effect and
the translation effect. On one hand, the convexity of a schedule like a call op-
tion clearly makes risky bets more desirable. On the other, the fee schedule
also shifts or translates the evaluation of any bet to a different portion of the
domain of the agent’s utility function. These two effects can be enhancing or
offsetting with an a priori ambiguous result.

As another example, typically a manager will receive a bonus payout that is
proportional to some indicator of performance in their division, such as some
measure of accounting earnings using transfer pricing to value inputs and out-
puts. Such bonus schemes almost always have both floors and ceilings, but to
make our point simply, suppose that the relevant range is near the ceiling and
that the manager is making decisions that will affect whether the payout hits
the ceiling or is in a range that is proportional to the performance indicator.

1 It is assumed that the individual is not allowed to make use of a market for fair gambles or a
complete market to concavify the utility function (see Ross (1974)).
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Will the manager become more risk averse toward earnings in that case and
be unwilling to risk falling below the ceiling? Certainly if the market value
of the manager’s payout option was proportional to the performance indicator,
then the market would treat risk just as for a junior bond in the range near its
principal payout and the value would decline with increases in volatility. But,
as before, the behavior of the agent who cannot sell the payout is ambiguous.

To illustrate this ambiguity we form a fee schedule as a fixed fee with a short
position in a put option (see Figure 1),

f (x) = b − max{a − x, 0} = min{b − a + x, b}. (3)

where b is the fixed fee and a is the exercise price of the put option. In this
example, x represents the performance indicator, b is the maximum payout
and a is the performance level at which the payout “maxes out.”

In this case,

U ( f (x)) = U (min{b − a + x, b}) = U (b − a + x), x < a, and = U (b), x ≥ a. (4)

Even though the fee schedule is concave, whether U(f (x)) is more risk averse
than U(x) depends on whether the shift in the domain moves U to a more or
less risk averse region. If, for example, b − a > 0, then the domain is shifted
to the right. If U has increasing risk aversion, then in this portion it will be
more risk averse than U(x), which will augment the increase in risk aversion at
the exercise price, x = a. On the other hand, if U has decreasing risk aversion,
then the rightward shift moves it into a region of lower risk aversion, and for
x > b − a, U(f (x)) is locally less risk averse than U(x), despite the concavity
of f .

The special fee schedules of this section hone our intuition and make us wary
of jumping to quick conclusions about the impact of a fee schedule on an agent’s
willingness to accept risk. In the next section we will derive some general results
that will enable us to determine when a fee schedule makes an agent more or
less risk averse.

II. The General Theory

The intention of this section is to develop a general theory of how compen-
sation schedules affect decision making without any particular specification of
the problems the agent will face. For example, if we were willing to say that
the CEO of a firm would only be choosing the allocation between stocks and
bonds, then we could force any particular allocation by simply choosing as an
incentive schedule one that pays off only when the desired allocation is chosen.
Our intention, instead, is to make broader statements about behavior inde-
pendent of the particular choice problem faced by the agent. The rationale for
doing so is twofold. First, quite commonly the schedule must be set before the
actual decision-making context is known. Second, our aim is to examine the
properties of particular incentive schedules, and insofar as we can say that the
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schedule is risk inducing or risk averting independent of the particular prob-
lem the agent faces, we will have learned something about its influence in a
decentralized decision making environment. Setting the schedule permits the
board or the top executives of a company to give simple rules to their employees
that will induce them to behave in certain ways without requiring a detailed
knowledge of their environment. Throughout, the reader can imagine the ar-
gument of the compensation schedule as the future value of a set number of
shares in the firm and can think of the agent as an executive in the firm who
is making decisions that will change the character of the distribution of future
value.

We will begin by analyzing the entire schedule, and in Section III we will con-
sider the problem of modifying an existing schedule. A bit of nomenclature and
some definitions will simplify the exposition. We will say that a compensation
schedule, f , concavifies a utility function, U, if the derived utility of the schedule
is more risk averse that the original. If the derived utility is less risk averse than
the original utility function, we will say that f convexifies U. Unless specifically
specified otherwise, all functions are assumed to be arbitrarily differentiable,
fee schedules are strictly monotone increasing and utility functions are mono-
tone increasing and concave—the classes of such functions are denoted by M
and MC, respectively. In addition, individual preferences are assumed to still
be monotone and concave after the application of the fee schedule.

