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We numerically investigate the role of mechanical stress in modifying the conductivity

properties of cardiac tissue, and also assess the impact of these effects in the

solutions generated by computational models for cardiac electromechanics. We follow

the recent theoretical framework from Cherubini et al. (2017), proposed in the context

of general reaction-diffusion-mechanics systems emerging from multiphysics continuum

mechanics and finite elasticity. In the present study, the adapted models are compared

against preliminary experimental data of pig right ventricle fluorescence optical mapping.

These data contribute to the characterization of the observed inhomogeneity and

anisotropy properties that result from mechanical deformation. Our novel approach

simultaneously incorporates two mechanisms for mechano-electric feedback (MEF):

stretch-activated currents (SAC) and stress-assisted diffusion (SAD); and we also identify

their influence into the nonlinear spatiotemporal dynamics. It is found that (i) only specific

combinations of the two MEF effects allow proper conduction velocity measurement; (ii)

expected heterogeneities and anisotropies are obtained via the novel stress-assisted

diffusion mechanisms; (iii) spiral wave meandering and drifting is highly mediated by

the applied mechanical loading. We provide an analysis of the intrinsic structure of the

nonlinear coupling mechanisms using computational tests conducted with finite element

methods. In particular, we compare static and dynamic deformation regimes in the onset

of cardiac arrhythmias and address other potential biomedical applications.

Keywords: cardiac electromechanics, stress-assisted diffusion, stretch-activated currents, finite elasticity,

reaction-diffusion

1. INTRODUCTION

Cardiac tissue is a complex multiscale medium constituted by highly interconnected units,
cardiomyocytes, that conform a so-called syncitium with unique structural and functional
properties (Pullan et al., 2005). Cardiomyocytes are excitable and deformable muscular cells that
present themselves an additional multiscale architecture in which plasma membrane proteins and
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intracellular organelles all depend on the current mechanical
state of the tissue (Salamhe and Dhein, 2013; Schönleitner et al.,
2017). Dedicated proteic structures, such as ion channels or
gap junctions, rule the passage of charged particles throughout
the cell as well as between different cells and they are usually
described mathematically through multiple reaction-diffusion
(RD) systems (Cabo, 2014; Dhein et al., 2014; Kleber and Saffitz,
2014). All these coupled nonlinear and stochastic dynamics,
emerge then to conform the coordinated contraction and
pumping of the heart (Augustin et al., 2016; Land and et.
al., 2016; Quarteroni et al., 2017). During the overall cycle,
the mechanical deformation undoubtedly affects the electrical
impulses that modulate muscle contraction, also modifying the
properties of the substrate where the electrical wave propagates.
These multiscale interactions have commonly been referred in
the literature as the mechano-electric feedback (MEF) (Ravelli,
2003). Experimental, theoretical and clinical studies have been
contributing to the systematic investigation of MEF effects,
already for over a century; however, several open questions
still remain (Quinn et al., 2014; Quinn and Kohl, 2016; Land
et al., 2017; Sack et al., 2018). For example, and focusing on the
cellular level, it is still now not completely understood what is
the effective contribution of stretch-activated ion channels and
which is the most appropriate way to describe them. In addition,
and focusing on the organ scale, the clinical relevance of MEF in
patients with heart diseases remains an open issue (Orini et al.,
2017), and more specifically, how MEF mechanisms translate
into ECGs (Meijborg et al., 2017) and what is the specific role of
mechanics during cardiac arrhythmias (Christoph et al., 2018).

The theoretical and computational modeling of cardiac
electromechanics has been used to investigate some key aspects
of general excitation-contraction mechanisms. For instance,
the transition from cardiac arrhythmias to chaotic behavior,
including the onset, drift and breakup of spiral/scroll waves
(Panfilov and Keldermann, 2005; Bini et al., 2010; Keldermann
et al., 2010; Dierckx et al., 2015), pinning and unpinning
phenomena due to anatomical obstacles (Cherubini et al., 2012;
Hörning, 2012; Chen et al., 2014), as well as the multiscale
and stochastic dynamics both at subcellular, cellular and tissue
scale (Trayanova and Rice, 2011; Hurtado et al., 2016; Land
et al., 2017). However, the formulation of MEF effects into
mathematical models has been primarily focused on accounting
for the additive superposition of an active and passive stress
to stretch-activated currents (Panfilov and Keldermann, 2005).
Recent contributions have advanced an energy-based framework
for the comparison of active stress, stretch-activated currents and
inertia effects (Cherubini et al., 2008; Ambrosi and Pezzuto, 2012;
Rossi et al., 2014; Costabal et al., 2017). These works further
highlight the role of mechanics into the resulting heart function
at different temporal and spatial scales.

In order to further motivate our theoretical developments, we
provide an experimental representative example of the strong
MEF coupling in cardiac tissue, observable on the macroscale.
The data shown in Figure 1 were obtained via dedicated
fluorescence optical mapping applied on a pig right ventricle
(the experimental procedure has been previously described in
Fenton et al., 2009; Gizzi et al., 2013; Uzelac et al., 2017).

After motion suppression via blebbistatin, the perfused tissue
was electrically stimulated via an external bipolar stimulator
with strength twice diastolic threshold. An excitation pulse
with constant pacing cycle length of 1 s was delivered within
the field of view (red spot in Figure 1) for several seconds
(reaching a steady-state configuration) and for three different
mechanical loading conditions on the same wedge: (a) free
edges, (b) static uniaxial horizontal stretch, (c) static uniaxial
vertical stretch with respect to a prescribed tissue orientation.
The figure displays the underlying structure with clear evidence
of the deformed tissue architecture, isochrones of electrical
activation for a representative stimulus, and a sequence of spatial
activation maps, where the colors indicate the level of activation–
Action Potential (AP). Since in this proof of concept setup
active contraction is inhibited by blebbistatin, these experiments
clearly indicate that an additional degree of heterogeneity and
anisotropy appears in the tissue and affects the AP excitation
wave due to the intensity and direction of the externally applied
deformation. In addition, this behavior does not correspond
to a mere linear mapping from the reference to the deformed
configuration (as a visual scaling of the image would easily show),
but one observes that mechanical deformations induce higher,
nonlinear and non-trivial anisotropies and heterogeneities in the
tissue.

