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For a small sessile or pendant droplet it is generally assumed that gravity does not play any
role once the Bond number is small. This is even assumed for evaporating binary sessile
or pendant droplets, in which convective flows can be driven due to selective evaporation
of one component and the resulting concentration and thus surface tension differences at
the air–liquid interface. However, recent studies have shown that in such droplets gravity
indeed can play a role and that natural convection can be the dominant driving mechanism
for the flow inside evaporating binary droplets (Edwards et al., Phys. Rev. Lett., vol.
121, 2018, 184501; Li et al., Phys. Rev. Lett., vol. 122, 2019, 114501). In this study, we
derive and validate a quasi-stationary model for the flow inside evaporating binary sessile
and pendant droplets, which successfully allows one to predict the prevalence and the
intriguing interaction of Rayleigh and/or Marangoni convection on the basis of a phase
diagram for the flow field expressed in terms of the Rayleigh and Marangoni numbers.
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1. Introduction

Evaporating droplets frequently occur in nature and applications, be it a rain droplet
evaporating on a leaf, a droplet on a hot surface in spray cooling, a droplet of insecticides
sprayed on a leaf or an inkjet-printed ink droplet on paper. Many of such droplets
are multicomponent, i.e. consisting of a mixture of liquids. From the physical point of
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view, an evaporating multicomponent droplet in a host gas is paradigmatic for combined
multi-phase and multi-component flow including a phase transition. Scientifically, this
process encompasses the various fields of fluid mechanics, thermodynamics and also
aspects from the field of chemistry. The evaporation dynamics is also relevant for the
deposit left behind the evaporation of a particle-laden droplet. Here, pioneering work was
done by Deegan et al. (1997) around 20 years ago, when they identified the coffee-stain
effect – i.e. the phenomenon of finding a typical ring structure of deposited particles after
the evaporation of a coffee droplet – and successfully explained it by the combination
of a non-uniform evaporation rate along the droplet interface and a pinned contact line.
In applications, one usually wants to prevent such coffee-stain effect, e.g. for obtaining a
homogeneous deposition pattern in inkjet printing (Park & Moon 2006; Kuang, Wang &
Song 2014; Sefiane 2014; Hoath 2016). For reviews on evaporating pure droplets we refer
to Cazabat & Guéna (2010) and Erbil (2012).

Preventing the coffee-stain effect can be achieved by altering the flow inside the droplet
during the drying process by inducing gradients in the acting forces. Focussing on the
interfacial forces first, a tangential gradient of the surface tension along the liquid–gas
interface leads to the well-known Marangoni effect, i.e. a tangential traction that drives
the liquid towards positions of higher surface tension (Pearson 1958; Scriven & Sternling
1960). By that, the entire flow in the droplet can be altered from the typical outwards flow
towards the contact line to a recirculating flow driven by a persistent Marangoni effect (Hu
& Larson 2006). For the case of a pure droplet, the necessary gradient in surface tension
can be generated by thermal effects, e.g. either self-induced by latent heat of evaporation or
externally imposed by heating or cooling the substrate (Girard et al. 2006; Sodtke, Ajaev
& Stephan 2008; Dunn et al. 2009; Tam et al. 2009).

The other mechanism to induce Marangoni flow is known as the solutal Marangoni
effect, which is usually much stronger. For solutal Marangoni flow, the droplet must consist
of more than one component, e.g. a solvent and one or more surfactants (Still, Yunker &
Yodh 2012; Marin et al. 2016; Kwieciński et al. 2019) or a solvent and possibly multiple
co-solvents (Sefiane, Tadrist & Douglas 2003; Christy, Hamamoto & Sefiane 2011; Tan
et al. 2016; Li et al. 2018) or dissolved salts (Soulié et al. 2015; Marin et al. 2019). For
a recent perspective review on droplets consisting of more than one component, we refer
to Lohse & Zhang (2020). The difference in the volatilities of the individual constituents
leads to preferential evaporation of one or the other component and thereby compositional
gradients are induced. Since the surface tension is a function of the composition and due
to the non-uniform evaporation profile, a surface tension gradient along the liquid–gas
interface can build up and result in a similar Marangoni circulation as in the thermally
driven case. The nature of the resulting flow can be quite different, mostly depending
on whether the evaporation process leads to an overall decreasing or increasing surface
tension, i.e. whether the more volatile component has a higher or lower surface tension
than the less volatile component.

In a binary droplet consisting e.g. of water and glycerol, with water being more volatile
and having the higher surface tension, the overall surface tension decreases during the
preferential evaporation of water and the resulting Marangoni flow is usually regular,
axisymmetric and directed towards the position of the lowest evaporation rate of water,
i.e. towards the contact line for contact angles above 90◦ and towards the apex for contact
angles below 90◦ (Diddens 2017; Diddens et al. 2017a).

On the contrary, e.g. in the case of a binary droplet consisting of water and ethanol,
where the overall surface tension increases due to the predominant evaporation of ethanol,
the typical Marangoni effect is way more violent and chaotic (Christy et al. 2011; Bennacer
& Sefiane 2014). Here, in particular, the axial symmetry of the droplet is usually broken,
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leading to a complicated scenario of initially chaotic flow driven by the solutal Marangoni
effect and followed by either thermal Marangoni flow or the typical coffee-stain flow,
when the droplet consists almost only of water at the end of the drying time (Diddens
et al. 2017b). Remarkably, the presence of a strong Marangoni effect can also have a
significant influence on the shape and wetting behaviour of droplets (Tsoumpas et al.

2015; Karpitschka, Liebig & Riegler 2017). Finally, the evaporation of mixture droplets
can show a variety of additional intriguing phenomena, e.g. multiple phase changes and
microdroplet nucleation in ternary droplets like ouzo (Tan et al. 2016, 2017), and phase
segregation in binary droplets (Li et al. 2018) or rather homogeneous deposition patterns
by an interplay of Marangoni flow, surfactants and polymers (Kim et al. 2016).

As highlighted above, besides the gradient in the surface tension, i.e. in the interfacial
forces, also gradients in the mass density, i.e. in the bulk force due to gravity, can influence
the flow by natural convection. Similar to the surface tension, the mass density is a function
of the temperature and, in the case of mixtures, of the composition, so that thermally
and solutally driven natural convection can be realized in evaporating droplets. Flow
driven by natural convection is one of the most important fields of fluid mechanics, as
e.g. in Rayleigh–Bénard systems; however, these are usually investigated at large spatial
dimensions.

For small droplets, on the other hand, it is frequently argued in the literature that the
presence of a small Bond number suggests that surface tension effects would dominate
over gravity. As a consequence, these studies on droplet evaporation focus on the
Marangoni effect, but disregard the presence of natural convection by this argument (e.g.
Kim et al. 2016; Diddens et al. 2017a,b). However, the Bond number does not consider
local variations of the surface tension and the mass density. Therefore, the Bond number
may not be used as an indicator of whether natural convection can be disregarded or not.
This has been also shown in recent studies by Edwards et al. (2018) and Li et al. (2019a),
where it has been proven that, even in small droplets with small Bond numbers, the internal
flow can be decisively determined by natural convection and not by Marangoni flow.

Obviously, these findings give rise to the following question: How does the resulting
flow type in an evaporating binary droplet depend on the parameters, i.e. when is the flow
dominated by the Marangoni effect and when by natural convection?

In this manuscript, we answer this question by carefully investigating both kinds of
driving force and their mutual interaction. The corresponding effects can be quantified
by non-dimensional numbers, namely the Marangoni number for flow due to surface
tension gradients and the Rayleigh (or Archimedes/Grashof) number for the natural
convection. By considering quasi-stationary instants during the drying process, these
numbers successfully allow us to predict the flow inside the droplets on the basis of phase
diagrams in the Ra-Ma parameter space. We also validated these phase diagrams with full
simulations and corresponding experiments.

The paper is organized as follows: we will first present the complete set of dynamical
equations describing the evaporation of a binary mixture droplet. In § 3, these equations are
solved to discuss an illustrative example case. We will then introduce the quasi-stationary
approximation in § 4 and discuss the phase diagrams obtained by this model in § 5. The
paper ends with a conclusion and a comparison with experimental data and a linearized
investigation in appendix A and appendix B, respectively.

