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Abstract

It is shou/n that the depolarizing effects in the arc of an
electron-positron storage ring can be minimized by minimizing certain
Fourier-harmonics of the particle trajectories. In more detail it is shou/n
that the strength of the depolarizing resonance ((q-2)/2).y = n±Q isx
related to the harmonics of the closed orbit, the strength of the
depolarizing resonance ((g-2)/2‘y = m±Q^ to the harmonics of the vertical 
betatron oscillations, and the strength of the depolarizing resonance 
((g-2)/2)*y = i ± Q t o  the harmonics of the closed orbit and the dispersion 
orbit. For all these depolarizing resonances compensation schemes 
discussed.

are
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1. Introduction

In the last decade the spin-polarization of electrons and positrons
circulating in a storage ring was used in many different ways. The most
important applications of the polarization was the measurement of the 
quark-l/2-spin at SPEAR /1/ and the precision measurements of the masses of 
the Y and the J/^-resonances at l/EPP, DORIS and CESR /2/.

Although the time constant for the build-up of the polarization into the
vertical direction by the Sokolov-Ternov effect is approximately the same
for all existing electron-positron machines, the depolarizing mechanisms 
become worse with increasing machine size /3/. Prom the experience at DESY 
it is known that it is relatively easy to have a high degree of 
polarization at DORIS (beam energies up to 5.6 Gel/). It turned out to be 
much more difficult to have polarized beams at PETRA (beam energy up to 
%23 Gel/). For the future storage rings (i.e. HERA, LEP, TRISTAN) no 
polarization can be expected unless they are designed and constructed for 
polarization. The most interesting results are expected when the particles 
have longitudinal polarization in the interaction region /A/. The spins 
have to be rotated after the arc, where they are vertical, into the 
longitudinal direction and after the interaction region back into the 
vertical direction by so-called spin-rotators. Even in an ideal machine
these rotators have strong depolarizing effects. The reason for this
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depolarizing effect is the following. The particles of the beam are 
different in energy, momentum and position. The rotation into the 
longitudinal direction and back depends in general on these parameters. 
Therefore a vertically polarized beam is slightly depolarized after a pass 
through the rotator. The depolarization can be minimized when certain 
conditions, so called spin transparency conditions, are fulfilled /5/.

In this paper the spin transparency condition for the arc is discussed. In 
such a spin-transparency condition it must be taken into account that the 
spins are depolarized by the sequence of quadrupoles and bending magnets. 
It will be shown in this paper that spin-transparency in an imperfect 
machine (a real machine with all sorts of errors) can be approximately 
achieved when some Fourier-harmonics in the particle trajectories are 
minimized.
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In more detail it is shown that

- the strength of the Q resonance is connected to harmonics in the closeds
orbit and the dispersion orbit

- the strenqth of the Q resonance to harmonics in the closed orbitx
- the strength of the resonance to harmonics in the betatron-trajectories.

As a consequence three different corrections have to be applied to 
compensate the resonance effects and to make the arc spin-transparent:

- Eight correction dipoles can compensate the harmonics of the vertical
closed orbit. This cure reduces the strenqth of the Q and the Q reso-x s
nances. The scheme was both simulated and experimentally tested in the 

storage ring PETRA /6/.

- The vertical dispersion is in general strongly influenced by asymmetric 
beam bumps in the interaction regions. Moving these bumps in an intelli­
gent manner the depolarizing effects caused by synchrotron resonances are 
reduced by reducing the strength of some harmonics of the dispersion.

- Resonances driven by vertical oscillations can be compensated with the 
help of eight quadrupoles. These quadrupoles are used in a similar way as 
the correction coils for the Q^^-resonance compensation.

Numerical calculations using the SLIM program /7/ demonstrate that the 
applied compensation optimizes the degree of polarization from less than 
30 ?o up to more than 80 ?o. The calculations are done for the storage ring 
PETRA in an optics currently used as a luminosity optics.
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2. The polarizing and the depolarizing effects

The polarization of an electron beam in a storage ring is built up by the 
so-called Sokolov-Ternov effect. The spin of a particle can flip when the 
particle emits synchrotron radiation in a magnetic field. The probability 
of a spin-flip in one direction is higher than the probability in the 
other. For electrons the polarization is built up in the direction opposite 
to the magnetic field /8/. The maximum degree of polarization in a plane, 
perfect storage ring is 92.4 %.

The second effect which changes the polarization is the continuous rotation 
of the spins in electromagnetic fields. This effect is described by an 
equation of motion, the Thomas-BMT equation /9/ :

ds
dt fl x s

^ = — —  ( (1+ay) Ê, + (l+a) È )m y  ' JL li

(1)

s ...
ya

a . ..
y ...

spin vector
so-called spin-tune u/ith:
anomalous magnetic moment of the electron
gamma-factor
magnetic field parallel and orthogonal to the dife.ction of motion 
( electric fields are omitted)

In the following it will be explained that depolarization occurs when the 
direction opposite to the deflecting field and the spin direction do not 
coincide. The deviation of the spins from this direction is caused by 
machine imperfections, vertically deflecting magnets, and longitudinal 
magnetic fields.