Formally speaking, these conditions rule out, for example, a call option fee
since it is not strictly monotone increasing, it is nondifferentiable at the strike
price, and since it makes any differentiable concave utility function convex in
the neighborhood of the strike price. In general, the requirement that the sched-
ule be strictly monotone is not a very restrictive condition; it is just a limiting
case of a strictly monotone fee and we will occasionally point this out in the for-
mal results derived below. For example, simply increasing the time to maturity
smooths the option value and renders it strictly monotone, and in our exam-
ples we will continue to use simple options while keeping this interpretation in
mind. By contrast, allowing the fee schedule to create a convex region for the
derived utility of the fee alters the problem in interesting ways. For an analysis
of such nonconcavities, see Basak, Pavlova, and Shapiro (2002).

We will adopt the following definition to characterize fee schedules that in-
crease or decrease risk aversion.

DEFINITION 1: A fee schedule, f , concavifies a utility function, U, if and only if
there exists a monotone concave function, G, such that

U ( f ) = G(U ). (5)

For notational ease we will omit the argument of a function when that func-
tion depends directly on wealth, w. For example, U is understood to be the
function U(w). All functions will be assumed to be differentiable as needed.
(Strictly speaking this rules out simple piecewise linear options, but a simple
closure argument extends all our results to these cases.)
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From the Arrow–Pratt theorem (Arrow (1965), Pratt (1964)), we know that
the existence of a concave function, G, as defined above is equivalent to the
induced utility function U(f ) having a greater coefficient of risk aversion than
U and is also equivalent to the local risk premium for gambles being greater.
Similarly, we will employ the following definition.

DEFINITION 2: A fee schedule, f , convexifies a utility function, U, if and only if
there exists a monotone convex function, G, such that

U ( f ) = G(U ). (6)

Note that since G−1 is concave if and only if G is convex, f convexifies U if
and only if there exists a concave H such that

U = H(U ( f )). (7)

We will let A denote the coefficient of absolute risk aversion,

A = −U ′′(x)
U ′(x)

. (8)

Since U is monotone, for any f there always exists a function G such that,

U ( f ) = G(U ). (9)

Furthermore, f is monotone if and only if G is monotone, since

U ′( f ) f ′ = G ′(U )U ′. (10)

Note that in what follows we use the assumption that f is strictly monotone
increasing. Differentiating again we have

U ′′( f )( f ′)2 + U ′( f ) f ′′ = G ′′(u)(U ′)2 + G ′(u)U ′′, (11)

which rearranges to

G ′′(u)(U ′)2 = U ′( f ) f ′
[

A + f ′′

f ′ − A( f ) f ′
]

. (12)

Hence, we have the following result.

THEOREM 1: The compensation schedule, f , concavifies (convexifies) U if and only
if

f ′′

f ′ ≤ (≥)A( f ) f ′ − A. (13)
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Proof: See above. Q.E.D.

The following lemma verifies what is certainly true about the folk result.

COROLLARY 1: The compensation schedule, f, concavifies (convexifies) U for all U
only if f is concave (convex).

Proof: Taking U to be risk neutral, A = 0, then the result follows from
Theorem 1 and the monotonicity of f . Q.E.D.

Indeed, the concavity of f is necessary for U(f ) to even be risk averse for all
concave U. However, while the concavity (convexity) of f is necessary for the
derived utility function to be concavified (convexified), it is not sufficient. To see
this, observe that for any point x such that f (x) �= x and for any values f ′(x) and
f ′′(x), we can set A(x) sufficiently large while holding A(f (x)) fixed and construct
a violation of the condition of Theorem 1 for f to concavify U.

This verifies the following important corollary.

COROLLARY 2: There is no compensation schedule that concavifies (convexifies)
all U.

Proof: See above argument. Q.E.D.

By restricting the class of utility functions, though, it is possible to obtain a
complete result that is close in spirit to the folk result. We will use the acronym
DARA to denote the class of utility functions that exhibit decreasing absolute
risk aversion and IARA for the class with increasing absolute risk aversion.

THEOREM 2: The compensation schedule, f , concavifies all U ∈ DARA if and only
if f is concave, f ≤ x, and f ′ ≥ 1, and it convexifies all U ∈ DARA if and only if f is
convex, f ≥ x, and f ′ ≤ 1. The compensation schedule f concavifies all U ∈ IARA
if and only if f is concave, f ≥ x, and f ′ ≥ 1, and f convexifies all U ∈ IARA if
and only if f is convex, f ≤ x, and f ′ ≤ 1.

