
American Journal of Educational Research, 2013, Vol. 1, No. 8, 307-312
Available online at http://pubs.sciepub.com/education/1/8/7
© Science and Education Publishing
DOI:10.12691/education-1-8-7

Competing Dichotomies in Teaching Computer
Programming to Beginner-Students

David Nandigam1, Hanoku Bathula2,*

1Department of Technology, Northcote College, Auckland, New Zealand
2Graduate School of Management, The University of Auckland, Auckland, New Zealand

*Corresponding author: hanoku@outlook.com

Received January 03, 2013; Revised September 12, 2013; Accepted September 15, 2013

Abstract The goal in teaching computer programming is to develop in students the capabilities required of a
professional software developer. Beginner programmers suffer from a wide range of difficulties and deficits. Several
studies suggest that undertaking computer programming for meeting a real industry application is still a challenge
for many students even after studying for a year or two. The purpose of this paper is to investigate the challenges in
teaching computer programming to beginner-students and to initiate a dialog in the information and communication
technology teaching community on how to teach and assess computer programming courses effectively. We
undertake an extensive literature review to identify four major programming dichotomies in teaching computer
programming: knowledge versus application, comprehension versus generation, procedural versus object oriented
and functional versus imperative. Further, based on our teaching experience, we propose a practical approach to
teaching computer programming to beginner-students. The paper discusses the implications to ICT teaching
community and how teaching and assessments can be made effective to achieve the goal of making beginner
programmer learn not only knowledge but also relevant application skills. We believe that the study would
contribute to making ICT teaching more practical and effective in achieving their educational goals.

Keywords: teaching strategies, computer programming, beginner students, information technology curriculum,
dichotomies

Cite This Article: David Nandigam, and Hanoku Bathula, “Competing Dichotomies in Teaching Computer
Programming to Beginner-Students.” American Journal of Educational Research 1, no. 8 (2013): 307-312. doi:
10.12691/education-1-8-7.

1. Introduction
“It's not what you know that counts anymore. It's what

you can learn and do” Don Tapscott.
Computer programming with the specific aim of

meeting an authentic need is the skill that computer
science students are expected to master. However,
learning to program is quite challenging for beginner
programmers as they suffer from a wide range of
difficulties and deficits [1,2] conceptual ‘bugs’ [3,4] and
misconceptions [5]. Considering the problems programming
students are expected to solve in a programming course,
de Raadt et al [6] developed a three-level scale: ‘system’,
‘algorithmic’ and ‘sub-algorithmic’. Problems at sub-
algorithmic level may look simple because they do not
involve algorithms or system designs. Examples of
problems of this scale include avoiding division-by-zero,
achieving repetition until a sentinel is found, and so on.
Strategies used to solve problems at this level are
particularly relevant to beginners in their initial exposure
to the programming process. Yet, these strategies are also
a fundamental part of solving problems at any level.

Unfortunately, several studies suggest that undertaking
computer programming to meet a specific real application

is still a challenge for many students even after studying it
for one or two years. Lister et al [7] attributed poor results
to poor problem-solving ability in students. The
BRACElet project conducted at Auckland University of
Technology showed that many students exhibit a fragile
programming knowledge and very few can demonstrate
clear understanding of programming strategy [8].

We are experienced academics teaching students from
various countries and backgrounds. In spite of our
experience, we are amazed at the challenges that our
students face in their learning. So, we want to examine in
this paper why teaching computer programming is still a
challenge, even after over 40 years since it was first
identified [9]. We believe that this would initiate a dialog
in the ICT teaching community on the effectiveness of
teaching and assessment approaches in beginner courses
in computer programming. For this purpose, we undertake
an in-depth literature review and combine it with our
personal knowledge to identify the practical problems of
teaching computer programming to beginners. Our study
is divided into four sections. The next section examines
the blurriness of goals of teaching computer programming,
and then identifies four competing dialectic programming
dichotomies, followed by an integrated practical approach
to teaching computer programming. The last two sections
are discussions followed by conclusion.

308 American Journal of Educational Research

2. Blurry Goals of Teaching Computer
Programming

Unlike a decade ago, the field of information and
computer technology (ICT) is invaded by other
conventional disciplines. Also the question is whose
domain is ICT – engineers, scientists, technologists,
commerce graduates or linguists? Practically, anyone
could wander in. It would be revealing to look at the
context of stage 1 of Bachelor’s IT Programme, where we
find that participants come from a variety of backgrounds.
They differ linguistically, educationally, culturally and
professionally. For example, students could range from
school leavers to mature-aged students, and anywhere in
between. The entry standard, even of those who studied
computing before, varies from year to year. They all share
one common factor, though. Unfortunately, their prior
educational experiences in the computing discipline may
have done anything but prepare them appropriately for
professional learning and practice. This is certainly the
reason why programming courses are regarded by students
as difficult and have high dropout rates [10].

