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Abstract

It is shown that the depolarizing effects in the arc of an
electron-positron storage ring can be minimized by minimizing certain
Fourier-harmonics of the particle trajectories. In more detail it is shown
that the strength of the depolarizing resonance ((g-2)/2).y = niDX is
related to the harmonics of the closed orbit, the strength of the
depolarizing resonance ((g-2)/2 +y = m#Q_ to the harmonics of the vertical
betatron oscillations, and the strength of the depolarizing resonance
((g-2)/2)y = iiQS to the harmonics of the closed orbit and the dispersion
orbit. For =all these depolarizing resonances compensation schemes are

discussed.



1. Introduction

In the 1last decade the spin-polarization of electrons and positrons
circulating in a storage ring was used in many different ways. The most
important applications of the polarization was the measurement of the
quark-1/2-spin at SPEAR /1/ and the precision measurements of the masses of

the Y and the J/V-resonances at VEPP, DORIS and CESR /2/.

Although the time constant for the build-up of the polarization into the
vertical direction by the Sokolov-Ternov effect is approximately the same
for all existing electron-positron machines, the depolarizing mechanisms
become worse with increasing machine size /3/. From the experience at DESY
it is known that it is relatively easy to have a high degree of
polarization at DORIS (beam energies up to 5.6 GeV). It turned out to be
much more difficult to have polarized beams at PETRA (beam energy up to
123 GeV). For the future storage rings (i.e. HERA, LEP, TRISTAN) no
polarization can be expected unless they are designed and constructed for
polarization. The most interesting results are expected when the particles
have longitudinal polarization in the interaction region /4/. The spins
have to be rotated after the arc, where they are vertical, into the
longitudinal direction and after the interaction region back into the
vertical direction by so-called spin-rotators. Even in an ideal machine
these rotators have strong depolarizing effects. The reason for this
depolarizing effect is the following. The particles‘ of the beam are
different in energy, momentum and - position. The rotation into the
longitudinal direction and back depends in general on these parameters.
Therefore a vertically polarized beam is slightly depolarized after a pass
through the rotator. The depolarization can be minimized when certain

conditions, so called spin transparency conditions, are fulfilled /5/.

In this paper the spin transparency condition for the arc is discussed. In
such a spin-transparency condition it must be taken into account that the
spins are depolarized by the sequence of gquadrupoles and bending magnets.
It will be shown in this paper that spin-transparency in an imperfect
machine (a real machine with all sorts of errors) can be approximately
achieved when some Fourier-harmonics in the particle trajectories are

minimized.



In more detail it is shown that

- the strength of the QS resonance is connected to harmonics in the closed
orbit and the dispersion orbit
- the strength of the QX resonance to harmonics in the closed orbit

- the strength of the Qz resonance to harmonics in the betatron-trajectories.

As a consequence three different corrections have to be applied to

compensate the resonance effects and to make the arc spin-transparent:

- Eight correction dipoles can compensate the harmonics of the vertical
closed orbit. This cure reduces the strength of the Qx and the Qs reso-

nances. The scheme was both simulated and experimentally tested in the

storage ring PETRA /6/.

- The vertical dispersion is in general strongly influenced by asymmetric
beam bumps in the interaction regions. Moving these bumps in an intelli-
gent manner the depolarizing effects caused by synchrotron resonances are

reduced by reducing the strength of some harmonics of the dispersion.

- Resonances driven by vertical oscillations can be compensated with the
help of eight quadrupoles. These guadrupoles are used in a similar way as

the correction coils for the DX/S—resonance compensat ion.

Numerical calculations using the SLIM program /7/ demonstrate that the
applied compensation optimizes the degree of polarization from less than
30 % up to more than 80 %. The calculations are done for the storage ring

PETRA in an optics currently used as a luminosity optics.



2. The polarizing and the depolarizing effects

The polarization of an electron beam in a storage ring is built up by the
so-called Sokolov-Ternov effect. The spin of a particle can flip when the
particle emits synchrotron radiation in a magnetic field. The probability
of a spin-flip in one direction is higher than the probability in the
other. For electrons the polarization is built up in the direction opposite
to the magnetic field /8/. The maximum degree of polarization in a plane,

perfect storage ring is 92.4 %.

