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Compensation of Communication Delays in a
Cooperative ACC System

Haitao Xing , Jeroen Ploeg , and Henk Nijmeijer , Fellow, IEEE

Abstract—Cooperative adaptive cruise control (CACC) employs
intervehicle wireless communications to safely drive at short inter-
vehicle distances, which improves road throughput. The underlying
technical requirement to achieve this benefit is formulated by the
notion of string stability, requiring the attenuation of the effects
of disturbances in upstream direction. The wireless communica-
tion delay, however, significantly compromises string stability. In
order to compensate for time delays and thus reduce the minimum
string-stable time gap, a Smith predictor can be applied. For
application of a Smith predictor, the time delay needs to be in a
series connection with the plant to be controlled, which is realized
by introducing a master-slave architecture for CACC. As a result,
information exchange appears to become bidirectional, while the
control scheme still follows the one-vehicle look-ahead strategy.
Feasibility of both the master-slave CACC strategy and the Smith
predictor is explicitly analyzed. With the proposed control scheme,
the minimum string-stable time gap can be significantly decreased,
even considering communication delay uncertainty. The results
are validated using simulations with a platoon of CACC-equipped
vehicles.

Index Terms—Cooperative adaptive cruise control
(CACC), Smith predictor, master-slave architecture, wireless
communication delay, string stability.

I. INTRODUCTION

T
HE number of road vehicles has significantly increased
in the past decades, raising public awareness regarding

limited road capacity. Meanwhile, many advanced driver as-
sistance systems have been developed to meet an increasing
societal demand to improve driving comfort and/or traffic safety.
Adaptive cruise control (ACC) systems, for instance, relieve the
driver’s task by automatically keeping a desired intervehicle
distance, which results in a vehicle platoon [1]. For a vehicle
platoon, an important requirement is string stability, which is
defined as attenuation of the effects of disturbances introduced
by downstream vehicles, in upstream direction [2]. A string-
stable vehicle platoon prevents amplifications of variations in
velocities and intervehicle distances along the vehicle platoon,
which will compromise road throughput, and potentially lead to
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traffic jams. In addition, a string-stable vehicle platoon can be
beneficial for safety, and for fuel consumption, particularly for
heavy-duty vehicles [3].

However, in ACC-equipped vehicle platoons, string-stable
behavior is only obtained at large intervehicle distances, which
does not improve road throughput [4], [5]. Therefore, to improve
highway capacity, cooperative ACC (CACC) systems have been
developed, in which wireless vehicle-to-vehicle (V2V) commu-
nications are employed [6], [7]. As a result, shorter intervehicle
distances can be achieved while guaranteeing string stability.
Highway capacity could be close to double with a 100% market
penetration of CACC compared to only manually driven or only
ACC controlled vehicles [8].

The main factors that affect string stability include vehicle
dynamics [6], the intervehicle spacing policy [9], information
flow topology [10], and the quality of intervehicle sensing and
communication [11], [12]. In particular, communication delay,
which inherently exists in V2V communications, can signifi-
cantly compromise string stability [6], [11]. That is due to the fact
that the CACC functionality relies to a large extent on the vehicle
information transmitted by wireless communication, e.g., the
position, velocity, actual and desired accelerations.

String stability analyses in various CACC strategies, which
considered communication delays, have indicated the need of
substantially restricting the delays in order to guarantee string
stability [13]–[24]. However, the theoretical studies of string
stability in many cases ignored the compromising effect of com-
munication delays [25]–[32]. A string-stable CACC system can
still be practically realized with certain communication delays
when communication delay is not accounted in the process of
controller design [33]–[35]. However, these studies selected a
sufficiently large time gap as 0.6 s to 0.8 s, rather than consider-
ing the minimum intervehicle distance.

With a constant time gap spacing policy, which is the most
common spacing policy to improve string stability [6], [36] and
corresponds to human driver characteristics to some extent, there
exists a minimum time gap to guarantee string stability [20],
[37]. In order to take full advantage of CACC in view of road
throughput, it is desired to adopt the minimum string-stable time
gap.

The minimum string-stable time gap has been analyzed in
many studies. [6] and [38] explicitly compared the minimum
string-stable time gaps for ACC and CACC, using a Proportional
Derivative (PD) controller with a one-vehicle look-ahead com-
munication topology. In [36], two communication topologies
were employed when designing optimal controllers, while the
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minimum time gap for a one-vehicle look-ahead topology is
smaller than that for a two-vehicle look-ahead topology when
communication delay is less than 0.1 s. With a multiple-vehicle
look-head topology, [39] showed that increasing the number
of predecessors can reduce the minimum string-stable time
gap. However, this strategy may pose a high requirement on
communication channels as the number of predecessors grows.
Practical validations of string-stable CACC have been carried
out with the minimum time gaps of 0.25 s and 0.7 s, given that
the communication delay is 0.04 s and 0.15 s, respectively [23],
[37]. [40] implemented a fractional-order-based controller al-
gorithm to arrive at the time gap as 0.26 s with communication
delay 0.08 s on a low-speed real platform.

