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ABSTRACT

Although competing endogenous RNAs (ceRNAs) have been implicated in many 
solid tumors, their roles in breast cancer subtypes are not well understood. We 
therefore generated a ceRNA network for each subtype based on the significance of 
both, positive co-expression and the shared miRNAs, in the corresponding subtype 
miRNA dys-regulatory network, which was constructed based on negative regulations 
between differentially expressed miRNAs and targets. All four subtype ceRNA networks 
exhibited scale-free architecture and showed that the common ceRNAs were at the 
core of the networks. Furthermore, the common ceRNA hubs had greater connectivity 
than the subtype-specific hubs. Functional analysis of the common subtype ceRNA 
hubs highlighted factors involved in proliferation, MAPK signaling pathways and tube 
morphogenesis. Subtype-specific ceRNA hubs highlighted unique subtype-specific 
pathways, like the estrogen response and inflammatory pathways in the luminal 
subtypes or the factors involved in the coagulation process that participates in the 
basal-like subtype. Ultimately, we identified 29 critical subtype-specific ceRNA hubs 
that characterized the different breast cancer subtypes. Our study thus provides 
new insight into the common and specific subtype ceRNA interactions that define 
the different categories of breast cancer and enhances our understanding of the 
pathology underlying the different breast cancer subtypes, which can have prognostic 
and therapeutic implications in the future.

INTRODUCTION

Non-coding RNAs are a class of RNAs that 

regulate gene expression transcriptionally and post-

transcriptionally [1]. The miRNAs are a class of 

~22-nucleotide long single-stranded non-coding RNAs 

that regulate gene expression by binding to MREs 

(miRNA response elements) on the RNAs [2]. Aberrant 

miRNA expression patterns have been associated with 

many human cancers including breast cancer [3]. The 

lncRNAs (long non-coding RNAs) are another class of 

non-coding RNAs (longer than 200 nucleotides), that 

are also involved in the pathology of many complex 

human diseases including cancers [4]. The lncRNAs also 

harbor MREs and compete with other RNAs for miRNA 

binding, thus can function as competing endogenous 

RNAs (ceRNAs) to influence the post-transcriptional 
regulation in cancers [5, 6].

Breast cancer is a progressive disease that is a 

leading cause of cancer-related mortality in women 

and composed of distinct subtypes that are highly 

heterogeneous [7–10]. Based on gene expression, breast 

cancer is classified into five major subtypes namely 
luminal A, luminal B, HER2-enriched, basal-like, and 

normal-like [11, 12]. The luminal subtypes (A and B) are 

characterized by the expression of ER (estrogen receptor) 

and/or PR (progesterone receptor) related genes [13]. The 

HER2-enriched subtype is often associated with frequent 

HER2/ERBB2 amplification (80%) and therefore HER2/
ERBB2 is targeted for therapy [14]. The basal-like subtype 

is generally negative for ER, PR and HER2 and therefore 

also called as triple-negative breast cancer or TNBC, 
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that is characterized by enhanced invasiveness and poor 

clinical outcomes [15]. The etiology of different breast 

cancer subtypes shows variant risk factors that may 

result in different clinical outcomes [16, 17]. Therefore, 

understanding the similarities and differences among the 

various subtypes is important from the clinical standpoint.

Although many breast cancer biomarkers have been 

reported [18, 19], it has come to light that many of these 
biomarkers are coordinately regulated by similar miRNAs 

that implies competition among shared miRNAs to bind 

to different RNAs. For example, Li et al. found that the 

STARD13-correlated ceRNA network inhibits epithelial-

mesenchymal transition (EMT) and metastasis of breast 

cancer [20]. However, these studies focused on the clinical 

utility of individual ceRNA interactions and did not 

investigate the ceRNA interactions at a system level. Xu 

et al. conducted a systemic analysis of ceRNA interactions 

in breast cancer without considering the heterogeneity of 

breast cancer subtypes and the involvement of lncRNAs 

[21]. Also, studies investigating ceRNA interactions 

in human cancer have focused on dysregulated RNAs 

that are aberrantly expressed during cancer initiation 

and progression [22]. Due to the heterogeneity of breast 

cancers, the expression profiling is more complex [7, 
23]. Hence, a systemic analysis of ceRNA crosstalk 

among different breast cancer subtypes may yield better 

information regarding the interplay of various biological 

networks that are involved in breast carcinogenesis [24]. 

Furthermore, since the potential interactions between the 

subtype molecular biomarkers have not been considered 

in previous studies, we opined that the ceRNA network 

analysis would help dissect the pathway interactions at a 

molecular level.