The second effect which changes the polarization is the continuous rotation
of the spins in electromagnetic fields. This effect is described by an

equation of motion, the Thomas-BMT equation /9/ :

ds - 5 2 g

(1)
4 = Ee_'y ( (1+ay) gl + (1+a) ﬁh)

3 .». Spin vector
Yya ... so-called spin-tune with:
a ... anomalous magnetic moment of the electron
Y ... gamma-factor
B . magnetic. field parallel and orthogonal to the direction of motion

Ly
( electric fields are omitted)

In the following it will be explained that depolarization occurs when the
direction opposite to the deflecting field and the spin direction do not
coincide. The deviation of the spins from this direction is caused by
machine imperfections, vertically deflecting magnets, and longitudinal

magnetic fields.

The first depolarizing mechanism is caused by a reduction of the

effectiveness of the Sokolov-Ternov effect. To explain this it is assumed
that an electron travels on the closed orbit. The closed orbit shall
deviate from the ideal plane closed orbit due to vertically deflecting

magnets and field and alignment errors of magnets.



= ff =

The magnetic field along the closed orbit is described by
B(s) = By(s) +B_ (s)
co

ﬁo is the magnetic field on the ideal orbit, gco the additional field on the
closed orbit. s is the length along the closed orbit. Equation (1) can be
solved for ﬁ(s), The solution of this equation consists of one real vector n
and two complex vectors ‘ﬁand ﬁ*. The complex vectors can be expressed by the

real vectors n, T and m. (see fig. 1)

t e AiTeah o
/2 (2)
- . T

V2

$ = yao, ... where ais the angle by which the electron is deflected in the

bending magnets.

Closed orbit

Fig. 1 Spin base vectors |, m and n

-
In general, the n-axis and the direction of the magnetic field do not coinci-
de. The polarization is built up into the direction of the transversal

magnetic field but only the component along n(s) can survive.



The maximum degree of polarization is reduced to /10/:

Lo
B
P = 0.924 ol”
max >+ (3)
e
ds _‘%gs_-___z ds
lol]” lo]?
EB . unit vector in the magnetic field direction
-
Ey —%— : U o velocity of the electrons
M
p ... bending radius.

The second depolarizing mechanism is caused by the emission of synchrotron

radiation. After the emission of a photon the electron moves in a
complicated way around the closed-orbit. The fields acting on the particle

can be divided into two parts:

o (L) = §Cc(t) + mlE) (4)

ﬁco describes the periodic field on the closed orbit and w describes the
aperiodic perturbation. Due to radiation dampinga] (t) becomes small after
several damping times. The spin of a particle, paralled to n before
emission, points after the damping into the direction h o+ 8s. The
polarization is reduced proportional to [53}2 due to the above mentioned
fact that only the component along A can survive /11/. :This depolarizing
mechanism excites the depaolarizing resonances and is the main limitation

for the polarization in a storage ring.

In a machine without strong vertical deflections or longitudinal fields
both depolarizing effects have a common cause. The spin is rotated in the
arcs away from the direction of the bending field. The reason for this

rotation is described in the following.

In the arcs the spins are subsequently rotated by the bending magnets and
the quadrupoles .The bending field rotates the spin around the vertical
(z-axis) with an angle yaa, the deflection angle times the spin tune (fig.
z).
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The vertical projection of the spin remains constant. Between the bending
magnets quadrupole fields and small radial fields (correction coils or errors

of the quadrupoles) rotate the spin around the radial axis (x-axis).

These rotations change the projection of the spin on the vertical axis. The
rotation angle is proportional to the change of the vertical slope of the

particle (fig. 2)

In a storage ring the size of PETRA or HERA some hundred bending magnets are
installed. Between all these bending magnets the spin is rotated by quadrupole
fields. The individual rotations are small (. some milliradians) but they can

add up, depending on the path of the electron.

The basic idea in this paper is the following : A sequence of dipoles and
quadrupoles rotate the spin. The rotations around the radial axis can only add
if the rotations of the bending field and the "black box" (fig. 2) have a
certain relation. It is only necessary to correct the dangerous Fourier-com-
ponents of the rotations contributing to the relation. It will be shown that
for the closed-orbit, the betatron, and the synchrotron oscillation similar

correction schemes can be developed.

3. The Strength of the Depolarizing Resonances

3.0, General remarks on the influence of aperiodic perturbations on the deqree

of polarization

In the following the strength of the depolarizing resonances excited by photon

emission is calculated.

