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Abstract—Two methods of compensation of thermal lensing in
high-power terbium gallium garnet (TGG) Faraday isolators have
been investigated in detail: compensation by means of an ordinary
negative lens and compensation using FK51 Schott glass possessing
a negative dn/dT. Key thermooptic constants for TGG crystals
and FK51 glass were measured. We find that the contribution of the
photoelastic effect to the total thermal lens cannot be neglected for
either TGG or FK51. We define a figure of merit for compensating
glass and show that for FK51, an ordinary negative lens with an op-
timal focus is more efficient, but requires physical repositioning of
the lens for different laser powers. In contrast, the use of FK51 as a
compensating element is passive and works at any laser power, but
is less effective than simple telescopic compensation. The efficiency
of adaptive compensation can be considerably enhanced by using
a compensating glass with figure of merit more than 50, a crystal
with natural birefringence or gel.

Index Terms—Faraday effect, laser accessories, laser beam dis-
tortion, laser thermal factors, optical isolators, optical polariza-
tion, optical propagation in anisotropic media, thermal variables
measurements.

I. INTRODUCTION

ECENTLY, the average power of solid-state and fiber

lasers has overcome the kilowatt barrier and continues
to increase steadily [1], [2]. Therefore, the search for methods
of suppressing thermal effects caused by laser absorption in
bulk optical elements has become ever more topical. In partic-
ular, Faraday isolators (FIs) are strongly affected by thermal
self-action, since the absorption in magnetooptical media is
relatively high. A number of papers have been devoted to
investigations of self-induced thermal effects in magnetoop-
tical media [3]-[16]. The absorption of radiation in optical
elements of FlIs generates a temperature distribution that is
nonuniform over a transverse cross section. This leads to three
physical mechanisms affecting the laser radiation: thermal
lensing; a nonuniform distribution of the angle of rotation of
the polarization plane because of the temperature dependence
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Fig. 1. Overview of power loss mechanisms in the spatial polarization mode
after passage of a laser beam through (a) a traditional FI and (b) a birefringence-
compensated FI for use at high average powers. Optical components are
indicated numerically: /, 2—polarizers; 3—half-wave plate; 4—45° Faraday
rotator; 5—22.5° Faraday rotator; 6—67.5° reciprocal rotator.

of the Verdet constant; and the simultaneous appearance of
circular birefringence (Faraday effect) and linear birefringence
due to the photoelastic effect. The latter two mechanisms alter
the polarization state of radiation transmitted through the FI,
deteriorating the isolation ratio. This was studied in detail in
[6], where it was shown that the photoelastic effect makes the
greatest contribution to the depolarization. In [5], novel designs
of FIs were suggested and theoretically justified, in which the
deterioration in the isolation ratio was considerably improved.
Further experiments [8], [12] confirmed the high efficiency of
the novel designs. The influence of laser beam shape on all
these parameters was considered in [10]. The dependence of
the depolarization ratio in differing FI designs on orientation
of magnetooptic crystal was thoroughly investigated in [14].
Another method for compensating depolarization in the FI was
suggested and studied in [15], based on the use of crystalline
quartz cut along its optical axis and placed inside a telescope.
Taking all of these prior investigations as a whole, the most
efficient and convenient design is that of a reciprocal quartz
rotator [Fig. 1(b)].

The isolation ratio is generally the primary but not the only
parameter of interest in measuring the performance of an FI.
In addition, beam distortions are also induced in these devices
through thermal lensing and other mechanisms. In some appli-
cations, these characteristics may be as important as the isola-
tion. An example is an FI in a laser interferometer for gravi-
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tational wave detection [17] or a Faraday mirror inside a laser
oscillator [13], [16], [18] or regenerative amplifier [18].

In the following sections, we consider the performance of
two different FI designs—the traditional single element design
[Fig. 1(a)] and the birefringence-compensated design [Fig. 1(b)]
[5]. The latter type employs, instead of a single 45° Faraday ro-
tator, two 22.5° Faraday rotators and a reciprocal polarization
rotator placed between them, which rotates the polarization at
67.5°. Let us assume that an incident beam FE;,, has horizontal
polarization, Gaussian intensity profile with waist o and flat
wavefront, i.e., the complex amplitude of the field is given in
the form

2
E;, = zoFgexp <2—:2> exp [i(kz — wt)] (1
0

where z is a unit vector directed along the x axis, 7 is the polar
radius, k is the wavenumber, and w is the frequency of the laser
field. We wish to compare the total power losses in the spatial
polarization mode (1) during the first pass (from left to right)
of the beam through each isolator design. In both designs, in
the absence of thermal effects after the first pass, the beam re-
tains its horizontal polarization and passes through a polarizer
2 (while during the return pass the polarization is altered to
vertical and the beam is reflected by a polarizer 1). Because
of polarization distortions in the magnetooptical medium, part
of the radiation will be reflected by the polarizer 2 after the
first pass. The corresponding power loss vy, (henceforth, called
polarization loss) is determined as a ratio of radiation power
reflected from polarizer 2 to radiation power incident on po-
larizer 2