To eliminate the effects of communication delays on the
string-stable time gap, information-updating algorithms have
been proposed in [41] and [42], in which an upper level in-
formation controller managed all vehicles in a platoon to update
each vehicle’s controller simultaneously with the delayed infor-
mation. However, the performance of individual vehicles is sac-
rificed, and it is hardly possible to have all the vehicle controllers
updated at exactly the same time in practice [41]. Moreover, a
centralized controller is not suitable for a platoon due to the chal-
lenges of gathering the information of all vehicles in a platoon
and solving a large-scale optimization problem [10]. Therefore,
most CACC applications employ distributed controllers.

To further reduce the minimum string-stable time gap with
distributed controllers, active compensation approaches for
communication delay provide a promising option. Considering
direct compensation for delays, Proportional Integral Derivative
(PID), Model Predictive Control (MPC), and the Smith predictor
are the most general approaches. However, PID, which can
predict the future error with the derivative action, allows for easy
analysis, rather than synthesis of string-stable behavior [43],
[44]. Synthesis and analysis of string-stable behavior with MPC
is difficult to perform because of the finite horizon used [13],
[45], [46]. On the other hand, a Smith predictor allows for
relatively straightforward synthesis and analysis of string-stable
behavior. In addition, a Smith predictor is not computationally
demanding (as opposed to MPC) [13], [44], [47], and can be ap-
plied as an add-on to existing CACC controllers [23], [48], [49].

The Smith predictor, proposed in [50], is known to handle
large time delays very well in the sense of stability and per-
formance [44], [51], [52]. The explicit knowledge of the delay
and an accurate model of the plant are required to implement
the Smith predictor. In CACC systems, the communication
delay is available, since each message is stamped with Global
Positioning System (GPS)-based time, of which the precision is
better than 100 ns [22]. The vehicle model is also available based
on the model identification from the experimental results [13],
[37]. Thus, it is suitable to apply a Smith predictor on CACC.
However, although there have been some studies to compen-
sate for vehicle actuator delay to reduce the string-stable time
gap [23], [48], [49], compensating for communication delay has
not been developed. It is difficult to apply a Smith predictor
on CACC systems, due to the fact that a Smith predictor can
only be applied to compensate for time delays if the latter are
in a series connection with the plant to be controlled. In most

Fig. 1. CACC-equipped string of vehicles with the one-vehicle look-ahead
topology.

CACC strategies, a vehicle receives information from other
vehicles in the platoon, and generates the desired action by
its local controller. Therefore, the communication delay is in
the feedforward loop, in which case the Smith predictor is not
applicable.

As a solution, in this paper, it is proposed to re-locate the
controller, effectively putting the communication delay in series
with the system to be controlled. Therefore, a master-slave
control strategy is actually introduced to the CACC system. The
novel master-slave CACC strategy proposed in this paper, em-
ploys a bidirectional communication topology and one-vehicle
look-ahead strategy. This algorithm allows for the application
of a Smith predictor on communication delays for the first time,
which is the main contribution of this paper. Actually, with
theoretical analysis, we realize an extremely small string-stable
time gap by compensating for communication delay, which is
demonstrated by simulations. It is also explicitly proved that
individual vehicle stability can be guaranteed. Furthermore, it is
only needed to slightly increase the theoretical minimum time
gap to guarantee string stability in the presence of communica-
tion delay uncertainty.

The outline of this paper is as follows. The next section
introduces a one-vehicle look-ahead CACC strategy. Section III
presents a CACC system based on a master-slave strategy,
in which the Smith predictor can be applied. In the fourth
section, we analyze stability and string-stable performance of
the proposed CACC structure. Simulation results are shown in
Section V, upon which Section VI presents the robust perfor-
mance with uncertain delays. The last section summarizes the
main conclusions.

II. MODELING AND CONTROL OF A CACC STRING

In this section, we focus on the modeling and control of CACC
with a one-vehicle look-ahead strategy, which is practically
feasible for CACC. As shown in Fig. 1, a homogeneous CACC
string composed of n vehicles is assumed in this paper, where
li, qi, vi and ui are the length, position, velocity, and desired
acceleration of vehicle i, respectively.

A simplified vehicle model is often adopted for CACC de-
sign, obtained through the feedback linearization of a nonlinear
vehicle model [53]. The resulting vehicle dynamics read

⎛
⎜⎝
q̇i(t)

v̇i(t)

ȧi(t)

⎞
⎟⎠ =

⎛
⎜⎝

vi(t)

ai(t)

− 1
τ
ai(t) +

1
τ
ui(t− θa)

⎞
⎟⎠ , (1)
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where ai is the actual acceleration of vehicle i, θa represents
the vehicle actuator delay. The third equation in (1) represents
the driveline dynamics, where τ is a time constant. Note that
ui(t) = 0 for t < θa. Here, no constraint is taken into account in
view of the vehicle model, because for the operational domain
of CACC, possible constraints (power, speed) do not play an
important role, if any at all. Consequently, the transfer function
G(s) from the desired acceleration ui to position qi reads

G(s) =
qi(s)

ui(s)
= e−θas

1

s2(τs+ 1)
(2)

where s ∈ C is the Laplace variable, ui(s) and qi(s) denote the
Laplace transform of ui(t) and qi(t), respectively. Note that,
with a slight abuse of mathematical notation, ·(s) denotes the
Laplace transform of the corresponding time-domain variable
·(t).