Proof: Suppose U ∈ DARA. If f ≤ x, then A(f ) ≥ A, and if f ′ ≥ 1, then
A(f )f ′ − A ≥ 0. Since, by concavity, f ′′ ≤ 0, we have

f ′′

f ′ ≤ A( f ) f ′ − A. (14)

and, by Theorem 1, f concavifies U. To prove necessity observe that if A is
constant, then we must have

A( f ) f ′ − A = A[ f ′ − 1] ≥ f ′′

f ′ . (15)

Picking U risk neutral, that is, A = 0, verifies that f ′′ ≤ 0. Picking A arbitrarily
large reverses the inequality unless f ′ ≥ 1. Now, suppose that f (x) > x for some
x. We can set A(f )f ′ − A arbitrarily small by setting A(x) as large as desired
relative to A(f ), and this also reverses the inequality. The proofs for convexity
and for IARA are similar. Q.E.D.
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Figure 2. Risk-inducing and risk-averting fee schedules for DARA utility.

Theorem 2 tells us the necessary and sufficient conditions on the fee schedule
for it to concavify or convexify utility functions with decreasing and increasing
risk aversion. In other words, for a broad class of utility functions it charac-
terizes the fee schedules that increase and decrease risk aversion. Figure 2
illustrates the implied shape of the compensation schedules for the DARA case.
Corollary 2 simply says that there is no fee schedule that concavifies or con-
vexifies all monotone concave utility functions. The natural converse question
to ask, then, is whether the classes of utility functions specified in Theorem 2
are the broadest classes of utility functions that these fee schedules concavify
and convexify. To address this we first define four classes of fee schedules as
described in Theorem 2.

DEFINITION 3:

A(dc) ≡ { f | f is concave, f ≤ x, and f ′ ≥ 1}
A(d x) ≡ { f | f is convex, f ≥ x, and f ′ ≤ 1}
A(ic) ≡ { f | f is concave, f ≥ x, and f ′ ≥ 1}
A(ix) ≡ { f | f is convex, f ≤ x, and f ′ ≤ 1}.

The next theorem shows that if a utility function is concavified or convexified
for all of the members of one of the classes defined above, then it must be DARA
or IARA, depending on the class that is used.

THEOREM 3: If f ∈ A(dc) or f ∈ A(ic) implies that f concavifies U, then U is DARA
or IARA, respectively. If f ∈ A(dx) or f ∈ A(ix) implies that f convexifies U, then
U is DARA or IARA, respectively.

Proof: The proofs are all similar so we will only do the first. Assume, then,
that f ∈ A(dc) implies that f concavifies U. From Theorem 1 a necessary
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condition for f to concavify U is that

f ′′

f ′ ≤ A( f ) f ′ − A. (16)

If A(f )f ′ − A < 0, then for f ′′ < 0 sufficiently close to 0 we can violate this con-
dition for some f ∈ A(dc); hence we must have A(f )f ′ − A ≥ 0 for all f ∈ A(dc).
Since, aside from concavity, the only other conditions on f are f ≤ x, and
f ′ ≥ 1, we must also have A(f ) ≥ A(x) for all f ≤ x. Hence, U must belong to
DARA. Q.E.D.

III. Risk-Inducing and Risk-Averting Modifications
of an Existing Schedule

Theorems 2 and 3 may appear to be about an odd case in which the compari-
son is made between the agent receiving the entire payoff, x, or some schedule,
f (x). With this interpretation in mind, a result that requires f (x) > x may seem
difficult to interpret in a real-world setting. For example, if x represents the
nominal value of the stocks on which a CEO’s compensation is based, then set-
ting f (x) > x would require that the executive be paid more and presumably
that would raise the cost of the compensation beyond the company’s opportu-
nity cost. Typically, instead, the question is what changes should be made in a
compensation structure with the total value of the payout constrained to be at
some level determined by market conditions. In other words, the typical prob-
lem is to alter the incentive schedule by, say, an option grant, but not to replace
it in its entirety. Fortunately, the results we have obtained are easily extended
to any potential alteration. For simplicity we will only extend Theorem 2; the
extensions of Theorem 3 are obvious.