2w oo
[ de [ |Ey-yo|*rdr
T = ° 27 : oo (2)
[ de [ |Es?rdr
0 0

where ¥, is a unit vector directed along the y axis, ¢ is the az-
imuthal angle, and E5 is the complex amplitude of the field be-
fore the polarizer 2. Here (and later), we assume that the clear
aperture of FI is such that the aperture losses can be ignored and
the integration over r can be extended to infinity. The compo-
nent of the field transmitted through the polarizer, E; , is lin-
early polarized (polarizer 2 is assumed to be ideal), but its trans-
verse structure now differs from the incident Gaussian beam E;,,
because of the spatially dependent amplitude and phase distor-
tions introduced during propagation through the nonuniformly
heated magnetooptic medium and the polarizer. We define a
second quantity, ~s, as the difference from unity of projection
of the laser field F5 , on the ideal Gaussian field (1)

27 o 2
do | EsEfrdr
T T )
[ do [ |Es.|?rdr- [ de [|Ei|?rdr
0 0 0 0

Vszl_
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Physically, this quantity represents the “effective” power loss
from the Gaussian (TEMg) beam caused by the introduction
of higher order spatial modes transmitted through the polarizer.
In the absence of thermal effects, vs = 0. Therefore, the total
power loss in the TEM spatial polarization mode ~y; during
forward propagation through the FI is

L=y = (1 =) =) “4)

It has been shown [10], [11] that two different effects
contribute to 7y5: an isotropic thermal lens and anisotropic dis-
tortions caused by the photoelastic effect. For small distortions
(vs < 1), 75 is a sum of two corresponding components:
anisotropic amplitude-phase losses 7, and isotropic phase
losses ~; [10], [11]. Therefore, the total power loss in the
spatial polarization mode ; during propagation is (for v, < 1)

Y=Yt Ve t i o)

The first two components are related to depolarization
caused by the photoelastic effect, whereas the latter component
represents pure optical path (phase) distortions induced by the
isotropic thermal lens. These losses are indicated schematically
in Fig. 1. Note that a contribution to the isotropic thermal lens
is made by both the temperature dependence of refractive index
and the “isotropic” part of the photoelastic effect (see below).
It has been shown previously [10], [11] that ; is the same for
all FI designs.

The temperature distribution in the optical element and, con-
sequently, the distribution of phase of an aberrated laser beam
are close to parabolic. Therefore, the majority of the phase dis-
tortions can be compensated by means of an ordinary lens or
a telescope (shown as a dashed line in Fig. 1), which intro-
duces additional curvature in the wavefront. Throughout the
text, we shall, henceforth, call this method of compensation
“telescopic compensation,” indicating corresponding losses by
subscript “TC.” Obviously, the isotropic thermal lens is not to-
tally compensated, since the ordinary lens can compensate only
for parabolic phase, but the thermal lens has a more complex
profile. For small distortions, it has been shown that the isotropic
losses introduced by the thermal lens can be reduced approxi-
mately by a factor of 15, provided the position and focus of the
compensating lens is chosen optimally [10], [11]

YiNC
15 -

YiTC =~

Here, and further, the subscript “NC” indicates that there is no
compensation present and the subscript ¢ refers to the isotropic
component of depolarization.

Alternatively, an adaptive method for compensating the
thermal lens was suggested and experimentally studied [19],
[20]. Essentially, it consists of a compensating glass (CG)
placed before (or after) polarizer 1 (e.g., Schott glass FK51;
indicated as the dashed line in Fig. 1). The parameters of the CG
are chosen such that the thermal lens has the same amplitude
and shape as in FI but, at the same time, is negative (in many
magnetooptic materials it is positive). If we do not take into



1502

account the propagation of the beam between CG and FI, the
isotropic losses are totally compensated

Yiac = 0.

Here, and later, the subscript “AC” denotes the adaptive com-
pensation. It has been shown that the influence of propagation
can be insignificant for reasonable adaptive compensation ge-
ometries [19].

The adaptive method has two advantages over the telescopic
compensation: there is no need for adjustment when laser
power is changed, and the accuracy of isotropic compensation
is higher. However, a disadvantage of the adaptive method is
that the photoelastic effect in the CG leads to additional dis-
tortions and, consequently, to losses in the spatial polarization
mode. By analogy with losses introduced into FI, these losses
can be subdivided into polarization losses y,cq, (power re-
flected by polarizer 1), and anisotropic amplitude-phase losses
Yaca (see Fig. 1).

As we show in this paper, the above two compensation
methods can compensate only for ;. The telescopic method is
less efficient but does not lead to additional losses 7, and ,.
The adaptive method totally compensates for v; (if we ignore
propagation), but increases losses 7, and 7, because of the
photoelastic effect in the CG. This effect was not considered
by Mueller et al. [19]. In Section II, we present a detailed
comparison of the two compensation methods—telescopic and
adaptive—considering all thermal effects both in the mag-
netooptic crystal and in compensating glass. Based on these
results, we determine physical constants and define a figure of
merit for the compensating glass that predicts the efficiency of
the adaptive method. In Section III, we report on the results of
measurement of key thermooptical constants for TGG crystal
and FKS51 glass. We also describe experimental results of
compensation of the thermal lens in FI with a quartz rotator
[Fig. 1(b)] using FK51 glass. In Section IV, our results will be
discussed and our conclusions are summarized in Section V.