The argumentation in this chapter is similar to the argumentation found in
several papers, e.g. Yokoja /12/. Details can be found in these papers.
The BMT-equation for the spin of an electron in the aperiodic field

w(t) must be solved (see eq. 4)

=

ds & A =
—d—t' = (QCD(t) +w(t)) x s (5)

.
with 0 o *-+ Periodic field on the closed orbit and w (t) ... aperiodic field



The equation can be solved by & perturbation approach:

g = _l'; = (S_b:
A is the solution of the BMT-equation on the closed orbit (see chapter 2).
The vector 63 is combined by the eigenvectors of the BMT-equation (eq. 2) ;,ﬁ,
;* with unknown coefficients :
§5 = an + —= bl + — brIx
V2 V2
If w(s) is small compared to @0 a is equal to zero, b can be calculated as
b o= W7 | o(t) me(t)  dt (6)
t=0
|68]|% is given by |65 = bb* (t+e) (7)

3.1 The Strength of the Q_-Resonance
e

After the emission of a photon the electron performs inter alia vertical beta-
tron oscillations. To calculate the resonance strength b, w (t) is calculated
first. Then it will be shown that the integral b (eq. 6) can be expressed as a
product of a ring-periodic integral and a resonance factor. The reference
frame is given in fig. 3.

We assume an electron moving on the (nominal) closed orbit with nominal
energy. After the emission of a photon, the electron has lost the energy §&e.
The emission of the electron changes the direction o#‘the electron. Firstly,
the recoil of the photon changes the direction by a small angle of the order
LA Secondly, if the vertical dispersion at the point of emission is not
zero the electron starts to perform betatron oscillations around the

of f-energy closed orbit (fig. 4).

The distance of the electron from the nominal closed orbit is given by:

—t/TS

§z(t) = ézﬁ(t) e_t/Tz + &g cosvé(t) DZ(S) e (8)

éz ... betatron amplitude

B
Vé ... synchrotron phase
D2 ... vertical dispersion, ringperiodic function DZ(S+L):DZ(5)
Tz/s damping time for vertical and longitudinal motion

$ .... the length variable along the ring, s is regarded as a function of t
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Calculation of w(t) : due to vertical oscillations the electron experiences a
radial magnetic field along its path. For a radial field @ (t) is given by
(see eq. (1))

-+ e -+

wlit) = o (1 + ay) Bx e, (9)

B)< is the product between the gradient and the position:

E
B (t) = = 8z(t) k(s)
X | 22

EO ... nominal energy of the electrons

e

E 8z
a

k(s)... gradient field k(s) =

B, is inserted into w(t) using the expression for §z from eq. (8)

w(t) = C (l+ay)k(s){628(t) T, EX - Gecosqé(t) D_(t) e_t/Ts} (11)
The following calculation for the strength of the Qz—resonance takes into
account only the first part in the brackets :
-t/

w(t) = C (1+ay) k(s) sz4(t) e % &
The second term in the brackets leading to Qs—resonances is discussed in the
folloving chapter. v
This expression for w(t) is inserted into b (eq. 6). It is shown in the

appendix A that :
e—Zﬂi(ya +Q)

b=C : (12)
-2mi
e (ya£Q_)
B8 34 d - N
| z g ex(TQim) ﬂi; k(s) ds
S
0

The depolarization is expressed by an integral around the ring including the
optics-parameters ¥ and B and the H} f', m-vectors. C is a constant including
the optics-parameters at the emission point. From the denominator the
conditions for resonance are obtained:

Ya = n % Gz



3.2 The Strengths of the O  and O -Resonances
=

In the last chapter the strength of the Q_-resonance wag calcoylated to

S 4L
ﬁZﬂi(aytDZ) o" tiv, ig R
b =C = [ e Fe e (-i) /B i(s) ds (13)
- 2mi(ayxQ.) S :
i 0]
e =5 |

In the following the coupling between horizontal and yertical motions due
to skew quads etc. are neglected. The influence of these effects on polari-
zation is discussed in detail in a paper published 1972 by Derbenev and
Kondratenko /14/. In this case of an uncoupled machine a similar calcula-

tion can be made for the horizontal betatron motion exciting the Q -reso-

nances:
-2mi(ay rﬂx) SG+L siy
By il i [ o ®g® S;(fliéb A k(s) ds (18)
X ﬂ2ﬂi(ayiﬂx) SD X

e -1

The influence of the synchrotron resonances on the depolarization is given
by 2 terms: a contribution from the wvertical motion is explained in
eq. (11):

