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Compensatory task-specific 
hypersensitivity in bilateral planum 
temporale and right superior 
temporal gyrus during auditory 
rhythm and omission processing in 
Parkinson’s disease
Kjetil Vikene  1,4, Geir Olve Skeie2,5 & Karsten Specht1,3,4

Persons with Parkinson’s disease have general timing deficits and have difficulties in rhythm 
discrimination tasks. The basal ganglia, a crucial part of Parkinson’s disease pathology, is believed 
to play an important role in rhythm and beat processing, with a possible modulation of basal ganglia 
activity by level of rhythmic complexity. As dysfunction in basal ganglia impacts function in other 
brain areas in Parkinson’s disease during temporal processing, investigating the neuronal basis for 
rhythm processing is important as it could shed light on the nature of basal ganglia dysfunction and 
compensatory mechanisms. We constructed an auditory beat-omission fMRI paradigm with two levels 
of rhythm complexity, to investigate if and where persons with Parkinson’s disease showed abnormal 
activation during rhythm and omission processing, and whether such activations were modulated by 
the level of rhythmic complexity. We found no effect of complexity, but found crucial group differences. 
For the processing of normal rhythm presentations, the Parkinson-group showed higher bilateral 
planum temporal activity, an area previously associated with the processing of complex patterns. For 
the omissions, the Parkinson-group showed higher activity in an area in the right superior temporal 
gyrus previously associated with detection of auditory omissions. We believe this shows a pattern of 
“hypersensitive” activity, indicative of task-specific, compensatory mechanisms in the processing of 
temporal auditory information in persons with Parkinson’s disease.

Rhythm Deficits in Parkinson’s Disease
Persons with Parkinson’s disease (PD) have general timing deficits1,2, and perhaps as a particular manifestation of 
this, they have been found to have difficulties in rhythm discrimination tasks3–5. It is unclear if these difficulties 
are modulated by rhythmic complexity, i.e., if persons with PD have bigger problems with simple, beat-based 
rhythms3,4 or whether it is a more generalized deficit in rhythm discrimination5. Basal ganglia, a crucial part of 
Parkinson’s disease pathology, is believed to play an important role in rhythm and beat processing6, and dysfunc-
tion in basal ganglia is believed to impact function in widespread cortical areas in PD during temporal tasks, such 
as sensory and sensory-motor areas2. The question of whether timing deficits in Parkinson’s disease is modulated 
by rhythmic complexity at a neuronal level is therefore important, as it could shed light on the nature of basal 
ganglia dysfunction and of compensatory mechanisms in Parkinson’s disease2.
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A difference between simple (isochronous or strongly metric), complex (non-isochronous, weakly metric) and 
non-metric rhythms is well established in both behavriousl, EEG/ERP and fMRI-studies perception7–11, influ-
enced to a large part by the work of Povel & Essens12,13. Another rhythm framework posits that hierarchical beat 
position and position deviations are central features influencing our perception14–19 and speak to how we process 
rhythmic complexity within a rhythm.

In this study we wanted to investigate differences between persons with Parkinson’s disease (PD) and healthy 
controls in rhythm perception, and in short, we wanted to investigate if there would be differences between PD 
and healthy controls in omission elicited activation, across rhythmic context and across position saliency. To this 
end, we manipulated one simple and one complex rhythm introducing first and second beat position omissions, 
i.e., removing an auditory onset. In EEG/ERP-studies, an auditory omission potential is a special case of mis-
match negativity20 not triggered by extrinsic stimuli quality, but rather by the lack of stimuli21. This means that, at 
least theoretically, the potentials are purely intrinsic to the subject, i.e. generated by internally generated responses 
based on expectancy21. Mixed M/EEG/fMRI-studies has shown that it is possible to find MMN-like results in 
fMRI22–24. The main source of MMNs and auditory omissions has consistently been located in the intersection of 
the STG, PT and HG25–35, areas crucially involved in rhythm perception.