II. EFFICIENCY OF MODE DISTORTION COMPENSATION

The calculation of total losses without compensation y;nc
and with telescopic compensation y;rc have been previously
[10], [11] derived analytically. Here we shall calculate, by
analogy with those papers, the total loss in case of adaptive
compensation y;ac and shall compare the results with y;:nc
and v;rc. We assume that the Rayleigh range of the beam is
much greater than the length of FI, even taking into account
induced distortions, i.e., diffractive propagation effects can be
totally neglected. It is seen from (2) to (4) that for determining
the total loss v:ac, it is enough to find the field before a
second polarizer E5. This value can be found by applying the
formalism of the Jones polarization matrices

E;=F (b= 2.6.L )L, (%”) P,G(6cc)Bin (60

m 6 L -3 m 6 L
E;=F(6.=—,—, = —|F(be=—, =, =
w5 3R (=5.53)

x Lo (1”—6> P,G(5cc)Ein. (6b)

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 10, OCTOBER 2004

eigenpolarization

crystallographic
. lattice

Fig. 2. Crystal cross section showing the crystallographic axes and eigen-
polarizations for the calculations described in the text.

Here, and later, letters “a” and “b” correspond to formulas
for FI in Fig. 1(a) and (b). F, Lo, R, P, and G denote the
Jones matrices for the Faraday rotator, A/2 waveplate, quartz
rotator, polarizer, and compensating glass, respectively, ¢; is the
phase difference between linear eigenpolarizations along the en-
tire length of the magnetooptical medium L; and 6. is the phase
difference between circular eigenpolarizations. The matrices for
the rotator, A/2 plate and polarizer are well known

_ [ cosBr sinfg
R(Br) = < —sinfBr cosfr )

_ [cos2BL  sin2fy
Ly(BL) = <sin2ﬁL — cos 2[3L>

1 0
e ()

where (g, 1, are the rotation angles. Bearing in mind the linear
birefringence, a Faraday rotator that rotates the polarization
plane by an angle 6./2 can be described by the following Jones
matrix [21], [22]:

)

)
F(b.,6;,L, V) = exp(ikLn) - sin 2

.<cotg—i%—’0052\11 —%—i%sin%l’)
be _ % sin20 ot § 4% cos 20
(®)
where
62 = 67 + 62 C))

¥ is the angle of inclination of the linear eigenpolarization
relative to the x axis (see Fig. 2), n is the refractive index av-
eraged for two eigenpolarizations. We shall consider here only
cylindrical optical elements and only two most common orienta-
tions—[001] (with an angle 6 between the crystallographic axis
and the z axis) and [111]. Note that for the traditional FI design
[Fig. 1(a)], the best orientation is [001], whereas [111] is the
optimal crystal orientation for the birefringence compensated
design [Fig. 1(b)] [14].

The value of n(r) is determined by the temperature distribu-
tion T'(r). The expression for n(r) can be found, e.g., in [23]

(10)
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where P for the crystal orientations under consideration is

dn 1dL S1+v
Plooy) = a7 <fﬁ> 11- (P11 + p12)
E—1
Py ZP[001]—QT (11)
1dL\ ndl+v
Q= (fﬁ) ZO 1— v : (p11 —plz) (12)
__ 2pau (13)
P11 — P12

and no, v, (1/L)(dL/dT), p; ; are the nonexcited (“cold”) re-
fractive index, Poisson’s ratio, thermal expansion coefficient,
and photoelastic coefficients of the magnetooptic medium, re-
spectively.

The exponential phase factor in (8) does not affect the po-
larization distortions and represents an isotropic thermal lens.
The temperature dependence of the refractive index and the
“isotropic” part of the photoelastic effect contribute to this lens
(see two corresponding components in (11) for P[001])~ In [24]
and [25], it was shown that the contribution of the thermal ex-
pansion along the z direction of the medium to the thermal lens
is negligibly small, as compared to the temperature dependence
of the refractive index. Therefore, we assume that length L is
independent of temperature.

The values of ¢; and ¥ are determined by the photoelastic
effect and depend on the temperature gradient d7'(r)/dr [23],
[26]

1 r
__ 4rnL 1+£2 tan?(2¢p—260) ] 2
o(r, ) = 4—Q [ 1+tan2(2(<,;i29))] r%of 2 (14)
tan(20 — 260) =  tan(2¢p — 26), for [001]
8i(r,¢) = 5LQ [—1226] = g. r2grdr (15)
U =, for [111]

where A is a wavelength. As seen, the expressions for §; and
¥ for the [001] orientation transform into expressions for ¢;
and ¥ for the [111] orientation, when ¢ is substituted by unity
and Q—by Q(1 + 2£)/3. Therefore, we shall, henceforth, only
give expressions only for the [001] orientation, bearing in mind
that corresponding formulas for the [111] orientation can be ob-
tained by these substitutions. We also drop the [111], [001] sub-
scripts from P, () when referring to TGG.