A constant time gap spacing policy is utilized, which is
the most common spacing policy to improve string stability,
see [6] and the references contained therein. Then the desired
intervehicle distance dr,i between vehicle i− 1 and i involves a
standstill distance ri and a velocity-dependent part:

dr,i(t) = ri + hvi(t) (3)

where h is the time gap, being identical for all vehicles in this
homogeneous CACC string. The actual intervehicle distance
di reads

di(t) = qi−1(t)− qi(t)− li. (4)

To realize the vehicle-following objective, the intervehicle dis-
tance error ei, defined as

ei(t) = di(t)− dr,i(t) (5)

should asymptotically converge to zero, with the first vehicle
driving at a constant velocity. To this end, the controller in [37]
is adopted, where a pre-compensator with input ξi is introduced
according to

u̇i(t) = −
1

h
ui(t) +

1

h
ξi(t). (6)

To stabilize the error dynamics, the control law for ξi is chosen
as,

ξi(t) = ui−1,c(t) + kpei(t) + kdėi(t) (7)

where kp and kd represent the controller parameters; ui−1,c(t) is
the received desired acceleration of the preceding vehicle, which
suffers from the wireless communication delay θff, reading

ui−1,c(t) = ui−1(t− θff). (8)

Without loss of generality, we choose ri = li = 0 when ana-
lyzing stability and string stability. Hence, the control structure
can be depicted as in Fig. 2, where H(s), K(s) and Dff(s)
represent the Laplace transforms,

H(s) = hs+ 1 (9a)

K(s) = kp + kds (9b)

Dff(s) = e−θffs. (9c)

Fig. 2. Block scheme of the one-vehicle look-ahead CACC system.

Here, we introduce string stability of this one-vehicle look-
ahead CACC system, adopting the so-called performance-
oriented approach [6], [37], which is characterized by the ampli-
fication in upstream direction of the signal of interest. Therefore,
the string stability transfer functionS(s) is defined as the relation
between a relevant (scalar) signal of vehicle i and the corre-
sponding signal of its preceding vehicle i-1. A CACC system of
(homogeneous) interconnected vehicles is string stable if

sup
ω

|S(jω)| ≤ 1. (10)

A string-stable platoon indicates energy dissipation along the
string, which corresponds to the absence of overshoot in many
cases. Considering for instance the desired acceleration, the
transfer function Sorg(s) from ui−1 to ui reads

Sorg(s) =
1

H(s)
·
Dff(s) +G(s)K(s)

1 +G(s)K(s)
(11)

for the original CACC scheme in Fig. 2. Note that the transfer
function is the same for the velocity, acceleration, intervehicle
distance and distance error in a homogeneous CACC string.

In the case of zero communication delay, (11) reduces to

Sorg(s) =
1

H(s)
·

1 +G(s)K(s)

1 +G(s)K(s)
=

1

H(s)
. (12)

Hence, (10) is fulfilled for any non-negative time gap, i.e.,
h ≥ 0 s. However, as previously stated, a communication delay
inherently exists in reality, which plays a significant role in view
of string stability. With θff > 0, a certain minimum time gap
hmin is required to meet the string stability criterion (10), since
a bigger time gap h results in smaller magnitudes of 1

H(s) and,

hence, Sorg(s) in (11).

III. SMITH PREDICTOR WITH MASTER-SLAVE

CACC STRATEGY

The communication delay plays a key role in designing a
string-stable time gap in the CACC system as presented in the
previous section. To actively compensate for the delay with a
Smith predictor, it is necessary to put the delay in series with the
system to be controlled, while the communication delay Dff is
not in series with G (the vehicle to be controlled) in the original
CACC scheme as shown in Fig. 2. To this end, a master-slave
architecture for CACC systems is introduced in this section.
Based on this control strategy, we apply a Smith predictor to
compensate for wireless communication delay and analyze the
resulting system with respect to string stability.
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Fig. 3. CACC scheme with a master-slave control strategy.

A. CACC With Master-Slave Control Strategy

In this section, communication delay is put in series by re-
arranging the controller structure, as will be explained next. The
proposed master-slave CACC strategy is shown in Fig. 3. Here,
the preceding vehicle i− 1 (in the dashed block) acts as a master,
while the vehicle i serves as a slave (in the dotted block). This
master-slave CACC strategy is derived from the original CACC
scheme as shown in Fig. 2, with the preceding vehicle i− 1
in the dashed block and the vehicle i in the dotted block. The
modification from the original CACC scheme can be described
as follows.

Firstly, the controller for vehicle i (slave) is re-located into
the preceding vehicle i− 1 (master), which is a fundamental
characteristic of the master-slave strategy. Consequently, the
desired acceleration of vehicle i is generated in the preceding
vehicle i− 1, which is defined asui,c. As shown in Fig. 3, vehicle
i− 1 receives the intervehicle distance error from vehicle i, and
then calculates ui with the same scheme as in the original CACC
system as shown in Fig. 2. Vehicle i receives desired acceleration
ui, which suffers from a feedforward communication delay θff,
yielding

ui(t) = ui,c(t− θff). (13)

Secondly, due to the re-arrangement of the controller, the
intervehicle distance error ei,c needs to be transmitted to the pre-
ceding vehicle i− 1 by the “feedback communication”. Here,
the desired intervehicle distance of vehicle i reads

dr,i,ms(t) = hmsvi(t), (14)

where hms represents the time gap in this master-slave CACC
strategy. Therefore, the intervehicle distance error to be com-
municated ei,c is

ei,c(t) = di(t)− dr,i,ms(t). (15)

Note that a feedback communication delay θfb is induced, lead-
ing to that vehicle i− 1 receives the distance error ei according
to

ei(t) = ei,c(t− θfb). (16)

In the master-slave strategy depicted in Fig. 3, H(s), K(s),
Dff(s) and Dfb(s) represent the Laplace transforms,

Hms(s) = hmss+ 1 (17a)

Kms(s) = kms,p + kms,ds (17b)

Fig. 4. Wireless communication topology and information flow in a master-
slave CACC architecture.