We made the following predictions: Should contextual complexity modulate neuronal activity differentially 
in Parkinson’s disease, we would see a bigger between-group difference in activations for omissions in the simple 
rhythm that for omissions in the complex rhythm. Similarly, we hypothized that should beat position modulate 
neuronal activity, our second measure of complexity, an omission in the first, most salient, position would again 
elicit a bigger between-group difference in activations for omissions than for omissions in the second, less sali-
ent, beat position. Thirdly, should the rhythm processing differences in Parkinson’s disease be of a more general 
nature, i.e., independent of level of complexity and saliency, any overall between-group difference would be the 
same, independent of both contextual complexity and beat-position saliency. We were particularly interested in 
differences in activation of basal ganliga areas, superior temporal gyrus and planum temporale, as well as in areas 
in the superior temporal gyrus found to be activated by auditory omissions in previous studies.

Materials and Methods
Participants. 15 volunteers with PD were recruited with the help of the National Parkinson’s organization of 
Norway. 15 healthy controls were recruited, matched case wise for age, sex, education level, as well as for musical 
expertise. In two cases women HCs were matched to male PDs. A minimum Mini Mental Status (MMS)36 test 
score of 24 was set in both groups to exclude patients with cognitive impairment indicative of dementia. All par-
ticipants reported they were right handed. Unified Parkinson’s disease rating scale III (UPDRS-III)37 was done on 
PDs by medical doctors at the department of neurology at Haukeland University Hospital, and date of diagnosis 
obtained from the patients themselves. All PD-participants – except one newly diagnosed de novo patient – were 
in medication regimens (LDOPA, D2-agonists, inhibitors) at the time of the fMRI-scan. Musicians were labelled 
as such if they had played an instrument on a regular basis for 5 years or more. See Table 1 for an overview of 
participants. All procedures were approved by the Regional Committee for Medical and Health Research Ethics 
(REK no 2014/1915) and carried out in accordance with the code of Ethics of the World Medical Association, 
Declaration of Helsinki. This is the same cohort of participants that has been reported in a previous paper38. 
Before the tests, all participants gave written informed consent to participate in the study. Participants were com-
pensated with 100NOK for participation in this study.

Stimuli construction. Crucial to the questions in this study is question is the concept of complexity in 
rhythm. EEG/ERP and fRMI-studies on this topic have focused – overtly or covertly – on differential activation of 
brain areas and networks according to complexity levels of the rhythms precented7–11. Studies such as these have 
focused – overtly or covertly – on differential activation of brain areas and networks due to levels of rhythmic 
complexity, i.e., simple/strongly metric and complex/weakly metric rhythms, and attentional saliency, i.e., the first 
onset of a four beat measure is the most attentional salient and represents a primacy effect, while the second, third 
and fourth beat are weaker, i.e. attentional less demanding, and were, in oddball paradigms, deviations at the first 
beat position are considered more salient than deviations in the second position

In this study, we aimed to combine these two perspectives on rhythm outlined above, and to this end one sim-
ple, strongly metric and one complex, weakly metric rhythm were constructed for the experiment (see Fig. 1 for 
an overview of the paradigm). In both rhythms omissions were introduced either at the first or second beat posi-
tion. In addition, probe tones – added as an overt attentional task to make sure the participants were focusing on 

N (f) Age (SD/min/max) Edu (SD/min/max) MMS (SD/min/max)

PD 15 (6/9) 65.6 (12.38/40/81) 14.0 (3.14/9/18) 28.07 (1.16/26/30)

HC 15 (8/9) 64.9 (11.33/40/78) 15.2 (1.78/12/18) 28.67 (1.35/25/30)

Diff. t-test p < 0.7 p < 0.21 p < 0.2

UPDRS-III (SD/min/max) Symptoms (SD/min/max) Diagnosis (SD/min/max)

PD Group 17.67 (4.69/11/28) 7.2 (4.32/1/17) 5.47 (3.28/1/13)