To better characterize such features, in Figure 2we provide an
extended analysis of the local conduction velocity (CV) thorough
histogram plots measured as follows:

• we identify wavefront isochrones at 50% of depolarization
for eleven consecutive frames at 2ms each (this produces ten
consecutive measures of CV per direction selected);

• we compute the contour normal direction and the
corresponding distance between consecutive isochrones;

• we measure the local CV for all the computed normal
directions, along the isochrone path and for seven consecutive
action potential activations at constant pacing cycle length of
1 s;

• we exclude the extreme values from the histogram to take out
spurious results, e.g., boundary effects.

The chosen methodology allows to represent tissue
heterogeneity, provides a robust measure of the local CV
distribution characterizing the underlying ventricular structure,
and homogenizes physiological beat-to-beat variabilities. We
summarize the results of such an extended analysis in Table 1,
distinguishing between the three loading cases as described in
Figure 1, providing sample size and statistical features of the
computed CV histogram distribution, i.e., mean and median.
We also provide the box plot representation of the obtained
distributions for the three stretch states, respectively, to further
highlight dispersion of the measured velocities. Every single
feature in the study confirms a slower conduction velocity
under stretch, and this behavior is full agreement with previous
studies (Ravelli, 2003).

Also, in Figure 3 we demonstrate that the tissue is at steady-
state for the selected stimulation rate providing a quantitative
comparison of the spatial and temporal activation sequences.
In particular, after several activations (> 5), beat n and beat
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FIGURE 1 | MEF observed in pig right ventricle via fluorescence optical mapping. From top to bottom, we provide: underlying tissue structure in reference (A) and

deformed (B,C) states; activation isochrones each 4ms originating from the stimulation point (red spot in the field of view–the bar indicates a length of 1 cm), and

activation sequences. The three cases refer to no-stretch (A), static horizontally (B), and vertical (C) stretch in the directions indicated by the yellow arrows. The

sequence of spatial activation uses the color code scaled to the AP level (yellow/green–high/low). Selected frames highlight the anisotropy induced by stretch. The

outer black region is the noisy area not useful for the field of view.
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FIGURE 2 | CV histograms measured on tissue wedges for three different loading states overlapping local measures for seven consecutive activations at constant

pacing cycle length of 1 s. All the normal directions to the AP propagation are considered as indicated by orange arrows on a representative isochrone contour. The

box plot of the distribution is provided as inset for the three histogram, respectively, highlighting the amount of dispersion and the reduction of CV under stretch (see

Table 1 for details). Cut-off of spurious values is set at 0.05 and 1.3 m/s.

TABLE 1 | Summary of the local CV measurement, indicating histogram sample

size and representative statistical features of the computed distribution: mean and

median.

No-Stretch Horizontal stretch Vertical stretch

Sample size 28,760 20,645 18,746

Mean [m/s] 0.42 0.36 0.38

Median [m/s] 0.36 0.31 0.32

n + 10 are shown for a selected frame in terms of normalized
AP distribution and its spatial difference, as well as comparing
the time course of two consecutive activations (B1, B2) for a
representative pixel under the field of view. In both cases, the
spatio-temporal differences recorded are within the physiological
variability of a ventricular wedge, and the tissue shows a steady-
state regime which is considered at resting state for the numerical
model.

Clear MEF effects evidenced in the previous experimental
exercise suggest the incorporation of deformation and stress
into the conduction properties of the cardiac tissue itself. The
preliminary character of the proposed minimal model implies
that we do not take into account the intrinsic structural variability
of the tissue, but we stress that these effects will be investigated in
future validation works. Accordingly, as a base line model, in the
present study we will adapt the formulation recently proposed
in Cherubini et al. (2017) and designed for general purpose
stress-diffusion couplings. Doing so will allow us to readily and
selectively incorporate two main MEF-related mechanisms into
the computational modeling of cardiac electromechanics: (i)

stretch-activated currents (SAC) and (ii) stress-assisted diffusion
(SAD). The first paradigm relates the deformed mechanical
state to the excitability of the medium via additional reaction
functions (ionic-like currents); whereas the second one collects
the homogenized effects of the deformation field on the
diffusion processes originating the spatio-temporal patterns of
the membrane voltage.

Within such a framework, we expect stretch-activated currents
and stress-assisted diffusion to counterbalance each other by
locally enhancing tissue excitability as well as smoothing the
excitation wave according to the mechanical state of the tissue.
In particular, since an external loading activates SAC at locations
where the stretch is high and, at the same time, induces
an heterogeneous and anisotropic diffusion tensor via the
SAD mechanisms, our study focuses on the role of different
mechanical boundary conditions in affecting action potential
propagation and onset of arrhythmias. Accordingly, these two
MEF mechanisms will be studied numerically in terms of
three basic lines. First, by conducting a parametric analysis
of the competing nonlinearities such to identify the limits of
applicability of the proposed models. In particular, we select
in the SAD mechanisms the most reliable modeling approach
able to reproduce the experienced conduction velocity reduction
upon an applied static loading state. Then, by performing
a selective investigation of spiral onset protocols we will
characterize the additional nonlinearities that arise due to MEF.
Here we identify the different time span of the vulnerable window
obtained via an S1S2 excitation protocol. Finally, by means of
long-run analyses of arrhythmic scenarios, we compare and
contrast static and dynamic displacement and traction loadings
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FIGURE 3 | Spatial and temporal comparison of ventricular activation at constant pacing cycle length of 1 s under different mechanical loadings [free (A), horizontal

(B) and vertical (C) stretch as in Figure 1]. The first two rows show the spatial distribution of the normalized voltage for beat n and beat n+ 10 with the corresponding

difference in the third row (color code is indicated). The last row indicates the time course of a representative pixel in the center of the field of view for two consecutive

beats n and n+ 10 with the corresponding difference provided in the red trace.

on a two-dimensional, idealized tissue slab. In this regard, we
show how spiral core meandering results highly affected by the
mechanical state and becomes unstable when SAC and SAD
parameters are stronger.