2. Governing equations

The evaporation of a mixture droplet is a multi-phase and free interface problem with
multi-component dynamics in both the liquid and gas phase. For a binary droplet, the
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liquid is constituted by two components, α = A, B, whereas the gas phase is in general a
ternary gas mixture of the ambient medium, e.g. air, and the vapours of the components
A and B. When the droplet evaporates at a temperature T far below the boiling point and
in the absence of forced or strong natural convection, the Péclet number in the gas phase
is sufficiently small to consider only diffusive vapour transport, which can be treated as
quasi-stationary since the diffusive time scale is several orders of magnitude smaller than
the droplet drying time (Deegan et al. 2000; Hu & Larson 2002; Popov 2005; Diddens
et al. 2017a). This leads to the Laplace equation

∇2cα = 0 (2.1)

for the vapour concentrations cα , i.e. the partial mass densities. The corresponding
boundary conditions are given by the vapour–liquid equilibrium according to Raoult’s
law at the liquid–gas interface and the ambient vapour concentration at infinity, i.e.

cα = ceq
α = cpure

α γαxα at the liquid–gas interface and (2.2)

cα = c∞
α far away from the droplet, (2.3)

where c
pure
α is the saturation vapour concentration in case of the pure liquid α and xα is

the liquid mole fraction, which can be calculated from the liquid mass fraction yα . The
value of c

pure
α can be calculated from the saturation pressure psat,α and molar mass Mα via

c
pure
α = psat,αMα/(RT), with R being the universal gas constant. The activity coefficients

γα account for thermodynamic non-idealities and are functions of the composition, i.e. of
xα . Neglecting the small contribution of the Stefan flow, i.e. the convective transport of
vapour governed by the sudden decrease of the mass density when molecules are entering
the gas phase (Carle et al. 2016), which is a minor effect at temperatures sufficiently below
the boiling point, the evaporation rates jα are given by the diffusive fluxes at the liquid–gas
interface, i.e.

jα = −Dvap
α ∂ncα. (2.4)

While the dynamics in the gas phase can be considered in the diffusive and
quasi-stationary limit, convection can be dominant in the liquid phase, which can be
attributed to the typical diffusion coefficients, namely D

vap
α ∼ 10−5 m2 s−1 in the gas

phase and D ∼ 10−9 m2 s−1 in the liquid phase, leading to Péclet numbers between
approximately 10 and 100 in the liquid phase and 0.001 and 0.01 in the gas phase of the
example case presented later in figure 2. Therefore, the liquid phase has to be described by
the full convection–diffusion equation for the liquid mass fraction yα , which is expressed
for the component A only due to the identity yA + yB = 1, i.e.

ρ (∂tyA + u · ∇yA) = ∇ · (ρD∇yA) . (2.5)

The liquid density ρ and the mutual diffusivity D are in general functions of the
composition, i.e. of yA. The mass transfer rates jα due to evaporation induce a change in
composition at the liquid–gas interface. The mass transfer rate jα of component α is given
by the mass of particles crossing the interface per area and time, which can be expressed by
jα = ρyα(uα − uI) · n. Here, uα is the species velocity, i.e. the locally averaged velocity
of molecules of component α, uI is the movement of the interface and n is the interface
normal. Using the relation between species velocity and the mass-averaged velocity u,
one can write jα = ρyα(u − uI) · n + Jα · n, where Jα = −ρD∇yα is the diffusive flux
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in the liquid. By taking the sum, one obtains the kinematic boundary condition

(u − uI) · n =
1

ρ
( jA + jB), (2.6)

which finally allows us to express the compositional change due to preferential evaporation
by a Robin boundary condition for (2.5) in the frame co-moving with the interface, namely

− ρD∇yA · n = yBjA − yA jB = (1 − yA)jA − yA jB. (2.7)

Finally, the flow in the droplet is given by the Navier–Stokes equations and the continuity
equation

ρ (∂tu + u · ∇u) = −∇p + ∇ · (µ(∇u + (∇u)t)) + ρgez (2.8)

∂tρ + ∇ · (ρu) = 0. (2.9)

Here, we have chosen the z-axis to point towards the apex of the droplet, i.e. a sessile
droplet and a pendant droplet can be realized by negative and positive values for g,
respectively. Note that the viscosity µ and the mass density ρ are in general functions
of the composition yA. A dependence on the temperature is disregarded in the following
due to the fact that thermal effects at lower temperatures are usually considerably inferior
to the impact of solutal gradients.

The free liquid–gas interface is subject to the kinematic boundary condition considering
the mass transfer, i.e. (2.6), and furthermore to the Laplace pressure in the normal direction

− p + µn · (∇u + (∇u)t) · n = σκ, (2.10)

where the traction in the gas phase has been neglected due to the viscosity ratio. Here,
σ is the local surface tension, κ the curvature of the interface and p denotes the pressure
difference with respect to the ambient gas pressure. Finally, also the Marangoni shear
stress in tangential direction has to be considered

µn · (∇u + (∇u)t) · t = ∇tσ · t. (2.11)

Here, ∇t = (1 − nn) · ∇ is the surface gradient operator.
For the contact line dynamics, we are focussing here on a pinned contact line, i.e.

evaporation in the constant radius mode (CR-mode, Picknett & Bexon 1977; Stauber et al.

2014). Directly at the contact line, (2.6) is incompatible with a no-slip boundary condition
at the substrate, since the latter would enforce the left-hand side of (2.6) to be zero,
whereas the right-hand side is usually non-zero for droplets with contact angles below
90◦. To resolve this incompatibility of a no-slip boundary condition at the substrate and
the evaporative mass loss at the contact line, a Navier-slip boundary condition with a small
slip length in the nanometre scale is imposed instead. This effectively resembles a no-slip
boundary condition in the main part of the droplet–substrate interface, but still allows for
a consistent mass transfer directly at the contact line. According to our simulations, the
exact value of the slip length does not influence the dynamics, as long as the slip length is
several orders of magnitude smaller than the droplet size. The contact line position is kept
fixed, whereas the contact angle θ emerges due to effects of capillarity and gravity.

A sketch of the model is depicted in figure 1.
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Figure 1. Schematic of the model. The problem is considered to be axisymmetric and isothermal. The flow
and the advection–diffusion equation for the composition in the droplet are solved with consideration of gravity
and the composition dependence of the liquid mass density, dynamic viscosity and diffusivity. The transport
in the gas phase is assumed to be diffusion limited. At the interface, Raoult’s law is used to enforce the
vapour–liquid equilibrium, mass transfer due to evaporation is considered and the Marangoni shear stress due
to a composition-dependent surface tension is taken into account.

3. Numerical solution of the dynamical equations as an instructive example

In order to solve the given set of equations numerically, we have generalized
the sharp-interface arbitrary Lagrangian–Eulerian finite element method described in
Diddens (2017) by considering the gravitational force, and also validated it by a
more general reimplementation of the same model with the finite element package
OOMPH-LIB (oomph-lib.maths.man.ac.uk) (Heil & Hazel 2006), which allows for
interface deformations and considers the general continuity equation (2.9). The latter
method has been successfully validated against various experiments (Li et al. 2018, 2019a;
Gauthier et al. 2019; Li et al. 2019b).

In figure 2, a simulation of a sessile glycerol–water droplet (initially 5 wt.% glycerol)
with an initial volume of 1 µl and an initial contact angle of 120◦ evaporating at a constant
temperature of 22 ◦C and a relative humidity of 20 % (entering the model in the parameter
c∞
α ) is shown. The contact line remains pinned during drying and glycerol (liquid B) is

assumed to be non-volatile due to its low volatility compared to water (liquid A), i.e. cB =
c∞

B = 0 and jB = 0. The simulation considers the variations of all physical properties with
the composition. To that end, experimental data of glycerol–water mixtures were fitted and
imposed as locally varying mass density, surface tension, diffusivity, dynamic viscosity
and thermodynamic activity. For plots of these relations and more details about these kinds
of simulations we refer to Diddens et al. (2017b) and Diddens (2017), where, however, we
did not consider of the influence of gravity.