The first depolarizing mechanism is caused by a reduction of the 
effectiveness of the So.kolov-Ternov effect. To explain this it is assumed 
that an electron travels on the closed orbit. The closed orbit shall 
deviate from the ideal plane closed orbit due to vertically deflecting 
magnets and field and alignment errors of magnets.
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The magnetic field along the closed orbit is described by

S(s) = 5 (s) + 5 (s)U co

5 is the magnetic field on the ideal orbit, S the additional field on the o co
closed orbit, s is the length along the closed orbit. Equation (1) can be 
solved for Ê (s). The solution of this equation consists of one real vector n 
and tu/o complex vectors q and q*. The complex vectors can be expressed by the 
real vectors n, T and m. (see fig. 1)

7, = -^ ( t + i m) e-iei
ft  ( 2 )

n* = —  ( I - i m) e+iei
J l

0 = Y a a » ••• ^here a is the angle by u/hich the electron is deflected in the 
bending magnets.

V ^
Fig. 1 Spin base vectors l , m and n

In general, the n-axis and the direction of the magnetic field do not coinci­
de. The polarization is built up into the direction of the transversal 
magnetic field but only the component along n(s) can survive.
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The maximum degree of polarization is reduced to /I0/:

r ds

P 3 0 .9 2 amax
P 3 eB n

ds n n e
1 x ___y ds

I P I I P |

unit vector in the magnetic field direction
~y
--- ; v ... velocity of the electrons

(3)

p ... bending radius.

The second depolarizing mechanism is caused by the emission of synchrotron 
radiation. After the emission of a photon the electron moves in a 
complicated way around the closed-orbit. The fields acting on the particle 
can be divided into two parts:

3 (t) = $co( t ) + £(t) (4)

<*> describes the periodic field on the closed orbit and oj describes the co
aperiodic perturbation. Due to radiation damping a) (t) becomes small after 
several damping times. The spin of a particle, paralled to n before 
emission, points after the damping into the direction n + 6s. The 
polarization is reduced proportional to |6s|2 due to the above mentioned 
fact that only the component along ft can survive /I1/. 3 This depolarizing 
mechanism excites the depolarizing resonances and is the main limitation 
for the polarization in a storage ring.

In a machine without strong vertical deflections or longitudinal fields 
both depolarizing effects have a common cause. The spin is rotated in the 
arcs away from the direction of the bending field. The reason for this 
rotation is described in the following.

In the arcs the spins are subsequently rotated by the bending magnets and 
the quadrupoles .The bending field rotates the spin around the vertical 
(z-axis) with an angle yaa, the deflection angle times the spin tune (fig. 
2).
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Electron trajectory

AZ' * z r - z 2‘

spin rotation around X 
with the angle • AZ‘

Fig. 2 Spin rotation in the arcs
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The vertical projection of the spin remains constant. Between the bending 
magnets guadrupole fields and small radial fields (correction coils or errors 
of the guadrupoles) rotate the spin around the radial axis (x-axis).

These rotations change the projection of the spin on the vertical axis. The 
rotation angle is proportional to the change of the vertical slope of the 
particle (fig. 2)

In a storage ring the size of PETRA or HERA some hundred bending magnets are 
installed. Between all these bending magnets the spin is rotated by quadrupole 
fields. The individual rotations are small (% some milliradians) but they can 
add up, depending on the path of the electron.

The basic idea in this paper is the following : A sequence of dipoles and 
quadrupoles rotate the spin. The rotations around the radial axis can only add 
if the rotations of the bending field and the "black box" (fig. 2) have a 
certain relation. It is only necessary to correct the dangerous Eourier-com- 
ponents of the rotations contributing to the relation. It will be shown that 
for the closed-orbit, the betatron, and the synchrotron oscillation similar 
correction schemes can be developed.

3. The Strength of the Depolarizing Resonances

3.0. General remarks on the influence of aperiodic perturbations on the degree 
of polarization

In the following the strength of the depolarizing resonances excited by photon 
emission is calculated.

The argumentation in this chapter is similar to the argumentation found in 
several papers, e.g. Yokoja /12/. Details can be found in these papers.
The BMT-equation for the spin of an electron in the aperiodic field 
co(t) must be solved (see eq. A) :

-y
ds
dt

with $7 ... periodic field on the closed orbit and w (t) ... aperiodic fieldco
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The equation can be solved by a perturbation approach:

s = 6s

n is the solution of the BMT-equation on the closed orbit (see chapter 2).
The vector 6s is combined by the eigenvectors of the BMT-equation (eq. 2) n,q, 
q* vi/ith unknou/n coefficients :

6s = an + —  bq + —  b*q*
/2 /2

If o)(s) is small compared to a is equal to zero, b can be calculated as

b i/2 ’
t=0

S(t) n*(t) dt

6s|2 is given by |fis|2 bb* ( t+°°)

(6)

(7)