Our results highlight several interesting conclusions regarding
the propagation of the excitation wave in the presence of
two competing MEF effects. These findings call for novel
and additional experimental investigations. Finally, we provide
a thorough discussion of the applicability of the proposed
modeling approach and its extensions toward more realistic and
multiphysics scenarios.

2. METHODS

The classical stress-assisted formulation proposed in Aifantis
(1980) was developed in the context of dilute solutes in a solid.
A similarity exists between this fundamental process and the
propagation of membrane voltage within cardiac tissue. Indeed,
on a macroscopically rigid matrix, the propagating membrane
voltage can be regarded as a continuum field undergoing slow
diffusion. Here we consider a similar approach (developed in
Cherubini et al., 2017) which generalizes Fick’s diffusion by using
the classical Euler’s axioms of continuously distributed matter.
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In particular, the balance of momentum can be imposed such
to ensure frame invariance, a property of high importance in
mechanical applications (Tadmor et al., 2012). We also assume
quasi-static conditions for the continuum body, such that its
macroscopic response is, in principle, independent from the
diffusion process. On the contrary, the diffusion process will
strongly depend on the mechanical state of the tissue.

2.1. Continuum Electromechanical Model
We will assume that the body is a hyperelastic material and its
motion will be described using finite kinematics. We will adopt
an indicial notation where repeated indices indicate summation.
We identify the relationship between material (reference), XI ,
and spatial (deformed), xi, coordinates via the smooth map
xi(XI). The deformation gradient tensor FiI = ∂xi/∂XI allows
to determine further properties of the continuum’s motion. We
indicate with J = det FiI the Jacobian of the map and with
CIJ = FkIFkJ and Bij = FiKFjK the right and left Cauchy-Green
deformation tensors, respectively. We assume that the generic
myocardial fiber direction (the unit vector characterizing the
microstructural property of the continuum body) in the material
configuration, aI , is mapped to the deformed configuration as
ai = FiJaJ such that we can define the current fiber ai =

aI/λ. Following the standard frame indifference mechanical
framework (Spencer, 1989), these quantities are related to the
invariants of the deformation in the following manner

I1 = CII , I2 =
1

2

[

(CII)
2 − CIJCJI

]

, I3 = detCIJ = J2 ,

I4 = CIJaIaJ . (1)

The principal invariants I1 and I2 rule the deviatoric response of
the medium, the third invariant I3 quantifies volumetric changes
of the material, while the fourth pseudo-invariant I4 measures
the directional fiber stretch, λ. This last entity is intrinsically
directional, so for two-dimensional models, we will simply assign
a horizontal myocardial direction (1, 0)T . In what follows, the
symbol δij denotes the second-order identity tensor.

As anticipated above, we will base our model on the stress-
assisted diffusion formulation from Cherubini et al. (2017). We
do however, generalize the governing equations adopting a more
accurate nondimensional three-variable model of cardiac action
potential (AP) propagation introduced in Fenton and Karma
(1998b), and we will account for SAC (Panfilov and Keldermann,
2005), that were not considered in Cherubini et al. (2017). Even
though several more physiological assumptions could be made,
here we will focus on a purely phenomenological approach.

In the deformed configuration, the electrophysiological model
consists of three variables: the membrane potential u, and a
fast and slow transmembrane ionic gates v,w. They satisfy the
following RD system

∂u

∂t
=

∂

∂xi

(

dij(σij)
∂u

∂xj

)

− Iion(u, v,w)+ Isac(λ, u)+ Iext ,

(2a)

dv

dt
= (1−Hc)

(

1− v

τ−v

)

−Hc
v

τ+v
, (2b)

dw

dt
= (1−Hc)

(

1− w

τ−w

)

−Hc
w

τ+w
, (2c)

where Neumann zero-flux boundary conditions are imposed
for Equation (2a), i.e., [dij∂u/∂xj]ni = 0, where ni is the
outward normal on the domain boundary. System (2) describes
the propagation of a normalized dimensionless membrane
potential, which can be mapped to physical quantities as u =

(Vm − Vo) /
(

Vfi − Vo

)

(see Fenton and Karma, 1998b for details
as modified Beeler-Reuter fit) where Vm stands for the physical
transmembrane potential, Vo is the resting membrane potential
and Vfi represents the Nernst potential of the fast inward current.
In Equation (2a), the total transmembrane density current,
Iion(u, v,w), is the sum of a fast inward depolarizing current,
Ifi(u, v), a slow rectifying outward current, Iso(u), and a slow
inward current, Isi(u,w), given by

Ifi(u, v) = − v
τd
Hc (1− u) (u− uc) ,

Iso(u) = u
τo
(1−Hc)+

1
τr
Hc ,

Isi(u,w) = − w
2τsi

(

1+ tanh
[

k
(

u− usic
)])

,

where τ−v (u) = Hvτ
−
v1 + (1−Hv) τ

−
v2 is the time constant

governing the reactivation of the fast inward current, and Hx =

Hx (u− ux) is the standard Heaviside step function. Iext is the
space and time-dependent external stimulation current with
amplitude Imax

ext . All model parameters are collected in Table 2.
The mechanical problem, stated also on the current

configuration and occupying the domain �(t), respects the
balance of linear momentum and mass, written in terms of
displacement, ϕϕϕ, and pressure, p, and set in a quasi-static form.
The problem is complemented with displacement and traction
boundary conditions set on two different parts of the boundary
ŴD or ŴN :

∂σij

∂xi
= 0 and ρdv̂ = ρ0dV̂ , in �(t), (3a)

ϕϕϕ = ϕ̃ϕϕ(t), on ŴD(t), (3b)

σiknk = t̃i(t), on ŴN(t), (3c)

where ρ0, ρ and dV̂ , dv̂ are the densities and volumes of the solid
in the undeformed and deformed configurations, respectively.