The temperature distribution 7'(r) can be easily found from
the thermal conductivity equation for an infinitely long cylinder

O[_po'/l—exp( Q)dr

T(r) = 1(0) = = 21k r

(16)
0

where o and k are the absorption coefficient and the thermal
conductivity of the magnetooptical medium, and F is the laser
radiation power.

Thus, (9)—(16) fully determine the matrix of the Faraday
rotator (8). From a physical point of view, the compensating
glass is equivalent to a Faraday element without a magnetic
field present. Consequently, its matrix G is simply matrix F
at 6. = 0. All constants of the magnetooptical medium (L,
ng, V, Pi j, &, K, P, Q)) must be replaced with the appropriate
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constants of compensating glass (Lca, noca, Yca, Pi,jCGs
acaG, kcoas Poa, Qca)- Note that o for any glass is equal to
unity. Therefore, substitution of matrices F' and G, and (7) into
(6), and then substitution of the result into (2)—(4), yield

YtAC = VpAC + ’YaAc + viac (17
YpAC = Al : 252 = pCG
Yaac = Sp? + Aplo + \/—p pca (18a)
YiAC = —(Pi + pica)?
YpAC = ::_1 (2 - \/_)p + ] pCG
Yanc = 24 27\/_)52]72 + 4p2g (18b)
+ Ay (V2+E— 1)
/8
Yiac = T(pl + ptCG)

where we have defined the following quantities and constants:

o0 2
1 — d
Alz/(_ _exp(=y) ) Y _~o137 (19
S\ y exp(y)
Az = / fAy) exp(— / f(y) exp(—y)dy
0 0
~().268
[1 =)
— exp
flo)= [ = ay (20)
J .
LaP L aQ
== Py p=2"%P
p N r 0o P N r 0
_ Leg acgPea
p'iCG——ipo
)\ RCG
L
pceqz%mﬂ). 1)
RcG

Analytic expressions (17) and (18) are obtained for the case
of weak distortions, i.e., they are valid at v < 1. In our calcula-
tions, we assumed that the angle 6 has its optimum value [10],
[11]

Oopt = — (22a)

|3

(22b)

Hopt = E

Itis clear from (18) that for compensation of the isotropic part
of losses +; the following condition must be obeyed:

DicG = —DPi (23)
from which, taking into account (21), we obtain
P Qcc
= —— . 24
pcG = 0 Poc D (24)

Thus, the key parameter of the compensating glass is the ratio
Pci/Qca, and the higher this ratio, the better the glass. Specif-
ically, if this ratio is much more than that for the magnetoop-
tical crystal, then losses associated with anisotropy thermally
induced in the glass can be ignored.
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For comparison, we give expressions from [10] and [11] for
the total loss without compensation

VNG = VpNC + YaNC T+ ViNC (25)
YpNC = p2%£2 YaNC = pZ% 26
o Ay2 (26a)
YiNC = 1 D;
2
{%Nc =23 (2-V2) o6b)
2
Yaxc = B2 = V2)€2  vine = 22p7.

In the case of telescopic compensation, the first two compo-
nents remain unchanged, whereas the third one is reduced ap-
proximately by a factor of 15 [10], [11]

A
Y+TC = VpNC + YaNC + A—z’YiNC 27
Ay = / () — 0.59) exp(—y)dy
0
0o 2
- / (F(y) — 0.59) - exp(—y)dy
0
~().0177 = 0.0660 As. (28)

(Note that in (27) for telescopic compensation (“TC”), we
assume that the absorption in compensating lens is essentially
zero, leading to negligible contributions for y;ac and y,ac.)
The comparison of (17) and (27) yields a condition, at which
Yiac < MTC, 1.€., compensation with glass is more efficient
than with a lens or a telescope

Pea | [A A €977 /ﬂi‘g‘
QCG > A4 1+2A4 _’/TP:| + A47‘r\/§ P
(29a)
Pcg S Ay 1_{_& -(\/5—1—5—1)(2 2
Qcc Ay 244 P
/g(ﬁ%—n‘g‘
kI v 5 (29b)

Here, we took into account that Q) < 0, Qcg < 0, Pog <
0, P > 0 (see below). The ratio P/() has not been measured
for the TGG crystal, which is most commonly used in FI; nor
has it been found for the FK51 glass. Note that for laser Nd
glasses, this ratio varies within a wide range: from 0.5 to 500
[27]. Therefore, the measurement of parameters P and @ for
TGG and FK51 becomes important, and additional experiments
are required to confirm the efficiency of the adaptive method for
compensating the thermal lens.