-t/TS

GZD = 8¢ Cos?é(t) szs) e

and an analogous contribution from the horizontal motion

=Lty
SXD = 8¢ cos?g(t) Dx(s) e
- - -
The disturbing field w(t) = (ya+l) (e 8z, k(s) - e 8xy k(s)):
_2mi(ay4] ) Sgt
o S ilﬁPS 1B . - o
b =¢C | e e’ (e.D_-e D_)(I-im) k(s) ds (15)
5 7 Z X w
-2mi(ayxQ ) S
5 (8]
e -1

These three expressions had been derived by Yokoya 1982 /12/.

The correction schemes suggested in the following reduce the strength of

the resonances by reducing the value of the three inteqrals bz/x/s'



4. Compensalion of the Depolarizing Effects Caused by Closed Urbit

Distortions

In the following the depolarizing effect caused by the deviation of the
n-vector ¢ from the vertical axis is discussed. It is shown that the
deviation is driven by Fourier-components of the closed orbit. By a special
orbit-correction scheme it is possible to reduce these Fourier-components,
to reduce the deviation of the 3-uector, and to improve the degree of
polarization. This cure reduces the strength of the QX and Qz—resonances.
By reduction of §n the vertical components of 1 and a-get smaller. The

product of 1,m and gz in egs. (14) and (15) also becomes smaller.

The n-vector is a solution of the BMT-equation:

-+
dn

G = % (ﬁo + 65) X ; (16)

. . = - 7 3 .
ﬁo contains the field on the ideal orbit, 8@ the additional fields on the

real closed orbit. Both quantities are ring-periodic.
With [6%] << [Q | the following solution is possible

_IrI:_r:O+ Gr_; L1

-+ . - < - -
where nO is the n-vector on the ideal closed orbit., It is shown in /6/ that

the solution for 6; can be written in the form

s+L s+L

Rt | - —E ({ | 60 cospds}? «[ | 60 sing ds)
2(1-cos2m vya) s . s x o an
with 8 (s) = = (1+ay B_(s)
X my

@ = ay a is defined in eq. (2)



As shoun in fig. 2 the B -ficlds are located between the bending magnets.
x

s5+L
The integral | ... Ccan be written as a sum :
s
S+ S
J owew =1 T ..o (18)
i
s S.
;
S. ... end of the bending magnet i
i
S:.1 beginning of the bending magnet i+l
i+
o ... deflecting angle of the electrons after bending magnet 1
N N B
> (1+ay) e Zi+] 5 )2}
|6n| = {( ] sin B fer | B, ds)? +( ) cos Y0, oy i B, ds
2(1-cas2may) i=1 s i=1 s,

(19)
o 241
The integral mey | Bxds is known as the change of the angle of the

S.
1

closed orbit between two bending magnets Az} (see fig. 2).
With this definition I5;| becomes:

N

N
(1+Y8) {( E

- _ : 1 y2 1y2
|6n] = S —casZrva) sin aya, Az!)® + ( ¥ cos aya, Az!) } o (20)

=] i=1
Az' can be expressed as a Fourier-sum
(=]
A E (a cosan + b _sinan)
n n
n

If ay has a half-integer value (ay = n+0.5) |é0| is proportional to

3 (a g + b 2)
(k-ay)? k k

; ; ) o5
The Fourier-harmonics k=n and k=n+1 have the strongest influence on [6ﬂ|-



Caorrection Scheme: The field errors in a storange ring are  randomly

distributed. With the help of correction dipolers the deviation of the
closed orbit can be reduced to a mean value of approximately 1 mm., An
example of the degree of polarization with such closed orbit deviations is

given in fig. 5A.

In the storage ring PETRA a harmonic orbit correction scheme was
successfully applied /6/. The scheme reduces the Fourier components next to
the spin-tune. A vertical correction coil changes the orbit and therefore
the amplitudes of all harmonics. The currents of B coils can be changed in
such a way that only one amplitude of the four amplitudes next to the spin
tune is changed. The four dangerous harmonics can be compensated

successively.