Therefore, the aim of this study was to generate 

subtype specific dysregulated miRNA mediated ceRNA 
networks to discover new critical subtype related genes 

and to unravel the shared and specific pathogenic 
pathways of the breast cancer subtypes at a system level

RESULTS

The miRNA dys-regulatory networks in the 

breast cancer subtypes

To systematically identify disease markers in each 

of the four breast cancer subtypes, we performed Wilcoxon 

Rank Sum tests to identify differentially expressed protein 

coding and non-coding genes in each of the breast cancer 

subtypes (Figure 1A, Supplementary Table 1). Each 

subtype exhibited about 40% differentially expressed 
coding and non-coding genes (Figure 1A). Further, 

majority of the miRNAs were upregulated and most of the 
lncRNAs were downregulated in all the subtypes. About 

70% of dys-regulated coding and non-coding RNAs are 
shared in at least two breast cancer subtypes (Figure 1B). 

Also, about 95% of subtype shared dysregulated mRNAs, 

miRNAs and lncRNAs are concordantly changed across 

breast cancer subtypes, comparing the four breast cancer 

subtypes, namely luminal A, luminal B, HER2-enriched 

and basal-like (Figure 1B). These data indicated that 

these shared dys-regulated RNAs may result in accordant 

direction change of cancer-related pathways in different 

breast cancer subtypes. Among the subtypes, basal-like 

exhibited the highest fraction of dysregulated coding and 

non-coding RNAs that lead to malignancy as shown in 

supplementary Table 2 [15, 25]. Notably, several subtype 

marker genes were identified that were consistent with 
previous studies like ESR1, PGR (progesterone receptor) 

and FOXC1 [11]. For example, ER, ESR1 and PGR 

genes were downregulated in the basal-like subtype, 

but, upregulated in the luminal A/B subtypes. Similarly, 

FOXC1 was upregulated in the basal-like subtype and 

down-regulated in the luminal A/B and HER2-enriched 

subtypes.

Regarding miRNAs, previous studies have 

suggested that miRNAs usually function as negative 

regulators of gene expression [2, 26]. Therefore, we 

constructed the subtype miRNA dys-regulatory networks 

by assuming that the miRNAs negatively regulated their 

target genes (Supplementary Table 3). Our data suggested 

that most of the miRNA targets were subtype specific. 
However, the subtypes with similar tissue-of-origin, such 

as the luminal A and the luminal B shared many nodes and 

edges in the networks (Figure 1C-1E). Also, the network 

structure of the miRNA dys-regulatory networks was 

organized according to a core set of principles and not 

randomly. This suggested that their analysis would help 

understand the regulation between the miRNAs and their 

targets at a system level (Supplementary Figure 1A-1B).

CeRNA networks among the breast cancer 

subtypes

To investigate the ceRNA regulation in breast 

cancer subtypes, we generated a ceRNA network for 

each subtype by assembling all the significant ceRNA 
interactions that were based on the significance of both, 
their positive co-expression and the shared miRNAs, in 

the corresponding subtype miRNA dys-regulatory network 

(Table 1). Accordingly, we identified 84,026, 11,449, 
4,982 and 8,600 ceRNA interactions in the networks of 
luminal A, luminal B, HER2-enriched and basal-like 

subtype, respectively. We found 26.88%, 11.79%, 8.07% 
and 12.54% of dysregulated mRNAs as well as 6.50%, 
2.58%, 1.75% and 3.30% of dysregulated lncRNAs in 
the ceRNA networks of luminal A, luminal B, HER2-

enriched and basal-like subtype, respectively. This 

indicated that more dys-regulated mRNAs are influenced 
by the ceRNA regulation mechanism compared with 

lncRNAs. Further, we observed that many ceRNAs were 

well connected and formed a tight network in each subtype 

(Supplementary Figure 2A-2D). Similar to the miRNA 
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dys-regulatory networks, the ceRNA networks showed 

that the ceRNA interactions are much more specific to 
each subtype in spite of overlapping nodes among the 

four different subtypes, suggesting unique subtype specific 
regulation (Figure 2A-2B). As expected, the luminal 

A and B subtypes that are similar in the tissue of origin 

and at the molecular level showed greater overlap of the 

ceRNA network (Figure 2A-2B). We also observed that 

the degree distribution of the ceRNA networks satisfied 
the power law model suggesting that the networks were 

scale-free and not randomly organized implying rapid 

communication among different ceRNAs (Supplementary 

Figure 2E).