III. MEASUREMENT OF THERMOOPTICAL CONSTANTS OF TGG
CRYSTAL AND FK51 GLASS

From (17), (23)—(25), and (27), the energy losses in the spa-
tial polarization mode ; (both with and without compensation
of the thermal lens) are totally determined by parameters p,
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(see (21) for definition of p) for a 48-mm-long TGG crystal (manufactured by
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Measurement of zero-field depolarization yg—o as a function of p

pis & Qca/Peg, and the smaller these parameters, the lower
v¢. Therefore, we must determine the following constants: x,
a, Q, P, and ¢ for a magnetooptic medium (here we consider
TGG only) and Qcq, Pog for compensating glass (FK51). The
thermal conductivity of TGG is k = 7.4 W/km. The absorp-
tion coefficient of TGG « can vary significantly (up to a factor
of four) from sample to sample [14], [19], [28], and the value
of ¢ for TGG has been recently measured in [14] and [28]:
& = 2.25 £ 0.2. More difficult is to measure the thermoop-
tical constants () and P (as well as Qcq, Pcoa), because of the
difficulty in measuring their constituent constants, in particular,
photoelastic coefficients p;;. In Section III-A, we shall describe
measurements of (), carried out using a technique reported in
[6]. In Section III-B, a scanning Hartmann sensor will be de-
scribed, which we utilized for measuring P. The results of the
measurements will be summarized in Section III-C.

A. Measurement of Thermooptical Constant )

All known direct measurements of () to date have been made
by means of an interferometric setup [29], [30]. The root-mean-
square error of these measurements is typically 5%—15% [23].
Here, we employ a simple measurement technique [6] which
provides the same accuracy. It consists of measuring the depo-
larization of high-power laser radiation propagating in an ab-
sorbing medium in the absence of a magnetic field yg—o as a
function of laser radiation power

YH=0 = pzé (14 (£=1)cos*(20)) .

3 (30)

If all values, except @) in the right-hand side of (30), are
known, then by measuring g —g, one can determine the con-
stant (), using it as a fitting parameter. We performed such mea-
surements for FK51 Schott glass and for a [001] TGG crystal
produced at the Research Institute of Materials Science and
Technology, Zelenograd, Russia (RIMST). The measurement
results are shown in Fig. 3. At small p, the depolarization yg—g
does not depend on power, since it is determined by the “cold”
birefringence. At higher powers, the coincidence between ex-
perimental values and (30) is fairly good.
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CCD] p, A !
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Fig. 4. Experimental schematic diagram for the scanning Hartmann sensor
described in the text. Optical components are indicated numerically: |—pump
laser; 2—sample; 3—mirror; 4—power meter; S—probe laser; 6—collimating
lens; 7—rotating mirror; 8—polarizer; 9, 10—Ilens; 11—CCD-camera.

The transmission and residual reflection of the anti-reflection
coating were measured for this particular TGG crystal (length
48 mm, diameter 9 mm). Based on these data, we calculated the
absorption. The transmission was measured at a wavelength of
1053 nm both for one and two passes of the radiation through
the crystal. In the both cases, the value of the absorption was the
same, atgg = (4.840.4) x 1073 cm~!. Knowing argg from
Fig. 3 we obtain the following value:

Qrce = —(2.6 £0.4) x 1075 K. (31)

The signs of @ for TGG and FK51 (see below) was deter-
mined by the technique reported in [31]. The absorption of FK51
glass in the Schott catalog is apks; = 2.4 - 1073 cm~1. Using
arks1 = 2.4 -1073 cm~! from Fig. 3 we obtain

Qrxs1 = —0.63 x 1076 K1, (32)

The measured value of Qpks1 (32) is close to that in the
Schott catalog, Qrks1 = —(0.53 — 0.59) - 1076 K~! for a
wavelength of 589 nm. For some glasses, it is known that )
very weakly depends on wavelength [9]. However, keeping in
mind that the accuracy of apks; = 2.4+ 1073 cm™! may be not
very high, it is important to note that the value of the product
arks1@rks1 1s measured with high accuracy

arks1 Qrist = —(0.15£0.02) x 1078 K™ -em™.  (33)

B. Use of a Scanning Hartmann Sensor for Thermal Lens
Measurements

The detailed description of the operation of the scanning
Hartmann sensor can be found elsewhere [28]. Here, we briefly
describe its operation in measurements of thermal lensing. An
optical schematic of the experiment is illustrated in Fig. 4.

The laser beam from a 40-W 1053-nm CW Nd:YLF single-
transverse mode laser (indicated as “/” in the figure) is used
to heat the optic under test (2). Dichroic mirrors (3) are used
to couple the beam into and out of the sample, with the laser
power monitored using a power meter (4). An 850-nm, CW
single-mode diode “probe” laser (5) with fiber output for mode
cleaning is collimated by a lens (6), with the output polarization
set by a polarizer (8). This scheme provides a constant spatial
structure of the probe beam. A rotating mirror (7), placed on the
axis of a computer-controlled galvanometric scanner, changes
the angular pointing of the beam. The solid line in Fig. 3 indi-
cates the beam path in the midposition of the mirror (7), and
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the dotted lines—in two end positions. The rotational axis of
the mirror (7) is located at the focal plane of a lens (9) with
focal length 295 mm such that angular scanning of the mirror
(7) results in a parallel movement of the beam along the diam-
eter of the sample. In the presence of a thermal lens, the probe
beam transmitted through the sample deviates from its initial di-
rection by a small but measurable angle. This angle leads to a
corresponding shift of the beam in the focal plane of a second
f = 600 mm lens (70), which focuses the probe beam onto
a CCD camera (/1) located a distance f from the lens. The
signal from the CCD camera is sent to a computer, which de-
termines and compares the coordinates of the beam’s centroid
position before and after heating the sample. By scanning the
galvanometer, we are able to measure the differential optical
path difference as a function of the heating power with a res-
olution of A\/500.