To start, we might think of amending an existing schedule, f (·), by transform-
ing it to g(f (·)). This could, for example, be a wholesale alteration of the schedule
where both f and g are required to satisfy some budget constraint. Whether this
concavifies or convexifies the derived utility function, U(f (·)), depends on the
shape of the transformation, H, defined by

U (g ( f (x))) = H(U ( f (x))). (17)

Letting

z = f (x), (18)

this becomes

U (g (z)) = H(U (z)), (19)

and we have the following result.

COROLLARY 3: Altering an existing fee schedule, f(·), to g(f(·)), concavifies the
derived utility function for all U ∈ DARA if and only if g is concave, g ≤ x, and
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g′ ≥ 1, and it convexifies it for all U ∈ DARA if and only if g is convex, g ≥ x,
and g′ ≤ 1. The alteration g concavifies the derived utility function for all U ∈
IARA if and only if g is concave, g ≥ x, and g′≥ 1, and g convexifies it for all U ∈
IARA if and only if g is convex, g ≤ x, and g′ ≤ 1.

Proof: As described above, simply set z = f (x) and apply Theorem 2. Q.E.D.

Interestingly, in this case, the character of the alteration, g, is independent
of the original fee schedule, f .

As another extension, often we think of adding options to an existing fee
schedule. In this case the options might be interpreted as an alternative to
simply raising the base pay for the CEO. Formally, if f (·) is the current payoff,
what is the implication of adding g(·) to this? Now the question of how this
addition influences the agent’s attitudes toward risk hinges on the shape of
H(·) defined by

U ( f (x) + g (x)) = H(U ( f (x))). (20)

Letting

z = f (x), (21)

and assuming that f is strictly monotone, this becomes

U (z + g ( f −1(z))) = H(U (z)). (22)

Letting

q(z) = z + g ( f −1(z)), (23)

we have

U (q(z)) = H(U (z)). (24)

and the following result.

COROLLARY 4: Let Ag and Af denote the coefficients of absolute risk aversion for g
and f, respectively. Adding g to an existing fee schedule, f, concavifies the derived
utility function for all U ∈ DARA if and only if Af ≤ Ag, g ≤ 0, and g′ ≥ 0, and
it convexifies it for all U ∈ DARA if and only if Af ≤ Ag, g ≥ 0, and g′ ≤ 0. The
alteration g concavifies the derived utility function for all U ∈ IARA if and only
if Af ≤ Ag, g ≥ 0, and g′ ≥ 0 and g convexifies it for all U ∈ IARA if and only if
Af ≤ Ag, g ≤ 0, and g′ ≤ 0.

Proof: Assuming that f is invertible, applying the transform,

q(z) = z + g ( f −1(z)) (25)



218 The Journal of Finance

and differentiating we obtain

q′( f (x)) = 1 + g ′(x)
f ′(x)

, (26)

where

x = f −1(z) (27)

and

q′′(x) = f ′(x)g ′′(x) − g ′(x) f ′′(x)
( f ′(x))3

= g ′(x)
f ′(x)2

[A f − Ag ]. (28)

The result now follows by applying Corollary 3. (If f is not strictly monotone,
let s(x) be any strictly monotone function with bounded derivatives and carry
out the above analysis for f (x) + δs(x). Since U(f + δs + g) is more (or less) risk
averse than U(f + δs) for all δ > 0, this must also hold for δ = 0.) Q.E.D.

An interesting special case of this occurs when f (x) = x and we are simply
adding to the entire payoff. Since Af = 0, the conditions, for example, for con-
vexifying a utility function with decreasing absolute risk aversion is that the
addition g is nonnegative, convex, and has a nonpositive slope. In other words,
adding a positive, monotonely declining convex function will convexify an agent
with decreasing absolute risk aversion.

Note, then, that adding a call option will not convexify an agent with decreas-
ing absolute risk aversion, but that adding a put will. This, in turn, implies that
to make agents more willing to take risks there should be more of a focus on
offering downside protection than on offering them upside potential.