3.1 The Strength of the Q_-Resonance

After the emission of a photon the electron performs inter alia vertical beta­
tron oscillations. To calculate the resonance strength b, u) (t) is calculated 
first. Then it will be shown that the integral b (eq. 6) can be expressed as a 
product of a ring-periodic integral and a resonance factor. The reference 
frame is given in fig. 3.
We assume an electron moving on the (nominal) closed orbit with nominal 
energy. After the emission of a photon, the electron has lost the energy 6e. 
The emission of the electron changes the direction of 'the electron. Firstly, 
the recoil of the photon changes the direction by a small angle of the order 
1/y. Secondly, if the vertical dispersion at the point of emission is not 
zero the electron starts to perform betatron oscillations around the 
off-energy closed orbit (fig. 4).

The distance of the electron from the nominal closed orbit is given by:
,/ -t/T

6z(t) = 6zn(t) e Tz + 6e cosy (t) D (s) e (8)(3 s z

6zq ... betatron amplitude 
^  ... synchrotron phase

... vertical dispersion, ringperiodic function (s+L)=D^(s)
T z/S ••• damping time for vertical and longitudinal motion

.... the length variable along the ring, s is regarded as a function of ts
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e 2

Fig. 3 Reference frame

Z

emission of closed - orbit betatron oscillation after
a photon nominal after emission photon emission around

energy (dispersion orbit) dispersion orbit

F i g .  E x ¡ ta t  ion of ve r t ica l o s c i l la t io n s
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Calculation of oo (t) : due to vertical oscillations the electron experiences a 
radial magnetic field along its path. For a radial field u> (t) is given by 
(see eg. (1)) :

ui(t) = ~  (1 + ay) B e (9)my 1 x x

is the product betu/een the gradient and the position:
E

B (t) = —  5z(t) k(s) x ec

E ... nominal energy of the electrons o
6B

k(s)... gradient field k(s) = ~  -r—C oz o

B is inserted into uj(t) using the expression for 6z from eg. (8) :

OJ(t) = C (l+ay)k(s){6zfi(t) e t^Tz ey + 5ecosys(t) D (t) e t^Ts} (11)

The following calculation for the strength of the Q^-resonance takes into 
account only the first part in the brackets :

-t/x
U)(t) = C (1+ay) k(s) 6Zg(t) e z + e

The second term in the brackets leading to Q^-resonances is discussed in the 
following chapter. '
This expression for oo(t) is inserted into b (eq. 6). It is shown in the 
appendix A that :

-2fTi(ya ±Q)
b = C (12)

e 2lTi(ya±Qz)

S0+L ±ir
J e z
S

e e  (i-im) /S-  k(s) ds X z

The depolarization is expressed by an integral around the ring including the 
optics-parameters Y  and B and the n, f  , fit-vectors. C is a constant including 
the optics-parameters at the emission point. From the denominator the 
conditions for resonance are obtained:

ya = n ± Q_
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3.2 The Strengths of the and Q -Resonances

In the last chapter the strength of the Q -resonance was calculated to :

-2ïïi(ay±Qz) So+L ±i^ 10^
—-- --- -----  I e Z e e (t-im) k(s) ds (13)b r c z -2ni(ay±Q ) S 1 z , 0e -1

In the following the coupling between horizontal and vertical motions due 
to skew quads etc. are neglected. The influence of these effects on polari­
zation is discussed in detail in a paper published 1972 by Derbenev and 
Kondratenko /14/. In this case of an uncoupled machine a similar calcula­
tion can be made for the horizontal betatron motion exciting the Q -reso­
nances :

-2ïïi(ay ±Q )x ± 1 7 " . .e c r- b - C --------------  J e e e ( 1-im) M k(s) ds (14)
x -2ïïi(ay±Q ) S Z x1 x , o  e -1

The influence of the synchrotron resonances on the depolarization is given 
by 2 terms: a contribution from the vertical motion is explained in
eq. (11):

_t/Tsôzn = 6e cosY' (t) D (s) e U s Z

and an analogous contribution from the horizontal motion :

- t / T s5xn = 6e cosT' (t) D (s) e u s x

The disturbing field œ(t) = (ya+1) (e 6zQ k(s) - e^ôxp k(s)):

-2 7Ti(ay±Q ) o+e s ±i T'
b = c -- “ —  ‘ “ J e S e1 (e D -e D )(l-im) k(s) ds (15)
3 - 2 ï ï i(ay±Q ) S z x x zs o

These three expressions had been derived by Yokoya 1982 /12/.