In contrast to the traditional Hartmann sensor [20], [32], in
which the entire aperture of the sample is measured simultane-
ously at many points, in this method one has to scan the beam
over the sample aperture point by point. Although this procedure
is time consuming, it avoids problems associated with overlap-
ping of different beams which are frequently encountered in the
traditional Hartmann sensor.

C. Measurement of Thermooptical Constant P

To eliminate depolarization of radiation from the probe laser
in the sample, we used only 7- (the field along the polar radius)
and ¢- (the field along the polar angle) polarizations. Measure-
ments were made in the absence of a magnetic field for four
cases: TGG with [111] orientation; TGG with [001] orientation
at § = 0; TGG with [001] orientation at § = 7/4; and FK51
glass. By analogy with Section II, it can be easily shown that in
the first three cases the phase A(w) for r- and ¢-polarizations
of the probe beam after a pass through a sample with the length
Ly is described by the following expressions:

( u e
AR ) = g2 (P | [ =t

1+2¢ u+exp(—u)—1
:FQ 3 u

Ag?gl](u7 9 = 0) = —%% <P[001] |:0f 71—9){;(—15) dt:|

:FQf utexp(—u)—1 )

7) = -4l (P[om] [J #}Hdt}

FQutoln-t).
(34)
Here, u = 2% /rf is the scaled transverse coordinate. We use
z to denote the radial distance from the center of the crystal to
reflect that our experiments scan the distortion in one dimension,
see Fig. 3. For the glass, we can use any of the three expressions
at ¢ = 1. Note that the distribution of the isotropic term (the first
component) of the thermal lens is the same as the temperature
distribution (16), whereas the anisotropic (the second compo-
nent) part has a different shape.

A (u, 6 =

\
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Fig. 5. Probe laser optical path difference after propagating through (a) a 48-
mm-long TGG crystal at § = 7/4 and (b) FK51 glass 67-mm length when
heated by a 38-W pump laser. Circles—¢-polarization; crosses—r-polarization.
Theoretical curves are plotted according to (34) at arccPrca =
1.5-107 8K~ - em !, apks1 Prksy = —0.41- 1073 K—! - cm— 1.
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Fig. 6. The ratio Poo1/Q for FK51 glass (diamonds) and TGG crystals
grown by EOT (circles), Litton (triangles), and RIMST (squares). Filled
symbols correspond to -polarization and open symbols to r-polarization.

With the measurements of « and (), all values except P
in (34) are known. P was used as a fitting parameter. Mea-
surements for FK51 Schott glass, two TGG crystals with the
[001] orientation (from Electrooptic Technologies (EOT) and
RIMST) and one TGG crystal with [111] orientation (from
Litton) were carried out. The dependences A(r) for glass and
the RIMST crystal are presented in Fig. 5. The figure clearly
shows good coincidence between theoretical (34) and experi-
mental curves, demonstrating that the measurement accuracy
of P was high and the sign of ) was properly determined.

The measurements demonstrated the absence (within the
experimental error) of the dependence of P on power of the
heating laser, and the absence of the dependence of Pjgoy) /Q on
a particular TGG sample (see Fig. 6). Knowing the absorption
of the RIMST crystal atgg = (4.8 £ 0.4)107% cm™!, from
Fig. 5(a) we obtain the value of P[001]

Pioony = (26 £4)107° K. (35)

Using apks1 = 2.4-1073 cm™!, from Fig. 5(b) for the FK51
glass we obtain

Prgs: = —1.7-107 9 K. (36)

Again, although the accuracy of the value apks; = 2.4 -
10~3 cm™! may be not high (see above), it is important to note
that the value of the product apks1 Pris1 is measured with high
accuracy

arks Prrs: = —(0.41 £ 0.06)10 K t.ecm™t  (37)
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Fig. 7. Probe laser optical path difference after propagating through a

birefringence-compensated FI without thermal compensation (diamonds) and
with thermal compensation by means of FK51 glass: p-polarization (circles),
r-polarization (crosses), average between two polarizations (squares). The
heating laser power is 38 W.

which, considering (33), yields the critical parameter P/Q (see
Section II)

Pris1

=2.8+04.
QFKSl

(38)

The accuracy of the measurement does not depend on the
uncertainty in the value of apksi. It is seen from Fig. 5 that
the astigmatism of the thermal lens is considerably higher for
FK51 than for TGG, which is a result of lower ratio P/Q.