Dff(s) = e−θffs (17c)

Dfb(s) = e−θfbs, (17d)

where kms,p and kms,d are the controller parameters. The sub-
scripts of θff and θfb indicate the direction of information com-
munication.

In view of feasibility, this master-slave CACC strategy can
be realized in practice with the bidirectional communication as
shown in Fig. 4. However, this master-slave strategy is still a
one-vehicle look-ahead approach, since the controller of vehicle
i only uses information of vehicle i and the preceding vehicle
i− 1. Note that the controller function of vehicle i is partly exe-
cuted on vehicle i− 1, which requires that vehicle i− 1 should
be reliable. In fact, in the common CACC structure (see Fig. 2),
vehicle i also relies on vehicle i− 1 in the sense that the desired
acceleration of vehicle i− 1 is used by vehicle i. Therefore,
a master-slave CACC does not essentially increase intervehicle
dependency. However, in case of so-called multi-brand platoons,
there may be a problem, which is one drawback of this algorithm.
The communication security requirement for both topologies is
more or less the same. Since the preceding vehicle is required to
perform specific computations, the master-slave CACC strategy
is less flexible compared to simply communicating ui−1 in the
original scheme. In addition, this algorithm does not allow for
different controller implementations. However, the computation
effort of the proposed scheme will not exceed that of the original
scheme, since there is no optimization/iteration or any other
computationally intensive operation involved.

In the master-slave CACC strategy, the string stability transfer
function from ui−1 to ui reads

Sms =
1

Hms
·
Dff(1 +DfbGKms)

1 +DffDfbGKms
. (18)

The Laplace variable s is omitted here for the sake of readability.
Similar to the case of (11), the magnitude of Sms decreases with
an increasing time gap hms. Therefore, to fulfill the criterion
(10), there exists a minimum string-stable time gap hms,min,
which depends on the communication delays. Here, the min-
imum string-stable time gap hmin for the original one-vehicle
look-ahead CACC and hms,min for the master-slave CACC in
Fig. 3 can be calculated with given values of the communication
delay. To this end, we adopt the vehicle parameters identified in
experiments [37], being: τ = 0.1 and θa = 0.2 s. The controller
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Fig. 5. Minimum string-stable time gaps hms,min(θff) and hmin(θff), with
θfb = θff.

Fig. 6. Block diagram of a Smith predictor.

parameters kp = kms,p = 0.2 and kd = kms,d = 0.7 according
to [37] are used. Fig. 5 shows hmin (gray) and hms,min (black)
as functions of the communication delay, for the original and
for the master-slave CACC, respectively, where the feedback
delay θfb is chosen equal to θff for the sake of simplicity. Fig. 5
has been obtained by taking a fixed value for the communi-
cation delay and then searching for the smallest value of the
time gap, such that supω |S(jω)| = 1. From the figure, both
hms,min and hmin increase with increasing communication delay.
Apparently, introducing the master-slave architecture leads to a
larger minimum string-stable time gap than that of the original
scheme. However, the master-slave strategy allows for a Smith
predictor approach. This appears to greatly reduce the minimum
string-stable time gap, as will be shown in the next section.

B. Smith Predictor With Master-Slave Control Strategy

In this section, firstly, the Smith predictor is briefly introduced.
Secondly, the application of the Smith predictor to the master-
slave CACC strategy will be described.

The Smith predictor structure is shown in Fig. 6. The con-
trolled plant is denoted by P (s), which is assumed to consist
of a delay-free part P0(s) and a time delay e−θs. x, y and δ

represent the reference, the plant output, and the disturbance,
respectively. In case of without a Smith predictor, the compli-
mentary sensitivity transfer function T (s) from x to y reads

T (s) =
C(s)P0(s)e

−θs

1 + C(s)P0(s)e−θs
. (19)

In the Smith predictor-based scheme, the plant output y is
adapted to ysp, by adding two feedback loops (in the dotted
block) from the controller output u through a processP0(s)e

−θs,
and a delay-free processP0(s). The essence of a Smith predictor

Fig. 7. Smith predictor compensating for feedforward communication delay
in a master-slave CACC strategy.

is that a delay-free plant output is estimated, which is then
used for feedback control. The difference between the delayed
estimated output and the actual plant output is used for correcting
the model mismatch. In the ideal situation of perfect modeling
(P (s) = P0(s)e

−θs), the Smith predictor-based complimentary
sensitivity reads

Tsp(s) =
C(s)P0(s)

1 + C(s)P0(s)
e−θs. (20)

In view of stability analysis, the main advantage of the Smith
predictor approach is that the time delay is eliminated from the
feedback loop.