Initially, in figure 2(a), one can see a single vortex in the entire droplet, directed from the
apex towards the contact line. This vortex is generated for two reasons, namely Marangoni
convection and natural convection (Rayleigh convection). Due to the enhanced evaporation
rate of water at the apex at the high contact angle, the water content is predominantly
reduced at the top of the droplet, resulting in a lower surface tension compared to the
region near the contact line. This drives a Marangoni flow towards the contact line. Since
glycerol is more dense than water, the glycerol-rich outer shell of the droplet also sinks
down due to natural convection, which also results in a flow from the apex to the contact
line due to the spherical geometry. Hence, both mechanisms support recirculating flow in
the same direction.
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t = 20 s t = 240 s
Water vapour (wt %) Water vapour (wt %)

Water evap. rate Water evap. rate

1.1 1.3 1.5 1.10.9 1.3

t = 640 st = 500 s
Water vapour (wt %)

Water evap. rate

1.10.90.7 1.3

Water vapour (wt %)

Glycerol (wt %)

Glycerol (wt %) Glycerol (wt %)

Glycerol (wt %)Velocity (um s–1)

Velocity (um s–1) Velocity (um s–1)

Velocity (um s–1)

5.05

17.5 18.5 19.5 20.5 37 39 41 43

5.15 5.25 5.35 0.25 mm 0 40 80
0.25 mm

0.25 mm 0.25 mm

0 40 80 120

0 0 50 100 150 20040 80 120

Water evap. rate

1.20.90.8

8.0 8.4 8.8

1.4

1.5

(a) (b)

(c) (d)

1 g (m2 s)–1
1 g (m2 s)–1

1 g (m2 s)–1
1 g (m2 s)–1

Figure 2. Simulation of a 1 µl glycerol–water droplet revealing rich flow patterns during the evaporation
process. The water vapour mass fraction is shown in the gas phase, whereas the glycerol mass fraction (left)
and the velocity magnitude (right) are shown inside the droplet. (a) Initially, both Rayleigh and Marangoni
convection support the flow from the apex to the contact line. (b) Although the contact angle is still above
θ > 90◦, a Marangoni-induced counter-rotating vortex (black) emerges close to the interface, whereas the bulk
flow is driven by natural convection (white). (c) Due to the increased evaporation rate at the contact line for
θ < 90◦, the Marangoni-driven vortex grows in size until (d) the vortex driven by natural convection disappears.
See supplementary movie 1 available at https://doi.org/10.1017/jfm.2020.734 for the entire simulation.

Remarkably, in figure 2(b), the situation changes. The contact angle is still above 90◦,
i.e. the highest water evaporation rate is still at the top of the droplet. According to the
aforementioned discussion, one would still naively expect the same kind of single-vortex
flow. However, the simulation clearly shows two vortices, one in the bulk driven by natural
convection (white) and another one close to the interface, which is driven by Marangoni
flow in the opposite direction (black). The reason why the Marangoni flow is reversed, i.e.
why there is more water at the top of the droplet although the evaporation rate of water
is still dominant at the apex, is the fact that there is enhanced water replenishment by
diffusion at the apex, which compensates for the rather small difference in the evaporation
rates at the top and near the contact line. This can be seen by the rather steep concentration
gradient in the normal direction at the apex compared to the region near the contact line.
The reason for the steep concentration gradient in the normal direction close to the apex
is the upward directed convective water replenishment from the bulk, which is governed
by the internal vortex driven by natural convection. This means that sufficiently strong
natural convection in the bulk can reverse the Marangoni flow at the interface, although
one would not anticipate this by just considering the profile of the evaporation rate at this
contact angle.

Upon further evaporation, in figure 2(c), the contact angle falls below 90◦, resulting
in a higher water evaporation rate near the contact line. Hence, less water is present at
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the contact line as compared to the apex due two facts, namely, the effect of preferential
evaporation at the contact line and the lower replenishing diffusive flux of water from
the bulk at the contact line. Thereby, the Marangoni flow gets enhanced compared to
the situation in figure 2(b) and the relative size of the Marangoni-induced vortex at the
interface grows at the expense of the counter-rotating bulk vortex by natural convection.

Finally, in figure 2(d), the contact angle becomes rather small so that the Marangoni
flow at the interface is even stronger due to the enhanced non-uniformity of the evaporation
rate. Furthermore, the influence of natural convection also diminishes rather quickly, i.e.
with cubic power in terms of the length scale according to the Rayleigh number (see later
for its definition), due to the reduced volume of the droplet. This results in the depicted
situation, i.e. that the flow direction within the entire droplet is completely determined by
the Marangoni effect.

In a nutshell, one can infer from the direct numerical simulation results in figure 2 that
there can be multiple flow scenarios during the drying of a single binary droplet, driven
by an interplay of natural (i.e. Rayleigh) convection and Marangoni convection. One also
clearly sees that, for a particle laden droplet, the coffee-stain effect would not occur as
there is no noticeable flow towards the contact line (which for pure evaporating droplets
transports the suspended particles to the rim of the pinned droplet) as compared to the
strongly recirculating flow due to Marangoni flow and gravity.

4. Quasi-stationary approximation of the dynamical equations

After discussing some possible flow scenarios by considering a representative numerical
example in the previous section, we will now focus on a simplification of the full model
described in § 2. We generalize again from the particular case of a water–glycerol droplet
to the general case of a binary droplet, where both liquids A and B are allowed to evaporate.
The goal is to find the simplest model possible that allows one to predict the expected flow
scenario in the droplet by a minimum number of non-dimensional quantities.

4.1. Evaporation numbers

As shown in the example simulation, the liquid recirculates multiple times during the
evaporation process due to the fast flow in the droplet. Hence, the typical liquid velocity
u is much larger than the normal interface movement velocity uI . Moreover, this leads to
a rather well-mixed droplet, i.e. with typical compositional deviations of approximately
a few per cent in terms of mass fractions, which can be attributed to the considerable
Péclet number inside the droplet. These observations allow for several simplifications
of the model. First of all, the liquid composition is expanded into two terms, i.e.
yA(x, t) = yA,0 + y, namely the spatially averaged composition yA,0, which slowly evolves
over the entire drying time, and the small local composition deviations y(x, t). Since
the composition-dependent liquid properties are usually rather smooth functions of the
composition, this separation can be transferred to a first-order Taylor expansion of the
liquid properties, i.e.

ρ = ρ0 + y∂yA
ρ, σ = σ0 + y∂yA

σ,

µ = µ0 + y∂yA
µ, D = D0 + y∂yA

D,

c
eq
A = c

eq

A,0 + y∂yA
c

eq
A , c

eq
B = c

eq

B,0 + y∂yA
c

eq
B .

⎫
⎪⎬
⎪⎭

(4.1)

Since the averaged composition yA,0 evolves slowly, this expansion can be done at
any specific time of interest during the evaporation process. In particular, this means
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Marangoni and Rayleigh convection in binary droplets

that the coefficients of the Taylor expansions (4.1) can be treated as constants during
some time close to the considered instant. This allows us to introduce the following
non-dimensionalized scales

x = V1/3
x̃, t =

V2/3

D0
t̃, u =

D0

V1/3
ũ, (4.2a–c)

where the spatial scale is chosen in that way such that the non-dimensionalized droplet
volume Ṽ becomes unity.

Of course, the introduced scales are only constant for a short instant in time, since the
droplet volume V will decrease over time and the averaged mass fraction yA,0 will change,
resulting in varying Taylor expansions of the liquid properties. However, later in § 4.4, it
is argued that the process can be considered to be quasi-stationary at each instant of the
drying time. Thereby, the following non-dimensionalization and characteristic numbers
are only valid for a specific considered instant of the drying time.

In a next step, the vapour fields are decomposed in a similar manner as (4.1), namely
into a normalized contribution c̃0 which is one at the interface and zero at infinity and a
contribution c̃∆ accounting for the effect of local composition variations on the vapour
concentration via Raoult’s law to the first order, i.e.

cα = (c
eq

α,0 − c∞
α )c̃0 + c∞

α + (∂yA
ceq
α )c̃∆. (4.3)

The Laplace equation (2.1) splits into two Laplace equations, i.e. ∇̃2c̃0 = 0 and ∇̃2c̃∆ = 0
and the boundary conditions (2.3) are transformed to

c̃0 = 1 and c̃∆ = y at the liquid–gas interface and (4.4)

c̃0 = c̃∆ = 0 far away from the droplet. (4.5)

Thereby, the evaporation rates (2.4) separate in the same way, i.e.

jα =
D

vap
α

V1/3

[
(c

eq

α,0 − c∞
α )j̃0 + (∂yA

ceq
α )j̃y

]
, (4.6)

where j̃0 = −∂̃nc̃0 only depends on the shape of the droplet, i.e. resembles the normalized
evaporation profile of a homogeneous droplet, and j̃y = −∂̃nc̃∆ is a nonlocal linear
operator applied on y, i.e. the Dirichlet-to-Neumann map, accounting for deviations in the
evaporation rate due to a varying interfacial composition via the composition-dependent
vapour–liquid equilibrium, i.e. Raoult’s law.