Teachers now face the daunting task of somehow
making sense - to this conglomeration of non-computing
clientele - of the concepts such as initializing a sum,
counting variables, using a correct looping strategy for the
given problems [11]. As a result, often the instruction has
primarily focused on programming knowledge [italised for
emphasis] and it has been presented in a similar manner to
the traditional curriculum, where the instructional
materials consisted of several small exercises and
assignments to be completed by students individually. In
other words, class-work is typically simplified to enable
students to engage in manageable chunks of work more
focused on completion of the course rather than ensuring
acquisition of programming skills [italised for emphasis].
Periodical assignments come neatly packaged with a well-
specified set of requirements to be implemented. In the
process, the goal of teaching ICT to prepare learners to
achieve a holistic view of the computing problems and
provide solutions is deplorably lost. In this context, we
raise some questions relating to the goal of teaching ICT:
Is it to acquire knowledge or skills? Is it to help students
pass the exam or survive in the industry? Quite often
teachers take cover under beautifully designed and
presented theoretical frameworks for their lack of clarity
on the goals of teaching ICT. ACM & IEEE-CS Joint
Task Force on Computing Curricula [12] in their reviews
since1991 has maintained that programming as ‘activities
that surround the description, development and effective
implementation of algorithmic solutions to well- specified
problems’. Also the emphasis on ‘well-specified’
problems becomes problematic when the focus shifts from
‘developing programmes in the class-room’ to
‘developing systems in the real world scenarios’ [13]. By
this, students seemed to be expected to learn strategies
implicitly by seeing examples and solving ‘neatly graded’
problems in class that can automatically be transferred to
the industry. While this being so, another question very
frequently asked is whether assessment in ICT,
particularly that of computer programming can be a
simple ‘written language exercise’ [14]. The above issues
may find clarification by examining the dialectic

programming dichotomies as a teaching pedagogy, and are
discussed in the next section.

3.Competing Dichotomies for Computer
Programming

It is generally accepted that it takes about ten years of
experience to turn a student programmer into an expert
programmer [9,15]. While there can be a lot of debate as
to the definition of an ‘expert programmer’ the following
section outlines three dialectic programming dichotomies
that influence the teaching of computer programming.

3.1. Knowledge Versus Application
Studies show that there are positive correlations

between the knowledge students’ gain from instructional
materials and the skill they develop by applying it for
solving problems [16,17,18]. Obviously, programming
ability must rest on a foundation of knowledge; it is,
however, possible to distinguish programming knowledge
from programming strategies. Knowledge, as it is
understood, involves the declarative nature (syntax and
semantics) of a programming language, while strategies
describe how programming knowledge is applied [19].
Knowledge is only part of the picture; programming
strategies involve the application of programming
knowledge to solve a problem. Soloway [20] describes
programming strategies as plans and Wallingford [21]
views them as patterns or algorithms. A strategy, of course,
is to be able to incorporate the plans, patters and
algorithms into a single solution. Whalley et al [8]
therefore, feel that teaching should reach beyond a focus
on syntax, and target programming strategies. Robins et al
[10] suggest that the key to beginner-programmers to
becoming expert programmers lie in learning
programming strategies rather than merely acquiring
programming knowledge.

3.2. Comprehension Versus Generation
Another distinction is found between programme-

comprehension (the ability to read and understand the
outcomes of an existing piece of code) and programme-
generation (the ability to create a piece of code that
achieves certain outcomes). Whalley et al [8] contend that
“a vital [initial] step toward being able to write
programmes is the capacity to read a piece of code and
describe it” (p. 249). It means that a student learning
programming must be able to comprehend a solution (and
the knowledge and strategies within it) before they can
generate a solution at the same level of difficulty or rigour.
According to Brooks [22], experts and beginner
programmers can be distinguished by how they undertake
comprehension. Again, with the ability to comprehend
code comes the ability to reuse the pieces of code. It is
widely recognized that practicing reuse does not happen
automatically [23,24,25,26].