The correction schemes suggested in the following reduce the strength of
the resonances by reducing the value of the three integrals b . . .z/x/s
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4• Compensa t i o n  o f  t h e  D e p o l a r i z i n g  E f f e c t s  Caused by C lo s e d  O r b i t  
D i s t o r t i o n s

I n  t h e  f o l l o w i n g  t h e  d e p o l a r i z i n g  e f f e c t  caused by t h e  d e v i a t i o n  o f  t h e
n - v e c t o r  6 n f r om th e  v e r t i c a l  a x i s  i s  d i s c u s s e d .  I t  i s  shown t h a t  t h e
d e v i a t i o n  i s  d r i v e n  by F o u r i e r - c o m p o n e n t s  o f  t h e  c l o s e d  o r b i t .  By a s p e c i a l
o r b i t - c o r r e c t i o n  scheme i t  i s  p o s s i b l e  t o  r e duce  th e se  F o u r i e r - c o m p o n e n t s ,
t o  r e du ce  t h e  d e v i a t i o n  o f  t h e  n - v e c t o r ,  and t o  im p ro ve  t h e  deg ree  o f
p o l a r i z a t i o n .  T h i s  c u r e  r e d u c e s  t h e  s t r e n g t h  o f  t h e  Q and Q - r e s o n a n c e s .x z
By r e d u c t i o n  o f  6n t h e  v e r t i c a l  componen ts  o f  1 and m g e t  s m a l l e r .  The 
p r o d u c t  o f  T,m and e^ i n  e g s .  ( 1 4 )  and ( 1 5 )  a l s o  becomes s m a l l e r .

The n - v e c t o r  i s  a s o l u t i o n  o f  t h e  B M T - e q u a t i o n :

dn
ds — ( ^  + <5Œ) x nc o ( 1 6 )

& c o n t a i n s  t h e  f i e l d  on t h e  i d e a l  o r b i t ,  t h e  a d d i t i o n a l  f i e l d s  on t h e  
r e a l  c l o s e d  o r b i t .  B o t h  q u a n t i t i e s  a r e  r i n g - p e r i o d i c .

W i t h  | 6 Î |  << ¡S t h e  f o l l o w i n g  s o l u t i o n  i s  p o s s i b l e  :

6 n ( 1 7 )

whe re  n ^  i s  t h e  n - v e c t o r  on t h e  i d e a l  c l o s e d  o r b i t .  I t  i s  shown i n  / & /  t h a t  
t h e  s o l u t i o n  f o r  6n can be w r i t t e n  i n  t h e  fo rm  :

6 n ( s ) 1 / c 2
2 ( 1 - c o s 2tt y a )

s+L
( { J c o s d d s } 2 

s

s+L
4 J

s
s i n 0  d s } 2 ) ( 1 7 )

w i t h ôS ( s ) = —  ( 1 + a y) B ( s )x my x

0 r  ay a i s  d e f i n e d  i n  e q . ( 2 )
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As shou/n i n  f i g .  2 t h e  13 - f i e l d s  a r e  l o c a t e d  be tween  t h e  b e n d i n g  magne t s .

s .l
’ i + l
a . i

;+L

I ■. . . can be w r i t t e n
s
s+L V ]
J • = l  /

is s . 1

i f  t h e b e n d i n g  magnet  i

( 1 8 )

. .  b e g i n n i n g  o f  t h e  b e n d i n g  magnet  i + l

. .  d e f l e c t i n g  a n g l e  o f  t h e  e l e c t r o n s  a f t e r  b e n d i n g  magne t  i

l«n| =
( 1+ay)

2 ( l - c o s 2 u a y )
U l s i n  aya

i  = l

Si + 1  N ^ i + l
. / B ds)2 +( l cos  aya  / B ds)2}l  mcy J x . i  mcy x1 = 1 oS o •i 1

( 1 9 )
Si+1

The i n t e q r a l  ------  f B ds i s  known as t h e  chanqe  o f  t h e  a n g l e  o f  t h e^ mcy J x
s .l

c l o s e d  o r b i t  be tween  two b e n d i n g  magne ts  A z j  ( see  f i g .  2 ) .

W i t h  t h i s  d e f i n i t i o n  | 6 n| becomes:

l«n| = ( 1 + y a )
2( l - c o s 2 r T y a )

N

{( I
i  = l

s i n  ayct A z ! ) 2i

N
( £ cos aya^  A z j ) 2 } ( 2 0 )  
i  = l

Az '  can be e x p r e s s e d  as a F o u r i e r - s u m

Az '  = y (a cosan + b s i n a n )  L n n
n = l

I f  ay has a h a l f - i n t e g e r  v a l u e  ( a y  r  n + 0 . 5 )  16n | i s  p r o p o r t i o n a l  t o  :

1 / 2 , 2n 
( k - o y ) 2 ( a k  +  b k 5

The F o u r i e r - h a r m o n i c s  k=n and l c n + 1  have  the  s t r o n g e s t  i n f l u e n c e  on |5n



C o r r e c t i o n  Scheme: The f i e l d  e r r o r s  i n  a s t o r a g e  r i n g  a r e  r a ndom ly
d i s t r i b u t e d .  W i t h  t h e  h e l p  o f  c o r r e c t i o n  d i p o l e s  t h e  d e v i a t i o n  o f  t h e  
c l o s e d  o r b i t  can be r e du ce d  t o  a mean v a l u e  o f  a p p r o x im a t e l y  1 mm. An 
examp le  o f  t h e  deg ree  o f  p o l a r i z a t i o n  w i t h  such  c l o s e d  o r b i t  d e v i a t i o n s  i s  
g i v e n  i n  f i g .  5A.

