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Abstract

Due to magnetic field inhomogeneities, EPI images
are geometrically distorted, predominantly along the
phase-encoding direction. Currently, the distortion is
either ignored or compensated manually using a warp-
ing function defined through a set of landmarks. We
propose an automatic method to unwarp the geometric
distortion of EPI images by registering them with cor-
responding undistorted anatomical MRI images. We
show that cubic splines are optimal interpolating func-
tions for both landmark interpolation and approxima-
tion. We will consequently use the same warping space
in our algorithm which replaces landmarks by an im-
age difference criterion. B-splines are used as gen-
erating functions, which leads to a fast and accurate
computation. Multiresolution gives robustness and ad-
ditional speedup. The algorithm performance was eval-
uated using both real and synthetic data and was found
superior to the manual method.

1. Introduction

Echo planar imaging (EPI) [1] is a fast magnetic
resonance imaging technique. It permits an acqui-
sition of a two-dimensional slice using a single exci-
tation, which leads to very short scan times. It is
used mainly for functional magnetic resonance imag-
ing (fMRI), the in vivo non-invasive study of the tem-
poral, spatial, and behavioral dependencies of brain
activities. In contrast to conventional MRI, where the
number of excitations per slice is equal to the number
of scan lines, in EPI, the magnetic field gradients en-
codes two coordinates simultaneously. As one of the
gradients (the so called phase-encoding gradient) is
several orders of magnitude weaker than the other, the
inhomogeneous magnetic field (due mainly to varying
magnetic susceptibility of the subject) will manifest
itself mainly as a geometric distortion along the direc-

tion of the phase-encoding gradient. Symbolically,

fog(@,y),y) ~ fi(z,y) (1)

where f° is the observed EP image, f? is the hypothet-
ical ideal undistorted EP image and g is the unknown
warping function.

In order to enable meaningful postprocessing of
fMRI images, as well as accurate localization of the ac-
tivation centers, the distortion must be compensated
for. To recover g, we register f° with a corresponding
undistorted anatomical MRI image f*. Knowing g,
the observed EPI image f° can be unwarped to get
(an approximation of) the ideal EPI image f*. Man-
ual registration is a tedious and time consuming pro-
cess that requires an expert; its precision is inherently
limited. Due to a large number of scans per exami-
nation, the manual registration is impractical and is
often skipped. Hence there is an interest for an auto-
matic method.

2. Related work

To the best of our knowledge, no other algorithm
solves this particular task. Neither rigid-body trans-
form methods [2], nor fluid transform methods [3], nor
harmonic function based methods [4] search the de-
sired warping function space. Landmark-based meth-
ods [5] lack robustness.

3. Warp space

The manual method requires an expert to define
a set of corresponding point pairs (x;,y;). The defor-
mation function g is found to pass directly through
these landmarks and is interpolated between them.
Currently this is done by the program xmorph [6] or
our proprietary code which implements the thin-plate
spline warping of Bookstein [7].

The common point between the manual method
and the automatic algorithm we have developed is the



cubic spline warp space. In this section, we want to
motivate this choice. We show that this model is op-
timal in a well-defined sense.

For the sake of simplicity, we consider only the 1D
problem here; i.e., the task of recovering an univariate
warping function g : R — R. First, it can be shown
that a function g(z) satisfying g(z;) = y; and con-
strained to minimize [ |¢”(z)*dz (minimum curva-
ture solution) is a cubic spline [8]. This situation cor-
responds to g passing exactly through landmarks. Sec-
ond, as it is often difficult to obtain precise landmarks,
we consider a least-squares fit. We find that a function
g minimizing >_,(f(x;) — y;)* under an a priori con-
straint [ |¢g”(x)|*dz < « is also a cubic spline [9]. In
both cases, the warping function g can be expressed as
a linear combination of B-splines, which have a com-
pact support. This leads to a fast algorithm. The
argument generalizes to multiple dimensions for land-
marks on a cartesian grid.

4. Automatic Registration

We want to imitate the manual method while im-
proving the speed and precision of the process. The al-
gorithm flow is depicted in Figure 1. The anatomical,
resp. EPI input images are first preprocessed to obtain
reference (f" from f%), resp. test (f* from f°) im-
ages with similar characteristics. Instead of facing the
difficult task of landmark detection, we minimize the
mean-square error between the reference and warped
test images E = || f-(z,y) — fe(9(z,9), )7,

Following the above argument, we explore the same
solution space as in the manual case (cubic splines),
using the same a priori constraint [ |¢”[*dz < a.
However, since there are now no explicit landmarks
available to put the knots on, we will distribute the
knots uniformly over the image. Thus, the warping
function is also modeled using cubic B-splines as

= Z Ckzﬁ(a?/hx - k)ﬁ(y/hy - l) (2)

where h, and h, determine the spacing between knots
of the uniform grid and cy; are the parameters associ-
ated with each knot. Thanks to good approximation
properties of cubic B-splines, we can characterize typ-
ical warping function using a small set of parameters
cr; with a small error. The knot spacing controls the
number of parameters and adjusts the flexibility of the
warp. This model is very general while comprising lin-
ear warping as a special case.