3.3. Object-Oriented Versus Procedure-
Oriented

According to ACM & IEEE-CS Joint Task Force on
Computing Curricula [12], object-oriented programming

 American Journal of Educational Research 309

emphasizes the principles of design from the very
beginning. Object-oriented approach has been regarded as
‘natural, easy to use and powerful’ in the sense that
objects are natural features of problem domains, and are
represented as explicit entities in the programming domain,
so the mapping between domains is simple and should
support and facilitate object-oriented design/programming.
However, Detienne [27], Muller et al. [28] and Mittermeir
et al. [29] do not support this position. They argue that
identifying objects is not an easy process, that objects
identified in the problem domain are not necessarily useful
in the program domain, that the mapping between
domains is not straightforward, and further that students
need to construct a model of the procedural aspects of a
solution in order to properly design objects/classes. While
the literature on expert programmers is more supportive of
the naturalness and ease of object-oriented design, it also
shows that expert object-oriented programmers use both
object-oriented and procedural views of the programming
domains, and switch between them as necessary [27].
Similarly Rist [30] describes the relationship between
plans (a fundamental unit of program design) and objects
as ‘‘orthogonal’’ [30]. Yet the proponents of the objects-
first strategy begin immediately with the notion of objects,
classes, methods, constructors, and inheritance, and then
go on to introduce concepts of types, variables, values etc.
[31]. Having to assimilate all these details and to gradually
build up new knowledge comprises one of the biggest
sources of difficulties for student or beginner-
programmers.

3.4. Functional Versus Imperative
The functional programming paradigm supports a pure

functional approach to problem solving. Functional
programming is a form of declarative programming. It
involves composing the problem as a set of functions to be
executed. Students need to define carefully the input to
each function, and what each function returns. In contrast,
in an imperative approach to teaching, students develop a
piece of code that describes in exact detail the steps that
the computer must take to accomplish the goal. This is
often referred to as algorithmic programming. Most
mainstream languages, including object-oriented
programming (OOP) languages such as C#, Visual Basic,
C++, and Java –, were designed to primarily support
imperative (procedural) programming. These two
strategies have been used for a fairly long period of time.
The functional strategy initially places emphasis on
functions leaving the presentation of state for later,
whereas in the imperative strategy the emphasis is first
given to the state and then the concept of functions is
presented.

The four competing dichotomous approaches, discussed
above, seem to be conflicting. Yet, teaching computer
programming effectively may require an integrated
approach that combines all the competing dichotomous
approaches in proportions appropriate to the class
situation. The choice of proportion may depend on the
class composition and dynamics of learning.

4. A Practical Approach to Teaching
Programming

In addition to being able to produce compilable,
executable programs that are correct and in the appropriate
form, the students of computing should learn the process
of solving discipline-specific problems irrespective of the
particular programming paradigm. When faced with the
crisis of computing student performance, the first step
McCracken et al. [32] proposed was to abstract the
problem from its description. Abstraction requires
students to be well grounded in the idea of abstraction,
starting from sub-algorithmic level.

Figure 1. Abutment

Figure 2. Nesting

At early stages of the course, relatively less detailed
coding is required of the students but availability of a
good selection of reusable classes and templates is
essential. Eventually, algorithm analysis can become a
springboard for principles of designing containers, as well
as classic sorts and searches. By the end of the course, the
students should have learnt that the default programming
strategy is to reuse but they should have the concepts to
start from scratch, if need be. Better still, since they will
be thoroughly schooled in reuse, if they do code from
scratch, they are more likely to think in terms of good
abstractions that can be reused. For example, the method
calls used in Figure 1 such as turnLeft() or
moveForwards() are reused quite a few number of times
in different sequences in order to meet specific needs
which require of the students the skill of abstraction at
sub-algorithmic level. de Raadt et al. [33] call this strategy

310 American Journal of Educational Research

‘abutment’ which is calling one method after another in
the correct sequence that will solve the problem. This also
involves the functional approach where the problem is
composed as a set of functions to be executed. While
developing those functions, one needs to define carefully
the input to each function, and what each function returns.
This is the ability teachers need to keep as the objective of
their teaching at this level.

The scope and importance of this strategy may be
dependent on the design approach adopted in the problem-
solving process. However, the functional decomposition
of a structured program often requires further
decomposition. In teaching computer programming,
abstraction is not only a required skill in designing the
classes needed, but also in factorization of methods out of
others that are already in the design. For example,

‘nesting’ or placing one action sequence inside another is
another form of abstraction (Figure 2). In this strategy, the
student must be able to take the sub-solutions and put
them back together to generate the solution to the problem.
This step may involve creating an algorithm that controls
the sequence of events.