I n  t h e  s t o r a g e  r i n g  PETRA a h a rm on i c  o r b i t  c o r r e c t i o n  scheme was 
s u c c e s s f u l l y  a p p l i e d  / 6 / .  The scheme r e du ce s  t h e  F o u r i e r  componen ts  n e x t  t o  
t h e  s p i n - t u n e .  A v e r t i c a l  c o r r e c t i o n  c o i l  changes  t h e  o r b i t  and t h e r e f o r e  
t h e  a m p l i t u d e s  o f  a l l  h a rm o n i c s .  The c u r r e n t s  o f  8 c o i l s  can be changed  i n  
such  a way t h a t  o n l y  one a m p l i t u d e  o f  t h e  f o u r  a m p l i t u d e s  n e x t  t o  t h e  s p i n  
t u n e  i s  changed .  The f o u r  dange rou s  h a rm o n i c s  can be compensa ted  
s u c c e s s i v e l y .

Fo r  t h i s  me thod t h e  r i n g  symme t r y  i s  used  i n  t h e  f o l l o w i n g  way.  A mach ine  
w i t h  f o u r  i d e n t i c a l  q u a d r a n t s  i s  assumed ( i . e .  PETRA o r  HERA). Each  
q u a d r a n t  i s  m i r r o r - s y m m e t r i c  w i t h  r e s p e c t  t o  i t s  m i d d l e  a x i s  ( F i g .  6 ) .  The 
e i g h t  v e r t i c a l  c o r r e c t i o n  d i p o l e s  a r e  i n s t a l l e d  i n  t h e  o c t a n t s  a t  s y m m e t r i c  
p o s i t i o n s .  I f  d i p o l e  1 i s  t u r n e d  on t h e  v e r t i c a l  c l o s e d  o r b i t  g e t s  a k i c k  
¿¡1 * 6z becomes / 6 /  :

/ Q  ( s ) 6 ( s  )
6 z ( s )  = ------ —---------- ---------  cos  ( ( s )  -  V" ( s  ) | -  ttQ ) 6 ( 2 1 )

2iTsin7TQ z z z •z
s^ . . .  p o s i t i o n  o f  t h e  c o r r e c t i o n  c o i l

From S z ( s )  t h e  r o t a t i o n  a n g l e s  o f  t h e  s p i n  be tween  t h e  b e n d i n g  magne ts
ya A z ! a r e  c a l c u l a t e d .  The F o u r i e r  a m p l i t u d e s  a and b f o r  t h e  n - t h  h a r -  i  n n
mon ic  componen t  a r e  g i v e n  b y :

a N cosn l
= y ( no t . )  Az '  ( a . )  ( 2 2 ). S  . i l l. i = l  s i nb in l

1 he i n d e x  r e l a t e s  t o  t h e  n - t h  h a rm o n i c s  o f  t h e  f i r s t  c o r r e c t i o n  c o i l ,  n l
Fo r  t h e  c a l c u l a t i o n  o f  t h e s e  a m p l i t u d e s  t h e  c o m p u t e r - c o d e  TURIF was 
d e v e 1 o p e d .

-  14 -
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t ! t
v = Qx + 2A v = £9.5 v = 7 5 - Q x

Fig. 5 Compensa t i o n  of the  Q s and Qx - r e s onances

A -  u / i t h o u t  c o r r e c t  i on
b -  r i n s e d  o r b i t .  o o r r e r t o d  a l o n g  s t r a i g h t  s e c t i o n s  
C -  d a nge ro u s  T o u r i o r  componen ts  o f  t h e  c l o s e d  o r b i t  c o r r e c t e d  
I) -  b o t h  c o r r e c t i o n s  were  a p p l i e d



Interact ion

Fig. 6  Co r re c t i on  e l em en t s  at P E T R A
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The a m p l i t u d e s  f o r  t h e  o t h e r  c o i l s  o r e  r e l a t e d  t o  t h e  a m p l i t u d e  o f  t h e  
f i r s t  c o i l  by symme tr y  c o n d i t i o n s ,  i . e .  f o r  th e  second  c o i l  u/e o b t a i n

6ẑ  ( a . ) =l
«. /2tt
6zi O r - a. )l (23)

and for a b 0: n2 n2

an2 N
= l

cos
(n a . ) sin l ûzi (-v2 - a. )l (26)

bn2 i = l

substituting a - a . +l Y  the relation between the amplitudes
second and the first coil is :

an2 - cos n it0 a + 2 nl sin n tt 
2 bnl

bn2 _sin n 7T 
2 anl cos n tt

2 bnl
(25)

The F o u r i e r  a m p l i t u d e s  o f  t h e  o t h e r  c o i l s  a r e  c a l c u l a t e d  i n  a s i m i l a r  way.  
( s e e  t a b l e  1 , a p p e n d i x  B ) .