Multiresolution is used twice in our algorithm:
a multiresolution of images and a multiresolution
of the deformation model. The registration process
starts at the coarsest level and the results are progres-
sively refined using higher-resolution images and finer
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Figure 1: Algorithm overview

control grids until the target resolution is reached.
The spline model leads to simple and exact transi-
tions between resolution levels.

Like for the warping function, we interpolate the
test image f; using a cubic spline model [10, 11], in
order to obtain high accuracy. This is especially im-
portant at coarse levels of the image pyramid, because
it permits to obtain a very good estimate of the so-
lution, which then acts as a good starting guess for
the optimization at the next finer level. The image
pyramid is created by least-squares projection using
the same paradigm; this consistency minimizes the ap-
proximation error.

Optimizing the registration criterion using a La-
grange multiplier method, the augmented cost func-
tion becomes E, = |fr(z.y) — fulgle,y)p)lZ, +
Mlg”IZ,- The measure E, is minimized with re-
spect to the coefficients ¢ using a regularized version
of the Newton method, inspired by the Marquardt-
Levenberg algorithm.

5. Results

The algorithm accuracy was tested on several hun-
dreds of test images. We also worked with one full
set of brain slices, consisting of thirty anatomical and
EPI image pairs. Furthermore, we took the anatom-
ical images from this set and modified them so that
they resemble as much as possible real EPI images.
These artificial EPI images, deformed by a known



warping, as well as the real EPI images, were manu-
ally registered with corresponding anatomical images
by three different people, including one experienced
practitioner, for the purpose of comparison with the
automatic method.

First of all, anatomical MRI images were deformed
by randomly generated transformations from the rep-
resentable class. A warping index w as defined in [12]
(mean of ||g(x,y) — g*(z,y)|| in the region of interest)
is used to characterize the precision of the registra-
tion. Under ideal conditions, if the images contain
sufficient level of detail, we can achieve a precision up
to @ ~ 107% pixels.

In the same setting, we varied the registration pa-
rameters. Figure 2 displays the resulting F and w as
a function of the degree n of the splines used to rep-
resent g and the knot spacing h. It clearly shows the
benefit of using a high degree n in high-precision ap-
plications. The minimum achievable error @y, (com-
puted by projecting the known warping function on
the available solution space) and the associated SSD
is shown by the dotted line for the cubic case and
marked optimal; note that, except for the smallest
knot spacing h, it is very close to the calculated val-
ues. Furthermore, the similarity of behavior of the
criterion E and the true error confirms the suitability
of the criterion.

Figure 3 demonstrates the dependence of the regis-
tration accuracy on the signal-to-noise ratio. For this
series of experiments, the test images were obtained
from a known transformation of a reference image with
various levels of added white Gaussian noise. An in-
space (i.e., representable) deformation was used.

The next series of experiments deals with artificial
EPI images, in order to compare the precision and
speed of the automatic and manual methods. By fil-
tering and performing histogram modification of the
thirty reference anatomical MRI images, we obtain im-
ages that are visually equivalent to the corresponding
EPI images (Figure 4). After having warped them
with a known randomly generated deformation, we use
them as test images. The resulting reference/test im-
age pairs were registered automatically as well as man-
ually. Results are summarized in Table 1, comparing
the warping index w and the error E for images be-
fore and after the registration, using the known true
warping and the projection of the warping onto the
warp space.

Finally, the algorithm was also tested on real data.
Figures 6 and 7 show a typical EPI image before and
after registration and unwarping. Contours of the
anatomical image (Figure 5) are superimposed over
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Figure 2: The quality of the registration as a function
of the warp spline degree and the knot spacing. The
initial values (prior to the registration) were E = 90.9
and w = 4.3. Each point shown represents the average
of thirty experiments.

the images. For comparison, manual registration re-
sults are shown in Figure 8.

6. Conclusions

We presented an algorithm for an important prob-
lem in fMRI imaging, which so far had been ignored
or had to be solved manually.

The algorithm is readily generalizable to more im-
age dimensions, as well as more warping function di-
mensions, and should therefore be applicable to a vari-
ety of other image registration problems where a gen-
eral non-linear warping function is sought.
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Figure 5: Anatomical picture Figure 7: Automatic registration

Figure 6: Original EPI Figure 8: Manual registration