It is worth noting that the measurements of P are made at
a wavelength of 815 nm. To verify that P weakly depends on
wavelength, we performed measurements at a wavelength of
1060 nm. Since the wavelength of the probe and heating lasers
were very close, we used a more sophisticated experimental
technique described in [28]. A sample was heated not by a
Gaussian but rather a IT-shaped (flat-top) beam with a diameter
equal to the crystal diameter. Corresponding points are shown
in Fig. 6. It is evident that the value of Pjggy) for TGG is the
same, within the experimental error, for these wavelengths.

D. Experimental Determination of Thermal Lens
Compensation in FI Using FK51 Glass

Our scanning Hartmann sensor was also used to verify exper-
imentally the adaptive compensation method [19] on a birefrin-
gence-compensated FI [5], [8], [12]. First, a measurement was
taken of the radial distribution of the phase for a two-crystal FI
(TGG in the [111] orientation) with quartz rotator but without
polarizers. Then, based on the data obtained and constants of
FKS51 glass, we calculated the length of compensating glass that
would be optimal for this FI, in this case 45 mm. The glass was
placed between the FI and lens (10) (Fig. 3). Between the lens
and the CCD camera, a calcite wedge was used to observe sepa-
rately the vertical and horizontal polarization of the probe laser.

The results of the measurements are presented in Fig. 7,
which shows that the thermal lens averaged for two polariza-
tions (shown as squares) is almost totally compensated at a
heating power of 38 W: at 7 < \/2rq (i.e., in the area of 1/e?
by beam intensity) the difference of phase from constant is less
than 0.02 rad. At the same time, the astigmatism of the resulting
lens evident in the (p-polarization (circles) and r-polarization
(crosses) is very large, owing to the small ratio Prxs1/QFKs51-
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IV. DISCUSSION

The investigations that we have performed demonstrate that
when calculating power losses of radiation in the spatial polar-
ization mode, the photoelastic effect must be taken into account
both in the magnetooptical medium and in the compensation
glass. It is important to consider the isotropic change of the re-
fractive index, characterized by the second component in (11)
for Pjgo1], as well as anisotropic effects (characterized by pa-
rameter ()), which lead to depolarization and amplitude-phase
distortions.

First, we compare the relative contributions of the tempera-
ture dependence of refractive index and the photoelastic effect to
the thermal lens (two components in (11) for Pjgg1j). The value
of (dn/dT)rcc was measured in [28] and is 19 - 1076 K1,
which coincides with the value 20 - 107% K~ reported in [19],
[20]. Comparing this value with (35) we can conclude that the
contribution of the photoelastic effect into the thermal lens is
one third that of dn/dT’, and signs of these effects are additive.
For FK51 the value (dn/dT)rxs = —7.3 - 1076 K=t is given
in the in the Schott glass catalog for A = 1064 nm and weakly
depends on the wavelength. The comparison of this value with
(36) allows us to conclude [see the first equation in (11)] that
the contribution of the photoelastic effect in the parameter P is
roughly 0.75 of the contribution of temperature dependence of
the refractive index, and the signs of these effects are different,
resulting in a value for Ppk;; 4 times less than (dn/dT)pks1.

Note that in [20] there is a statement that the contribution of
the photoelastic effect in the thermal lens for TGG is 17% of
that of dn/dT, and their signs are different. This is in fact in-
correct, and arises from an incorrect interpretation of the pho-
toelastic effect—[20, eq. (6)] is incorrect. Referring to [20], the
authors of [19] (which happen to be some of the same authors of
this work), state that in many cases the contribution of the pho-
toelastic effect is negligibly small in comparison with dn/dT,
which, as follows from the above discussion, is incorrect either
for TGG or for FK51.

A stronger thermal lens due to the photoelastic effect in
TGG and a weaker thermal lens in FK51 can nevertheless have
the same modulus and different signs provided the length of
glass is chosen properly (considering the photoelastic effect)
(see Fig. 6). However, the anisotropic part of the photoelastic
effect in TGG leads to power losses in mode -, and -, that
cannot be compensated. Moreover, the anisotropic part of the
photoelastic effect induces additional losses. In this regard, the
figure of merit of glass is the ratio Pcg /Q ¢, which should be
maximized for best performance. For the FK51 glass, this ratio
is as small as 2.8, thereby considerably increasing AC,s¢ and
ACpac, [see (18)]. Fig. 8 shows dependences of different losses
plotted by (17), (25), and (27) taking into account the condi-
tions (23) and (24). The dashed lines indicate the dependences
obtained by numerically integrating (2) and (3) without the
approximation of weak distortions used when deducing (17),
(25), and (27). Although there is a small difference between the
analytical and numerical results, it is evident that the analytical
results fairly well describe AC in the limit AC < 0.1. As one
can see from Fig. 8, the telescope method is better than adaptive
method with FK51 glass. This comes about because the figure
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Fig. 8. Theoretically predicted power losses v versus laser power Py for the
birefringence-compensated FI shown in Fig. 1(b) for no thermal compensation
(curve 1), with telescope compensation (curve 2), adaptive compensation by
means of FK51 (curve 3), by means of glass with Pcc /Qcc = 12 (curve 4),
by means of uniaxial crystal or gel (curve 5). The dashed lines show results of
numerical integration and solid lines show analytical results given by (17), (25),
(27), and (39). For these calculations, we assumed a total length L = 24 mm
of two TGG crystals, and TGG absorption &orgg = 2.5 - 1073 cm~!.