According to the Smith predictor approach, two feedback
loops are added to the scheme in Fig. 3, resulting in the Smith
predictor-based CACC structure in Fig. 7. The Smith predictor is
shown in a dashed block, which is a part of the controller located
at vehicle i− 1. Note that the Smith predictor is applied to the
error in this specific case, instead of the plant output as shown
in the general scheme in Fig. 6. However, it does not change the
principle of the Smith predictor. Hsp and Ksp are introduced in
this Smith predictor-based CACC system according to

Hsp(s) = hsps+ 1 (21a)

Ksp(s) = ksp,p + ksp,ds (21b)

with the Smith predictor-based time gap hsp, and controller
parameters ksp,p and ksp,d.

The two added feedback loops are introduced as follows. The
input of the Smith predictor is ui,c, which is generated in vehicle
i− 1. One loop in Block I is an estimated plant with feedforward
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Fig. 8. Smith predictor-based control scheme in a master-slave CACC, when
the values of vehicle parameters and communication delay are exactly known.

communication delay, as P0(s)e
−θs in Fig. 6. q̂i, v̂i, êi and êi,c

are the estimated position, velocity, intervehicle distance error
and communicated error, respectively. The other loop in Block
II is free of the feedforward communication delay, as P0(s) in
Fig. 6. q̄i, v̄i, and ēi represent the corresponding predicted states
given that D̂ff is eliminated. The output of the Smith predictor
is the difference of êi,c and ēi,c. Ĝ, D̂ff and D̂fb represent the
estimated vehicle dynamics, feedforward delay and feedback
delay, respectively.

In the case that G, Dff and Dfb are exactly known, i.e., Ĝ =
G, D̂ff = Dff and D̂fb = Dfb, êi,c = ei,c, Block I in Fig. 7 will
compensate for the response of the real vehicle, leaving only
Block II in the control loop as shown in Fig. 8. Consequently,
the string stability transfer function from ui−1 to ui reads

Ssp =
1

Hsp
·
Dff +DffDfbGKsp

1 +DfbGKsp
=

Dff

Hsp
. (22)

The string stability criterion (10) is then fulfilled with any time
gap hsp ≥ 0, i.e., the minimum string-stable time gap hsp,min

is zero. Note that a large feedforward communication delay
may compromise safety, although string stability is guaranteed.
According to our experiment for vehicle dynamics identifica-
tion [36], [37], vehicle actuator delay θa = 0.2 s and the time
constant τ = 0.1 appears to be invariant. The vehicle dynamics
are considered to be exactly known in this paper.

In this section, a Smith predictor has been applied to com-
pensate for communication delay on the proposed master-slave
CACC system in view of string stability. The performance of this
master-slave CACC will be further analyzed in the next section.
In particular, the actual intervehicle distance is concerned in
Section IV-B due to the difference between the predicted position
q̄i and the actual position qi(t).

IV. PERFORMANCE OF MASTER-SLAVE CACC WITH

SMITH PREDICTOR

In this section, we analyze the performance of the master-slave
CACC, in which a Smith predictor is applied to compensate for
the feedforward communication delay.

Fig. 9. Ranges of controller gains to guarantee individual vehicle stability:
{kp, kd}, {kms,p, kms,d}, and {ksp,p, ksp,d} in the area bounded by the solid dark
curve, the solid gray curve, and the dashed dark curve, respectively. Here τ =
0.1, θa = 0.2 s, and θff = θfb = 0.04 s, and the 3rd-order Padé approximation
of the time delay is used.

A. Individual Vehicle Stability

Individual vehicle stability states that every vehicle in the
string should track any bounded acceleration and velocity profile
of the preceding vehicle with a bounded spacing and velocity
error [54]. We assume there is no model uncertainty here. Sta-
bility analysis of the Smith predictor-based CACC with model
uncertainties is beyond the scope of this paper.

Individual vehicle stability can be analyzed with the character-
istic polynomial of the relevant string stability transfer functions.
According to (11), (18), and (22), the characteristic polynomials
read

F := 1 +GK (23a)

Fms := 1 +DffDfbGKms (23b)

Fsp := 1 +DfbGKsp (23c)

for the original, the master-slave, and the Smith predictor-based
CACC systems, respectively, with no occurrence of pole-zero
cancellation. The vehicle parameters of the previous section
(τ = 0.1, θa = 0.2 s) are used. In our experimental setting, the
update frequency of the wireless link is 25 Hz, which leads
to a maximum communication delay of 0.04 s in the experi-
mental setting [36], assuming that there is no significant delay
in the transmitter and/or receiver. Individual vehicle stability
conditions can be derived with the Routh-Hurwitz criterion by
replacing the time delay by a 3rd-order Padé approximation,
which is sufficient for the frequency range of interest for the
vehicle and CACC [20]. Then, the allowable ranges for the con-
troller gains {kp, kd}, {kms,p, kms,d} and {ksp,p, ksp,d}, to achieve
individual vehicle stability for the original, the master-slave,
and the Smith predictor-based CACC systems, respectively,
can be numerically found. The results are shown in Fig. 9.
{kp, kd}, {kms,p, kms,d} and {ksp,p, ksp,d} should be within the
area bounded by the solid dark curve, solid gray curve, and
dashed dark curve, respectively. Here, the maximum stability
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ranges of the proportional gains are 0 < kp < 6.69, 0 < kms,p <

4.01, 0 < ksp,p < 5.09; The actual stability range depends on
the value of the differential gain, as can be seen in the figure. It
is reasonable that increasing communication delay increases the
total value of time delay in the characteristic polynomials, which
leads to a smaller range of the proportional and differential gains
in view of individual vehicle stability.

