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Compensation of Gravity-Induced Errors

on a Hexapod-Type Parallel Kinematic
- Machine Tool*

Soichi IBARAKI**, Toshihiro OKUDA**,
Yoshiaki KAKINO**, Masao NAKAGAWA***,
Tetsuya MATSUSHITA*** and Tomoharu ANDO***

This paper presents a methodology to compensate contouring errors introduced by
the gravity on a Hexapod-type parallel kinematic machine tool with the Stewart
platform. Unlike conventional serial kinematic feed drives, the gravity imposes a
critical effect on the positioning accuracy of a parallel kinematic feed drive, and its
effect significantly varies depending on the position and the orientation of the spindle.
We first present a kinematic model to predict the elastic deformation of struts caused
by the gravity. The positioning error at the tool tip is given as the superposition of the

deformation of each strut.

It is experimentally verified for a commercial parallel

kinematic machine tool that the machine’s contouring error is significantly reduced by
compensating gravity-induced errors on a reference trajectory.

Key Words: Machine Tool, Motion Control, Parallel Kinematic Machine Tdol,
Gravity-Induced Errors, Contouring Accuracy

1. Introduction

Most of machine tools in today’s market are
driven by feed drives that are aligned serially. For
example, a 5-axis machine typically has three ‘linear
axes aligned orthogonal to each other, and two rotary
axes aligned parallel to linear axes. As a counterpart
to such a mechanism, which is referred to as a serial
kinematic machine in this paper, parallel kinematic
feed drives have recently attracted increasing atten-
tion for application in a machine tool due to their
potentials in high-speed and high-accuracy 6-DOF
(degrees of freedom) positioning. For example,
compared to serial kinematic machines, the moving
mass in parallel kinematic feed drives can be smaller
since they do not need guideways, which is an advan-
tage for high-speed and high-acceleration positioning.
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In parallel kinematic feed drives, an error in each axis
does not impose an accumulating effect on the
machine’s positioning accuracy, which is a potential
advantage for high-accuracy motion control®,

The first prototype of Hexapod-type parallel
kinematic machine tools was introduced to the public
in 1994 by Ingersoll and Giddings & Lewis. A compre-
hensive review on the development of the parallel
kinematics for machine tools can be found in Ref.(1).
Although more than ten years have passed since the
first commercial parallel kinematic machine tool was
introduced, they are not widely accepted in today’s
industry.
parallel kinematic feed drives, there are critical and
inherent issues with their application in a machine
tool®. One such issue is the stiffness; in a parallel
kinematic machine tool, a spindle unit is supported
and driven by struts only. It typically exhibits lower
stiffness against an external force, compared to con-
ventional feed drives with a guideway that introduces
higher friction.

Furthermore, for parallel kinematic feed drives,
the position and the orientation of the tool can be only

Despite many conceptual advantages of
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indirectly estimated from the angular position of
servo motors, unlike in the case of conventional serial
kinematic feed drives. Therefore, for their high-
accuracy motion control, the calibration of various
kinematic parameters, such as the reference length of
struts and the location of base joints, is a critical issue.
There have been many research works found in the
literature on the calibration of kinematic parameters
to improve the positioning accuracy of a parallel
kinematic machine tool. For example, Weck and
Staimer® used a redundant leg, and Soons® used a
laser interferometer to measure the -machine’s
contouring error at the tool tip in order to indirectly
identify kinematic errors. The kinematic calibration
method based on circular tests® has been widely
accepted by the industry due to the simplicity of its
measurement procedure (Ota et al.®, Oiwa et al.®,
and Takeda et al.”). In our previous work®, we also
presented a calibration methodology based on circular
tests considering the gravity effect. By applying the
kinematic calibration, the circularity error was
reduced to as small as 5 pm, when the spindle was
located near the center of the workspace. However,
when the spindle was near an edge of the workspace
and was tilted, or when its tilt angle was large even
though it was located near the center of the work-
space, the circularity error became as large as 200 pm
at maximum. This error is commonly observed in any
types of parallel kinematic machine tools, and it
cannot be completely compensated even when
kinematic parameters are accurately calibrated.
This error is attributable to the elastic deforma-
tion of struts caused by the gravity. On a parallel
kinematic feed drive, the effect of gravity on the
machine’s positioning accuracy significantly varies
depending on the position and the orientation of the
spindle. It becomes particularly large when the spin-
dle is located near a singular point of parallel
kinematics. The motion accuracy of conventional
serial kinematic machine tools also degrades near an
edge of the workspace or when the tilt angle is large.
In the case of parallel kinematic machines, :this is
more critical since it does not have a guideway to
support against gravity. If the effect of the gravity
can be accurately predicted a priori and compensated,
the motion accuracy can be significantly improved
over the entire workspace, assuming that the error in
the calibration of kinematic parameters is sufficiently
small. Weck et al.® presented a compensation
method of gravity-induced positioning errors based on
a simple kinematic model considering only the axial
deformation of struts. Ota et al.® also presented a
compensation scheme based on a more complex model
considering the elastic deformation of joints as well.
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This paper first presents a simulation model to
predict gravity-induced contouring errors on a Hexa-
pod-type parallel kinematic machine tool. The
proposed model considers the elastic deformation of
each strut due to the gravity imposed on a platform
plate, a strut, a joint, and a servo motor, as well as the
rotational friction in a base joint. The accuracy of the
proposed model is validated by comparing servo
motor loads for each strut and their estimate by the
proposed model. The proposed model is simpler than
the one presented by Ota et al.®®, and the parameters
included in the model is easier to identify by simple
identification tests. When its parameters are properly
identified, it is experimentally verified that the model
exhibits an excellent prediction performance.