The next level (Figure 3) of abstraction requires the
students to be able to decide on an implementation
strategy for individual classes, procedures, functions, or
modules, as well as on appropriate language constructs.
Although the solution should be correct and in the
appropriate form that produces the right output, the
emphasis, however, is that it should also be modularized,
generalized, and conforms to standards. The focus for this
strategy is the division of code into methods, and method
signatures and names.

Figure 3. Modularisation
Another aspect that needs mentioning here is that

software development often adopts one or several
architectural patterns as strategies for system organisation.
Expert programmers use these patterns purposefully. They
in fact often use them informally and even nearly
unconsciously. Good teaching needs to close the gap
between the useful abstractions (constructs and patterns)
of system design and the current models, notations and
tools [34]. Teachers need to identify useful patterns
clearly and teach them explicitly by giving examples,
comparing them, and evaluating their utility in various
settings allowing students to develop a repertoire of useful
techniques that go beyond the curricular limitations. Let

alone the issues that might crop up when larger systems
are to be developed, several previous studies find
weaknesses in teaching a computer programming course
to beginners where strategies were not taught explicitly
[11].

5. Discussion and Implications
Dede [35] observes that no educational ICT is

universally good, and the best way forward is to take
instrumental approach and analyse the curriculum,
teachers and students in order to select appropriate tools,

 American Journal of Educational Research 311

applications, media, and environments. In the context of
teaching IT programming, scholars [36,37,38] have shown
that explicit instruction strategies can be very powerful
especially with regard to teaching programming. Recent
studies [27,28,29] have focused on teaching patterns in an
attempt to represent sub-algorithmic strategies. The four
competing dichotomous approaches may have to be used
in appropriate combinations that match the requirements
of the class composition and student dynamics. It should
be noted that these combinations may change as per the
students’ needs in each unique situation.

Some ways in which programming strategies could be
incorporated in assignments and examinations is
suggested below for consideration of ICT teaching
community.
• Encouraging students to use particular strategies

when generating solutions for assignments
• Awarding credit for application of strategies in

assignment marking criteria
• Using problems that focus on programming strategies

as part of the final examination
• Awarding credit for applying strategies in

assessments was also done to encourage students to
value this component of programming and devote
more effort to learning it.

Academic and industry skill standards are needs closure
integration in their design, development and dissemination.
Teachers cannot undermine the relationship between
academic and industry skill standards and the need to
strive in order to reach a consensus in several central areas
for better coordination between academic and technical
standards. Workplace applications offered by the
academic skills were rarely explicit. Industry skill
standards included academic standards as an abstract list
of skills would remain unconnected to their use in the
workplace. Despite consensus that standards should be set
at a high level, most academic standards offered no
absolute normative benchmarks against which to measure
student performance and were set by educators based on
their judgment about what students should know in
respective courses. The academic component of the
industry skill standards call for skills that could be
achieved well short of high school graduation. The most
significant area of overlap between the two sets of
standards was their use of process-oriented skills, which
needs emphasis at the tertiary level teaching of computer
programming.

Teaching programming with a clear emphasis on
different strategies develops in beginner students several
ways and means of problem solving. In traditional
programming paradigm, teaching programming strategies
is analogous to teaching programming design. Traditional
computer science programmes place emphasis teaching
programming design and analysis in the upper level
courses such as system analysis and software development
[40]. Students in an introductory programming course
usually have limited exposure to program design.

6.Conclusion
The framework for strategies-oriented teaching of

computer programming can be a clear process with very
specific steps. Firstly, teaching starts off with the

introduction of language features. This is followed, as a
second step, by the discussion of a number of algorithmic
solutions with the explicit objective of developing critical
thinking skills. Logically the third step requires the
students to debug the entire programme. Debugging is
particularly important if the entire programme is actually
developed in segments of classroom tasks.

As a project management approach to problem solving,
problems are normally broken down into mini-tasks. As a
teaching methodology, strategies can be explicitly applied
to those mini-tasks. Each of these strategies can be
illustrated in flowchart which should be achievable with
no more than 10 lines of code. Tasks can also be formatted
as a flow of checklists; each task should be solved
sequentially.