B. Effect of Tracking Latency

In this section, we assume that communication delay is exactly
known. According to the CACC scheme as shown in Fig. 8, the
predicted position q̄i reads

q̄i(t) := qi(t+ θff). (24)

Similarly, the predicted velocity v̄i yields

v̄i(t) := vi(t+ θff). (25)

The objective of the controller is to regulate ēi,c to zero, which
implies the delayed error ēi also approaches zero, see Fig. 8. ēi,c
reads,

ēi,c(t) = qi−1(t)− q̄i(t)− hspv̄i(t), (26)

which indicates that the controller aims to control a virtual
distance d̄i = qi−1(t)− q̄i(t), rather than the actual distance
di(t) = qi−1(t)− qi(t), to a desired value. Given the fact that
q̄i(t) > qi(t) for a forward driving platoon, it follows that
d̄i(t) < di(t). Hence, the actual distances di(t) will converge
to a value that is larger than the desired distance. This difference
is referred to as “tracking latency” ∆qi, defined as

∆qi(t) := di(t)− d̄i(t) = q̄i(t)− qi(t), (27)

which is the additional distance due to the Smith predictor
scheme. This tracking latency will be investigated in the re-
mainder of this section.

Firstly, a stationary condition is considered, and vehicle i

drives at a constant velocity v∗i . Here, ·∗(t) denotes the corre-
sponding variable ·(t) in this stationary condition. Consequently,
(24) and (25) can be re-written as

q̄∗i (t) = q∗i (t+ θff) = q∗i (t) + θffv
∗
i (28a)

v̄∗i (t) = v∗i (t+ θff) = v∗i . (28b)

Substituting (28) into (26), leads to

q∗i−1(t)− q∗i (t)− hspv
∗
i − θffv

∗
i = 0, (29)

i.e., q∗i−1(t)− q∗i (t) = hspv
∗
i + θffv

∗
i . Therefore, the actual sta-

tionary intervehicle distance d∗i reads

d∗i (t) = q∗i−1(t)− q∗i (t)

= (hsp + θff)v
∗
i (30)

Consequently, the actual time gap h∗
sp,a in this Smith predictor-

based CACC system is

h∗
sp,a = hsp + θff, (31)

which corresponds to the earlier conclusion that the actual
stationary distance is larger than the desired value.

Now we can compare the minimum string-stable time gaps
for the original and Smith predictor-based CACC systems. When
the minimum string-stable time gaphsp = hsp,min = 0 is selected
for the Smith predictor-based CACC system, the minimum
actual time gap reads h∗

sp,min,a = θff. Considering the upper
bound of the communication delay θff = 0.04 s as mentioned be-
fore, h∗

sp,min,a = 0.04 s is much smaller than minimum time gap
hmin ≈ 0.35 s in the original CACC scheme as shown in Fig. 5. In
other words, despite the fact that the tracking latency introduces
an additional intervehicle distance, the minimum string-stable
distance h∗

sp,min,av
∗
i is still significantly smaller than that in the

original CACC system. In a highway scenario, for example,
with a stationary velocity v∗i = 120 km/h = 33.33 m/s, the sta-
tionary distance thus reduces from 0.35 × 33.33 = 11.66 m to
0.04 × 33.3 = 1.33 m.

Having analyzed the tracking latency in the stationary situa-
tion, we now consider the transient behavior, i.e., ai �= 0. The
predicted velocity and position read

v̄i(t) = vi(t+ θff) = vi(t) +

∫ t+θff

t

ai(γ) dγ (32a)

q̄i(t) = qi(t+ θff)

= qi(t) +

∫ t+θff

t

vi(λ) dλ

= qi(t) +

∫ t+θff

t

(
vi(t) +

∫
λ

t

ai(γ) dγ

)
dλ

= qi(t) + θffvi(t) +

∫ t+θff

t

∫
λ

t

ai(γ) dγ dλ. (32b)

Substituting (32) into (26) leads to

ēi,c(t) = qi−1(t)− qi(t)− θffvi(t)−

∫ t+θff

t

∫
λ

t

ai(γ) dγ dλ

− hsp

(
vi(t) +

∫ t+θff

t

ai(γ) dγ

)
. (33)

Focusing on the effect of the Smith predictor, the distance error
is assumed to be zero. Thus, the actual intervehicle distancedi(t)
reads

di(t) = qi−1(t)− qi(t)

= (hsp + θff)vi(t) + hsp

∫ t+θff

t

ai(γ) dγ

+

∫ t+θff

t

∫
λ

t

ai(γ) dγ dλ. (34)

It follows that the largest possible intervehicle distance in the
Smith predictor-based CACC scheme occurs when ai equals its
maximum positive value. Considering a constant acceleration
ai(t) = a′i, (34) leads to

di(t) = (hsp + θff)vi(t) + a′ihspθff +
1

2
a′iθ

2
ff. (35)

With the minimum string-stable time gap hsp = hsp,min = 0,
a′i = 4 m/s2 and θff = 0.04 s, di(t) = θffvi(t) + 0.0032. Com-
pared to (30), the increase of di between the stationary and
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Fig. 10. Desired acceleration of the leading vehicle in a CACC platoon.

transient situations is 0.0032 m, which can be neglected with
respect to the nominal distance, being in the order of meters.