TABLE 2 | Model parameters for the electromechanical three-variable model,

considered as in Fenton and Karma (1998b) and Cherubini et al. (2017).

ḡfi 4 τd Cm/ḡfi τ+w 667 ǫ0 0.1 uinit = 0

τr 50 Cm 1 µF/cm2 τ−w 11 kTa 9.58 vinit = 1

τsi 45 Vo −85 uc 0.13 c1 6 winit = 1

τo 8.3 Vfi 15 uv 0.055 c2 2 ϕϕϕ init = 0

τ+v 3.33 D0 1 · 10−3 usic 0.85 Gs [0; 0.25] pinit = 0

τ−
v1 1000 D1 [−1.5; 0] · 10−4 k 10 usac 0.4 T inita = 0.2

τ−
v2 19.6 D2 1 · 10−5 Imax

ext 2 tmax 9

Time units are ms, length is cm, the term ḡfi is in mS/cm2, dimensional voltages are in

mV, and stiffness in MPa. Square brackets indicate range of parameter variability, and the

rightmost column specifies initial conditions for a resting tissue.
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In Equation (3b), ϕ̃ϕϕ(t) is a known (possibly time-dependent)
displacement and in Equation (3c), t̃i(t) is a (possibly time-
dependent) traction force. In both cases, the tissue is stretched
up to a maximum level of 20% of the resting length such to
activate all MEF components. In addition, the time-variation
of the imposed boundary conditions is much slower than the
governing dynamic physical processes, and therefore a quasi-
static mechanical equilibrium is maintained.

The two sub-problems (Equations 2, 3) are completed via
the followingmixed constitutive prescriptions for incompressible
isotropic hyperelastic materials (J = 1):

σij = 2c1Bij − 2c2B
−1
ij − pδij + Taδij , (4a)

∂Ta

∂t
= ǫ(u)(kTau− Ta) , (4b)

dij(σij) = D0δij + D1σij + D2σikσkj , (4c)

Isac(λ, u) = GsHsac(λ− 1)(usac − u) . (4d)

Equation (4a) specifies a constitutive form for the Cauchy
stress tensor (total equilibrium stress in the current deformed
configuration) highlighting two multiscale contributions on the
tissue deformation. First, the passive material response follows
that of an incompressible Mooney-Rivlin hyperelastic solid and
it is characterized by two stiffness parameters c1 and c2; and
secondly, the active component contributing to the total stress
in the form of an additional hydrostatic force with amplitude
Ta. The dynamics of Ta are described by Equation (4b), where
the constant kTa modulates the amplitude of the active stress
contribution, while ǫ(u) is a contraction switch function: ǫ(u) =
ǫ0 if u < 0.005, and ǫ(u) = 10ǫ0 if u ≥ 0.005.

Equation (4c) characterizes the stress-assisted diffusion
contribution describing the effect of tissue deformation on the
AP spreading. The parameter D0 represents the usual diffusion
coefficient for isotropic media, i.e., diffusivity = [L2 T−1], while
D1 and D2 introduce the impact of mechanical stress through
linear and nonlinear contributions, respectively, on the diffusive
flux. Accordingly, D1 and D2 have units of [L2 T−1 P−1] and
[L2 T−1 P−2], respectively. We also remark that Equation (4c)
reduces to the characterization of the classical diffusion equation
for D1 ≡ D2 = 0.

Finally, Equation (4d) describes the stretch-activated current
contribution (which is usually adopted as the sole MEF effect).
The term Isac(λ, u) affects the ionic (reaction) currents in the
electrophysiological system and is formulated as a linear function
of the membrane potential u and the fiber stretch λ. Here,
Gs modulates the amplitude of the current, usac represents a
referential (resting) potential while, Hsac is a switch activating
this additional reaction current only when the myocardial fiber
is elongated, i.e., Hsac = 1 for λ ≥ 1 and Hsac = 0 for λ < 1.

We also introduce the definition of spiral tip (core of the spiral
wave) as the point with instantaneous null velocity (see Fenton
and Karma, 1998b for details). In practice, for two-dimensional
domains, we choose an isopotential line of constant membrane
voltage, u(RI , t) = uiso, where RI = xtipXI + ytipYI represents
the position vector in the reference undeformed configuration
identifying the boundary between depolarized and repolarized

regions. Accordingly, the spiral tip can be defined as the point
in space where the excitation front meets the repolarization
waveback of the action potential, conforming with the operative
definition:

u(RI , t)− uiso =
∂u(RI , t)

∂t
≡ 0 . (5)

We numerically identify the tip coordinates (xtip, ytip) by
considering uiso = 0.5 with tolerance of 10−4.