Several marker genes of specific breast cancer 
subtypes have been reported to be differentially expressed 

[9, 11]. We observed that these marker genes were 

Figure 1: Dysregulated coding and non-coding RNAs among different breast cancer subtypes. A. The percentage of 

dysregulated mRNAs, miRNAs and lncRNAs across four breast cancer subtypes (Wilcoxon Rank Sum tests, FDR<0.05). Note: ‘NS’ 

means no significant difference in expression between the breast cancer subtypes and normal samples. B. The percentage of concordant 

and discordant changes of RNAs that are dysregulated in 4, 3, 2 and specific subtypes, respectively. Concordant change is defined as the 
expression of a RNA changed in the same direction across all breast cancer subtypes. C-E. The Venn diagram depicting the nodes, target 

nodes and edges of the miRNAs across the four breast cancer miRNA dys-regulatory subtype networks. The red digit indicates the number 

of shared nodes or edges between the luminal A and the luminal B miRNA dys-regulatory networks. The percentages of shared nodes (or 

edges) between the luminal A and the luminal B subtype networks were calculated and showed under each Venn diagram.
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highly connected in the ceRNA networks. For example, 

in luminal A breast cancer, EGFR and FOXC1 had 453 

and 343 ceRNA connections, respectively and shared four 

miRNAs (miR-15b-3p, miR-141-3p, miR-200a-3p and 

miR-760). This suggested that the marker genes of breast 

cancer subtypes can co-regulate each other and have high 

connectivity in the ceRNA networks.

Subtype common ceRNAs tend to be at the core 

of ceRNA networks

A key network property is node connectivity that 

shows the degree of communication among the nodes. 

Hub node is pivotal and shows high connectivity with 

other nodes. In our study, we defined the hubs as the 
top 10% of the nodes with the highest degree within the 
networks. The hub nodes were sub-divided into subtype 

common and subtype specific ceRNA nodes that would 
identify mechanisms that are either shared or specific 
among the different breast cancer subtypes. The subtype 

common ceRNA hubs were defined as ceRNA hubs that 
occurred in at least three of the subtype ceRNA networks 

and accounted for 12.65%, 29.07%, 39.34% and 19.39% 
of total ceRNA hubs in luminal A, luminal B, HER2-

enriched and basal-like, respectively (Figure 3A). On the 

other hand, the subtype specific ceRNA hubs were defined 
as hubs that occurred in each of the specific subtype 
networks only. Also, the luminal A and basal-like had 

high proportion of subtype specific ceRNA hubs relative 
to common ceRNA hubs.

While the node degree of a network represents 

the local centrality, k-core decomposition reveals the 

modularity of central hub nodes and is used to identify 

the largest sub-graph where the vertices have at least ‘k’ 

connections within a subgraph called as the k-cores [27]. 

Therefore, hubs that are closely connected with other hub 

nodes are within k-cores have larger k values, whereas, 

hubs closely connected to non-hub nodes have smaller k 

values. When we conducted k-core decomposition analysis 

to analyze the localization of common and subtype specific 
nodes, we observed that the subtype common ceRNAs 

had larger k values compared to subtype-specific ceRNA 
nodes (Figure 3B). This indicated greater centrality in the 

networks and suggested that all breast cancer subtypes 

shared pathogenic pathways. Also, the Wilcoxon Rank 

Sum test revealed that the subtype common ceRNA hubs 

had higher connectivity compared with subtype-specific 
ceRNA hubs in each network, which may provide some 

clues of common biological processes disturbed among 

the different breast cancer subtypes (Figure 3C).

Subtype common ceRNA hubs are associated 

with proliferation in breast cancers

Next, we analyzed the relationship among common 

ceRNA hubs to understand their regulation of breast 

cancer progression. Towards this, we collected all the 

ceRNA interactions among the 28 common ceRNA 
hubs in the four breast cancer subtypes to form a 

subtype common sub-network (Figure 4A-4B). Five of 

the twenty eight ceRNA hubs were common to all the 

four breast cancer subtype networks, including RECK, 

which controls breast cancer metastasis by regulating 

MMP-2 (matrix metalloproteinases-2) to inhibit tumor 

angiogenesis [28]. We also found that these ceRNA hubs 
were highly connected with each other and regulated 

by subtype common hub miRNAs in the corresponding 

miRNA dys-regulatory network (Figure 4A). Furtherly, 

147 of the 353 ceRNA interactions among the 28 subtype 
common ceRNA hubs occurred in at least three breast 

cancer subtypes. The subtype common ceRNA network 

was regulated by 13 common hub miRNAs in at least 

three miRNA dys-regulatory networks, including breast 

cancer related miR-141-3p, miR-33a-5p, miR-200c-3p, 

and miR-182-5p [29–31]. We also identified 25 protein 
coding genes among the 28 subtype common ceRNA 
hubs, of which 12 (RECK, LHFP, FSTL1, TGFBR2, 

EBF1, ERG, MRVI1, DKK3, GAS7, RBMS3, PDGFRA 

and CCDC80) were listed as cancer related genes in the 
Cancer Gene Census (CGC) of the COSMIC database 

or the Genetic Association Database (GAD) [32, 33]. 