It should be emphasized that the motion error due
to the miscalibration of kinematic parameters must
be minimized in order for an effective gravity compen-
sation. When the kinematic parameters are calibrat-
ed in a sufficient accuracy, the motion error due to the
gravity can be accurately predicted by using the simu-
lation model. By compensating the predicted position-
ing error on a reference trajectory, the machine’s
contouring accuracy can be significantly improved
over a large portion of the entire workspace.

The remainder of this paper is organized as fol-
lows. The following section briefly reviews the
configuration and the kinematics of a Hexapod-type
parallel kinematic machine tool with the Stewart
platform. Simulation and compensation schemes of
gravity-induced motion errors on Hexapod-type par-
allel kinematic machine tools are presented in section
3. Section 4 presents the experimental validation of
the proposed compensation scheme. Section 5 gives
the conclusion of this paper.

2. Configuration and Kinematics of a Hexapod-
Type Parallel Kinematic Machine Tool

2.1 Configuration of a Hexapod-type parallel
kinematic machine tool

This paper presents a compensation scheme of
gravity-induced errors on a parallel kinematic feed
drive of the Stewart platform®® depicted in Fig.1. It
has six telescoping struts, each of which is connected
to a base plate by a 2-DOF joint. The other end of a
strut is connected by a 3-DOF joint to a platform
plate, where a spindle is installed.

Figure 2 shows a schematic view of COSMO
CENTER PM-600 developed by Okuma-Corp., a com-
mercial Hexapod-type parallel kinematic machining
center with the Stewart platform, which is used as an
experimental machine throughout our study. Table 1
shows its major specifications. Each strut is driven by
a built-in servo motor via a ball screw. The “length”
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Table 1 Major specifications of PM-600

‘Workspace, mm ¢600 (XY) x400 (Z)
o ‘ . (420 x 420 x 400)
Maximum tilt angle, deg +25
Maximum rapid traverse speed, m/min 100
Maximum scceleration, m/s? : 14.7
Spindle speed, min~* 12,000/30,000
Spindle power, kW 6

Spindle T

Fig. 1 Stewart platform

Fig. 2 A Hexapod-type parallel mechanism machine
tool, COSMO CENTER PM600 by Okuma Corp.

of each strut is indirectly measured by a rotary en-
coder installed in a servo motor.  In this paper, six
joints on the platform plate are referred to as plat-
form joints, while those on the base plate are referred
to as base joints.