2.2. Numerical Approximation
The electromechanical problem is rewritten in the undeformed
configuration and subsequently computationally solved via a
finite element method. Even if the model originates as an
extension of our contribution in Cherubini et al. (2017), the
numerical method employed here is simpler, as we do not solve
for stresses explicitly but rather postprocess them from the
computed discrete displacements. The overall numerical scheme
for active stress electromechanics with SAC is therefore not
precisely novel, but we will still provide a few details for sake
of completeness of the presentation and future reproducibility
of results. Further details could be found in e.g., Ruiz-Baier
(2015). We discretize displacements with vectorial piecewise
quadratic and continuous polynomials, and the pressure field
using piecewise linear and discontinuous elements. All remaining
unknowns (associated to the electrophysiology and to the active
tension) are approximated using piecewise linear and continuous
elements. Let us then consider a regular, quasi-uniform partition

Th of �(0) into triangles T of diameter hT , where h =

max{hT : T ∈ Th} is the meshsize. The finite element spaces
mentioned above are defined as (see e.g., Quarteroni and Valli,
1994)

Hh := {ψ ∈ H1(�(0)) :ψ |T ∈ [P2(T)]
2 ∀T ∈ Th, and

ψ = 0 on ŴD(0)},

Qh := {q ∈ L2(�(0)) : q|T ∈ P1(T) ∀T ∈ Th},

Wh := {ψ ∈ H1(�(0)) :ψ |T ∈ P1(T) ∀T ∈ Th},

for the case of clamped boundaries at ŴD(0).
Let us also construct an equispaced partition of the time

domain 0 = t0 < t1 = 1t < · · · < tM =

tmax. The coupled problem is solved sequentially between the
mechanical and electrochemical blocks. A description of the
needed computations at each time step tn is as follows:
Step 1: From the known values un

h
, vn

h
,wn

h
,Tn

a,h
,Dn

h
, λn

h
, find

un+1
h

, vn+1
h

,wn+1
h

,Tn+1
a,h

such that

∫

�(0)

un+1
h

1t
ψu
h +

∫

�(0)
Dn
h∇un+1

h
· ∇ψu

h

=

∫

�(0)

[

un
h

1t
+ Iion(u

n
h, v

n
h ,w

n
h)+ Isac(λ

n
h, u

n
h)+ Iext

]

ψu
h ,

1

1t

∫

�(0)
vn+1
h

ψv
h =

∫

�(0)

[

1

1t
vnh + fv(u

n
h, v

n
h)

]

ψv
h ,
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1

1t

∫

�(0)
wn+1
h

ψw
h =

∫

�(0)

[

1

1t
wn
h + fw(u

n
h,w

n
h)

]

ψw
h ,

1

1t

∫

�(0)
Tn+1
a,h

ψ
Ta
h

=

∫

�(0)

[

1

1t
Tn
a,h + fTa (u

n
h,T

n
a,h)

]

ψ
Ta
h
,

for all (ψu
h
,ψv

h
,ψw

h
,ψ

Ta
h
) ∈ [Vh]

4. This scheme for the
electric/activation system is given in a first-order semi-implicit
form: the nonlinear reaction terms and the coupling stress-
assisted diffusion are taken explicitly, while the linear part of
diffusion is advanced implicitly. Here

Dn
h = D0C

−1(ϕn
h)+

D1

J(ϕn
h
)
S(ϕn

h)+
D1

J(ϕn
h
)2
S(ϕn

h)
2,

λnh =
√

C11(ϕ
n
h
),

are the explicit approximation of the stress-assisted diffusivity
and of the stretch in the fiber direction, all in the reference
configuration.
Step 2: Given the activation value Tn+1

a,h
computed in Step 1 of

this iteration, solve the nonlinear elasticity equations

∫

�(0)
F(ϕn+1

h
)S(ϕn+1

h
, pn+1

h
,Tn+1

a,h
) :∇ψh = 0 ∀ψh ∈ Hh,

∫

�(0)
qh[J(ϕ

n+1
h

)− 1] = 0 ∀qh ∈ Qh,

where

S = 2[c1 + c2tr (C(ϕ
n+1
h

))]I− 2c2C(ϕ
n+1
h

)

− pn+1
h

J(ϕn+1
h

)C−1(ϕn+1
h

)+ Tn+1
a,h

C−1(ϕn+1
h

),

is the second Piola-Kirchhoff stress tensor.
Step 3: The solution of the problem in Step 2 uses a Newton-
Raphsonmethodwhose iterations are terminated once the energy
residual drops below the relative tolerance of 10−6. The solution
to each linear tangent problem is conducted with the BiCGSTAB
method preconditioned with an incomplete LU(0) factorization.
The iterations of the Krylov solver are terminated after reaching
the absolute tolerance 10−5. The residual computation for the
mechanical problem also contains the terms arising from time-
dependent displacement or traction boundary conditions, which
also need to be assigned at each timestep. For instance, in an
uniaxial test (denoted dynamic displacement in the examples
below), the left segment of the boundary is clamped (zero
displacements are imposed), the bottom and top edges are subject
to zero normal stress, and the right edge is pulled according to the

displacement ϕ̃ϕϕ(t) =
[

0.2L sin2(π/400 t), 0
]T
.

All tests are conducted using a two-dimensional slab of
dimensions L × L = 6.2 × 6.2 cm2, which is the same
configuration used to produce the dynamics analyzed in Fenton
and Karma (1998b). The computational domain is discretized
with a structured triangular mesh of 10,000 elements. After
a mesh convergence test involving conduction velocities and
reproducing the expected values for planar excitation waves
reported in Fenton and Karma (1998b), we proceeded to fix the

temporal and spatial resolutions to 1t = 0.1ms, h = 0.062 cm,
respectively. A representative example of the mesh is provided
in Figure 4, plotted in the deformed configuration under both
traction and displacement boundary conditions and highlighting
the spiral wave resolution. All numerical tests were carried out
using the open-source finite element library FEniCS (Alnæs et al.,
2015).