of merit Prks1/Qrks = 2.8 is less than 3.2, the right-hand
side of (29b). However, telescopic compensation is a point
design for a particular power; values plotted for telescopic
compensation in Fig. 8 assume that an optimal compensating
focus is achieved at each power, requiring repositioning of
the compensating lens. There are two ways of eliminating the
negative influence of the anisotropic part of the photoelastic
effect in the adaptive compensation method: by compensating
the depolarization in the compensating element or by reducing
its influence to a negligible level. The depolarization can be
compensated using two elements made of FK51 glass and a
90° polarization rotator placed between them, as is done in
active elements of solid-state lasers [33]. If the total length
of these two elements provides for condition (23), then the
isotropic distortions in the FI will be compensated. This can be
called ideal compensation, since, although the anisotropic part
remains the same as without the compensating glass, yet

VtPC = YpNC + YaNC- (39)

This method, however, has the disadvantage of complexity
and losses associated with residual reflections from surfaces of
additional elements.

The effect of thermally induced anisotropy of the com-
pensating glass can be considerably reduced by choosing a
glass with a large ratio Pog/Qcg- It is seen from (17), (18),
(24)—(26), (31), and (35) that at Pog/Qcc = 12, losses yiac
during adaptive compensation are only twice as much as y:pc
(see Fig. 8), and at Pcg/Qcg > 50, the negative influence of
the compensating glass can be neglected in practice. Note, that
compensating glass with Qcg > 0 would be more preferable
because in this case the last term in (18) for y,ac is negative
(p < 0). The photoelastic effect can be totally eliminated by
using gel as the compensating medium rather than glass, as
it is done for compensation of the thermal lens in active laser
media [34], or a crystal with natural birefringence, with which
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the induced birefringence can be neglected [23]. An example
of such a crystal may be LICAF or YLF. The last one has [35]

dn { —2-10"9K~!,  ordinary

dT ~ | —4.3-1079K™!, extraordinary.

To increase absorption, YLF can be doped by copper, ytter-
bium, or another element.

Note that in contrast to glass, a gel or an anisotropic crystal
can be placed between polarizers of FI, without deteriorating the
isolation ratio. This reduces the distance from the gel (or crystal)
to the TGG crystal, thereby decreasing diffraction losses [19].
Another important advantage of YLF is that its thermal con-
ductivity (6 W/K-m [35]) and the product of thermal capacity
(790 J/kg-K) [35] and density (3.96 g/cm3) [35] are close to
the thermal conductivity and corresponding product of the TGG
crystal (thermal conductivity 385 J/kg-K, density 7.32 g/cm®)
[36]. Due to this, the thermal lens can be compensated not only
in the stationary regime, but also dynamically in the presence
of rapidly changing beam power. When gel or an anisotropic
crystal is used, the total power loss +y; is described by (39). The
dependence of v;pc on radiation power is plotted in Fig. 8. Here,
it is evident how efficient the adaptive compensation can be.

V. CONCLUSION

We have performed a comprehensive investigation of ther-
mally induced self-action of laser beam propagation in TGG-
based FIs. The absorption of laser power leads to losses in the
initial spatial polarization mode of laser radiation. These losses
~¢ consist of three components: losses induced by isotropic
thermal lens +y;; polarization losses +y,; and losses associated
with amplitude-phase distortions due to depolarization ~,. The
key parameters for determining -, are the thermooptic constants
P, which determines the isotropic losses -;, and ), which
determines the anisotropic losses 7, + 7,. We have measured
these constants for TGG crystals and FK51 glass and find that for
TGG, the contribution of the photoelastic effect to the isotropic
component of the thermal lens is comparable in magnitude to
the lens induced by dn/dT, and, because their contributions are
additive, the actual thermal lens is stronger than the lens obtained
when the photoelastic effect is neglected. For FK51 glass, the
influence of the photoelastic effect is even higher. Thus, the con-
tribution of the photoelastic effect in an isotropic thermal lens
should be taken into account when the lens is compensated with
an ordinary lens or a telescope with optimal focus [10] or using
the adaptive method [19]. In the latter case, the figure of merit of
the compensating glass is a ratio of thermooptical constants P
and Q). For the FK51 glass, the efficiency of the adaptive method
is less than for the ordinary lens with an optimal focus, because
the value of P/(Q for this glass is small. However, the efficiency
of the adaptive compensation can be considerably enhanced by
eliminating the anisotropy with a 90° polarization rotator or
using a compensating glass with Pcg/Qcg > 50, such as a
crystal with natural birefringence or a gel.
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