LHFP, a common ceRNA hub in all the four breast cancer 

subtypes is associated with mesenchymal differentiation 

in glioma [34]. Defective MSRB3 has been shown to 

inhibit cell proliferation through the activation of p53-p21 

and p27 pathways [35]. Also, MSRB3 and LHFP co-

regulate each other by sharing common hub miRNAs, 

miR-141-3p and miR-33a-5p (Figure 4C-4D; Pearson 

correlation coefficients are 0.74, 0.74, 0.65 and 0.63 in 
luminal A, luminal B, HER2-enriched and basal-like, 

respectively).

Table 1: The number of nodes and edges which are involved in ceRNA networks across four breast cancer subtypes

 Edges Nodes (lncRNA) Nodes (mRNA)
Nodes

(miRNA)

Luminal A 84,026 237 1,410 164

Luminal B 11,449 111 738 154

HER2-enriched 4,982 73 504 101

Basal-like 8,600 139 806 184
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Figure 3: Common subtype ceRNAs are at the core in the ceRNA networks. A. The percentage of hub ceRNAs distributed 

in 1–4 breast cancer subtypes B. Relationships between ceRNA layers and the percentage of specific or common subtype ceRNAs in each 
layer. Increasing layer numbers correspond to regions of increasing densities in the network. The layers of each subtype network were 

normalized to 0-1 and the frequencies were accumulated. C. The difference in degrees between common and specific subtype ceRNA hubs 
(Wilcoxon Rank Sum test). Yellow colored boxes represent the degree distribution of common subtype ceRNAs and other colored boxes 

correspond to subtype specific ceRNA hubs.

Figure 2: The nodes and edges of ceRNA networks across four breast cancer subtypes. A-B. The Venn diagram showing the 

nodes and edges across the four breast cancer subtype ceRNA networks.
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Furthermore, our data showed that the lncRNAs 

functioned as ceRNAs involved in the cancer related 

biological processes. We found RP11-276H19.1 
(ENSG00000226237) as a common hub that participated 

in the ceRNA interaction networks in luminal A, luminal 

B and HER2-enriched subtypes. It also co-regulated 

with MSRB3 and LHFP by sharing miRNAs to form 

ceRNA-ceRNA interactions in the three subtypes (Figure 

4C-4D). Also, the expression of these three ceRNAs 

had similar trend in each breast cancer subtype (Figure 

4D). Functional enrichment analysis of the ceRNA 

hubs revealed their involvement in proliferation (FDR 

Figure 4: Common subtype ceRNA hubs are associated with breast cancer proliferation. A. Common subtype ceRNA hub 

sub-network. The solid line shows ceRNA interactions and the dotted line shows target miRNA relationships. The width of an edge is based 

on the number of subtype ceRNA networks in which the ceRNA interaction occurred. Only common hub miRNAs were considered in this 

network. Some significantly enriched gene sets are listed alongside. Up/dn means upregulation/downregulation in the corresponding gene 
sets of msigDB. B. Common ceRNA hubs were defined as hubs in different subtype ceRNA networks. Yellow box refers to the ceRNA 
which is defined as a hub in the corresponding subtype ceRNA network. The cross denotes that the expression of a ceRNA has no significant 
change in the corresponding subtype compared with normal breast tissues. Otherwise it is considered dysregulated. The red ceRNAs 

indicate cancer genes listed in CGC or GAD. C. An example of miRNA regulations for ceRNA interactions among MSRB3, LHFP and 

RP11-276H19(ENSG00000226237). Only the common hub miRNAs were considered and the colors are concordant with the networks in 
figures S2A-S2D. D. The expression of ceRNAs in different subtypes are shown (log2 transformed). The clinical samples were sorted by 

the expression of MSRB3 for each breast cancer subtype.
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= 4.80e-03, hypergeometric test, Bonferroni corrected), 
MAPK signaling pathway (FDR = 4.10e-03), tube 

morphogenesis (FDR = 4.37e-03) and some breast cancer 

associated processes (Table 2, Supplementary Table 4), 

demonstrating that the proliferation process was altered 

substantially in all breast cancer subtypes [36].

Subtype specific ceRNA hubs contribute to 
breast cancer subtype phenotype

To discover the pathogenic mechanisms of different 

breast cancer subtypes, we further focused on the subtype 

specific ceRNA hubs. We extracted four subtype-specific 
ceRNA hub sub-networks by collecting all subtype-

specific ceRNA hubs and their ceRNA interactions within 
each of the four subtype ceRNA networks and found that 

the subtype-specific hubs were highly connected with 
each other and regulated by hub miRNAs in the miRNA 

dys-regulatory network of each subtype (Figure 5A-

5D; Table 3; Supplementary Table 5). Several miRNA 

hubs were subtype specific and had specific roles in the 
corresponding breast cancer subtype. For instance, the 

three members of the miR-17-92 cluster (miR-17-3p, 
miR-20a-5p and miR-19b-3p) were part of an oncogenic 
cluster and associated with lymph node metastases in 