Similarly to analyzing the largest possible intervehicle dis-
tance, we can consider the situation with respect to the shortest
intervehicle distance for the sake of preventing collisions, which
happens with the maximum deceleration. Takinga′i = −10 m/s2

for example, (34) becomes

di(t) = θffvi(t)− 0.008 (36)

with the minimum string-stable time gap hsp = hsp,min = 0.
Therefore, there will no safety risk even if an emergency brake
occurs.

In summary, applying a Smith predictor to compensate for
the feedforward communication delay in a master-slave CACC
system can significantly decrease the minimum string-stable
intervehicle distance, even considering the tracking latency.

V. SIMULATION RESULTS

To validate the theoretical results, simulations are conducted
with the original controller and the Smith predictor-based con-
troller for a CACC string with four vehicles. Based on ISO
standard 15622 for intelligent transport systems [55], the de-
sired acceleration for the leading vehicle is set as a trapezoidal
acceleration profile, as shown in Fig. 10. Note that in CACC
platoons, driving comfort depends on the driving behavior of
the preceding vehicle. If the preceding vehicle’s behavior is
uncomfortable with a more aggressive acceleration profile, then
the follower vehicle’s behavior may also be uncomfortable,
but to a lesser extent. In that respect, string-stable behavior in
essence improves comfort. Here, all vehicles in this CACC string
start from vi(0) = 0 m/s at the desired distance, and equal to the
standstill distance r = 2.5 m. The PD controller gains are set
the same for both cases: kp = ksp,p = 0.2 and kd = ksp,d = 0.7
as in [37]. The communication delay θff and θfb are assumed to
be known, being equal to 0.04 s in this section.

Fig. 11 shows the time responses of four vehicles with h =
0.3 s, which is smaller than the minimum string-stable time gap
as shown in Fig. 5. Consequently, the CACC-equipped vehicles
are string unstable, i.e., the magnitudes of the acceleration and
other signals in upstream direction are amplified. In Fig. 11(c),
di increases from 2.5 m at vi(0) = 0 m/s to 10 m at vi = 25 m/s,
which corresponds to the desired intervehicle distance in (3).

Fig. 11. Time responses with the original CACC controller. θff = θfb = 0.04 s
and h = 0.3 s.

Having compensated for feedforward communication delay,
the time responses with hsp = 0.05 s are presented in Fig. 12.
The responses of vehicle 1 and 2 are omitted in Fig. 12 for
reasons of readability. In fact, hsp = 0 s can be chosen to guar-
antee string stability according to (22), while hsp = 0.05 s is
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Fig. 12. Time responses with the Smith predictor-based CACC controller.
θff = θfb = 0.04 s and hsp = 0.05 s.

selected here to keep the simulation responses readable. It can
be observed that the acceleration and the velocity smoothly
respond to those of the preceding vehicles in Fig. 12(a) and 12(b),
respectively. Fig. 12(d) indicates that the intervehicle distance
error is zero. Fig. 12(c) shows that the intervehicle distance is
4.75 m at 25 m/s, which corresponds to (30), while the actual
time gap hsp,a is 0.09 s.

With the same communication setting, previous publications
of the authors also considered the minimum string-stable time
gap [23], [36]. In [23], a Smith predictor was applied to com-
pensate for the vehicle actuator delay. [36] proposed an H∞

controller synthesis approach for string stability, which was
applied to CACC controller design for one- and two-vehicle
look-ahead communication topologies. The comparison with

TABLE I
COMPARISON OF THE MINIMUM STRING-STABLE TIME GAPS

different control schemes is presented in Table I, which indicates
that by compensating for the communication delay with a Smith
predictor in the proposed master-slave strategy, a much smaller
string-stable intervehicle time gap can be realized.

VI. ROBUST STRING STABILITY CONSIDERING UNCERTAIN

COMMUNICATION DELAYS

In practice, the vehicle dynamics and the wireless commu-
nication delay may suffer from uncertainty. With the help of
a lower level controller to realize the desired acceleration, the
accurate vehicle model can be accurately identified for the
proposed scheme. On the other side, GPS-based time precision
is not always optimal. Thus, in this section, the communication
delay is considered uncertain with an upper bound. As already
mentioned, the maximum communication delay is θff,max =
θfb,max = 0.04 s in the experimental setting [36]. In this section,
we analyze the effect of communication delay uncertainty on
string stability in the proposed control structure, and determine
the suitable value of communication delays that should be cho-
sen in the Smith predictor for a small minimum string-stable
time gap. Here, we assume that the vehicle parameters in this
homogeneous CACC system are accurately known.

With the variable communication delays θff and θfb, and
estimated communication delays θ̂ff and θ̂fb, the string stability
transfer function fromui−1 toui for the CACC structure in Fig. 7
reads

Ssp,u =
1

Hsp
·

Dff(1 +DfbGKsp)

1 + (D̂fb +DffDfb − D̂ffD̂fb)GKsp

, (37)

while (22) holds for the plant with exactly known communica-

tion delay. Here, D̂ff = e−θ̂ffs and D̂fb = e−θ̂fbs. θ̂ff and θ̂fb are
constant values in the proposed Smith predictor-based scheme,
and thus θ̂ff and θ̂fb should be selected such that the minimum
string-stable time gap can be as small as possible.