The act of programming is a process, and the output of
this process should be a working program. If the resultant
programme does not work, then the process has not been
successful and it is very hard to evaluate the process. It is
simpler to give computing students the environment in
which they can produce the programme and then only
mark working programmes. Once the students know that
the only way to pass the assessments is to learn how to
programme, they develop a real interest in learning how to
programme. This motivation makes it much easier to teach
these students. But there is no substitute to hard work and
trying it all over again. In Greek legend, Sisyphus, a king
in ancient Greece who offended Zeus was given a
punishment to roll a huge boulder to the top of a steep hill;
each time the boulder neared the top it rolled back down
and Sisyphus was forced to start again. We believe that
the beginner-programmers need to have the tenacity of
Sisyphus combined with understanding of modern
business requirements that could help them succeed as
computer programmers.

References
[1] Lahtinen, E., AlaMutka, K., & Järvinen, H. (2005). A Study of the

Difficulties of Novice Programmers. Proceedings of the
ITiCSE’05 Conference, June 27-29, Monte de Caparica, Portugal.

[2] Milne, I., & Rowe, G. (2002). Difficulties in Learning and
Teaching Programming-Views of Students and Tutors. Education
and Information Technologies, 7(1), 55-66.

[3] Pea, R. (1986). Language independent conceptual bugs in novice
programming. Educational Computing Research, 2(1), 25-36.

[4] Saeli, M., Perrenet, J., Jochems, W. M. G., & Zwaneveld, B.
(2011). Teaching Programming in Secondary School: A
Pedagogical Content Knowledge Perspective. Informatics in
Education, 10(1), 73-88.

[5] Kaczmarczyk, L., East, J. P., Petrick, E. R., & Herman, G. L.
(2010). Identifying Student Misconceptions of Programming.
SIGCSE’10, March 10-13, Milwaukee, Wisconsin, USA.

[6] de Raadt, M., Toleman, M., & Watson, R. (2006): Chick Sexing
and Novice Programmers: Explicit Instruction of Problem Solving
Strategies. Australian Computer Science Communications,
28(5):55-62.

[7] Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J. E., Sanders, K.,
Seppälä, O., Simon, B., & Thomas, L. (2004): A multi-national
study of reading and tracing skills in novice programmers. ACM
SIGCSE Bulletin, 36(4):119-150.

[8] Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robins, P.,
Kumar, P. K. A., & Prasad, C. (2006): An Australasian Study of
Reading and Comprehension Skills in Novice Programmers, using
the Bloom and SOLO Taxonomies. Proceedings of the Eighth
Australasian Computing Education Conference (ACE2006),
Hobart, Australia 52, 243-252.

312 American Journal of Educational Research

[9] Bennedsen, J., & Caspersen, M. E. (2008). Optimists have more
fun, but do they learn better? On the influence of emotional and
social factors on learning introductory computer science.
Computer Science Education, 18(1), 1-16.

[10] Robins, A., Rountree, J., & Rountree, N. (2003). Learning and
Teaching Programming: A Review and Discussion. Computer
Science Education, 13(2):137-173.

[11] de Raadt, M., Toleman, M., & Watson, R. (2004): Training
strategic problem solvers. ACM SIGCSE Bulletin, 36(2):48 - 51.

[12] ACM & IEEE-CS Joint Task Force on Computing Curricula 2001
(2001). Computing Curricula 2001, Ironman Draft. Association for
Computing Machinery and the Computer Society of the Institute of
Electrical and Electronics Engineers. Available:
http://www.acm.org/sigcse/cc2001 [2001, 5/16/01].

[13] Clear, T (2001). "Programming in the Large" and the need for
professional discrimination. SIGCSE Bull. 33, 4, 9-10.

[14] Coburn, D., & Miller, A. (2004). Assessment in Technology is not
a Written Language Exercise. SET, 44-48.

[15] Winslow, L.E. (1996). Programming pedagogy – A psychological
Overview. SIGCSE Bulletin, 28, 17-22.

[16] Chi, M., Bassock, M., Lewis, M. Reimann, P. and Glaser, R.
(1989). Self-explanations: How students study and use examples
in learning to solve problems. Cognitive Science, 13, 145-182.

[17] Pirolli, P., & Recker, M. (1994). Learning strategies and transfer
in the domain of programming. Cognition and Instruction, 12,
235-275.

[18] Gerdes, A., Jeuring, J. T., and Heeren, B.J, (2010). Using
strategies for assessment of programming exercises.
In Proceedings of the 41st ACM technical symposium on
Computer science education (SIGCSE '10). ACM, New York, NY,
USA, 441-445.