Consider the following concrete example. A CEO currently receives a base
annual pay of $1 million and has existing at the money call option grants on
one million shares of stock with both a current price and an exercise price of $20
per share. In the coming year, perhaps in response to competitive pressures, the
board is contemplating raising the total compensation, but union and share-
holder pressure has been brought to bear and the board feels that it cannot
raise the annual fixed fee and must do so with a further option grant. As a
further consideration, the CEO’s annual performance assessment report, while
generally positive, reflects a generally held sentiment that the CEO has been
too conservative in assuming the kinds of strategic risks that the board feels
will be necessary in the future. It has been proposed to solve both problems with
an at-the-money grant of calls on an additional one million shares. The argu-
ment advanced is that doing so will simultaneously meet market pressures and
induce the CEO to be bolder. Unfortunately, though, and contrary to a rather
standard intuition, assuming that the CEO displays the normal characteristic
of decreasing absolute risk aversion, Corollary 4 tells us that the impact of this
option grant will be ambiguous and may actually induce the CEO to be even
more conservative.
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By contrast, suppose, instead, that the board decided to transform the current
option grant into a collar by granting puts on one million shares with an exercise
price of $10 per share. Now the manager would still gain from increases in the
share price above its current level, but would be protected if the price dropped
into the range below $10 per share. Corollary 4 assures us that this would make
the manager more willing to assume a riskier strategy.

The next section develops a compensating approach that allows us to separate
the impact of the two effects of a fee schedule, translation and convexity. This
will make the advantage of the put option more transparent.

IV. The Convexity, Translation, and Magnification Effects

In the above example, while the result follows from the analytics, it is far
from clear exactly why adding call options does not necessarily induce more
risk taking. Intuitively, the impact on the CEO of a further call option grant,
can be broken into three distinct pieces. First, the CEO already benefits from
the optionality through the existing call option grant, which is why further
call options will not induce more risk taking through this effect. Second, any
addition will bring compensation into a range where risk aversion is less and
will induce further risk taking. But offsetting this effect is the fact that the new
options will raise the delta of the total compensation package, and if the CEO
is sufficiently risk averse, then the net result will be to induce a curtailment in
risk-taking behavior. This intuition is developed in full below.

We begin by defining the derived utility function,

V (x) = U ( f (x)). (29)

From the basic relation of Theorem 1 we have that

AV (x) − A(x) = −U ′′( f ) f ′

U ′( f )
−

[
−U ′′(x)

U ′(x)

]
+

[
− f ′′

f ′

]

= A( f ) f ′ − A(x) + A f (x)

= [A( f ) − A(x)] + A( f )[ f ′ − 1] + A f (x),

(30)

where Af (x) denotes the absolute risk aversion coefficient of the fee schedule,
−f ′′/f ′. It is natural to define the three effects as:

Translation Effect = A( f ) − A(x), (31)

Magnification Effect = A( f )[ f ′ − 1], (32)

and

Convexity Effect = A f (x). (33)



220 The Journal of Finance

Hence,

AV (x) − A(x) = Translation Effect + Magnification Effect

+ Convexity Effect. (34)

Whether the derived utility function is more or less risk averse than the
original depends on whether the sum of the three effects is positive or negative.

One merit of this decomposition is that these effects are locally independent,
in the sense that for a given utility function we can vary each of them without
impacting the others. Varying the level of f affects the translation effect but
not the convexity effect. It impacts the magnification effect through A(f (x)), but
this is a scaling effect and does not impact the sign. It can also be undone by a
scaling of f ′. Similarly, changing f ′ has no impact on the translation effect and
its impact on the convexity effect can be offset by a corresponding change in f ′′.
Lastly, changing f ′′ impacts only convexity.

If we take f to be concave, then the convexity effect is positive, and the de-
rived utility function is more risk averse if the translation effect and the mag-
nification effects are also positive or not sufficiently negative so as to undo the
convexity effect. This makes the results of Theorem 2 easy to see. If, for exam-
ple, the utility function is DARA and if f (x) ≤ x and f ′ ≥ 1, then the translation
effect is positive, since the fee schedule moves the payoff to a more risk-averse
region and the magnification effect is also positive. Thus, in this case, as we
proved in Theorem 2, the derived utility function is more risk averse.

In some notable cases, these effects are easy to understand. For example, if
the utility function has constant absolute risk aversion, then the translation
effect disappears, since the utility function has the same risk aversion at all
points in the domain. The magnification effect depends only on whether the fee
schedule is increasing faster or more slowly than x itself. If the increase is faster,
then the magnification effect is positive and if it is slower then it is negative.
This makes the intuition of the magnification effect clearer. If f ′(x) > 1, then a
small gamble at x with a standard deviation of σ will be magnified to σ f ′(x).
This raises the risk of the gamble and lowers the willingness of the agent to
undertake it.

Note that even with a constant absolute risk aversion utility function (i.e.,
exponential) while there is no translation effect, the magnification effect alone
can offset the convexity effect. If f ′ ≥ 0 is sufficiently less than one, then the
magnification effect can be negative enough to exceed the convexity effect, and
the net result will be that the agent will become more risk loving even if the
fee schedule is concave.