Table 1. Group characteristics. PD: Parkinson’s group. HC: Healthy controls. f: Females. mus: Participants with 
5+ years playing an instrument. Other columns: Means (standard deviations/minimum/maximum). Edu: Years 
of education. UPDRS-III: Universal Parkinson’s disease Rating Scale, Part 3. Symptom: Years since symptoms 
first noticed by participants themselves. Diagnosis: Years since official diagnosis.
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their listening and were awake - were added. The probe tone consisted in a simple shift of the tonality of the bass 
sound (up 6 half tones) and a change in the snare drum percussive sound characteristic, but without noticeable 
intensity changes to avoid startle effects. Omissions and probe tones were distributed quasi-randomly across the 
four versions of each rhythm, with each version containing six omissions. Two versions had three instances of first 
and first position omissions, while two versions had unequal numbers (four first position/two second position 
omissions and two first position/four second position omissions respectively).

Probe tones were also distributed unequally across the four versions of each stimuli, with one version con-
taining no probe, two version containing one probe and one version containing two probes. The probe tones 
were positioned so not to interfere with the omissions, with a minimum of 6 seconds distancing the probe from 
the previous or following omission. The smallest ISI between omissions was 8,5 seconds, while the longest was 
17,5 seconds.

Before each trail, the same written instructions were presented in the goggles (4.5 seconds), followed by blank 
screen and silences ranging from 13 to 19 seconds, followed by a 16 second long normal presentation of the 
rhythm (without omissions or probe tones). When the music stimuli began playing, a small cross was presented 
in the goggles so that the participants had a focus point to minimize head movement. Each of the four versions 

Figure 1. Paradigm/Experimental design. The paradigm was presented in 16 blocks. Top row: The complete 
block set-up. 4.5 seconds with on-screen instructions (READ) followed by a white screen and silence (REST) 
followed by a learning period (LEARNING, 8 presentations of the normal variant of the 2 second rhythm 
patterns) followed by the omission/probe-paradigm (PARADIGM). Second row: The logic of the omission/
probe paradigm. R = Normal presentation of the rhythms, simple and complex. O1 and O2 = Omissions at 
position 1 or 2 respectively, with six occurences in each block. Pr = Probe tone, with zero to two occurences in 
each block. See text for more details.
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of the stimuli were presented twice during the scan, with the sequence of stimuli randomized. Total scan time 
for the task was 33 minutes ((4.5 sec READ + 13~19 sec average SILENCE + 16 s of unmanipulated music + 88 s 
omission-manipulated stimuli) × 16 stimuli blocks). The final set of 8 different sound files/stimuli was saved as 
stereo, 16 bit, 44.100 hz .wav-files.

Stimuli was constructed with Steinberg Cubase 7 (http://www.steinberg.net).

Experimental design. Before scanning, participants underwent training with headphones and stimuli pre-
sented from a laptop computer making sure they understood the overt detection task of the probe tones. After 
training participants where they were placed comfortable in the scanner and fitted with protective in-ear foam 
plugs, fMRI-compatible headphones with additional physical noise cancellation foamed headphones and fitted 
with fMRI-compatible video goggles and a response-grip for registering responses pertaining the probe tones. 
Subjects were given a short reminder of the task, and given three short tests with probe tones to verify that they 
understood the task, could hear the probe properly and also that button presses were registered. Stimuli were 
presented using E-Prime (Ver 2.3 Professional, Psychology Software Tools, Pittsburgh, PA).

Data acquisition, epoching and analysis. fMRI images were acquired using a 3 T scanner (GE Signa 
Excite 750) with a 32 channel coil. Repetition time (TR) for the EPI-sequence was 1.5 seconds, echo time (TE) 
was 30 ms, slice thickness 5 mm, with 28 slices interlaced. Pre-processing steps included realignment (0.9 qual-
ity, 5 mm smoothing kernel, registered to first image with 2nd degree B-spline), unwarping (using 12 × 12), 
resliced to mean image, normalized to ICBM-template (with 2 mm3 voxel size), smoothing with Gaussian kernel 
(5 mm3 voxels). The 28 slices were temporally aligned to the 13th slice, and high-pass filtering threshold was set at 
1/249 Hz cut-off (calculated as the mean between onsets of the 16 main stimuli blocks). Single subject data were 
analysed by specifying a general linear model, and for the whole scan, movement related variance (realignment 
parameters) was included in the model as 6 covariates of no interest.