TNBC [37]. These three miRNAs were significantly 
upregulated in basal-like subtype compared with normal 

breast tissue. In addition, KDR or VEGF2, is also a 

basal-like subtype specific hub and a specific biomarker 
in TNBC based on a long-term follow-up dataset [38]. 
KDR acted as a ceRNA partner of PGR, another basal-

like specific hub and competing for the binding to the 
miR-17-92 cluster (including miR-17-3p, miR-19b-1-
5p and miR-20a-5p). Interestingly, we found that these 

subtype-specific ceRNA hubs participated in breast or 
other hormone related cancer like prostate cancer, ovarian 

cancer and endometrial cancer (Table 3, Supplementary 

Table 5), consistent with previous findings that hormone 
related cancers had similar pathways [39]. In addition, 
some biological pathways were identified to be assigned 
to specific subtypes. For example, estradiol response and 
IL2 -STAT5 signaling (inflammatory response pathway) 
were luminal A and luminal B specific (Table 3), whereas, 
the coagulation pathway was specifically involved in the 
basal-like subtype (FDR = 1.16e-02).

Based on these data, we hypothesized that the 

subtype-specific ceRNA hubs that took part in subtype 
specific pathways could be used to classify different 
breast cancer subtypes. We also performed the principal 

component analysis (ggfortify R package) and found 

that the 29 subtype-specific ceRNA hubs that were 
dysregulated among all breast cancer subtypes (Wilcoxon 

Rank Sum test, FDR<0.05) could distinguish the basal-

like, HER2-enriched and luminal subtypes, whereas 

distinguishing the luminal A and B subtypes was not clear-

cut (Figure 5E).

Taken together, these results suggested that 

investigating the properties of ceRNA interaction networks 

may help strengthen our understanding of different 

subtype breast cancers, which may contribute to breast 

cancer subtype phenotype, thus further to improve clinical 

prevention and treatment.

DISCUSSION

In this study, we developed a computational 

framework to construct and analyze ceRNA networks 

using the transcriptional profiling data to understand the 
dynamic clinical behaviors and outcomes of different 

breast cancer subtypes.

In this study, we adopted a three-step design to 

construct the ceRNA interaction network in each subtype 

to eliminate false discoveries [40, 41]. Thereafter, we used 

highly stringent threshold values to construct miRNA 

dys-regulatory networks and the identified common and 
subtype-specific ceRNA hubs were not influenced by 
different threshold effects (Supplementary Table 6). In 

addition, the maximal FDRs for luminal A, luminal B, 

HER2-enriched and basal-like subtypes were 0, 2.06e-12, 

1.18e-04, 7.11e-09, respectively, suggesting that the ceRNA 

interactions were reliable. We further validated the 

accuracy of predicting the ceRNA interactions globally by 

analyzing expression datasets for the four breast cancer 

subtypes from another array, GSE45827, and found that 
the ceRNA interaction pairs showed higher positive 

co-expression compared with the gene pairs that were 

randomly selected (Supplementary Figure 3).

Further, although majority of the ceRNA 
nodes and interactions were subtype specific, several 
common ceRNAs were also shared by the four breast 

cancer subtypes (Figure 2A and 2B). These common 

ceRNA hubs indicate shared dynamic changes in many 

biological processes like MAPK signaling pathway, 

proliferation process and tube morphogenesis during 

breast tumorigenesis (Table 2). Conversely, the subtype 

specific ceRNA hubs provide clues to specific changes 
during the transformation of the normal cells into the 

different breast cancer subtypes (Table 3). For example, 

our analysis showed that luminal A and luminal B were 

associated with estradiol response and inflammatory 
response pathway. This validated our analysis since the 

luminal subtypes are recognized as estrogen receptor 

positive breast cancer (ER+) and are clinically treated 

with hormone therapy [13]. Also, interleukin-6 that 

is secreted by the transformed fibroblasts induces 
tamoxifen resistance in luminal breast cancer [42]. 

On the other hand, we found that the hallmark of the 

basal-like breast cancer subtype was coagulation 

pathway, consistent with previous reports that basal 

breast cancer cells constitutively express coagulation 

initiator, an alternatively spliced tissue factor (asTF) 
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Table 2: Enriched gene sets for common ceRNA hub subnetwork

Category of Gene sets Gene set name Count FDR

 tube morphogenesis 5 4.37e-03

 regulation of cellular response to growth factor stimulus 4 4.80e-03

GO_BP
regulation of transforming growth factor beta receptor 

signalling pathway
3 4.80e-03

 tube development 5 4.83e-03

KEGG MAPK signalling pathway 3 4.10e-03

 schuetz breast cancer ductal invasive up 9 5.43e-09

CGP charafe breast cancer luminal vs mesenchymal dn 10 5.43e-09

 lim mammary stem cell up 10 5.43e-09

 liu prostate cancer dn 7 1.65e-05

Note: BP is the abbreviation of ‘Biological Process terms for Gene Ontology’ ; KEGG is the abbreviation of ‘Kyoto 

Encyclopedia of Genes and Genomes’; CGP is the abbreviation of ‘chemical and genetic perturbations’.