For this method the ring symmetry is used in the following way. A machine
with four identical quadrants is assumed (i.e. PETRA or HERA). Each
quadrant is mirror-symmetric with respect to its middle axis (Fig. 6). The
eight vertical correction dipoles are installed in the octants at symmetric
positions. If dipole 1 is turned on the vertical closed orbit gets a kick

61' 62 becomes /6/ :

Vﬁz(s) Bz(s )

§z(s) = cos ([&k(s) = ?Z(sl)| - WDZ) GL (21)

ZﬂSinﬂQz

S; ... position of the correction coil

From 6z(s) the rotation angles of the spin between the bending magnets
Ya ﬂzi are calculated. The Fourier amplitudes 3, and br1 for the n-th har-

monic component are given by:

anl N cos
= 3 (na.) Az! (a.) (22)
: ; i 1 i
b 1=1 sin
nl
The index . relates to the n-th harmonics of the first correction coil.
For the calculation of these amplitudes the computer-code FURIE was

developed.
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The amplitudes for the other coils are related to the amplitude of the

first coil by symmetry conditions, i.e. for the second coil we obtain
§2.( @) = 8z, (& _a.) (23)
2 1 1 4 i
and for a1 an:
N
42 cos -
= 3 . (na.) az! (5 -a.) (24)
b sin i L =2 i
n2 11
substituting « s % the relation between the amplitudes of the

second and the first coil is

n.m == T} M

8n2 = cOos - anl + sin 5 bnl

(25)
b = 18495 D—E-a - COos L b
nz 2 nl 2 nl

The Fourier amplitudes of the other coils are calculated in a similar way.

(see table 1, appendix B).

If the currents of the 8 coils are changed in the way indicated in table 2

(appendix B) only one of 8 amplitudes is changed. E.g. if the currents are

Il = I 15 = =1
12 = + a}/b3l 16 = _83/b3I
I3 = —33/b31 17 = 33/b31
Ia = =] 18 = 1
only the amplitude A el is changed, all other seven amplitudes remain

constant.

—+
The deviation of the n-vector from the vertical can be reduced by this
method by a factor in the order of 10. The clesed orbit itself changes only
slightly. The improvement of the degree of polarization using this method

is shown in fig. 5C.
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5. Compensation of the Depolarizing Effects Caused by the Vertical Dispersion

The wvertical dispersion is for the most part produced by closed orbit
deviations in the strong interaction quadrupoles. The vertical dispersion
contributes to the strenqth of the Q_-resonance. The dispersion can be reduced

by correcting the closed orbit in the interaction region in the following way:

With correction dipoles it is passible to minimize the deviation of the

vertical closed orbit along the interaction region without changing the orbit
-

in the arcs and, as a consequence, the n axis. This correction reduces the

vertical dispersion and improves the degree of polarization (fig. 5B).

Beside this evident method a more sophisticated method will be derived in the

following by compensating the dangerous fFourier-harmonics of the dispersion.

The depolarization strength of the Qs—resanance driven by vertical dispersion
is
s+L .
, s ig > o
bs(uert. dispersion) v | e e’ e, DZ (&+im) k (s) ds
S

(This is the second part of eq. (15) ).

F = =)=
Assuming n = e,
s +L
i
e

bs(uert. dispersion) n D, k (s) ds

w —0

]

(It is assumed that the synchrotron phase changes only slightly during one

turn.)

Dz'k 1s proportional to the radial field on the dispersion orbit. The further
calculation is similar to the calculation of the deviation of the 3~uect0r-

(compare eq. (17)).
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The integral has to be taken over the radial field D7k(s} instead of the
radial field 6Qx. Instead of correcting the Fourier components of the

closed orbit the fourier components of Dé near the spin tune ya have to be

minimized
M N
: 7 > 3 & : . t 2 = ] 2
bs(uert. dispersion) = ( E 51ﬂ\aaiﬂDzi) + () cosyaai&Dzi)
i=] i=1
Dy 4 e B = !
& Zi Dzi+l Dz i

This can be done by the help of B beam bumps at symmetric positions. The
bumps have to be moved in a similar way as the 8 dipole coils for the

correction of the Fourier amplitudes of the closed orbit.