The individual stimuli blocks were divided into epochs and event regressors as follows: First the blocks were 
divided between the simple and complex rhythm. Each block were epoched as follows: 4,5 seconds of on screen 
instructions were labeled “READ”. Silences (13–19 seconds random) between each block were not epoched and 
thus served as contrast for all other epochs (“REST”). The first 16 seconds of the rhythmic stimuli were included 
as a regressor of no interest (labelled “LEARNING”) in the analyses for the current study, but findings related 
to these have been reported previously38. The remaining rhythmic stimuli were epoched in 2-second bins, i.e., 
the total length of a whole rhythmic pattern. 2 seconds bins containing a probe tone were labelled “PROBE” and 
blocks where participants made mistakes in grip responses to PROBE-tones were label regressors of no interest 
and the whole block was excluded from analysis. The rest of each block was split in 2 seconds epochs, labelled 
“simple_rhythm” and”complex_rhythm” for normal presentation of the beat, “simple_omission_1” and “com-
plex_omission_1” for epochs where the omission was in the first position, and “simple_omission_2” and “com-
plex_omission_2” where the omission was in the second position of the rhythmic pattern.

First level analysis produced contrasts for SIMPLE_RHYTHM, COMPLEX_RHYTHM contrasted to rest, and 
SIMPLE/COMPLEX/OMISSION/1/2, contrasted to SIMPLE/COMPLEX RHYTHM respectively.

Second-level analysis included a 2 × 2 Anova on the normal presentation of the two rhythms (“simple_
rhythm” and “complex_rhythm”), using group as an independent between-group factor, and rhythm as a depend-
ent factor with follow-up t-tests, and a 2 × 2 × 2 Anova on the contrasts of omission > normal presentation, using 
group as independent between-group factor, and rhythm and position as dependent factors, with follow-up 
t-tests. Medication type were entered as covariates and interaction covariates into the second level analysis, as 
were time since diagnosis. FMRI data were preprocessed and analyzed using Statistical Parametric Mapping 
(SPM12; Wellcome Trust Centre for Imaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm).

Results
In the 2 × 2 Anova on the normal presentation of the two rhythms (“simple_rhythm” and “complex_rhythm”), we 
found main effects of listening and group (F(1, 52) = 29,8, family wise error corrected (FWE), p < 0.05, 10voxel 
cluster-size), while no main effect for rhythm or any interaction effects were found. Follow up t-tests showed 
an across-groups general effect of listening the normal presentation of the rhythmic bars as activation of bilat-
eral temporal gyri, supplementary motor area, bilateral pre-motor cortex and bilateral inferior occipital lobes 
(Table 2/Supplementary Fig. 1A).

Between-group t-tests showed that the PD-group showed higher activation of bilateral superior temporal gyri/
planum temporale, a small activation of the right hippocampus and higher activation of the left ventromedial 
prefrontal cortex, relative to the healthy controls (Table 3/Supplementary Fig. 1C).

In the 2 × 2 × 2 Anova on the contrasts of omission > normal presentation, we found main effects for omis-
sion and group (F(1, 108) = 25.9, FWE-corrected, p < 0.05, 10voxel cluster-size), while no main effect for rhythm 
class, position or any interaction effects were found. Follow-up t-tests showed an across-groups general effect of 
omission in bilateral (but slightly right lateralized) temporal gyri, premotor cortices, supplementary motor areas 
and right inferior frontal gyrus (Table 4/Supplementary Fig. 1B).

Between-group t-test showed higher activation of the right superior temporal gyrus in the PD-group relative 
to the HC-group (Table 5/Supplementary Fig. 1D).

Figure 2 shows a masked and combined illustration of the across-group and between-group activations for 
omission.