3. RESULTS

In the following, we adopt a parametric setup fitted for the
modified Beeler-Reuter model (Equation 2), while selectively
changing MEF parameters (D1,Gs). This choice provides a
reference, unloaded, model configuration with constant CV of
0.42 m/s and a circular meandering for a free spiral on a
homogeneous and isotropic domain. Such values deviate as the
MEF coupling is activated.

3.1. Conduction Velocity Analysis
We start analyzing the parameter space associated to the two
MEF contributions in our model. That is, the stress-assisted
coefficients D1,D2 and the SAC amplitude Gs. The study will be
restricted to a static homogeneous stretched state (e.g., a uniaxial
Dirichlet boundary condition ϕ = [0.2L, 0]T set on the right edge
of the domain). All remaining material and electrophysiology
parameters will be kept constant, except that we fix the relative
influence of the nonlinear contribution in the stress-assisted
diffusion, by settingD2 to be one order of magnitude smaller than
D1. This configuration will highlight MEF effects in a minimal,
but still comprehensive manner.

Figure 5 portrays the conduction velocity obtained for all
combinations of (D1,Gs) on the parameter space. The quantity
is measured as the wave-front velocity of a planar excitation wave
along its propagation. The plot illustrates the variability of the
recorded CV amplitude (in the range 0.25–0.5 m/s) according to
the MEF coupling intensity variation and to histogram measures
in Figure 2. In particular, starting from a physiological baseline
of 0.42 m/s, when neither SAC nor SAD is present (D1 = 0,Gs =

0), we observe a net increase of CV for (D1 = 0,Gs > 0) while
we recover CV decrements for (D1 < 0,Gs = 0). This specific

FIGURE 4 | Example of structured mesh employed in the computational

results. The grid is displayed on the deformed configuration when the domain

is subject to traction (arrows) and fixed displacement (lines) boundary

conditions, and a zoom exemplifies the mesh resolution for a rather coarse

spiral front.
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aspect reproduces what is expected from experimental evidence,
i.e., MEF decreases the CV of the excitation wave (Ravelli, 2003).

Besides, for higher values of Gs, we obtain two unexpected
results. First, for Gs > 0.15 we observe a decrement of CV for
different values of D1. Second, for the particular combination
(D1 < −10−4,Gs > 0.15) the wave disappears from the
domain or annihilates due to excessive activation (see e.g., side
panels in Figure 5 or the top row in Figure 8). Consequently,
we are not able to measure any propagation (which reflects
in the combinations with × of the figure). This last result
is somehow counterintuitive since, as evidenced by Figure 1,
we experimentally experience a complete depolarization of the
tissue with AP propagation, in the case of fixed stretch. To
support this point, in Figure 6 we provide a representative
sequence of point-wise activations delivered on our simplified

2D domain and mimicking the experimental protocol conducted
in Figure 1 for a selected parameter choice, i.e., (D1,Gs) =

(−0.75 · 10−4, 0). In this case, the AP excitation wave propagates
differently according to the applied stretch state, both horizontal
and vertical displacement and traction. In addition, the computed
CVs change similarly to what observed in Figure 2. We remark
that such a comparison with experimental observations is purely
qualitative and does not represent a definitive validation of the
model.

3.2. S1-S2 Excitation Protocol
We further investigate the strength of MEF coupling effects.
In particular, we want to determine which specific contribution
(stretch-activated currents or stress-assisted diffusion) exhibits
a better match against experimental evidence, and for this we

FIGURE 5 | MEF parameter space associated to the conduction velocity measured on the propagating front of a planar excitation wave (stimulation on the left edge

and propagation toward the right boundary) elicited on a static uniaxially stretched domain (CV in [m/s]). Four selected combinations of MEF parameters (A,B,C,D, in

Table 3) are highlighted together with two additional cases in which CV was not recorded. On the right, three consecutive time frames of the activation are selected.

FIGURE 6 | Point-wise activation frame for five different static boundary conditions qualitatively reproducing ventricle wedge preparation measurements considering

the parameter combination (D1,Gs) = (−0.75 · 10−4, 0): (A) free edges, (B) horizontal displacement, (C) vertical displacement, (D) horizontal traction, (E) vertical

traction. Color code refers to the normalized action potential.
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assess changes in the S1-S2 stimulation protocol. In practice,
in order to induce a spiral wave on an excitable tissue, one
typically generates a planar electrical excitation (S1), followed by
a second broken stimulus (S2) during the repolarization phase of
the S1 wave, the so called vulnerable window (Karma, 2013). In

TABLE 3 | Parameter calibration associated to the S1-S2 protocol.

D1 Gs CV [m/s] tmin
S2

− tmax
S2

[ms]

A: 0 0 0.45 225–240

B: −0.75 · 10−4 0 0.36 243–255

C: 0 0.125 0.52 133–147

D: −0.75 · 10−4 0.125 0.42 143–157

Combination of MEF parameters (D1,Gs ), corresponding CV, minimum, tmin
S2

, and

maximum, tmax
S2

, stimulation time required for spiral wave onset (vulnerable window).

our case, we selected a reduced set of MEF parameters (D1,Gs)
indicated in Table 3 as A,B,C,D. These values are motivated
by the results from Figure 5. In particular, we select only the
parameter combinations that produce either a unique decrement
or increment of CV.

Figure 7 shows the different dynamics obtained via the S1-
S2 protocol for the four different sets of MEF parameters.
The first column is set at 100ms from the S1 stimulus for all
the combinations, while the remaining frames are selected to
highlight the elicited behavior. As a result, we observe that the
deformation state of the tissue influences the overall dynamics
differently. The first column highlights the variability in the AP
wavelength, representing the spatial extension of the activation
wave, which is due to the different repolarization states of the
tissue induced by stress-assisted diffusion and stretch-activated
currents. In particular, the AP wavelength varies as > 6.2 cm
for case A, = 6.2 cm for case B, and < 2 cm for cases C, D.