Example: Suppose that

U (x) = −e−Ax (35)

and that

f (x) = cg (x), (36)

where g(x) is a positive, monotone, and concave function.
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The translation effect is zero and, differentiating, we have that the

Convexity Effect = A f (x) = − g ′′

g ′ , (37)

which is independent of c. The

Magnification Effect = A( f )[ f ′ − 1] = A[cg ′ − 1]. (38)

Hence, if the risk aversion of the fee schedule,

A f (x) = − g ′′

g ′ < A, (39)

then for c sufficiently close to 0, the magnification effect will dominate the
convexity effect and the derived utility function will be less risk averse than
the original utility function. On the other hand, if

A f (x) = − g ′′

g ′ ≥ A, (40)

then even if c = 0, the derived utility function will be no less risk averse than
the original.

Conversely, if g is convex, then setting c sufficiently high will make the de-
rived utility function more risk averse than the original.

Similarly, even if at some x, f ′ = 1, while there is no magnification effect, the
translation effect can obviously exceed the convexity effect. In general, then,
there is no simple statement of the dominance of one effect over the others,
and the impact of any fee schedule on an agent’s attitudes toward risk must be
analyzed in terms of all three effects.

Another way to make this point is to note that if the fee schedule is simply
the total payoff, that is,

f (x) = x, (41)

then all three effects are zero for all utility functions. Any alteration from this,
though, has effects. For example, simply scaling the payoff to be affine,

f (x) = a + bx, (42)

has no convexity effect and allows us to see the pure impact of the translation
and magnification effects:

Translation Effect = A( f ) − A(x) = A(a + bx) − A(x) (43)

and

Magnification Effect = A( f )[ f ′ − 1] = A(a + bx)[b − 1]. (44)
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From our previous discussion it is clear that these effects can take any sign
and the resulting derived utility function, in general, can be more or less risk
averse than the original utility function.

For example, consider the simple case discussed at the end of the previous
section, namely, the advantage of a put option addition to convexify a schedule
for an agent with decreasing absolute risk aversion. A put option is nonnegative,
declining, and convex. Because it is nonnegative it adds to wealth and moves
the agent into a less-risk-averse portion of the domain. This is the translation
effect. It is convex for the convexity effect. Lastly, it has a negative slope so
that its addition to the existing payoff will lower the magnification effect. In
other words, when the option is in the money the agent will see even money
gambles as less risky. By contrast, while adding call options to the payoff has
a positive convexity effect and a positive translation effect, it has a negative
magnification effect. When the call is in the money, it makes gambles appear
riskier and that will lower the agent’s incentive to accept them.

As a final point, it is interesting to use Corollary 2.4 and the above decompo-
sition to interpret existing results in the literature. Carpenter (2000), for exam-
ple, proves (Proposition 3) that in an intertemporal problem where a portfolio
manager has a DARA or a CARA utility function and receives compensation
in the form of call options, the manager would seek to reduce the volatility of
the managed portfolio if the number of call options was increased. This sug-
gests that the utility function has been concavified by the addition of the call
options. From Corollary 4, though, we know that adding call options to a fee
schedule will not concavify all DARA utility functions and, in particular, we
must overcome the local convexity effect. For the CARA functions there is no
translation effect, hence the magnification effect is larger than the convexity
effect in this result. Note that in the intertemporal problem, the discontinuity
of the call option is smoothed over time so it makes sense to talk of a bounded
convexity effect.

V. Duality

Since a fee schedule that concavifies a utility function makes the agent more
risk averse, it is tempting to conclude that it must make the underlying payoff
riskier. Tempting, but untrue. Put another way, do executives, who have a cap
to their option compensation, have the same incentives as executives in riskier
firms but with no cap? Unfortunately, such sweeping intuitions are not true.
For one thing, one random variable is riskier than another if and only if it is
(weakly) inferior for all monotone, concave utility functions. If such a function
existed then, by duality, it would make any agent more risk averse, but, by
Corollary 2, no such schedule exists.