Illustration of results from t-tests in Table 4 and Table 5. All results reported as t-tests with family wise error 
(FWE) correction at p < 0.05, cluster size of 10 voxels. Illustration made with the help of MRIcroGL (http://www.
cabiatl.com/mricrogl/).
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Discussion
Our across-group findings for listening to rhythms and omission-related activation are consistent with previous 
literature on neuronal activation during rhythm processing. Listening to rhythms predictably activated large parts 
of bilateral temporal gyri, bilateral premotor and supplementary motor areas7–9. Omissions activated more pos-
terior parts of the temporal lobes than did the normal presentation of rhythm, and the peak values for omission 
were very close to those reported in previous studies in healthy populations. In our study, the right peak value in 
temporal lobes were at MNI 58, −38, 8, comparable to those coordinates reported in two previous studies (MNI 
59, −44, 1735 and 64, −32, 1233 respectively, the first set converted from Tailarach to MNI). Across groups, for 
the omissions additional activation was seen in right inferior frontal gyrus, consistent with this regions role in 
attentional control39. The overall slight right lateralization in our study is also consistent with previous research 
on rhythm processing40.

These across-group findings make the group-differences interesting, as they potentially say something specific 
about rhythm processing in the PD-group. In our study, we did not find any interaction between rhythm complex-
ity and group neither for the normal presentation of rhythm, the effect of contextual complexity on omission, nor 
the saliency of the position of the omission. This lack of a significant results does not of course exclude differential 
activity for simple and complex rhythms between the PD-group and the healthy controls, as reported by previous 
behavioural studies3, and might be due to lack of sensitivity of the fMRI-method for finer grained differences in 
activation. Although rhythmic complexity, beat-omission and saliency position have previously been used (in 
ERP) studies to investigate various aspects of rhythm perception21,41–46, the findings are inconclusive whether 
MMN shows difference in saliency (i.e., the influence of beat position) in unattended situations, such as in our 
study. ERP-MMN studies in PD are scarce (see47 for a review), and have predominantly not found differences 
between PD and healthy controls. One study in PD that did find differences in (lower) MMN-amplitudes com-
pared to healthy controls48 used a fixed inter stimuli interval (ISI) of 1 second – i.e. approximating a steady beat.

For normal presentations of the rhythms, the PD-group showed higher bilateral activation of the planum tem-
porale relative to the control group. The planum temporale plays a role in the analysis and processing of incoming 
complex sounds at different scales, including musical temporal patterns in the multiple seconds range49,50 and is 
sensitive to patterns and metrical complexity7,11,40,51–53. In light of the lack of an effect of rhythmic complexity in 
our results, an overall higher activation of bilateral planum temporale could nonetheless be a neural expression 
of a general deficit in rhythms processing independent of level of complexity5, where hyperactivity of the planum 
temporale is the reflection of a compensatory mechanism for analysing rhythm in the PD-group. This is still 

Region

MNI

Size tX Y Z

R S/MTG 60 −20 −4 3176 14,36

R 48 −10 −10 13,28

R 48 −20 0 12,33

L S/MTG −52 −12 −2 2791 12,63

L −44 −24 2 12,41

L −54 2 −2 9,89

R PMC 50 −2 46 213 9,01

L PMC −50 −6 52 229 8,81

R OccInf 38 −82 −12 304 8,66

R 40 −88 −6 7,53

R SMA 2 0 62 220 7,91

L −8 −4 68 5,73

L OccInf −46 −80 −12 188 7,05

L −38 −86 −16 6,62

L −30 −92 −12 6,24

R PMC 42 −6 58 11 5,58

Table 2. General, across-groups effect of normal presentation of the rhythm > REST.

Region

MNI

Size tX Y Z

R STG/PT 46 −36 18 91 12,35

L VMPFC −32 60 −2 100 7,94

L −26 60 −10 7,39

L −22 64 −2 5,93

L STG/PT −56 −40 22 22 6,32

R Hippo 38 −6 −20 17 6,03

Table 3. Between-group effect of normal presentation of rhythm > REST, PD > HC.
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consistent with previous findings of an inverse relationship between the planum temporale and basal ganglia 
activity in processing rhythms52, a relationship that then might be altered in the PD-group due to basal ganglia 
dysfunction.