2.2 Inverse and forward kinematics of the

Stewart platform

.In Fig.1, T=[X,Y,Z, A, B, C] represents the
position and the orientation of the spindle tip (tool
tip). When T is given, the problem to calculate the
length of each strut, L=[Li, -, Le], is called the
inverse kinematic problem. It is denoted as:
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L=%(T) (1)
where:# represents the inverse kinematic function of
the Stewart platform. Note that & is a function of
the location of platform joints, P, R*(j=1-6), and
the location of base joints, @;=R*(j=1-6). The
inverse kinematic problem for the Stewart platform
can be algebraically solved®. On the other hand, a
problem to calculate T for the given L is referred to
as the forward kinematic problem :

T=% L) (2)
The forward kinematic problem of the Stewart plat-
form cannot be algebraically solved. In our simulator,
the Newton-Raphson method is employed to numeri-
cally solve it.

3. Estimation and Compensation of Gravity-In-
duced Positioning Errors

3.1 An estimation model of gravity-induced
positioning errors
This section presents a simulation model to pre-
dict the axial force imposed on each strut by gravity.
The positioning error at the tool tip is estimated as
the superposition of the elastic axial deformation of
each strut, which is proportional to the axial force.
In our previous study“?, we presented an FEM
analysis on the experimental machine to show that the
positioning error in the XY plane due to the gravity is
mostly caused by the axial deformation of struts. The
contribution of the bending of struts on the contouring
error in circular tests is much less than that of the
axial deformation. Therefore, we only consider the
axial deformation of each strut and ignore its bending
to estimate the positioning error at the tool tip.
Although we have not experimentally validated this
analysis, we assume that this simplification is reason-
able, since the proposed model without the considera-
tion of the bending of struts showed good estimation
performance, as will be shown later. The simulation
model proposed in this paper assumes that the force
acting on each strut.is attributable only to: 1) the
gravity and 2) the friction on a ball screw and ajoint.
Sections 3.1.1, 3.1.2 respectively discuss the simulation
of each component. ‘
3.1.1 Gravity model for each strut  First, for
convenience of notation, we define the following func-
tion, I"1s(z): RS~ RS by :
3 (w:h)
FI,B(.Z‘): le ’ (3)
Z‘i (B; X 2;1;)

where ;€ R® (j=1 - 6) represents a unit vector in the
direction of the j-th strut. B;SR®(j=1-6) repre-
sents the location of the center of the j-th platform
joint with respect to the center of gravity of the
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platform plate. Note that I; and B; are dependent on
the tool position and orientation, 7. The symbol X
denotes the outer product of two vectors. Notice that
when z; represents an axial force on the j-th strut, the
first three components of the vector I'iz(x) define the
combined force vector of the axial forces. The last
three components define the combined moment around
the center of gravity of the platform plate imposed by
the axial forces acting on platform joints.

The gravity imposed on the j-th platform joint in
the direction of the j-th strut, §={gj};=1~s, is given by
solving the following equilibrium equation of force
and moment around the center of gravity of the
platform plate :

._Ng:|

Iulg-g)=| ¥ (4)

where N,ER® and M,< R® respectively represent an
equivalent force and moment around the center of
gravity of the platform plate given by the gravity
acting on each strut. They are given as follows.

Figure 3 illustrates a gravity model for each strut.
In the figure, me, ms, m;, and ms represent the mass
(in kg) of the platform plate, the ball screw, the
platform joint, and the servo motor, respectively. 4 is
the distance (in meters) between the rotation center
of a base joint and the center of gravity of a servo
motor, /% is the length of the platform joint unit on a
strut (in meters), and /4 is the length of the ball screw
(distance between the rotation center of a base joint
and a platform joint) (in meters), and L; is the total
length of the j-th strut (in meters). By using this
model, N, and M, are given as follows:

6 6
Ny:mPg‘l_jglNg,j; Mg=]§1Mw' (5)
where g& R® is a vector that represents the direction

and the magnitude of the gravity. On each strut, the
superposition of the gravity acting on a ball screw, a

m.g: gravity on a
servo motor

' m,g  Gravity on a baliscrew

. |_[J_| m,g: gravity on a platform joint

myg : gravity pﬁ a platform plate

v

Fig. 3 A gravity model on a strut
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platform joint, and a servo motor can be represented
as an equivalent moment around the rotation center of
a base joint (see Fig.3). On the j-th strut, this
moment imposes an equivalent force, N,; in Eq.(5),
at the center of the j-th platform joint in the direction
perpendicular to the strut. Similarly, M,,E R® repre-
sents an equivalent moment around the center of
gravity of the platform plate imposed by N,; on the
7-th strut. That is,

mB<Lj— !2_%> + WZ/LJ'— 7%5[1
N= g

Jeke

fz—%> + m1Lj_ mSZ1
g- lj l]
mB<Lj— Zz_§>+m1Lj_mSl1
M:Bjx g

L;

L;
”: mB<L,»*Zz—%>+mij—msll}
—B;X > g-Lil;
(6) .

where the symbol - denotes the inner product of two
vectors. In Eq.(4), the j-th component of the vector
9-€ R° represents the axial component of the gravity
acting on the j-th strut. It is given by:

{gd;=mig-1; (7)
where #2; represents the total mass of the j-th strut.