Figure 5: Subtype specific ceRNA hubs contribute to breast cancer subtype phenotype. A-D. Subtype specific ceRNA hub 
sub-networks are shown. The solid line depicts ceRNA interactions and the dotted line shows target miRNA relationships. The hubs with 

red gene label correspond to the 29 critical subtype-specific ceRNA hubs. Only hub miRNAs were considered in each network. Some 
of the significantly enriched gene sets are listed alongside. Up/dn means upregulation/downregulation in the corresponding gene sets of 
msigDB. E. Principal component analysis (PCA) plots showing distinct populations identified in the four breast cancer subtypes (based on 
the ggfortify R package). ‘PC’ stands for principal component.
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Table 3: Enriched gene sets for subtype specific ceRNA hub subnetworks

Subtypes Category Gene set name Count FDR

 HALLMARK IL2 stat5 signalling 4 4.48e-02

 GO_BP regulation of inflammatory response 6 2.23e-02

  cellular response to cytokine stimulus 9 2.23e-02

 KEGG focal adhesion 6 1.01e-02

  adherens junction 3 2.53e-03

  cytokine cytokine receptor interaction 5 36.2e-02

LuminalA  charafe breast cancer luminal vs mesenchymal dn 23 3.47e-14

  liu prostate cancer dn 23 5.04e-14

  lim mammary stem cell up 23 8.74e-14

 CGP charafe breast cancer luminal vs basal dn 15 5.14e-07

  doane breast cancer ESR1 dn 4 1.14e-03

  dutertre estradiol response 24hr dn 9 7.04e-03

  lien breast carcinoma metaplastic vs ductal up 3 2.72e-02

 GO_BP adipogenesis 3 3.83e-03

  biological adhesion 8 4.20e-03

  regulation of response to external stimulus 7 9.12e-03

 KEGG vascular smooth muscle contraction 4 2.95e-05

LuminalB CGP schuetz breast cancer ductal invasive up 11 3.07e-10

  liu prostate cancer dn 11 3.77e-09

  charafe breast cancer luminal vs mesenchymal dn 8 8.31e-06

  smid breast cancer luminal b dn 7 1.53e-04

  charafe breast cancer luminal vs basal dn 6 3.67-04

  dutertre estradiol response 24hr dn 5 3.07e-03

  doane response to androgen dn 3 1.10e-02

 HALLMARK epithelial mesenchymal transition 6 1.57e-06

  substrate adhesion dependent cell spreading 3 4.39e-04

 GO_BP growth 4 7.58e-03

  biological adhesion 6 7.58e-03

 KEGG focal adhesion 3 1.08e-03

  schuetz breast cancer ductal invasive up 10 3.85e-11

HER2-

enriched
 liu prostate cancer dn 6 1.30e-04

  wamunyokoli ovarian cancer lmp dn 3 2.21e-03

 CGP charafe breast cancer luminal vs mesenchymal dn 4 2.32e-03

  plasari TGFB1 targets 10hr up 3 2.32e-03

(Continued )



Oncotarget10180www.impactjournals.com/oncotarget

that promotes breast cancer growth in a β1 integrin-
dependent manner [43].

In regard to the tumor suppressive and the 

oncogenes reported [42], our study demonstrated that 

both the common and the subtype-specific ceRNA hubs 
were enriched in tumor suppressive genes and depleted 

in oncogenes (Supplementary Table 7). To explain this, it 

has to be noted that the ceRNA hubs are down-regulated 

in each of the breast cancer subtypes. Therefore, the 

dysfunction of the enriched tumor suppressor genes 

probably drives the initiation and progression of breast 

cancer. Several cancer associated lncRNAs including 

the common ceRNA hubs like HAND2-AS1 (DEIN) 

[44, 45] and RP11-276H19.1 [46], as well as subtype-
specific hubs like ADAMTS9-AS2, a luminal A specific 
hub lncRNA, acted as tumor suppressors and inhibited 

the migration of the glioma cells [47]. Similarly, 

functional analysis of the miRNA hubs by the TAM 

tool showed that the common and specific miRNA 
hubs play important roles in breast cancer subtypes 

(Supplementary Table 8) [48].