6. Compensation of the Q -Resonance
L

Different from QX/S“resonances vhich exist only in an imperfect machine
several Qz-resonances can be seen even in an ideal storage ring. They are
excited by the recoil of the emitted photons. In an imperfect machine with
a nonvanishing vertical dispersion the oscillations and therefore the

Gz—resonance are much more stronger (see chapter 3.1).

To compensate the szresonances the Fourier components of the betatron-
trajectories have to be changed. This can only be done by changing the
gradient fields of the quadrupoles. The following argumentation is divided
into two parts. Firstly, the resonance strength is calculated from the
Fourier components of the betatron trajectories. Secondly, it is shown how
the resonances can be compensated by B quadrupoles at symmetric positions

of the ring.

In a flat machine with small distortions eq. (13) becomes

ezm(vatﬂz) s+l Ly 4 .
bz(S) z I —ZHi(Yaiﬂy) J e e Bz k(s) ds (29)
e - 5



There exist two different types of resonances:

ya = n + DZ ( + type)
(30)

ya =0 -0 ( - type)

leading to two different integrals l+ and I in the expression for bz.
On the resonance ¢ = yaa = (n % Uz)a is fullfilled.

Therefore the integrals are given by

o ina Ai(%é_aza)
I = [ e e /ﬁ; k(s) ds
° (31)
g+l o +i(?%—QZG)
I = f e e Vﬁ;_ k(s) ds

PZ—Q = o ,%ﬁ and k(s) are ring-periodic. The strength of the resonances

is proportional to the square of the integral in eq. (31):

ya = nwﬂz
2 _ 2 2
I+/_ = falibz) + (aztbl) for Ya = n+0 (32)
The coefficients are .
a s+L
Ly ] SIN (hy) (cos¥ cosQ o+ sin¥ sin 0 a)/B_ k(s) ds
cos z 7 z i s
bl s
(33)
A s+L
L | SN ha) (cos ¥ sinQ o - sin% cos Q a)/B_ k(s) ds
b cos z z z z z
Z s

These coefficients are calculated by the program FURIC using the equation:
bl cos azé ‘

Yy /B k(s) ds = = i+1 i \

Fid (BQJ

sin §- .
S . ?z Az! 7o - 7
1 3 3.



The integration 1is performed from the end of bending magnet i to the next

ane.,

&2;/5 is the change in the angle of the sine- and cosine-like beta-

tron trajectory between the two bending magnets (fig. 2).
The coefficients a and b can be written as a sum:

sin

& N na.(cosl a. Az' +sinQ a. Az' )
i cos i z i “eci z i “si
I = J (25)
9y &=k Aln no.(sinQ o. Az'.-cosQ a.Az'.)
5 cos i 271 T pd i 8i
Z2

Machine Without Gradient Errors

For a symmetric machine without gradient errors only the resonances
e P-n-Qz occur. (P is the periodicity, for PETRA and HERA P = 4).

All the other Qz—resonances do not appear due to the fact that the

integrals (eq. 31) are zero for n # P k.

Fig. 7 shows the quresoﬂances at PETRA in the energy region between 14 -
16 GeV, calculated by the SLIM-program /7/. The relative strength of the
resonances is calculated by a Fourier analysis using eq. (32). The strength

of these resonances depends only on the optics for the ideal machine.

Machine With Gradient Errors

In a non-ideal machine the symmetry gets lost due to the gradient errors of
the magnetic fields. All Qz—resnﬂances occur. Field errors also change the
symmetry but the influence on the strength of the Dz—resonances is very

small.

Fig. 8 shows the degrec of polarization as a function of the beam energy

for the resonances ya = N, + 26 and ya = 73 - Q. The ecalculation is per-
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formed with randomly distribulted gradient and field errors. The so-called
MEB-optics was used ( 67 = 8 cm at the interaction pnints). The strenqgth of
the gradient errors is chosen in such a way that the G?—Functiom differs by

about 10 % at symmetric points.

Curve A: The same random distributed field errors as in the

calculation of fig. 5a are assumed.

Curve B: The correction schemes for the correction of the OS and
Qx—resonances were applied. After the correction the degree

of polarization is mostly limited by Q_-resonances.

One possibility to change the influence of the resonances is a change of
the Q_- value. During the operation of the machine this can be done only to

a limited extend.