FIGURE 7 | S1-S2 stimulation protocol applied on a static uniaxial stretched configuration for different combinations of MEF parameters (D1,Gs) as provided in

Table 3. The color code refers to normalized dimensionless membrane potential, u, (blue-red mapped to [0–1]). Selected time frames are provided in the subpanels.
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In fact, when the Gs contribution is present, the excitation wave
is much reduced with respect to the profiles generated with the
electrophysiological three-variable model (2) and fine-tuned on
experimental data. Such an effect is not present when Gs = 0.

Secondly, cases A and B (that is, where only D1 is activated)
provide a similar behavior for spiral onset and case B shows
the expected reduction in CV. Contrariwise, cases C and D
(where also the contribution of Gs is present) induce much more
complex dynamics, not expected in an isotropic medium. In
particular, case C leads to a wave break and multiple spirals
generation at the S2 stimulus that eventually collide and result
in a single spiral wave. On the other hand, case D shows a more
stable behavior generated by the presence of D1.

In addition, Table 3 also provides the minimum and
maximum delay for the S2 stimulation (vulnerable window)
allowing to induce a spiral wave in the uniaxially stretched tissue.
It is evident that the presence of SAC reduces the minimum S2
stimulation time, tmin

S2
, by about 100ms with respect to the other

cases and slightly increase the overall time span of the vulnerable
window. Such a variation is motivated on the additional reaction
current induced by the presence of Isac(λ, u) everywhere in the
medium, but it is not expected from the experimental isochrones
provided in Figure 1.

To further corroborate this analysis, we provide in the top
panels of Figure 8 an additional sequence referring to the
combination (D1,Gs) = (−1.5 · 10−4, 0.25) in the case with
static displacement boundary conditions, which falls in the range
where no CV wave was measured. As anticipated, an excessive
contribution due to SAC elicits extra activations where the stretch
is maximum, i.e., at the corners of the domain. This particular
behavior is not obtained when the stress-assisted contributionD1

is very high. Next, the bottom panels of Figure 8 show results

using the combination (D1,Gs) = (−0.75 · 10−4, 0.125), which
allows the quantification of CV but can eventually lead to spiral
breakup and non-sustainability of the arrhythmic patterns due
to the mechanical state of the tissue (corresponding to the case
of dynamic traction, described below). This is a representative
example of the key importance of boundary conditions and how
MEF effects could be effectively translated into clinical studies.

3.3. Spiral Drift and Effects due to
Boundary Conditions
Finally, we turn to the analysis of meandering for the spiral tip
for long run simulations (4 s of physical time) comparing the
four selected sets of parameters A,B,C,D in combination with
static/dynamic–displacement/traction boundary conditions. In
particular, we initiate the spiral wave via the S1-S2 stimulation
protocol as discussed in the previous section, in absence of any
mechanical loading such to start from the same initial conditions
for each selected case. After spiral onset and stabilization
(namely, for t > t2 = 250ms), we apply the following four
different loadings:

• Static displacement: uniaxial displacement ϕ̃ϕϕ = [0.1L, 0]T

applied on the right boundary while keeping the left one
clamped (Figure 9A).

• Dynamic displacement: uniaxial time-dependent

displacement ϕ̃ϕϕ(t) =
[

0.1L sin2(π/400 t), 0
]T

applied on
the right boundary while keeping the left one clamped
(Figure 9B).

• Static traction: uniaxial sigmoidal time-dependent force
t̃i(t) = tmax

[

1.0− exp(−(t − t2)/5)
]

applied on the left
and right boundaries while keeping the bottom side clamped
(Figure 9C).

FIGURE 8 | Example of different propagation patterns according to different mechanical boundary conditions and parameter space. First row shows the uniaxial static

displacement configuration for which the selected parameters induce additional activations from the corners of the domain due to the excessive level of SAC (Gs).

Second row shows the dynamic traction configuration for which the initiated spiral wave goes through breakup due to the effect of mechanical loading.
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• Dynamic traction: uniaxial time-dependent force t̃i(t) =

tmax sin
2(π/400 t) applied on the left and right boundaries

while keeping the bottom side clamped (Figure 9D).

For each mechanical loading, panels in Figure 9 show the

trajectories of the spiral tip for the four MEF parameters

combinations. Two important aspects are worthy of
attention.

First, for each combination of the mechanical loading, the
presence of the stress-assisted conductivity D1 tends to stabilize
the meandering (see black and green traces). This behavior is
particularly evident in Figure 9C where the combination D1 =

−0.75 · 10−4,Gs = 0 results into a localized core, while the
case D1 = 0,Gs = 0 presents a circular, but slightly drifting
core. Consequently, local stress-based heterogeneities appear
in the medium when D1 is different from zero, leading to

FIGURE 9 | Tip trajectories for four combinations of MEF parameters (D1,Gs) (see Table 3), applying static/dynamic–displacement/traction boundary conditions as

indicated in the corresponding inset. Inset color code refers to the magnitude of the displacement field. (A) The last second of simulation is shown for the four cases

with localized cores. (B) The last 3 s of simulations are shown highlighting the differences of the meandering. (C) Different times are shown for the four cases since for

Gs > 0 the spirals exit the domain soon after initiation. (D) The last 3 s are shown for the case Gs > 0 highlighting the different meandering obtained with respect to

Gs = 0. Minor discontinuities are due to the frame resolution for post processing analysis and are not linked to the accuracy of the numerical solution.
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pinning-like phenomena also observed in Cherry and Fenton
(2008), Cherubini et al. (2012), Jiménez and Steinbock (2012),
and Liu et al. (2013). Moreover, these conditions are associated
with an ellipsoidal shape of the core underlying the effective
anisotropy induced by the stress-assisted coupling. All these
observations agree with the conclusions from the extended
analysis conducted on the chosen AP model in the original work
from Fenton and Karma (1998b).