When dropping terms of quadratic order in y, the convection–diffusion equation (2.5)
within the droplet becomes

∂t̃yA,0 + ∂t̃y + ũ · ∇̃y = ∇̃2y, (4.7)

and the corresponding interface boundary condition (2.7) reads

−∇̃y · n = Evy j̃0 + Evvap j̃y − Evtotyj̃0, (4.8)

with the non-dimensional evaporation numbers

Evy =
1

ρ0D0
[(1 − yA,0)D

vap

A (c
eq

A,0 − c∞
A ) − yA,0D

vap

B (c
eq

B,0 − c∞
B )], (4.9)

Evvap =
1

ρ0D0
[(1 − yA,0)D

vap
A ∂yA

c
eq
A − yA,0D

vap
B ∂yA

c
eq
B ], (4.10)

Evtot =
1

ρ0D0
[Dvap

A (c
eq

A,0 − c∞
A ) + D

vap

B (c
eq

B,0 − c∞
B )]. (4.11)
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The number Evy quantifies the intensity of the concentration gradient induced in the liquid
by preferential evaporation of one of the components, i.e. it compares the differences of
the two diffusive vapour transports in the gas phase with the mutual diffusion in the binary
liquid. Since the resulting composition gradient along the interface and in the bulk is the
driving mechanism for Marangoni flow and natural convection, this number will become
important to quantify these processes later on. Note that dependence on the volatilities of
the components and their mass fractions in the liquid, Evy may be positive or negative.

The parameter Evvap is an estimate for the influence of local variations in the
liquid concentration on the preferential evaporation, i.e. the linear feedback due to the
quasi-stationary diffusion in the gas phase. If the composition is rather uniform in the
droplet, which is usually by fast recirculating convection, the term Evvap j̃y provides only a
minor contribution in (4.8), meaning that the profile of the evaporation rates is similar to
the one of a pure droplet. Since ∂yA

c
eq

A > 0 and ∂yA
c

eq

B < 0, i.e. the vapour concentration
of A increases and B decreases for an increasing fraction of A in the liquid, Evvap is
always positive. Large values of Evvap can actually arise towards the end of the drying
of a glycerol–water droplet, as discussed later in § 6.

Finally, Evtot is a measure for the total evaporation speed, i.e. for the typical interface
speed ũI and the volume evolution. Note that the total evaporation speed and volume
evolution are measures of the flow towards a pinned contact line, i.e. the flow leading to the
coffee-stain effect. If none of the components condenses, i.e. both either evaporate or are
non-volatile, the modulus of Evy is smaller than Evtot. Nevertheless, since the deviation
from the average composition is small, i.e. y ≪ 1, and the Marangoni convection and/or
natural convection are sufficiently large, the contribution of the latter to the flow can still
be dominant compared to Evtotyj̃0 in (4.8).

The evaporation numbers can be considered as Péclet numbers, e.g. the number Evtot

actually compares the velocity of the interface motion due to evaporation to the liquid
diffusion.

4.2. Non-dimensionalized flow

For the Navier–Stokes equations, we employ the established Boussinesq approximation,
which is valid as long as y∂yA

ρ is small compared to ρ0 (Gray & Giorgini 1976). Due to the
usually small composition gradients, this assumption is valid here. Therefore, except for
the bulk force term ρgez, only the zeroth-order terms proportional to ρ0 are kept, whereas
y∂yA

ρ-terms are disregarded. With the same argument, terms proportional to y∂yA
µ and

y∂yA
σ can be disregarded whenever there is a dominant term proportional to µ0 or σ0,

respectively. Following this argument, the Navier–Stokes equations can be written as

Sc−1(∂t̃ũ + ũ · ∇̃ũ) = −∇̃p̃ + ∇̃ · (∇̃ũ + (∇̃ũ)t) + Ra∗yez, (4.12)

∇̃ · ũ = 0. (4.13)

Here, the shifted non-dimensionalized pressure, the Schmidt number and the starred
Rayleigh number read

p̃ =
V2/3

D0µ0
( p − ρgz) , Sc =

µ0

D0ρ0
, Ra∗ =

Vg∂yA
ρ

D0µ0
. (4.14a–c)

The Schmidt number for liquids is usually Sc > 103 which suggests that the left-hand
side of (4.12) can be disregarded. However, since the chosen velocity and time scale in
(4.2a–c) do not necessarily coincide with the actual present scales, this argument is only
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Marangoni and Rayleigh convection in binary droplets

valid for small Reynolds numbers. In small droplets with rather low volatilities and regular
Marangoni flow, however, this assumption is surely met, e.g. Re < 0.05 in the case of the
simulation in figure 2. The starred Rayleigh number Ra∗ deviates from the conventional
definition of the Rayleigh number just by the lack of an estimate for the composition
difference, i.e. a term like Δy. The dynamic boundary conditions at the interface, (2.10)
and (2.11), read in the Boussinesq approximation

−p̃ + n · (∇̃ũ + (∇̃ũ)t) · n =
1

Ca∗ (κ̃ + Bo z̃) , (4.15)

n · (∇̃ũ + (∇̃ũ)t) · t = Ma∗∇̃ty · t. (4.16)

Here, the non-dimensional number Ca∗, the Bond number and the starred Marangoni
number read

Ca∗ =
D0µ0

V1/3σ0
, Bo =

ρ0gV2/3

σ0
, Ma∗ =

V1/3∂yA
σ

D0µ0
. (4.17a–c)

Note that the definition of the starred capillary number Ca∗ does not coincide with the
conventional definition of the capillary number, i.e. it does not consider the actually
present typical velocity scale, i.e. the intensity of the capillary shape relaxations during
evaporation cannot be inferred from Ca∗. However, both the real capillary number Ca =
µ0U/σ0 and Ca∗ are small in the systems considered here (Ca < 1 × 10−6 and Ca∗ <

1 × 10−7 in the simulation depicted in figure 2). Similar to Ra∗, the starred Marangoni
number Ma∗ lacks an estimate for the composition difference, i.e. Δy, as compared to the
conventional definition. Finally, the kinematic boundary condition (2.6) becomes

(ũ − ũI) · n = Evtot j̃0 + Evtot,vap j̃y, (4.18)

where

Evtot,vap =
1

ρ0D0

[
D

vap
A ∂yA

c
eq
A + D

vap
B ∂yA

c
eq
B

]
(4.19)

is the analogue of Evvap for the total evaporation rate, i.e. the effect of a change in the
saturation pressure due to a locally deviating composition on the total evaporation rate.

4.3. Estimation of the outwards flow

Before focusing on natural convection and Marangoni flow in the droplet, it is beneficial to
obtain an estimate for the velocity in the droplet in the absence of these mechanisms, i.e.
Ma∗ = Ra∗ = 0. This case, exemplified e.g. by a pure isothermal droplet, combined with
a pinned contact line represents the purely capillary-driven outward flow, which causes the
coffee-stain effect.

For small droplets, the capillary number Ca is small, so that the surface tension forces
according to (4.15) lead to an intense relaxing traction whenever the droplet deviates from
the equilibrium shape. Since the Bond number Bo is small also for small droplets, the
hydrostatic term in (4.15) can be neglected, leading to a spherical cap with a homogeneous
curvature κ̃ as the equilibrium shape. Hence, the shape evolution and thereby the interface
velocity ũI are solely given by the evaporation rate and the contact line kinetics, which is
assumed to be pinned here. Since the term Evtot,vap j̃y in (4.18) is proportional to y, it can
be disregarded with respect to Evtot j̃0 in accordance with the Boussinesq approximation.
As a consequence, one ends up with a linear Stokes flow problem, where the entire bulk
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j̃0 = 1 j̃0 = 1uI · n = 4
0 1.0 2.0

ũ̃

0.5 0.7 0.9

c̃0

0 0.4 0.8

˜

0.5 0.7 0.9

ũ
uI · n = 4

c̃0
(a) (b)

Figure 3. Bulk flow for small capillary number Ca and Bond number Bo in the absence of Marangoni flow
and natural convection for a total evaporation number Evtot = 1 and contact angles of (a) θ = 60◦ and
(b) θ = 120◦. The evaporation rate Evtot j̃0 causes a volume loss, which prescribes the normal interface
movement ũI · n (depicted on the left sides). The bulk flow (right sides) is governed by Stokes flow with the
normal boundary condition ũ · n = ũI · n + Evtot j̃0. Apparently, the typical purely capillary-driven velocity is
of order Evtot.

velocity is given by the instantaneous shape relaxation, which is proportional to the rate of
evaporation, i.e. to Evtot.