3.1.2 Friction model for each strut On each
strut, we consider :- 1) linear friction on a ball screw,
and 2) angular friction in a base joint. The total
friction force in the direction of the j-th strut, f=
{Fi}ie, is given by solving the following equation :

2 —N:
FuG=o=| ] (8)
where f,ER°® represents linear friction (in N)
between a ball screw and a nut, and is given by the
following simple model :

—fos (L;>0)

{fb}j_{—}-foj (L,<0) (9)
where fo, is constant. L; represents the axial velocity
of the j—th strut. fo; may depend on the velocity or the
direction of the strut. In our experimental machine,
however, such an effect was sufficiently small and thus
is neglected for simplicity of the model.

InEq.(8), N, and M .= R® respectively represent
an equivalent force and moment around the center of
gravity of the platform plate given by an angular
friction in each base joint. As illustrated in Fig. 4,
angular friction in.a base joint is modeled as an
equivalent force acting on the platform joint in the
direction perpendicular to the strut. N, represents the
superposition of such forces, and M. represents the
superposition of moments around the center of gravity
of the platform plate imposed by such forces. That is,

Series C, Vol. 47, No. 1, 2004



164

_ < cwy
Ne== 2%
6 ) (10)
MCZ’EIBJ'X CZ,)J

where ¢E R is the angular viscous friction coefficient
in a base joint (in Ns/m). For simplicity of the model,
¢ is assumed constant for all the base joints. (ER
represents the feed rate of the spindle unit (in m/s),
and ;& R® represents an angular velocity vector (in
rad/s) of the j-th strut with respect to the center of
the j-th base joint.

3.1.3 Estimation of positioning -error To
summarize the discussion above, when the position
and the orientation of the tool tip, T, are given, the
axial force on each strut can be estimated as follows :
1) for given T, compute the orientation of struts, I,
and the position of platform joints with respect to the
center of gravity of the platform plate, B, by solving
the inverse kinematics problem. 2) Calculate ¢ and f
by algebraically solving Egs.(4) and (8 ), respective-
ly. 3) The estimated axial force on each strut, Fe
RS is given by F=g+f.

The elastic deformation of the j-th strut in the
axial direction is assumed to be simply proportional
to {F},, That is, the axial deformation of the j-th
strut, {AL},, is given by : :

(ALY, ={Keus} A F}; - (1D
where {Keu}; (7=1-6) represents the axial compli-
ance of the j-th strut (in m/N). It is modeled as:

{Kstiff}j:Kle+K2 (12)
where Ki, K2 R are constant for all the strut. As will
be presented in section 3.2, these parameters must be
identified based on actual measurement of the
machine’s contouring error.

The resultant positioning error at the tool tip, AT
ER?® is given as the superposition of the deformation
of each strut. That is,

AT=F L+AL)—T (13)
where TE R® represents the commanded position and
orientation of the tool tip. LER® represents the
reference length of struts given by L=%(T).

3.2 Identification of model parameters

The present estimation model is simple, and the
parameters included in the model can be identified by
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Table 2 Conditions of circular tests for the identification
of model parameters

Name | Center location, mm | Radius, | Tilt angle, deg.
XY Z mm A B
A 0 | 100 -1008 144 0 0
B 0 | 100 -1008 144 -23 0
1.5

Servo motor torque, Nm

0 50 100 150 200 250 300 350
Angie, deg

(a) Condition A

Servo motor torque, Nm

0 100 200 300
Angle, deg

(b) Condition B

Fig. 5 Comparison of measured (T%) and simulated (7)
servo motor torque profiles on each strut (=1 - 6)
in a circular operation

simple tests to measure the machine’s dynamics and
contouring performance. To improve the estimation
accuracy, some of the parameters included in the
estimation model must be experimentally identified as
follows.