Secondly, when also SAC is present, the spiral meandering is
unpredictable and strongly dependent on the applied boundary
conditions (see blue and red traces). In this scenario, it

is interesting to note that static loading induces a simple
meandering which eventually pushes the spiral wave out from
the domain (see Figure 9C), whereas dynamic conditions dictate
a chaotic behavior that makes the spiral either to explore
the whole domain, or to exit it. These patterns seem to be
extreme conditions of hyper-excitability not expected in a two-
dimensional isotropic medium (Fenton and Karma, 1998a;
Fenton et al., 2002).

Finally, we highlight the symmetry of the observed behavior
according to the clockwise or counterclockwise rotation of the
spiral. This particular analysis is provided in Figure 10 and

FIGURE 10 | (A) Clockwise (blue) and counterclockwise (red) tip trajectories obtained in a dynamic uniaxially stretched case with MEF parameters

D1 = 0,Gs = 0.125 and initiated via the S1-S2 stimulation protocol. (B) Counterclockwise spiral initiation from top (red) or bottom (blue) boundary. Side panels show

progressive spiral frames for the two cases.
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further links the excitation dynamics to the mechanical features.
The different traces refer to the spiral core meandering observed
for a dynamic uniaxially stretched case with MEF parameters
D1 = 0,Gs = 0.125 and initiated via the S1-S2 stimulation
protocol: case (a) compares a clockwise and counterclockwise
spiral propagation; case (b) shows a counterclockwise spiral
core initiated from the top (red) and bottom (blue) case.
Corresponding sequences are also shown as side panels. This
result is limited to the simplified nature of the domain adopted,
i.e., 2D isotropic. A more realistic computational domain,
embedding fiber directionality and tissue thickness, would show
more involved dynamics in a complex spatiotemporal and
clinical relevant perspective.

4. CONCLUSION

We have advanced a minimal model for the electromechanics
of cardiac tissue, where the mechano-electrical feedback is
incorporated through two competing mechanisms: the stretch-
activated currents commonly found in the literature, and the
stress-assisted diffusion (or stress-assisted conductivity) recently
proposed by Cherubini et al. (2017). Both the electrophysiology
and the mechanical response adopt a phenomenological
simplified description, but a preliminary validation is
provided through a set of numerical simulations that agree
qualitatively with a set of experimental data for pig right
ventricle.

The implications of the intensity and degree of nonlinearity
assumed for the stress-assisted diffusion effect are studied
from the viewpoint of changes in the conduction velocity
and the dynamics of spiral waves in simplified 2D domains.
Multiple electrical stimulations protocols and non-trivial
mechanical loadings have been investigated highlighting the
strong coupling due to the different MEF contributions. The
analysis supports the hypothesis that the simplistic formulation
adopted for stretch-activated currents seems to deviate from
the experimental evidence, in line with recent contributions
addressing the coupled modeling of SACs and stretch-induced
myofilament calcium release at the myocyte level (Timmermann
et al., 2017). On the other hand, in a homogenized
setting, the stress-assisted diffusion formulation produces
a series of interesting phenomena that qualitatively match
heterogeneities and anisotropies observed during mechanical
stretching of pig right ventricle via fluorescence optical
mapping.

Limitations of the present work are partially linked to the
phenomenological approach adopted to describe the complex
multiscalemechanisms intrinsic in the cardiac tissue and partially
due to the simplified computational domain. In this regards,
we aim at investigating more reliable stretch-activated current
formulations leading to alternans behaviors (Galice et al., 2016)
within a multiscale mechanobiology perspective (Nava et al.,
2016; Stålhand et al., 2016; Cyron and Humphrey, 2017) and
tacking into account the intracellular calcium cycling influenced
by mechanical stretch, because all these effects have been
proposed as concurring mechanisms of arrhythmogenesis within

the heart. From the mechanical point of view, we mention as
main limitation the adoption of a simplified isotropic hyperelastic
material model which can be generalized to more complex and
reliable formulations. This will include, for example, active strain
anisotropies, muscular and collagen fiber distributions in an
orthotropic mechanical framework that the authors have been
extensively developing during the last decade (Cherubini et al.,
2008; Nobile et al., 2012; Gizzi et al., 2015, 2016, 2018; Pandolfi
et al., 2016). Such a generalization will maintain the nature of
the present theoretical framework in terms of MEF competing
effects. In this line, we also aim to generalize our theoretical
and computational approach toward intrinsic multiscale and
multiphysics mechano-transduction problems (Weinberg et al.,
2017; Lenarda et al., 2018), e.g., the uterine smooth muscle
activity (Young, 2016; Yochum et al., 2017) or the intestine
biomechanics activity (Pandolfi et al., 2017; Brandstaeter et al.,
2018) by implying the usage of network approaches (Giuliani
et al., 2014; Robson et al., 2018) and data assimilation
procedures (Barone et al., 2017). In addition, the investigation
of the complex spatiotemporal dynamics, chaos control and
multiphysics couplings in excitable systems (see e.g., Hörning
et al., 2017; Christoph et al., 2018) can be emphasized within
the proposed electromechanical framework by using realistic
three-dimensional cardiac structures (Lafortune et al., 2012).
We also mention implications of the proposed models in the
mathematical study of general stress-assisted diffusion problems,
as recently carried out in Gatica et al. (2018). Finally, we
hope that the present contribution may open new experimental
studies to translate the complex MEF phenomena into the
clinical practice (Meijborg et al., 2017; Orini et al., 2017)
identifying novel risk indices for cardiac arrhythmias (Gizzi et al.,
2017).
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