By integrating the evaporation rate Evtot j̃0 one obtains the volume loss and thereby
one can reconstruct the normal velocity of the interface ũI · n. The flow in the bulk ũ

is subsequently given by solving the Stokes flow with the normal boundary condition
ũ · n = ũI · n + Evtot j̃0. In figure 3, representative solutions for the bulk flow ũ with unity
evaporation number, i.e. Evtot = 1, are depicted. It is apparent that the typical bulk velocity
is of the order of unity, i.e. ‖ũ‖ ∼ 1. Since the flow is proportional to Evtot, the typical
velocity corresponding to an arbitrary evaporation number Evtot is hence ‖ũ‖ ∼ Evtot.
This holds also for the typical interface movement, i.e. ‖ũI‖ ∼ Evtot.

4.4. Quasi-stationary limit

Knowing that the capillary flow due to the volume loss is of the order of Evtot, we now
focus on the contributions to the flow by Marangoni forces and natural convection. In
a first step, one can consider the case where Evtot = 0, i.e. no total mass transfer and
hence a constant volume and shape of the droplet. This scenario can be realized by tuning
the ambient humidities of A and B so that the evaporative mass loss of component A is
balanced by the condensation of component B. In this case Evtot = 0 and Evy > 0 holds.
Again, due to the small capillary number and the small Bond number, one can assume
a spherical cap shape with volume Ṽ = 1 and contact angle θ , which are both constant
now. Furthermore, there is no interface movement, ũI · n = 0, and no total mass transfer,
ũ · n = 0.

By averaging (4.7) over the droplet volume Ṽ = 1, defining the integrated evaporation
rate

J̃ =
∫

j̃0 dÃ (4.20)

and considering only the zeroth-order term in the boundary condition (4.8) in accordance
with the Boussinesq approximation, one can separate the average composition yA,0 and the

914 A23-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

73
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.734


Marangoni and Rayleigh convection in binary droplets

deviation y as follows:

∂t̃yA,0 = −EvyJ̃0, (4.21)

∂t̃y + ũ · ∇̃y = ∇̃2y + EvyJ̃0. (4.22)

Here, the term EvyJ̃0 assures that yA,0 is indeed the average composition and that the
average of y remains zero, i.e. the term compensates for the imposed composition gradient
at the liquid–gas interface. As already stated in § 4.1, this splitting holds only for a limited
time, since a variation in yA,0 leads to a change in the liquid properties which were used
for the non-dimensionalization. Usually, however, the coupled dynamics of flow ũ and
compositional differences y due to Marangoni and natural convection is considerably faster
than EvyJ̃0, This was already apparent from the simulations depicted in figure 2 and it will
be validated later in § 6. Furthermore, this observation allows us to focus on stationary
solutions. Finally, upon introducing

ξ =
y

Evy

, (4.23)

one ends up at the following set of coupled equations:

ũ · ∇̃ξ = ∇̃2ξ + J̃0, (4.24)

−∇̃p̃ + ∇̃ · (∇̃ũ + (∇̃ũ)t) + Ra ξez = 0, (4.25)

∇̃ · ũ = 0, (4.26)

subject to the following boundary conditions:

−∇̃ξ · n = j̃0, (4.27)

ũ · n = 0, (4.28)

n · (∇̃ũ + (∇̃ũ)t) · t = Ma ∇̃tξ · t (4.29)

at the liquid–gas interface and

∇̃ξ · n = 0, (4.30)

u = 0 (4.31)

at the liquid–substrate interface. Note that the simplified kinematic boundary condition
(4.28) is now compatible with the no-slip boundary condition (4.31) at the contact line, i.e.
a slip length is not required. Since the mesh is static, the Laplace pressure (2.10) need not
to be imposed. Equation (4.28) is enforced via a Lagrange multiplier field at the interface.
Hence, any in- or outflow through the interface is prevented by adjusting the local normal
traction accordingly.

Besides the contact angle θ , only two parameters enter the system, namely the
Marangoni number and the Rayleigh number, which read

Ma = Ma∗Evy =
V1/3∂yA

σ

D0µ0
Evy, Ra = Ra∗Evy =

Vg∂yA
ρ

D0µ0
Evy. (4.32a,b)

Note that the characteristic numbers for both mechanisms are proportional to the induced
composition gradient due to mass transfer, i.e. Evy. Of course, in particular the tangential
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gradient along the interface is also strongly dependent on the contact angle θ , since this
determines the profile of the evaporation rate j̃0.

These equations are not only valid for the specific assumed case of Evtot = 0, but also
when the combination of Marangoni and Rayleigh flow ũ predicted by this model is
considerably faster than the capillary flow, i.e. a flow situation with outwards flow leading
to the coffee-stain effect. According to the estimations in § 4.3, this is the case if ũ ≫ Evtot.

5. Phase diagram for combined Marangoni and Rayleigh convection

5.1. Procedure

Unfortunately, the analytical treatment of the model equations (4.24)–(4.26) is hampered
by the geometry, which demands rather complicated toroidal coordinates, and by the very
strong nonlinear coupling of ũ and ξ due to the advection term. Therefore, we investigate
the system by numerical means. Our analysis is limited to axisymmetric solutions and
we only consider the case Evvap = 0, i.e. neglecting the feedback of the altered gas
composition due to the liquid–vapour equilibrium on the local evaporation rate. Finally,
we will focus on the case Ma � 0, for which evaporation leads to an overall reduction
of the surface tension, as in the case of the water–glycerol depicted in figure 2. This
results in a regular flow, i.e. no chaotic behaviour can be found, at least not for moderate
flow conditions. In the case of negative Marangoni numbers, chaotic flow patterns cannot
be excluded due to the Marangoni instability (Machrafi et al. 2010; Christy et al. 2011;
Bennacer & Sefiane 2014). Of course, this spatio-temporal evolving type of flow cannot
be captured within the assumption of a quasi-stationary process. One can, on the other
hand, test the linear stability of the quasi-stationary solutions in the case of negative
Marangoni numbers to find the transition to chaotic flow, but since also the axial symmetry
is usually broken in the case of negative Marangoni numbers, one also would have to
generalize the entire solution procedure from axisymmetric cylindrical coordinates to the
full three-dimensional problem, as done by Diddens et al. (2017b). The transition into
chaotic flow still remains to be investigated in detail, but the three-dimensional numerical
results of Diddens et al. (2017b) indeed show that the route to chaos happens via a breaking
of the axial symmetry, similarly to what is seen in the case of intense thermal Marangoni
flow in a pure droplet (Sefiane et al. 2008).

In order to find solutions of the system, we employed a finite element method on an
axisymmetric mesh with triangular elements. We used linear basis functions for ξ and
p̃ and quadratic basis functions for ũ, i.e. typical Taylor–Hood elements. The equations
have been implemented in both FENICS (https://fenicsproject.org/) (Logg et al. 2012) and
OOMPH-LIB for mutual validation. The condition of zero velocity in the normal direction,
i.e. (4.28), has been implemented by Lagrange multipliers. For an enhanced stability in the
Newton method during the solution process, it has been found beneficial to replace J̃0 in
(4.24) by a Lagrange multiplier which ensures that the average of ξ is zero. This removes
the null space with respect to a constant shift in ξ and a corresponding adjustment of the
pressure p̃.

Due to the nonlinear advection term, it is in general possible that multiple solutions
exist for a given parameter combination (θ, Ma, Ra). For the parameter ranges considered
in the following, however, we are confident that we found the generic solutions due to the
following strategy: for every considered contact angle θ , we performed adiabatic scans
along Ra in the increasing and decreasing directions for fixed Ma and vice versa. During
that, no hysteresis, i.e. bistable regions, have been found. Furthermore, by tracing these
parameter paths with continuation, we have not detected any unstable branches. This has
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been furthermore validated by investigating the eigenvalues with a shift-inverted Arnoldi
method (using Spectra https://spectralib.org). Finally, for each parameter combination,
we performed temporal integrations of the unsteady model equations starting from a
homogeneous state ξ = 0. Since these runs converged to the same solutions as obtained
by the steady parameter scans, we are sure that all solutions discussed in the following
are indeed generic and stable. Note, however, that this is in general not true outside the
considered parameter ranges.