The parameters, msin Eq.(6), m; in Eq.(7), f»
in Eq.(9), and ¢ in Eq.(10), can be identified by
monitoring the armature current in servo motors in a
circular operation. In our experimentation, these
parameters were identified based on circular tests
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conducted under two conditions as shown in Table 2.
Figure 5(a) and (b) show servo motor torque
profiles (71 - 75) in a circular operation under these
two conditions. In both tests, the feed rate was 1 000
mm/min, the reference trajectory radius was 144 mm,
and the orientation was CCW (counter clockwise).
The figures also show the estimates of servo motor
torque (7i- 7i) by the present model with the
identified parameters.

It can be observed that unlike serial kinematic
feed drives, servo motor loads in a parallel kinematic
feed drive markedly vary as the position and orienta-
tion of the spindle change. The model parameters are
identified such that the error between measured and
estimated motor load profiles is minimized. The mean
of the error between measured and estimated profiles
is 0.11 Nm in the condition A, and 0.25 Nm in the
condition B.

The parameters, K; and K in Eq.(12), can be
identified based on the measurement of the machine’s
contouring error in a circular operation. Contouring
error profiles are measured by the DBB test (see
section 4) in the conditions A and B given in Table 2.
K and K: are identified such that the error between
measured and simulated contouring error profiles is
minimized. The identified parameters are: ms=22
(kg), m,=250 (N), c=3.5x10"° (Ns/m), £»={110, 130,
160, 130, 160, 160} (N), K1=1.287x10"" (m/N), and K
=7.82x107° (m/N).

3.3 Compensation of reference trajectory

When a positioning error at the tool tip is esti-
mated by using the present simulator, it can be
compensated by simply shifting the command posi-
tion. For the given command position (and orienta-
tion), T suppose that the estimated error is given by
AT. Then, the command position must be sh1fted to
Teomp :=T—AT to cancel the estimated p051t10n1ng
error. ‘

4. Experimental Validation

The validity of the present compensation method
of gravity-induced motion errors was experimentally
verified for the Hexapod-type parallel Kinematic
machine tool described in section 2.1. The machine’s
contouring accuracy was measured by circular tests
using the DBB (double ball bar) device shown in Fig.
6. The distance between the ball A, which is'attached
to the spindle, and the ball B, which is fixed on the
table, is measured by an encoder installed in the bar.
The machine’s contouring error is measured as the
spindle moves along a circular path centering the
location of the fixed ball®?,

First, the estimation:performance of the proposed
model was tested. As examples, Fig.7(a) and (b)
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Fig. 6 A DBB device

i
s

[HEE NN RERE R
[ARRRRRERRRRRRY]

Y, mm

I AR AR

W NN EEN]

10pm/div

-200 -100 0 100 200
X, mm

(a) Center location (X, Y, Z)=(0,100, —1008) (mm),
tilt angle (A, B)=(—23,0) (deg)

250 T - . _—
200+ Measured Simulated

150
100

Y, mm
(@)

-200¢ 10pm/div

200 1000 0 100 200
X, mm .

(b) Center location (X, Y,Z)=(—70, —70, —1008)
(mm), tilt angle (A, B)=(—17, —17) (deg)

Fig. 7 Comparison of measured (dashed line) and

simulated (solid line) contouring error profiles in
a circular operation
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show the comparison of measured and estimated
contouring error profiles in a circular operation at
different locations (Fig. 7(a) : center location (X, Y,
Z)=(0, 100, —1 008) (mm), tilt angle (A4, B)=(—23, 0)
(deg), Fig.7(b) : center location (X, Y, Z)=(—170,
—70, —1008) (mm), tilt angle (A, B)=(—17, —17)
(deg)). In both tests, the feed rate was 1 000 mm/min,
the reference trajectory radius was 144 mm, and the
rotation direction was CCW. Notice that the contour-
ing error trajectory in (a) was used in the model
identification (see section 3.2), while the error trajec-
tory in (b) was not. The figures show good agree-
ment between simulated and measured profiles in both
cases.