One study implicates hippocampus and frontal regions in auditory working memory54, and the additional 
activations in left ventromedial prefrontal cortex and right hippocampus could be indicative of similar com-
pensatory mechanisms, as previous research in healthy subjects indicates increased activity in attentional and 
working-memory networks with more complex rhythms51,55. The activation of these two areas may however be 
dependent on the attentional task in our study, i.e., detecting the probe tone. An interplay between prefrontal 
executive control56 and hippocampus’ role in shorter term memory processing57 has been the focus of recent 
reviews58,59, indicating a dynamic relationship of these two regions in more flexible cognitive operations. As such, 
activation of these two latter areas could simply be a reflection of more general dysfunction in attention, memory 
and executive function in PD60, underscored by recent research into the connections between the hippocampus 
and the dopaminergic system in PD61.

However, if the PD-group has a generalized problem with rhythm processing5, where rhythms are perceived 
as more complex by the PD-group, increased activation of the planum temporale, the prefrontal cortex while 
listening to rhythms, and in the right superior temporal gyrus for the omission detection (with a peak value coor-
dinates (62, −24, −2), nearly identical to those found in previous studies33,35), this might reflect task-specific (i.e., 
auditory rhythm specific) altered functional relationships between these areas during rhythm processing in PD.

Region

MNI

Size tX Y Z

R S/MTG 58 −38 8 3091 12,02

R 52 −16 −20 10,05

R 60 −18 −14 9,26

L S/MTG −60 −40 10 1475 10,36

L −46 −40 4 6,96

L −64 −20 −8 6,83

R PMC 50 2 48 1861 9,52

R Operc 40 12 28 7,24

R IFG 48 24 14 7,05

R SMA 4 4 62 614 8,67

R 8 16 46 6,74

L −6 −8 70 6,04

L PMC −48 −2 50 231 8,05

R PFC/MCC 6 34 38 57 6,18

L MTG −52 2 −14 45 6,16

L WM/AntIns −24 28 −2 54 5,90

R Precuneus 8 −72 46 49 5,82

R WM/Occ 30 46 14 81 5,80

L Calcerine −8 −96 0 27 5,62

L Occ −30 −62 36 36 5,61

L WM/Occ −28 −56 26 5,33

L Cerebellum −18 −72 −38 42 5,46

R Thalamus −12 −4 6 20 5,41

L PMC −36 4 30 10 5,18

Table 4. General, across-groups effect of omissions > normal presentation of the rhythm.

Region

MNI

Size tX Y Z

R STG 62 −24 −2 17 5,99

Table 5. Between-group effect of Omission > Normal presentation, PD > HC. Abbrivations: STG = Superior 
Temporal Gyrus, MTG = Middle Temporal Gyrus, PMC = Premotor Cortex, OccInf = Inferior Occipital Gyrus, 
SMA = Supplementary Motor Area, VMPFC = Ventromedial prefrontal cortex, IFG = Inferior Frontal Gyrus, 
WM = White Matter, AntIns = Anterior Insula, Occ = Middle Occipital cortex, MFG = Middle Frontal Gyrus, 
Operc = Operculum, PT = Planum Temporale, Hippo = Hippocampus. See Fig. 2 for an illustration of the 
results from Tables 2 and 4. See Supplementary Fig. 1 for more detailed results.
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Conclusion
The higher bilateral planum temporal activity in the PD group while listening to rhythms and the higher activity 
in an area in the right superior temporal gyrus previously associated with detection of auditory omissions in 
healthy subjects, show a pattern of “hypersensitivity” in parts of the auditory system in the PD group previously 
found to be important for rhythm processing. We take this to be an indication of task-specific, compensatory 
mechanisms in the processing of temporal auditory information in persons with Parkinson’s disease.
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