5.2. Phase diagrams

The phase diagrams for small and large contact angles, i.e. for θ = 60◦ and θ = 120◦,
are depicted in figures 4 and 5, respectively. Here we have assumed, as in the case of
the glycerol–water droplet, that the blue liquid A (e.g. water) is more volatile, less dense
but associated with a higher surface tension than the red liquid B (e.g. glycerol). This
means by definition that Ma > 0 holds and that a sessile droplet is described by Ra > 0
whereas a pendant droplet is given by Ra < 0. While in the diagrams (figures 4 and 5) a
negative Rayleigh number is always indicated by a pendant droplet, it can also be realized
by changing the sign of ∂yρ, i.e. by letting the red component be lighter than the blue
component.

Depending on the Marangoni number Ma, the Rayleigh number Ra and the contact angle
θ , different qualitative flow scenarios can be found. For high Marangoni numbers and
small Rayleigh numbers, the Marangoni flow dominates (Ma dominant) and vice versa (Ra

dominant). In between, however, for sessile droplets with a contact angle below 90◦ and for
pendant droplets with a contact angle above 90◦, there is a region where the Marangoni
effect determines the flow direction at the interface, whereas the bulk flow is driven by
natural convection (Ma vs. Ra). In the opposite cases, i.e. for pendant droplets with θ <

90◦ and sessile droplet with θ > 90◦, both mechanisms drive a flow in the same direction,
so that one cannot directly distinguish between the two mechanisms driving the flow (Ma

and Ra same direction). In the limit of very strong driving of both mechanisms, however,
natural convection can become so intense that the surface tension gradient is reversed,
leading to a Marangoni-induced reversal of the flow at the interface (Ra reverses Ma). This
effect can be explained by the distortion of the internal composition field due to natural
convection. For pendant droplets with θ < 90◦, the composition gradient in the bulk in
normal direction is much more pronounced near the contact line as opposed to the apex. As
a consequence, the diffusive replenishment of the blue liquid at the interface is enhanced
near the contact line so that in fact more blue liquid, i.e. the one with higher surface
tension, can be found near the contact line instead of at the apex – despite of its higher
volatility and the pronounced evaporation rate at the contact line. The resulting Marangoni
flow is therefore reversed as anticipated by considering the profile of the evaporation rate
alone. The same explanation holds for the case θ > 90◦, except that one finds a more
pronounced normal composition gradient near the apex as compared to the region close to
the contact line, and the situation is reversed.

All transitions between the aforementioned regimes are continuous. The drawn phase
boundaries are defined by the emergence or disappearance of a second vortex. There is no
bifurcation and/or hysteresis present at the boundaries of the regimes. In supplementary
movie 2, a path through the parameter space is traversed and the corresponding stationary
solution is shown, which illustrates the behaviour of the flow upon crossing the phase
region boundaries, i.e. how the stationary solution gradually changes between single- and
two-vortex solutions.
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Figure 4. Qualitative flow types as functions of the Marangoni number Ma and the Rayleigh number Ra for a
small contact angle θ = 60◦. For sessile droplets (Ra > 0) with large Marangoni numbers and small Rayleigh
numbers, Marangoni flow dominates in the droplet and results in a circulating flow from the contact line along
the free interface towards the apex (Ma dominant, black streamlines). On the contrary, if Ma is small and Ra is
large, gravity-driven flow dominates with a flow direction from the apex along the free interface to the contact
line (Ra dominant, white streamlines). While the other mechanism, i.e. natural convection in the regime Ma

dominant and Marangoni flow in the regime Ra dominant, can still quantitatively influence the flow, only a
single vortex can be found which is driven by the dominant mechanism. In between these regions, however,
there is a regime where the bulk flow is driven by natural convection whereas the flow close to the interface is
dominated by the Marangoni effect (Ma vs. Ra). Here, two counter-rotating vortices can be seen. For pendant
droplets (Ra < 0), both mechanisms driving the flow in the same direction (Ma and Ra same direction). Hence,
one cannot identify the main driving mechanism from the direction of the flow, so that the streamlines are
coloured grey. If both mechanisms are sufficiently strong, however, the bulk flow due to natural convection can
become so intense that the composition gradient along the interface changes direction and a flow reversal due
to the Marangoni effect can arise in the vicinity of the interface (Ra reverses Ma).

Finally, we also investigate the contact angle dependence of the phase diagrams by
showing the corresponding regions for θ = 40◦, 60◦ and 80◦ in figure 6(a) and for
θ = 100◦, 120◦ and 140◦ in figure 6(b). Obviously, the phase boundaries are shifted, but
qualitative differences in the phase diagrams cannot be found.

In the special case of θ = 90◦, the profile of the evaporation rate is uniform along
the droplet. Hence, Marangoni flow cannot be induced by preferential evaporation.
Since Ma > 0 is considered throughout this article, the Marangoni flow is stable, i.e.
in the absence of natural convection (Ra = 0), only radial diffusion is observed in our
simulations. For non-vanishing, but even for small Rayleigh numbers, the bulk flow is
governed by natural convection (i.e. absence of the Ma-dominant regime). For sufficiently
high Marangoni numbers, this natural convection induces a counter-rotating Marangoni
vortex in the vicinity of the interface (Ma-vs-Ra regime).

Note again that we have assumed in the phase diagrams that the more volatile liquid
(blue) is less dense in the insets in the phase diagrams. In the other case, the droplets
depicted in the insets are required to be mirrored vertically, as the Rayleigh number is
then negative for sessile droplets and positive for pendant droplets. Furthermore, it is
noteworthy that these diagrams are for pinned droplets (CR-mode) and droplets with a
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Figure 5. Qualitative flow types as functions of the Marangoni number Ma and the Rayleigh number Ra

for a high contact angle θ = 120◦. Since the direction of the Marangoni flow is reversed in comparison
to the case θ < 90◦ (cf. figure 4), the diagram qualitatively flips upside down. Now, for sessile droplets
(Ra > 0) both mechanisms act in the same direction (Ma and Ra same direction) and for sufficiently intense
driving, the natural convection in the bulk can reverse the composition gradient at the interface, leading to
a Marangoni-driven reversal close to the interface (Ra reverses Ma). For pendant droplets (Ra < 0), either
Marangoni flow or natural convection dominates (Ma dominant/Ra dominant), or the bulk flow is driven by
natural convection, whereas the interfacial flow is governed by Marangoni flow (Ma vs. Ra).
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Figure 6. Influence of the contact angle θ on the boundaries of the phase diagram for (a) θ < 90◦ and
(b) θ > 90◦. (Ra rev. Ma: Ra reverses Ma.)
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constant contact angle (CA-mode), as only stationary solutions are considered anyway.
As long as the dominant velocity contribution is given by recirculating flow due to
Marangoni and/or natural convection, any capillary flow due to shape relaxations can
be disregarded. Finally, the diagrams can also be used for condensation instead of
evaporation, as long as Ma > 0 holds. For condensation of component A, Evy < 0 holds,
so that Ma > 0 is true if component A has the lower surface tension, i.e. ∂yA

σ < 0. We
therefore anticipate that the diagrams can predict the flow when ethanol condenses on
a pure water droplet, whereas it would fail to predict the flow when water condenses
on a pure glycerol droplet (Ma < 0). In fact, the latter case has been investigated
experimentally, showing indeed chaotic cellular flow structures (Shin, Jacobi & Stone
2016).