Usually, we say that a random variable y is less desirable than a random
variable x if and only if for all U monotone and concave,

E[U ( y)] ≤ E[U (x)]. (45)
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By contrast, if we let

y = f (x), (46)

then

E[U ( y)] = E[U ( f (x)] ≤ E[U (x)] (47)

for all random x if and only if

f (x) ≤ x (48)

for all x, a rather uninteresting criterion and one which fails to capture the
spirit of the previous sections. In particular, we must contend with the fact that
f (·) shifts the comparison for a random payoff from 0 to f (0). As an alternative,
we will adopt the following definition.

DEFINITION 4: A random payoff y is said to be S-riskier by c (a constant) than
a payoff x if and only if x is rejected for some U ∈ S, and, whenever x is rejected
by U ∈ S, U prefers c to y, that is

E[U (x)] ≤ U (0) ⇒ E[U ( y)] ≤ U (c). (49)

This is a slight generalization of the usual definition that allows the reference
origin of comparison for y to be translated by a constant c. Definition 4 allows
us to state a more useful duality concept.

DEFINITION 5: A function f is a risk-inducing transform if for any random x,
f(x) is S riskier by f(0) than x.

The following result now adjusts the comparison for f (x) to the origin f (0).

THEOREM 4: A function f is an S risk-inducing transform if and only if it con-
cavifies U ∈ S.

Proof: If f is risk inducing, then, for all x

E[U (x)] ≤ U (0) ⇒ E[U ( f (x))] ≤ U ( f (0)), (50)

which is simply a statement that U(f (x)) is more concave than U(x). Conversely,
if f concavifies U, then there exists a monotone concave function G such that

U ( f (x)) = G(U (x)), (51)

which implies that if x is rejected by U, then

E[U ( f (x))] = E[G(U (x))] ≤ G(E[U (x)]) ≤ G(U (0)) = U ( f (0)), (52)

the condition for f being risk inducing. Q.E.D.
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From Corollary 2, though, we know that f cannot be a risk-inducing trans-
form for all U ∈ MC, and we must restrict the class of admissible utility func-
tions, S. Theorem 2 provides a straightforward corollary. If we restrict S to
the class of DARA utility functions, then it is immediate that f is DARA risk
inducing if and only if f ∈ A(dc). For the sake of completeness we offer the follow-
ing formal statement. A parallel treatment for f being convexifying is equally
straightforward.

THEOREM 5: The compensation schedule, f , is DARA risk inducing if and only if
f is concave, f ≤ x, and f ′ ≥ 1, and it is IARA risk inducing if and only if f is
concave, f ≥ x, and f ′ ≥ 1.

Proof: Follows immediately from Theorems 2 and 4. Q.E.D.

VI. Conclusion

The folklore that a convex fee schedule makes an agent less risk averse and
that a concave one induces greater risk aversion is incomplete at best. While
these are necessary conditions for the result to hold for all utility functions, they
are far from sufficient. The impact of the fee schedule on an agent’s attitudes
toward risk depends not only on the convexity of the fee schedule, but also on
how it translates the domain of the utility function into more or less risk-averse
portions and to the extent to which it magnifies (or contracts) any gamble at
the margin. These latter two effects are as important as convexity and they can
quite commonly undo the intuitive impact of convex or concave fee schedules.

These simple results have important implications for the way we think about
such matters as executive compensation. It is routine for commentators to argue
that call options increase the manager’s willingness to take risk. We now know,
though, that this also depends on the wealth effect of the options; increasing the
wealth of the executive may move into more or less risk-averse portions of the
utility function. In addition, depending on the amounts, options by themselves
could have an important (marginal) magnification effect that could actually
lead to more risk aversion.

A number of extensions of these results are desirable. In particular, we should
examine how they hold up in intertemporal settings. There is reason, however,
to be optimistic. In one important case, Carpenter’s (2000) results for a manager
with a convex fee schedule in an intertemporal portfolio problem are completely
consistent with ours. Furthermore, since the convexity properties of a terminal
payoff are preserved in earlier times under the martingale valuation, with some
minor modifications the results we have obtained should still apply.

However, even with a successful extension to an intertemporal setting, a num-
ber of other significant questions remain. For the sake of analytic completeness,
a fuller analysis of the associated concepts of duality needs to be undertaken.
Of a somewhat more conjectural nature, since compensation schedules arise
as equilibria in agency models, it would be interesting to further explore these
results within such a setting. In particular, we should examine their implica-
tions when there is asymmetric information between agent and principal. Even



Compensation, Incentives, and the Duality of Risk Aversion 225

without doing so, though, it should be evident that it is important to under-
stand the incentive implications of the compensation schedules that are actually
observed.
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