Another possibility is the reduction of the depolarizing strength of the
resonances. In the following it js shown that this can be done with the

help of 8 quadrupole magnets,

Correction scheme:

If an additional quadrupole field 6k(s) is switched on the beam optics

changes. If 8k(s) << k a linggy approach is possible:

3

G = BD -+ SG
Fo Wy * tf,z

The betatron trajectories qof bhis SerrrETes aEe BLVE by

(s) = A .
%o T sin (4 e0)

¢ has an arbitrary value, a te barit
5 a constan

The betatron trajectories jy Bhw dpstoresd BuEiss aee

z(s) :A'ﬁ;%ﬁshﬂ?'+6+6%9
z



For small perturbations we get

(s =2 4 6z
o
with

8§z = (£ —— sinl¥ +8) +v/8 §¥ cos(y¥ +6))-a
5 2 0o z R

If more than one additional quadrupole field is switched on, the effects of
the different quadrupoles on the betatron trajectories adds linearly. The

Fourier amplitudes of the trajectories also add up linearly,

In the following the correction of the amplitudes for the 4n+2 harmonics
component is demonstrated. The numerical calculations are performed for the

resonance ya= 26 + Q_ (and for vya= 73 - QZ).

A gradient error is caused by changing the strength of the quadrupole Q1.
The harmonic amplitudes al(ul), bl(ml), az(Ql) and b2(01) of the betatron
trajectories caused by the change of the quadrupole strength are calculated

by using eq. 36 with the program FURIE.

The strength of the resonance ya= n in is defined by
2 = 2 _ A2 z
(al * bz) + (a2 + bl) = A 5 B%;

]

For the change of the first quadrupole A and B are given by :
A(QL) = a,(Ql) £ b,(Q1) ,  B(Q1) = a,(Q1) * b,(Q1)

The amplitudes of the 4n+2 harmonics caused by the other seven quadrupoles
at symmetric positions in the octants are related to the amplitudes of the
first quadrupole due to symmetry conditions. The amplitudes can be found in
table 3, appendix B. The currents for the quadrupoles are changed in such a
vay that only one amplitude is changed. These currents are wused to

compensate A and B for the 26 and the 73 harmonics.
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The improvement in the deqree of polarization after applying this method on
the distorted ME8-optics is shown in fig. 8. Curve C shows Lhe degree of

polarization after applying all three correction schemes.

Fig. 9 shows the degree of polarization in an opties where only the
A-amplitude has a nonzero value. The strength of a set of quadrupoles was
changed step by step. The depolarizing resonance vanishes when A is

cancelled.

In a machine with gradient errors all Q_-resonances are found. The
strongest are still the resonances vya=z Pn t QZ. Their strength differs by
more than a factor of 10 (see fig. 7). The working point of the machine

should be chosen to be as far as possible away from these resonances.

The influence of the weaker &4 -resonances can be compensated by the
harmonic correction. If the currents of the B quadrupoles are changed by
(1,1,1,1,1,1,1,I) or (I,-1,1,-1,1,-1,1,-1) the resonance strength changes.

This was done for the correction of the resonance vya= 2£4+Dz (see fig. 10).
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APPENDIX A: Calculation of the depeolarizing strength b

ey = _t/T_’
The aperiodic field w(t) is given by w(t) = C (l+ay) k (s}.ﬁzge Zex

wvith the betatron amplitude /13/

ézﬁ(t) = v¥B (s) (C cos¥ +S siny ) (A1)
Z zZ Fai
C = - k. de D
/B sl
z0
o
S = o« fp 222 .0 0V - BY)
/[_3_‘ Z0 Z0
z0

B, a are the opties functions, the subscript 5 indicates the point of
emission. &y is the kick from the recoil of the photon V&(s)... betatron

phase with ¥ = 0.
z0

628 can be written as a complex function:

L iy i -iw
Bz. =8 (B "2 em %o W VGZ(S) (A2)

The constants ¢ and Vb contain the optics parameters at the point of
emission.
Combining 6z, with %, b (eq. 6) becomes
o +iY iy iy -iy ; ~tft
b=0] (8 "8 " 8% 9% S; (1-im) e*lﬁ/ezis) k (s) e Zdt (A3)
t=o

The integral can be written as:

[ wne® | s & ] T ... revolution time.