6. Validation of the quasi-stationary approximation against the full numerical

simulation

Since there were a number of assumptions made in the simplification of the problem,
it is necessary to validate the predicted flow by comparing it with results of the full
numerical simulation, i.e. with the full set of equations as described in § 2. We focus on the
representative simulation depicted in figure 2. At each instant in time, we have extracted
the spatially averaged water mass fraction yA,0, the volume V to determine the spatial
scale 3

√
V and the contact angle θ from the simulation. Using the composition-dependent

properties of binary glycerol–water mixtures, we can obtain ρ0 = ρ( yA,0), µ0 = µ( yA,0),
D0 = D( yA,0), c

eq

A,0 = c
eq

A ( yA,0), σ0 = σ( yA,0) and the local slopes ∂yA
ρ and ∂yA

σ by
the averaged composition yA,0 at each instant in time. This allows us to calculate the
normalized evaporation-induced composition gradient Evy and the characteristic numbers
Ra and Ma. On the basis of these numbers and the contact angle, we solve the simplified
quasi-stationary model and re-dimensionalize the resulting velocity and composition field
as well as the evaporation rate using the scales (4.2a–c). This procedure allows us to
compare the full unsteady evolution of the droplet with the corresponding predictions at
each instant by the simplified quasi-stationary model.

The results are depicted for several instants in figure 7, where the full simulation is
shown on the left and the corresponding prediction of the quasi-stationary model is
depicted on the right. Initially, i.e. in figure 7(a), the full simulation has not attained
the quasi-stationary limit. Hence, the quasi-stationary model slightly overpredicts the
composition variations, i.e. it shows more glycerol (red) near the interface and more water
(blue) in the bulk. Therefore, the flow field also slightly differs, i.e. the transient full
simulation shows a single vortex, whereas the quasi-stationary model predicts the presence
of a small counter-rotating vortex near the apex. Furthermore, a very gentle deviation in
the spherical cap shape due to the gravitational effect in the full simulation can be seen
at the apex as well (regime Ra reverses Ma). At later time steps, i.e. in figure 7(b–d),
however, the flow and the composition predicted by the quasi-stationary model match the
results of the full simulation almost perfectly, be it in terms of the composition field, the
flow pattern, the shape or the evaporation rate. This result substantiates the fact that the
capillary outwards flow, which has been disregarded in the quasi-stationary model, can
indeed be neglected as long as there is a prominent recirculating flow due to Marangoni
and/or Rayleigh convection.

To assess the quality of the quasi-stationary model in more detail, we have extracted
some characteristic quantities of both simulations, i.e. from the full simulation of figure 2
and the corresponding quasi-stationary limit at each instant. In figure 8(a), the time
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(a) (b)

(c) (d)

Figure 7. Comparison of the full simulation (left) from figure 2 and the corresponding result predicted by
the quasi-stationary model (right) at different times. The colour code inside shows the glycerol concentration,
whereas the streamlines indicate the velocity field. In the gas phase, the water vapour and the corresponding
evaporation rate are depicted. (a) Initially, the full simulation has not yet attained the quasi-stationary limit,
so that the intensity of the composition deviation is overpredicted in the quasi-stationary model. In (b–d), the
quasi-stationary model predicts the result of the full simulation up to a deviation that can be barely seen by
eye. See supplementary movie 3 for the comparison between full simulation and quasi-stationary model over
the entire simulation time.

evolution of the three key parameters, namely the Rayleigh number Ra, the Marangoni
number Ma and the contact angle θ is shown. These numbers were used as input for the
quasi-stationary model. The root mean square (r.m.s.) of the velocity inside the droplet is
depicted in figure 8(b). Again one can see an initial disagreement due to the fact that
the full simulation has not yet attained its quasi-stationary limit. After that, i.e. after
approximately 50 s to 100 s, the r.m.s. velocity is well predicted until it shows again
a disagreement towards the end of the drying time. The reason for the overpredicted
velocity in the quasi-stationary model can be found in figure 8(c), where the minimum
and maximum glycerol concentration in the droplet according to both simulations are
plotted against time. While it shows good agreement in the main part of the drying, the
quasi-stationary model shows an enhanced maximum glycerol concentration towards the
end of the drying, i.e. when almost only glycerol is left in the droplet. In fact, the glycerol
concentration predicted by the quasi-stationary model even exceeds the physically realistic
threshold of 100 %. Obviously, this overprediction of the composition differences explains
the elevated prediction of the r.m.s. velocity. The reason for the overpredicted composition
difference can finally be seen in figure 8(d), where the evaporation numbers are depicted.
When the droplet almost entirely consists of glycerol, the evaporation number Evvap,
quantifying the reduction of the water vapour pressure for vanishing water at the interface
on the evaporation dynamics (cf. (4.10)), becomes very large (Evvap → 18 at t = 1000 s).
This effect is not considered in the quasi-stationary model, since it assumes the averaged
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Figure 8. Comparison of characteristic quantities of the full simulation of figure 2 and the corresponding
results predicted by the quasi-stationary model. (a) The three input parameters for the quasi-stationary
model Ra, Ma and θ extracted from the full simulation. (b) Comparison of the root-mean-square velocity.
(c) Comparison of the maximum and minimum glycerol content inside the droplet. (d) Evaporation numbers
extracted from the full simulation.

composition yA,0 to predict the vapour–liquid equilibrium, not the local composition
at the interface. Thereby, the amount of water vapour is strongly overestimated which
results in a high evaporation rate and thereby in an unrealistically high composition
difference. Obviously, the quasi-stationary model loses validity when Evvap becomes too
large, meaning that the dependence of the vapour–liquid equilibrium on the local interface
composition cannot be neglected anymore. For a more detailed model, this effect can easily
be incorporated into the quasi-stationary model, but it would introduce a fourth parameter
besides Ma, Ra and θ into the set of equations, which is beyond the scope of this article.

7. Conclusion

During the evaporation of a binary droplet, multiple flow scenarios can be found, which
is a result of an interplay of differences in the volatilities, mass densities and surface
tensions of the two constituents. The difference in the volatilities induces compositional
gradients in the bulk and also, due to the in general non-homogeneous evaporation rate,
along the interface. Due to the composition-dependent mass density and surface tension,
natural convection and Marangoni flow can set in, leading to a recirculating flow in the
droplet that is usually much faster than the typical capillary outwards flow towards the
contact line, which can be seen in pure droplets and leads to the coffee-stain effect in
particle-laden droplets.

Based on justified assumptions, we simplified the full model equations to a
quasi-stationary model that only requires three parameters, namely the contact angle, the
Rayleigh and the Marangoni number. Both, the Rayleigh and Marangoni number linearly
scale with a non-dimensional evaporation number, Evy, which is a measure for the induced
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composition gradient by the preferential evaporation of one or the other component. By
numerically solving for stationary solutions of the simplified model, we have explored the
phase space in terms of these three quantities. The obtained phase diagrams allow for the
prediction of the flow types in sessile and pendant binary droplets, with contact angles
below and above 90◦.

We found in total five different flow patterns: if one of the mechanisms, i.e. either natural
convection or Marangoni flow, becomes sufficiently strong as compared to the other one, it
can dominate and control the flow direction in the entire droplet. This scenario can usually
be seen in the case when one corresponding number, namely the Rayleigh or Marangoni
number, respectively, is much larger than the other. In these cases, a single vortex can be
seen in the droplet. If both mechanisms drive the flow into a different direction and are
comparably strong in terms of their non-dimensional numbers, one can find two vortices,
one in the bulk driven by natural convection, and a counter-rotating vortex at the interface
due to Marangoni flow. The fourth flow type is the case, when both mechanisms act in the
same direction, so that one cannot distinguish the particular cause of the driving and only
a single vortex is present. Remarkably, however, in particular regimes in the phase space,
the Marangoni flow can be reversed due to the natural convection in the bulk, leading to
the fifth solution, where again two vortices can be found. In this situation, the bulk flow
driven by natural convection deforms the internal composition field so that the diffusion
dynamics in the liquid is altered, which eventually reverses the composition gradient at the
interface and hence the Marangoni flow.

To use the phase diagrams presented in this article, several requirements have to be
fulfilled: first of all, the influence of thermal effects must be negligible compared to the
solutal ones. The two liquids must be miscible and the droplet must not be too large, so that
the capillary number and the Bond number are small in order to guarantee a spherical cap
shape during the evaporation. Furthermore, the Reynolds number must be small and the
spatial variations in the composition must be small enough in order to allow for a first-order
Taylor expansion of the composition-dependent liquid properties according to (4.1). Also
the requirements for the Boussinesq approximation must hold. The Marangoni number,
as defined in (4.32a,b), must be positive, i.e. evaporation leads to an overall decrease
of the surface tension, so that Marangoni-unstable chaotic flow can be excluded and the
recirculating flow must be sufficiently faster than the movement of the interface. Finally,
the influence of a change in the local composition on the vapour–liquid equilibrium may
not be too strong, as it has been discussed on the basis on the evaporation number Evvap

describing the feedback of local composition changes on the evaporation rate in § 6.
If all these requirements are fulfilled and the composition dependence of the required

physical properties are known, the phase diagrams of this article allow for a prediction of
the qualitative flow pattern in an evaporating binary droplet, probably with the exception
of a short initial transient phase.