Finally, our analysis revealed 29 critical ceRNA 
hub genes that could distinguish the basal-like, HER2-

enriched and luminal breast cancer subtypes. The 

Luminal A/B subtypes were similar as they shared many 

expression markers within the luminal epithelial cell 

layers. HER2-enriched and luminal A/B subtypes could 

not be well distinguished as several HER2-enriched 

subtype showed the expression of ER or PR as well 

as a global gene expression profile that was similar to 
the luminal A and B subtypes [49, 50]. Among the 29 
subtype related genes, four were part of the 50-gene 

PAM50 model (FOXC1, SFRP1, PGR and EGFR) [12]. 

Although the other 25 genes were not part of the PAM50 

model, they probably compete for miRNA binding and 

thus influence the subtype specificities. For example, 
DCN (decorin) regulates PGR by competing for miR-

19b-1-5p and promotes the basal-like subtype (Pearson 
correlation coefficient =0.54). This supports previous 
findings that DCN is down-regulated and influences 
the breast cancer cell motility and invasion, and acts as 

one of the six-gene signature that adds prognostic value 

Subtypes Category Gene set name Count FDR

  yoshimura MAPK8 targets dn 3 8.44e-03

  schaeffer prostate development 48hr dn 3 1.20e-02

  charafe breast cancer luminal vs basal dn 3 1.26e-02

 HALLMARK epithelial mesenchymal transition 7 5.49e-06

  coagulation 3 1.16e-02

 GO_BP response to transforming growth factor beta 4 1.90e-02

 KEGG
positive regulation of phosphatidylinositol 3 kinase 

signaling
3 1.90e-02

  cytokine cytokine receptor interaction 4 1.15e-02

  focal adhesion 3 1.67e-02

Basal-like  wamunyokoli ovarian cancer lmp dn 9 2.11e-07

  wong endometrium cancer dn 7 2.10e-07

  schuetz breast cancer ductal invasive up 10 1.41e-06

  smid breast cancer basal dn 12 7.27e-06

 CGP wamunyokoli ovarian cancer grades 1 2 dn 5 1.83e-05

  bonome ovarian cancer survival suboptimal debulking 8 5.30e-04

  landis breast cancer progression dn 3 4.06e-03

schaeffer prostate development 48hr dn 6 4.09e-03

Note: GO_BP is the abbreviation of ‘Biological Process terms for Gene Ontology’ ; KEGG is the abbreviation of ‘Kyoto 

Encyclopedia of Genes and Genomes’; CGP is the abbreviation of ‘chemical and genetic perturbations’.
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independent of the expression of ER, PR, and HER2 [51, 

52]. Therefore, subtype specific expression of 50-gene 
in PAM50 model can be regulated by other ceRNAs 

that may influence breast cancer subtype specificity. 
Interestingly, three of the 29 subtype-specific ceRNA 
hubs, namely EGFR, IL6ST and MET, are listed in the 

Cancer Gene Census of the COSMIC database [32]. 

Therefore, all these data put together identify these 29 
genes as crucial for breast cancer subtype determination, 

maintenance and function and need to be further 

analyzed in detail.

Systematic studies have shown that somatic 

mutations are the driving force for human carcinogenesis 

[53]. In our study, among the 28 common ceRNA hubs, 
we found 18 mutant genes in at least one breast cancer 
subtype. Therefore, when we analyzed gene mutations 

in the general ceRNA networks, we observed that the 

mutated ceRNAs are highly connected than the other 

ceRNAs within the four ceRNA networks (Supplementary 

Figure 4A, Wilcoxon Rank Rum test). This also showed 

that mutated ceRNAs were enriched in the hubs across 

all the four breast cancer subtypes (Supplementary 

Figure 4B, hypergeometric test). Moreover, k-core sub-

network analysis indicated that the mutated ceRNAs 

were localized in the highly dense layers of each ceRNA 

network, especially in the HER2-enriched and the basal-

like subtypes (Supplementary Figure 4C). Although the 

effects of somatic mutation in human cells is largely 

unknown [54], since mutated genes had greater ceRNA 

interactions, we postulate that somatic mutation may drive 

breast cancer initiation and progression by dysregulating 

the normal ceRNA interactions.

Therefore, in conclusion, our study provides a 

framework to compare disease subtypes based on miRNA 

mediated ceRNA interactions. The systemic network 

analyses provide understanding of the biological 

mechanisms underlying the different breast cancer 

subtypes and help identify new critical genes for each 

of the breast cancer subtypes. We predict that systematic 

characterization of ceRNA-ceRNA interactions will 

contribute to improving the subtype classification and 
also identifying novel prognostic markers that would help 

selecting appropriate subtype specific therapies that would 
improve the survival outcomes for breast cancer patients.