]

The integrand includes the ring periodic functions Ex‘ 1, %, B and k. The
z
betatron phase 9} and the spin phase @ can be written in a quasi periodic

way

vz(t-wo) = ué(t> - uz

—
I
w0

St

2 (t—TOJ g(t) - 2nya



- I =

With a transfarmation of the variable t = t - TO using eq. A4 Lhe integral

18

I — 8

E=T

[sa] l [ea]
J -Zﬂiiyaiﬂz) Jooe (Ré)

This expression is inserted into eq. A4. After a simple transformation

equation (12) is obtained.



Appendix H:

Table 1

Fourier amplitudes of 8 correction coils at symmetric positions.

The currents of the first coil are denoted with 3, bO etc. It is shown in

the table how the currents of the other coils are related to the

amplitudes of the first coil.

Egﬁgéi;nt a(4n) b(4n)  a(4n+l) b(an+l) a(en+2) b(4n+2) al(dn+3) b(an+3)
coil in
octant
. % Py i b ®2 B ?3 b}
2 a, _bG bl a; -3, b2 —b3 -ay
3 2 bU -bl a; -3, —b2 b3 -aq
4 a, —bD -3, bl 3, -b2 -84 b3
5 3 bO -3, —bl a, b2 -84 —b3
: 3 by iy | o2 s, b5 Ay
7 ag by by -3, -a, b5 by a
8 a, -bg a -b 4y -b, ay ~by
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Table 2:

A correction scheme were only one of eight Fourier coefficients is influen-

ced. The magnitudes are defined in the previous table.

aeN)  B(AN) ALGN+D) B(4N+1) ﬁ(aN+M

1 L ; : : I 1 b i -b,/a i
2 I -1 ag/byl by/asl -1 I --al/blI —bl/all
; ‘ I -ag /byl by/asl . -1 e/ . 1 L

I =¥ -1 I 1 -1 ’I B
: 1 I oif 1 I I /b‘l L
& I - -as/bjl —bj/a3I -1 I al/bll bl/alI
g I I aj/bjI —b3/33I -1 -1 -a, 1I 1 EI
q 1 = I | I -1




e B
Table 3:

Compensation of Fourier components of the betatron motiom by quadrupoles at

symmetric positions.

The current change of the first quadrupole is denoted with A, B, C etec.

Fourier component
for for for for
quadrupole ay= n—QZ ay= ﬂ+az ay= n"Qz ay':n+Qz

- a b
in octant 3l ban+1 aan+l ban+l g un+2 Bune2 Zanez Pun+2

oo

1 A B C D E F G !
2 B A D K, -€ Pk H
3 N A -0 5 -E fr =B =
4 A B ) _D E =1 i H
5 _A -B - D 2 F G :
6 -B A D c € = -
7 B A D c -E ~F =b =
8 A -B C D E uil . %



= S

References

J1/ R. F. Schwitters et al., Phys. Rev. Lett. 35(1975) 1320
and G. Hanson et al., Phys. Rev. Lett. 35 (1975) 1320

L2 V. A. Sidorov, 1983 Cornell Symposium on Lepton and Photon
Interactions at high energies (Cornell, August 1983), Revieuw

article

L3/ H. D. Bremer et al., AIP Conference Proc. no. 95, High Energy
Spin Physics 1982, Brookhaven Nat. Lab.

/4/ HERA-proposal, DESY HERA 80/01

/S/  A. Chao, K. Yokoya, KEK 81-07, July 1981, TRISTAN (A)

/6/ R. Schmidt, Thesis university of Hamburg and DESY M-82-22 (1982)
/7/ A. Chao, NIM 180 (1981), 29

/8/ A, A. Sokolov, I. M. Ternov, Sov. Phys. Dokl. 8 (1964) 1203

/9/ V. Bergmann, L. Michel, V. L. Telegdi, Phys. Rev. Lett. 2(1959) 435

/10/ Ya. S. Derbenev, A. M. Kondratenko, A. N. Skrinsky, Sov. Phys.
Dokl. 15 (1970) 583

117 A. Chao, SLAC-PUB-2781 (1981)
£12f K. Yokoya, KEK-81-19 (1982) TRISTAN (A)

FS13/ K. Steffen, Varenna conference 1969

/14/ Ya. S. Derbenev and A. M. Kondratenko, Soviet JETP 62 (1972) 430