Considering θff, θfb ∈ (0, 0.04] s, Fig. 13 shows the minimum
string-stable time gap hsp,min as a function of the variable com-

munication delay according to (37), given a selected set of θ̂ff and
θ̂fb. Fig. 13 clearly suggests that choosing the Smith predictor
delays θ̂ff and θ̂fb equal to the maximum possible value of the
real delays, overall leads to a very low minimum string-stable
time gap. In fact, if θ̂ff and θ̂fb are chosen smaller than θff,max and
θfb,max, the remaining part of delays can still significantly com-
promise string stability. With θ̂ff = θff,max = 0.04 s, the resulting
minimum string-stable time gap is hsp,min = 0.022 s according
to Fig. 13(a).
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Fig. 13. hsp,min as a function of θff and θfb, given different selected θ̂ff

and θ̂fb. (a) θ̂ff = θ̂fb = 0.04 s. (b) θ̂ff = θ̂fb = 0.03 s. (c) θ̂ff = θ̂fb = 0.02 s.
(d) θ̂ff = θ̂fb = 0.01 s.

Having analyzed robust string stability regarding commu-
nication delay uncertainty, individual vehicle stability can be
checked with the Nyquist stability criterion. Considering the
closed-loop transfer function (37), the equivalent open-loop
transfer function L with a negative unity feedback loop can be

Fig. 14. Nyquist plots of the loop system function with uncertain communica-
tion delay, with selecting θ̂ff = θ̂fb = 0.04 s in the Smith predictor. The actual
delays are 0.04 s, 0.03 s, 0.02 s and 0.01 s for the black, red, black dashed, and
red dashed plots, respectively.

solved from L
1+L

= Ssp,u. Thus,

L =
Ssp,u

1 − Ssp,u
=

Dff(1 +DfbGKsp)

Hsp[1 +(D̂fb +DffDfb − D̂ffD̂fb)GKsp]−Dff(1 +DfbGKsp)
.

(38)

With θ̂ff = θff,max = 0.04 s, hsp = 0.05 s and G and Ksp as men-
tioned in the previous sections, there is no right-half-plane pole
for the equivalent open-loop transfer function L with the uncer-
tain delays. Considering θff = θfb ∈ {0.01, 0.02, 0.03, 0.04} s,
Fig. 14 shows that the Nyquist plots of L do not encircle
(clock-wise) the point −1. Therefore, the closed-loop system
is stable in the presence of communication delay uncertainty.
No that there is sufficient stability margin for this system with
possible actual communication delays.

As a summary, in the presence of communication delay
uncertainty, the minimum string-stable time gap will only be
slightly increased by selecting the maximum delay in the Smith
predictor. Also, uncertain communication delay will not sig-
nificantly influence individual vehicle stability in the proposed
scheme. Note that other studies taking uncertain communication
delay into account also choose the upper bound in the process of
controller design [16], [17], [36], since the requirements of both
string stability and individual stability are stricter with larger
communication delay.

Simulations with respect to uncertain wireless communica-
tion delay are conducted here to validate the theoretical results.
In the time-domain simulations, the desired acceleration for the
leading vehicle is set as in Fig. 10. Parameters are the same as
in Fig. 12, except for the actual communication delays, which
are set to θff = θfb = 0.01 s. θ̂ff = θ̂fb = 0.04 s are chosen in the
Smith predictor, according to the results from Fig. 13. The time
responses of vehicles 0 and 3 are shown in Fig. 15. In Fig. 15(a)
and 15(b), the acceleration and the velocity of the last vehicle
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Fig. 15. Time responses with the Smith predictor-based CACC controller.
θff = θfb = 0.01 s, θ̂ff = θ̂fb = 0.04 s, and hsp = 0.05 s.

reach those of the leading vehicle slower than in Fig. 12(a) and
12(b), respectively, which is due to the fact that the estimated
communication delays in the Smith predictor are larger than the
actual delays. The intervehicle distances in Fig. 15(c) show a
slight overshoot compared to the desired intervehicle distance

in (30) due to the effect of tracking latency. However, the signals
in Fig. 15 attenuate in downstream direction, which indicates that
the CACC platoon is string stable.

VII. CONCLUSION

In this paper, a Smith predictor was employed to compensate
for communication delay in a homogeneous CACC system, in
order to take more advantage of CACC in view of the road
throughput. A master-slave control strategy is applied, based on
re-arranging the communication delays, such that they are in se-
ries with the controlled plant, which allows for the application of
a Smith predictor. Consequently, an extremely small minimum
string-stable time gap was realized, even considering tracking
latency which is due to fact that the actual intervehicle distance
is larger than the predicted intervehicle distance. Even under
communication delay uncertainty, the proposed control strategy
performs adequately, in terms of yielding a small string-stable
time gap. This can be realized by choosing the delays in the
Smith predictor according to the maximum possible commu-
nication delay. The minimum string-stable time gap can retain
very small while being robust to uncertain communication de-
lays, by selecting maximum time delays in the Smith predictor.
Individual vehicle stability can also be guaranteed in presence
of uncertain delays. Simulations of CACC-equipped vehicles
with the proposed strategy has been conducted, resulting in a
string-stable platoon with a time gap less than 0.10 s with and
without communication delay uncertainty, which validates the
theoretical results.
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