[19] Davies, S. P. (1993). Models and theories of programming
strategy. International Journal of Man-Machine Studies,
39(2):237-267.

[20] Soloway, E. (1985): From problems to programs via plans: The
content and structure of knowledge for introductory LISP
programming. Journal of Educational Computing Research,
1(2):157-172.

[21] Wallingford, E. (2007) The Elementary Patterns Home Page,
http://cns2.uni.edu/~wallingf/patterns/elementary/. Accessed 18th
April 2011.

[22] Brooks, R. E. (1983): Towards a theory of the comprehension of
computer programs. International Journal of Man–Machine
Studies, 18:543-554.

[23] Auer, K. (1995). Smalltalk training: As innovative as the
environment. Comm. ACM, 38(10), 115-117.

[24] Berg, W., Cline, M., & Girou, M. (1995). Lessons learned from
the OS/400 OO Project. Comm. ACM, 38(10), 54-64.

[25] Fayad, M. E., & Tsai, Wei-Tek (1995). Object-oriented
experiences. Comm. ACM, 38(10), 51-53.

[26] Frakes, W. B., & Fox, C. J. (1995). Sixteen questions about
software reuse. Comm. ACM. 38(6) 75-87,112.

[27] Detienne, F. (1990). Expert programming knowledge: A schema
based approach. In J.M. Hoc,T.R.G. Green, R. Samurc¸ay, & D.J.

Gillmore (Eds.), Psychology of programming (pp. 205-222).
London: Academic Press.

[28] Muller, O., Haberman, B., & Ginat, D. (2007): Pattern-Oriented
Instruction and its Influence on Problem Decomposition and
Solution Construction. Proceedings of the 12th Annual
Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2007), Dundee, Scotland.

[29] Mittermeir, R., Syslo, M., Benaya, T., & Zur, E. (2008).
Understanding Object Oriented Programming Concepts in an
Advanced Programming Course. Informatics Education -
Supporting Computational Thinking (Vol. 5090, pp. 161-170):
Springer Berlin / Heidelberg.

[30] Rist, R.S. (1995). Program structure and design. Cognitive Science,
19, 507-562.

[31] Chang, C., Denning, P. J., Cross, J. H., Engel, G., Roberts, E., &
Shackelford, R. (2001). Computing curricula 2001. ACM Journal
of Educational Resources in Computing, 1(3), 240.

[32] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial,
Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda
Thomas, Ian Utting, and Tadeusz Wilusz. (2001). A multi-national,
multi-institutional study of assessment of programming skills of
first-year CS students. SIGCSE Bull, 33, 4 (December 2001), 125-
180.

[33] de Raadt, M., Watson, R & Toleman, M. (2009). Teaching and
assessing programming strategies explicitly, Proceedings of the
Eleventh Australasian Conference on Computing Education. In
Margaret Hamilton and Tony Clear (Eds.), Vol. 95. Australian
Computer Society., Darlinghurst, Australia, Australia, 45-54.

[34] Shaw, M., and Garlan, D., (1996). Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

[35] Dede, C. (2008). Theoretical perspectives of influencing the use of
information technology in teaching and learning. In J. Voogt and
G. Knezek, (eds.). International Handbook of Information
Technology in Education. New York: Springer.

[36] Biederman, I., & Shiffrar, M. M. (1987): Sexing Day-Old Chicks:
A Case Study and Expert Systems Analysis of a Difficult
Perceptual-Learning Task. Journal of Experimental Psychology:
Learning, Memory and Cognition, 13(4):640-645.

[37] Reber, A. S. (1993). Implicit Learning and Tacit Knowledge. New
York, USA: Oxford University Press.

[38] de Raadt, M., Toleman, M., & Watson, R. (2007): Incorporating
Programming Strategies Explicitly into Curricula. Proceedings of
the Seventh Baltic Sea Conference on Computing Education
Research (Koli Calling 2007), Koli, Finland, 53-64.

[39] Porter, R., & Calder, P. (2003). A Pattern-Based Problem-Solving
Process for Novice Programmers. Proceedings of the Fifth
Australasian Computing Education Conference (ACE2003),
Adelaide, Australia 20:231-238, Conferences in Research and
Practice in Information Technology.

[40] Ghafarian, A. (2001). Teaching design effectively in the
introductory programming courses. J. Comp. Sci. in Colleges, vol.
16, no. 2, pp. 201-208.