MATERIALS AND METHODS

Genome wide transcriptome and mutation 

datasets of the five breast cancer subtypes

The mRNA and miRNA expression datasets 

measured by RNA sequencing were downloaded from 

The Cancer Genome Atlas (TCGA) [23], whereas, 

the lncRNA sequencing datasets were obtained from 

The Atlas of ncRNA in Cancer (TANRIC) [55]. The 

molecular subtype information of breast cancer was 

downloaded from Synapse (https://www.synapse.org/, 

syn1461151) for the luminal A, luminal B, HER2-

enriched, basal-like and normal-like, with normal 

breast samples [23]. As the normal-like subtype has 

high percentage of normal sample “contamination” in 

the tumor specimen [12], it was excluded from further 

analysis (Supplementary Table 1). The mutation datasets 

of each tumor sample were also obtained from Synapse. 

To filter out lowly expressed RNA transcripts (mRNA, 
miRNA, lncRNA), the one with expression value of 0 in 

all of the samples was removed. Finally, 20,211 mRNAs, 

12,697 lncRNAs and 1,026 miRNAs were considered 
for further analysis. All the expression profiles were 
log2 transformed.

The miRNA-target relationships

To obtain the regulatory relationships between 

miRNAs and mRNAs (or lncRNA), miRanda algorithm 

was used to predict the miRNA-target relationships. As a 

result, 1,129,584 unique miRNA-lncRNA and 2,927,669 
unique miRNA-mRNA relationships were generated 

among 1,017 miRNAs, 7,731 lncRNAs and 17,215 

mRNAs, respectively.

Functional annotation datasets

Functional annotation gene sets were downloaded 

from the Molecular Signatures Database (MsigDB) [56]. 

This included 50 hallmark gene sets, 825 Biological 
Process (BP) terms for Gene Ontology (GO), 3396 
chemical and genetic perturbations (CGP) and 186 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) gene sets.

Overview of the construction of subtype ceRNA 

networks

A three-step model was proposed to construct ceRNA 

networks. Firstly, we identified differentially expressed 
mRNA, miRNAs and lncRNAs for each of the breast cancer 

subtypes compared with normal breast samples. Secondly, 

four miRNA dys-regulatory networks were constructed 

by considering negative regulation between dysregulated 

miRNAs and their targets. Thirdly, based on the miRNA dys-

regulatory networks, ceRNA interactions were identified by 
considering significant sharing of the the regulatory miRNAs 
and their co-expression. All ceRNA interactions were 

assembled into a ceRNA network for each breast cancer 

subtype, where the nodes were referred to as ceRNAs and 

the edges referred to as ceRNA interactions.

Identification of differentially expressed mRNAs, 
miRNAs and lncRNAs

Wilcoxon Rank Sum tests were used to identify 

differentially expressed protein coding genes and non-

coding genes between each subtype and normal breast 
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samples. We applied the Bonferroni correction and the 

RNAs that showed a FDR less than 0.05 and the absolute 

log2 fold change (LFC) no less than 1 were considered 

significant.

Construction of subtype miRNA dys-regulatory 

networks

Differentially expressed target genes (mRNAs 

and lncRNAs) for each differentially expressed miRNA 

were collected and a miRNA dys-regulatory network was 

constructed for each subtype by considering negative 

regulation between miRNAs and their targets based on the 

expression profiles of each breast cancer subtype samples 
(Pearson Correlation Coefficient<0, P<0.01).

Construction of subtype ceRNA networks

The subtype ceRNA interaction networks were 

constructed based on the miRNA dys-regulatory 

networks. Two target genes were considered to be 

competing only if 1) they significantly shared regulatory 
miRNAs in the miRNA dys-regulatory network as 

calculated by the hypergeometric test (FDR<0.01, 

Bonferroni corrected) and 2) the expression of ceRNA-

ceRNA interactions showed a statistically significant 
positive correlation with a Pearson correlation 

coefficient that was no less than 0.5 (FDR<0.01, 
Bonferroni corrected). All the ceRNA interactions were 

assembled into a ceRNA network for each breast cancer 

subtype and the weights of all edges were set to 1.

K-core decomposition analysis of the ceRNA 

networks

The k-core is the largest sub-graph where every node 

has at least k links. The k-core can be determined by pruning 

all the vertices from a network with degrees less than k and 

their incident links until the degree of all the remaining 

vertices in the sub-graph are larger than or equal to k. The 

k layers reflect the connectivity of the ceRNA partners such 
that the first peeled layer (k=1) contains ceRNAs with only 
a few connections whereas the last peeled layer is most 

connected. Each node was assigned to a maximal k core 

sub-network in each breast cancer subtype ceRNA network. 

For among different breast cancer subtypes, the layers of 

each ceRNA network were normalized to 0-1 divided by the 

number of largest k layer in each network.

Functional enrichment analysis for subtype 

common and specific ceRNA hub sub-networks

To dissect the biological pathways represented by 

the common or subtype-specific ceRNA hub sub-networks, 
functional enrichment analysis of the hub ceRNA genes 

was performed by hypergeometric distribution with the 

Bonferroni correction (FDR < 0.05).
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