I f  t h e  c u r r e n t s  o f  t h e  8 c o i l s  a r e  changed  i n  t h e  u/ay i n d i c a t e d  i n  t a b l e  2 
( a p p e n d i x  B) o n l y  one o f  8 a m p l i t u d e s  i s  c h anged .  E . g .  i f  t h e  c u r r e n t s  a r e

I , = I

+ a3/b3I

■a3/b3I

I ,  = - I

I  _ = - I

- a  / b 3 I

a3/b3I

I „  -  I

only the amplitude â   ̂ is changed, all other seven amplitudes remain 
constant.

T he d e v i a t i o n  o f  t h e  n - v e c t o r  f r om th e  v e r t i c a l  can be re du ced  by t h i s  
method by a f a c t o r  i n  t h e  o r d e r  o f  10. The c l o s e d  o r b i t  i t s e l f  changes  o n l y  
s l i g h t l y .  The im p ro vem en t  o f  t h e  deg ree  o f  p o l a r i z a t i o n  u s i n g  t h i s  me thod
i s  shou/n i n  f i g .  50 .
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5. Compensation of the Depolarizing Effects Caused by the Vertical Dispersion

The vertical dispersion is for the most part produced by closed orbit 
deviations in the strong interaction quadrupoles. The vertical dispersion 
contributes to the strength of the Q^-resonance. The dispersion can be reduced 
by correcting the closed orbit in the interaction region in the following u/ay:

With correction dipoles it is possible to minimize the deviation of the 
vertical closed orbit along the interaction region without changing the orbit 
in the arcs and, as a consequence, the n axis. This correction reduces the 
vertical dispersion and improves the degree of polarization (fig. 5B).

Beside this evident method a more sophisticated method will be derived in the 
following by compensating the dangerous Fourier-harmonics of the dispersion.

The depolarization strength of the Q^-resonance driven by vertical dispersion 
is :

s+L
i f  i0  -+ -+ ->

b (vert, dispersion) % / e S e1^ e D (1+im) k (s) dss X z
s

(This is the second part of eq. (15) ).

Assuminq n ~ e : z

b (vert, dispersion) % s

(It is assumed that the synchrotron 
turn.)

D^’k is proportional to the radial field on the dispersion orbit. The further 
calculation is similar to the calculation of the deviation of the n-vector. 
(compare eq. (17)) .

s +L 
0 ‘ 0
\ e1 D k (s) ds 
J z
so

phase changes only slightly during one



] 9

The integral has to be taken over the radial field D k(s) instead of thez
radial field Instead of correcting the Fourier components of the
closed orbit the Fourier components of D' near the spin tune ya have to be 
minimized :

N N
b (vert, dispersion) =; ( Y sinyaot. AD' . ) 2 + ( Y cosyaa . AD' .)2s L 1 zi L i zi

i-1 i = l

AD' .  . . .  D ' .  , -  D ' .  zi Z1+1 Z 1

This can be done by the help of 8 beam bumps at symmetric positions. The 
bumps have to be moved in a similar u/ay as the 8 dipole coils for the 
correction of the Fourier amplitudes of the closed orbit.

6. Compensation of the Q^-Resonance

Different from Q^.^-resonances u/hich exist only in an imperfect machine 
several Q^-resonances can be seen even in an ideal storage ring. They are 
excited by the recoil of the emitted photons. In an imperfect machine with 
a nonvanishing vertical dispersion the oscillations and therefore the 
Q^-resonance are much more stronger (see chapter 3.1).

To compensate the Q^-resonances the Fourier components of the betatron- 
trajectories have to be changed. This can only be done by changing the 
gradient fields of the quadrupoles. The following argumentation is divided 
into two parts. Firstly, the resonance strength is calculated from the 
Fourier components of the betatron trajectories. Secondly, it is shown how 
the resonances can be compensated by 8 quadrupoles at symmetric positions 
of the ring.

In a flat machine with small distortions eq. (13) becomes

b (s) z

2TTi( ya ±Q^) 

-2TTi(ya±Qz) / T  k(s) ds z (29)
e -1 s
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There exist tu/o different types of resonances:

ya = n + ( + type)

ya = n - ( - type)
(30)

leading to tu/o different integrals I and I in the expression for b_

On the resonance yaa = (n ± Q )a is fullfilled.

Therefore the integrals are given by :

S+L - i O  -Q a)T r ina z zI - J e e Æ ~  k(s) ds z
(31)

s+L + i(V / -Q a)
I = J ein a e 2 2 Æ ~  k (s ) ds

U' -Q • a , Sft and k(s) are ring-periodic. The strength of the resonances z z
is proportional to the square of the integral in eq. (31):

ya = n-Q
K/- (a l ±b2) 2 + (a 2±bl ) 2 for ya = n+Q (32)

The coefficients are

s+L
f Sin (not) (cosV cosQ a+ sinV-'sin Q a)/G~ k(s) ds J cos z z z z z

s+L
J Sin(na)J cos (cos V" sinQ a - sinV' cos Q a)/G~~ k(s) ds z z z z z

(33)

These coefficients are calculated by the program FURIE using the equation:

(34)
° i+1 Az' z'COS V

f z Æ ~  k(s) ds : c cl+l
J sin ly s . 7 z

z
Az' z'1 s s . . 1 + 1

-  z

- z
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The integration is performed from the end of bending magnet i to the next 
one.

is the change in the angle of the sine- and cosine-like beta­
tron trajectory between the two bending magnets (fig. 2).