Then, the compensation performance of the
proposed scheme for such a gravity-induced motion
error was tested. At every 0.1° from the starting point
on a circular path, the positioning error is estimated
and then the reference point is shifted to cancel it.
Circular tests were conducted with the same center
location of (X, Y, Z)=(0,100, —1 008) mm and vari-
ous tilt angles, A=—25, —23, —20, —10, 0, +10, +20
deg (B=0deg in all the tests). Other conditions in the
circular tests were the same as in the previous tests.

Figure 8 summarizes the circularity error with
and without the compensation in each test. Without
the compensation, the circularity error drastically
increases as the tilt angle increases in the negative
direction. The proposed compensation method
significantly reduces the circularity error particularly
under such a condition. For example, when the tilt
angle A was —25 deg, the circularity error without
the compensation was as large as 200.6 pm. By apply-
ing the compensation, it was reduced to 44.5 pm (77.

10 T
200 4 eeeneens S I S A— :

E . ] . . .

=

T30 VSR U Y DO S n M

&

Z : : : i

& 100 +-Qoeen s - Without. Compensation. ............. :

3 : : : :

.é’ With: Compensation

50 b-- - W - T P SR e :

-25 -15 -5 5 15 25
Tilt angie around the X axis, A, deg.

Fig. 8 Comparison of the circularity error with and
without. the compensation (center location: (X,

Y, Z)=(0, 100, —1 008) mm, tilt angle: B=0 deg,
A=—25- +20 deg) \
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99% reduction). When the tilt angle is smaller, the
circularity error is originally much smaller without
the compensation (when the tilt angle is —10<A <20
deg, the circularity error is less than 15 pm). Even in
such a case, where the gravity does not impose much
effect on the machine’s positioning accuracy, the
proposed compensation scheme can further reduce the
circularity error slightly.

Figure 9(a) shows the comparison of measured
contouring error profiles with and without the com-
pensation when the tilt angle is A=—25deg. As
another example, Fig.9(b) shows contouring error
profiles with the center location of (X, Y, Z)=(-70,
—70, —1008) mm and the tilt angle of (4, B)=(—17,

250

200+
ation
150+

100 sation

Y, mm
©

—-1001

-150

—-2001

10um/div

2507500 —100 0 100 200

X, mm

(a) Center location (X, Y, Z)=(0,100, —1008) (mm),
tilt angle (A, B)=(—25,0) (deg)

250; ; T T ;
2001 With : - Without |
compensation = /compensatipn
150t = ]

100}

2

Y, mm

\ll{

IARERREER LAEI

NN ANBEE 1N

10pum/div

—260 -100 0 160 260
X,mm
(b) Center location (X, Y, Z)=(—70,—70, —1008)
(mm), tilt angle (A, B)=(—17, —17) (deg)
Fig. 9 Comparison of contouring error profiles in a circu-

lar operation with (solid line) and without
(dashed line) the compensation
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—17)deg. In this case, the circularity error was
reduced from 116.2 pm to 35.6 pm (69.49% reduction)
by applying the compensation.

5. Conclusion .

This paper presented a compensation scheme of
contouring errors introduced by gravity for a Hexa-
pod-type parallel kinematic machine tool. The fol-
lowing conclusions are drawn : ‘

1. A simulator to predict gravity-induced errors
was proposed. The simulation parameters are
identified based on measured contouring error profiles
and servo motor current profiles in circular tests.
Simulated contouring error profiles showed good
agreement with measured ones.

2. By compensating a reference trajectory based
on the estimate of the positioning error, the machine’s
contouring performance can be significantly improved
particularly when the machine is near a singular point
in its workspace. When the tilt angle of the spindle
around the X-axis was more than 20 degrees, the

circularity error was reduced by about 809 at maxi-'

mum.

Finally, it should be emphasized that accurate
calibration of kinematic parameters is crucial for an
effective compensation of gravity-induced positioning
errors. If the positioning error due to the miscalibra-
tion of kinematic parameters is large, it is difficult to
distinguish the positioning error caused by the gravity.
In other words, it becomes more difficult to simulate
contouring errors by the proposed simulator. As has
been briefly presented in section 1, we have proposed
a kinematic calibration scheme in our previous works.
Kinematic parameters used in the experiments were
tuned such that they showed the best contouring
performance to date. It may, however, still contain
calibration errors to some extent. If the calibration
error is further reduced, then further improvement by
the gravity compensation is expected.
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