The method described in this article can be directly transferred to thermally driven
Marangoni flow and natural convection in a pure droplet. Instead of a convection–diffusion
equation for one component, one would have to consider the convection–diffusion
equation for the temperature field. The boundary conditions will be different, e.g. a
Dirichlet boundary condition of constant temperature at a highly conducting substrate and
non-dimensional evaporative cooling instead of the number Evy, but the methodological
principle can remain the same. Also, a generalization to negative Marangoni numbers
could be interesting, but it would require consideration of the problem in three dimensions.
This would allow us to predict axial symmetry breaking and also bifurcations into chaotic
Marangoni flow regimes by performing a linear stability analysis of the quasi-stationary
solutions.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.734.

Acknowledgements. This work is part of an Industrial Partnership Programme (IPP) of the Netherlands
Organization for Scientific Research (NWO). This research programme is co-financed by Canon Production
Printing Holding B.V., University of Twente and Eindhoven University of Technology. D.L. gratefully
acknowledges support by his ERC-Advanced Grant DDD (project number 740479).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.

Christian Diddens http://orcid.org/0000-0003-2395-9911;

Yaxing Li http://orcid.org/0000-0003-1318-7073;

Detlef Lohse http://orcid.org/0000-0003-4138-2255.

Appendix A. Comparison with experiments and relation to the Grashof number

Since even the detailed full model is subject to some assumptions, e.g. diffusion-limited
vapour transport and disregard of thermal effects, we also performed experiments on
various sessile and pendant binary droplets with different volumes and contact angles.
The details of the experimental set-up are described by Li et al. (2019a). Here, we are
more interested in a qualitative agreement, i.e. whether the flow direction is dominated by
natural convection or not.

Simultaneously, we address the Grashof number (also known as the Archimedes
number) in the following. This number, defined as

Gr = gh3ρ0(ρA,pure − ρB,pure)/µ
2, (A1)

with h being the height of the droplet and µ the averaged viscosity of the liquids, was
used in our previous publication (Li et al. 2019a) as an indicator as to whether the flow in
the droplet is dominated by natural convection (Gr ≫ 1) or not (Gr ≪ 1). Compared to
the non-dimensional numbers presented in this manuscript, i.e. the evaporation number
Evy and the Rayleigh number Ra, this number is independent of the current droplet
composition. Instead, it just takes the pure densities of both fluids and the averaged density
and viscosity into account. This means that the Grashof number Gr is easily accessible,
whereas the non-dimensional numbers used throughout this manuscript require knowledge
of the instantaneous average composition and the full composition dependence of all
properties, which is not always possible in an experimental set-up.

Therefore, we are interested in substantiating the argument of Li et al. (2019a) that the
much simpler Grashof number Gr can be used as an indicator of whether to expect natural
convection (Gr ≫ 1) or not (Gr ≪ 1). To investigate the validity, we replace the Rayleigh
number by the Grashof number in the following. If one assumes that ∂yA

ρ is independent
of the composition, i.e. a linear dependence of the mass density on the mass fractions, one
can obtain the Grashof number via the relation

Gr =
3

π

1 − cos θ

2 + cos θ

Ra

EvySc
, (A2)

where the factor depending on the contact angle θ is a consequence of the different
characteristic length scales, i.e. 3

√
V for Ra and h for Gr. While the Schmidt number

Sc = µ/(ρD) for liquids is typically Sc ∼ O(104–105), for moderately volatile liquids
e.g. water at typical ambient conditions, Evy ∼ O(10−1–100) holds. In order to obtain
diagrams independent of these quantities, we set the factor EvySc = 1000 in (A2) for the
determination of the boundaries in the phase diagrams.
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Figure 9. Same as figures 4 and 5, but expressed in terms of Gr instead of Ra. Obviously, the onset of
gravity-driven flow, even in the presence of rather strong Marangoni driving, happens close to Gr = 1
(indicated by the grey line). Furthermore, experimental data of Li et al. (2019a) are also indicated.

The phase diagrams rescaled to the Grashof number in this way are depicted in figure 9.
One can infer from these diagrams that even in competition with a strong Marangoni
effect, the onset of gravity-driven bulk flow happens approximately at a Grashof number
of Gr ∼ O(1) for a contact angle of θ = 70◦ in (a) and θ = 100◦ in (b). Furthermore, the
experimental results of Li et al. (2019a) are indicated as dots. The 1,2-propanediol-water
droplets with a contact angle of θ = 70◦ discussed in Li et al. (2019a) clearly show
the effect of natural convection for an apex height of h = 800 µm, whereas it was not
visible for h = 410 µm. This clearly coincides with the prediction of the phase diagram
in figure 9(a). The experiments on glycerol–water droplets with θ = 100◦, as discussed
in the supplementary information of Li et al. (2019a), reveal an absence of observable
natural convection for h = 154 µm, whereas the presence of natural convection was
found at heights h � 320 µm, with increasing velocity for elevated heights. Also this
can be inferred from the Ma-Gr-diagram depicted in figure 9(b). Thus we conclude that
the Grashof number Gr is indeed an indicator of the presence or absence of decisive
natural convection in a binary droplet. The Ma-Ra-diagrams presented in this manuscript,
however, provide a much more detailed prediction of the possible flow scenarios.

Appendix B. Phase diagram for small |Ra| and Ma

When both Ra and Ma are relatively small, the phase diagrams in figures 4, 5 and 6 reveal
straight lines as regime boundaries. According to the slope of unity in these log–log plots,
a linear relation is expected. This linear dependency can also be found analytically as
follows: the velocity ũ has a linear onset at Ra = 0 and Ma = 0. Hence, the nonlinear
advection term in (4.24) can be disregarded with respect to diffusion. This allows us to
solve the quasi-stationary composition field ξ decoupled from the flow. Furthermore, the
Stokes flow contributions of both types of driving, i.e. natural convection and Marangoni
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Figure 10. Prediction of the linear analysis for small Rayleigh and Marangoni numbers as a function of the
contact angle θ and the ratio |Ra|/Ma. For θ < 90◦ and θ > 90◦, only Ra > 0 and Ra < 0 are considered,
respectively. In the opposite case, only the regime Ma and Ra same direction is predicted by the linear analysis.
The phase boundaries in this diagram coincide with the ones in figures 4, 5 and 6 for small |Ra| and Ma.

flow, can be superposed. Therefore, the flow is given by

ũ = Ma ũMa + Ra ũRa, (B1)

where the contributions ũMa and ũRa only depend on the contact angle θ . The regime
boundaries only depend on the direction of the flow, i.e. not on the magnitude, which
allows us to consider the flow field

ũMa +
Ra

Ma
ũRa (B2)

for the determination of the phase boundaries. Hence, if both Marangoni flow and natural
convection are small, the flow scenario is only determined by the contact angle θ and the
parameter

Ra

Ma
= V2/3g

∂yA
ρ

∂yA
σ

= V2/3g
∂ρ

∂σ
, (B3)

which can be interpreted as a Bond number involving the compositional changes of mass
density and surface tension. The phase boundaries expressed in |Ra|/Ma and the contact
angle θ are shown in figure 10, where we consider Ra > 0 for θ < 90◦ and Ra < 0 for
θ > 90◦ only, since in the opposite cases only the regime Ma and Ra same direction can
be found. As explained before, the regime Ra reverses Ma emerges as a consequence of
a strong deformation of the composition field due to advection and is hence inherently
nonlinear, so that it does not appear in this linear analysis.

The diagram in figure 10 has the benefit that just the volume, contact angle and the
compositional dependence of the surface tension and mass density are required, whereas
the entire evaporation dynamics does not enter. The disadvantage of this diagram is,
however, that it is derived on the basis of a slow convective flow in the droplet, whereas the
assumption of having a quasi-stationary process requires the opposite, i.e. a considerable
recirculating convection. Therefore, predictions of the flow regime in real droplets based
on figure 10 have to be made with caution.
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