The coefficients a and b can be written as a sum:

a l  N S in  n a . ( c o s Q  a .  A z ' . + s i n Q  a . A z ' . ), co s  i  z 1  c i  z 1  s i
1 ~~ 1 (35)

a2 San n a .C s i nQ  a .  A z ' . - c o s Q  a . A z ' . ), COS 1 Z 1 Cl Z 1 si

Machine Without Gradient Errors

for a symmetric machine without gradient errors only the resonances 
ya = P*n*Qz occur. (P is the periodicity, for PETRA and HERA P = 4).

All the other Q^-resonances do not appear due to the fact that the 
integrals (eq. 31) are zero for n £ P k.

fig. 7 shows the Q^-resonances at PETRA in the energy region between 14 - 
16 Ge\l, calculated by the SLIM-program /7/. The relative strength of the 
resonances is calculated by a Eourier analysis using eq. (32). The strength 
of these resonances depends only on the optics for the ideal machine.

Machine With Gradient Errors

In a non-ideal machine the symmetry gets lost due to the gradient errors of 
the magnetic fields. All Q -resonances occur, field errors also change the 
symmetry but the influence on the strength of the Q^-resonances is very 
small.

fig. 8 shows the degree of polarization as a function of the beam energy 
for the resonances ya = + 26 and ya - 73 - Q^. The calculation is per-



relative strengths of the resonances

Fig. 7 Depolarizing Resonances v = Q z + An for PETRA in the energy region 13 - 21 GeV
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formed with randomly distributed gradient and field errors. The so-called 
Mf8-opties u/as used ( r 8 cm at the interaction points). The strength of 
the gradient errors is chosen in such a way that the G^-function differs by 
about 10 % at symmetric points.

Curve A: The same random distributed field errors as in the
calculation of fig. 5a are assumed.

Curve B: The correction schemes for the correction of the Q ands
Q^-resonances were applied. After the correction the degree 
of polarization is mostly limited by Q^-resonances.

One possibility to change the influence of the resonances is a change of 
the Q^- value. During the operation of the machine this can be done only to 
a limited extend.

Another possibility is the reduction of the depolarizing strength of the 
resonances. In the following it is shown that this can be done with the 
help of 8 quadrupole magnets.

Correction scheme:

If an additional quadrupole field 5k(s) is switched on the beam optics 
changes. If 6k(s) «  k a linear approach is possible:

^ + <$G

^z ^zo +

The betatron trajectories op the particles are given by

z (s) = A /¡=p o - sin ( k" +6zz

6 has an arbitrary value, /\ ^
s a constant

The betatron trajectories i
n the distorted optics are

Z ( S ) r  A y/Q
o <50 sin( ^ 6 + 5 Y' )
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For small perturbations u/e get

z(s) = z + 6zo
with

o
+Ô) + y C 6 ^  cos(V" +6 ) ) *ct o z z0o

IF more than one additional quadrupole field is switched on, the effects of 
the different quadrupoles on the betatron trajectories adds linearly. The 
Fourier amplitudes of the trajectories also add up linearly.

In the following the correction of the amplitudes for the 4n+2 harmonics
component is demonstrated. The numerical calculations are performed for the
resonance ya= 26 + Q (and for va= 73 - Q ).z 1 z

A gradient ■error is caused by changing the strength of the quadrupole Ql. 
The harmonic amplitudes a^(Ql), b^(Ql), a?(Ql) and b^(Q1) of the betatron 
trajectories caused by the change of the quadrupole strength are calculated 
by using eq. 36 with the program FURIE.

The strength of the resonance ya= n ±Q is defined by

The amplitudes of the 4n+2 harmonics caused by the other seven quadrupoles 
at symmetric positions in the octants are related to the amplitudes of the 
first quadrupole due to symmetry conditions. The amplitudes can be found in 
table 3, appendix B. The currents for the quadrupoles are changed in such a 
way that only one amplitude is changed. These currents are used to 
compensate A and B for the 26 and the 73 harmonics.

z
(a1 ± b^)2 + (a2 + b^ )2 = A2 + B2.

For the change of the first quadrupole A and B are given by :

A(Q1 ) = a1(Ql) ± b1(Ql) , B(Q1) = a (Ql) + b (Ql)



v = 2A + Q x v = 26 + Q z v = 73-Qz v = 75-Qx

Fig. 8 Correction of the Q z - resonance

A - dipole field errors and gradient field errors 

B - after correction of the orbit harmonics and the dispersion 

C - after an additional correction of the Q -resonance
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Fig. 9 Correction of the Qz - resonance with different strengths
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Fig. 10 Correction of the resonance = Qz +
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The improvement in the degree ot polarization after applying this method on 
the distorted ME8-optics is shown in fig. 8. Curve C shovi/s the degree of 
polarization after applying all three correction schemes.

fig. 9 shows the degree of polarization in an optics where only the 
A-amplitude has a nonzero value. The strength of a set of quadrupoles was 
changed step by step. The depolarizing resonance vanishes when A is 
cancelled.

In a machine with gradient errors all Q^-resonances are found. The 
strongest are still the resonances ya = Pn ± Q . Their strength differs by 
more than a factor of 10 (see fig. 7). The working point of the machine 
should be chosen to be as far as possible away from these resonances.

The influence of the weaker 4 -resonances can be compensated by the 
harmonic correction. If the currents of the 8 quadrupoles are changed by

or (I,—1,1,—1,1,—1,1,—I) the resonance strength changes. 
This was done for the correction of the resonance ya= 24+Q (see fig. 10).
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APPENDIX A: Calculation of the depolarizing strength b

. -t/x
The aperiodic field oj (t) is given by aj(t) r C (1+ay) k (s).6z^e e

with the betatron amplitude /13/

6zn(t) = /0 (s) (C cos^'+S siny') (Al)G z z z

C r - — —  6e D
/ i3 zozo

D a
S = - 6e —  + G D* - 6y)

/B zo zozo

G, a are the optics functions, the subscript q indicates the point of
emission. 6y is the kick from the recoil of the photon ^ ^ ( s ) . .. betatron
phase vi/ith H' =0.zo
6Zq can be written as a complex function:

- i V "  i y  iV"  - i V '
6z^ r c (e Ze 0 - e Ze °) /G (s) (A2)

The constants c and V- contain the optics parameters at the point of 
emission.
Combining 6z^ with o , b (eq. 6) becomes

00 + i f i y' iV" -iV- . _____  -t/x
b = c J" (e Ze °- e Ze °) e (1-im) e+ /G (s) k (s) e Zdt (A3)■ x zt-0

The integral can be written as:
TOO Q oo

J . . .  = J . . .  -  J
t=0 t = o t-To

The integrand includes the ring periodic functions e , 1, m, G and k. TheX z
betatron phase y- and the spin phase 0 can be written in a quasi periodic 
way

T ... revolution time, o

Y' ( t - T  ) = y  ( t )  -  Qz o z z

0 ( t - T  ) 3 0 ( t ) -  2nyao

(A5)



With a transformation of the variable t t — T using eq. A 4 the integral

OO

t = To

J
t = T0

______ 1
-2TTi(ya±Q ) 

e
I ...

t-o
(A6)

This expression is inserted into eq. A4. After a simple transformation 
equation (12) is obtained.



- 51 -

Appendix 13: 

Table 1

Fourier amplitudes of 8 correction coils at symmetric positions.

The currents of the first coil are denoted u/ith a , b etc. It is shown in0 o
the table how the currents of the other coils are related to the 
amplitudes of the first coil.

Fourier
component

coil in 
octant 

1 
2

3
4 
3 
6
7
8

a(4n) b(4n) a(4n+l) b(4n+l) a(4n+2) b(4n+2) a(4n+3) b(4n+3)

-b

-b,

-b,

-b,

-b.
-a
-a.
-b

-b
-a.
-a.
-b

-a.
-a.

-a,
-a.

-b.
-b.

b 2
'b2
-b„

-b.

-a.
-a.

-b.

-a.
-a.

-b.

-b.1
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Table 2:

A correction scheme were only one of eight Fourier coefficients is influen­
ced. The magnitudes are defined in the previous table.

1
2

3

4
5

6
7

8

A(4N+1 ) B(AN+1 ) A(AN+2)  B(4N+2) a QTN^)UN+3^)

I
I

I

I

I

I

I

I

I I I 1

-I aJ/b3I b^/a-jl -1

I -aj/bjl b3/a3I -I

-I -I I 1

I -I -I I

-I -a?/b3I -t>3/a3I -I

I a3/b3I -b3/a3I -I

-I I -I I

I -a1/b1I - W  

-I a1/b1I -bl/a1I

I a1/b1I V 3!1 

-I - a / b ^  V ail
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Table 3:

Compensation of Fourier components of the betatron motion by quadrupoles at 
symmetric positions.

The current change of the first quadrupole is denoted u/ith A, B, C etc.

Fourier component
for for for for

quadrupole ay= n-Qz aY= -n+Q a7̂  n-Qz a y =n+Qz
in octant a4n+l b4n+l a,An+1 b4n+l a4n+2 4n+2 a b 4n+2 An+2

1 A B C -D E F G H

2 B A D -C -E F -G -H

3 -B A -D -C -E -F -G -H

4 -A B -C -D E -F G H

5 -A -B -C D E F G H

6 -B -A -D C -E F -G -H

7 B -A D C -E -F -G -H

8 A -B C D E -F G H
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