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Abstract—We introduce Competing Mobile Network Game
(CMNG), a stochastic game played by cognitive radio net-
works that compete for dominating an open spectrum access.
Differentiated from existing approaches, we incorporate both
communicator and jamming nodes to form a network for friendly
coalition, integrate antijamming and jamming subgames into
a stochastic framework, and apply Q-learning techniques to
solve for an optimal channel access strategy. We empirically
evaluate our Q-learning based strategies and find that Minimax-
Q learning is more suitable for an aggressive environment than
Nash-Q while Friend-or-foe Q-learning can provide the best
solution under distributed mobile ad hoc networking scenarios
in which the centralized control can hardly be available.

I. INTRODUCTION

Cognitive radios have arisen commercially over the last

decade, enabling a new means to share radio spectrum.

Dynamic spectrum access (DSA) [1] is a compelling usage

scenario for the cognitive radio system. DSA aims to relieve

shortages of radio spectrum, which is the scarcest—hence,

the most expensive—resource to build a wireless network.

Much of contemporary research has viewed cognitive radios

as the secondary user of a licensed spectrum and focused on

the development of a flexible mechanism to opportunistically

access the licensed channel to its maximal spectral efficiency.

While cognitive radios are deemed a commercial success,

their applicability in tactical wireless networking is even more

adequate. The central concept behind the cognitive radio

system is intelligent decision making, which makes it suitable

for operating in a hostile, competing wireless environment. In

this paper, we introduce Competing Mobile Network Game

(CMNG) where radio nodes form a tactical wireless network

and strategize holistically as a team to best its opponent in

dominating the access to an open spectrum. We are particularly

interested in leveraging knowledge acquired through sensing

and learning to overcome extreme operational characteristics

of the radio network such as jamming attacks. Also, our

tactical settings embrace jamming as a strategy to suppress

communication activities of an opponent.

In an antijamming game, the radio network attempts to

maximize its communication utility under the presence of

hostile jamming devices, whereas its friendly jammers aim to
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minimize the opposing network’s communication in a jamming

game. Existing game-theoretic frameworks for cognitive radios

[2]–[4] have treated the antijamming and jamming problems

separately. We depart from the existing approaches and in-

tegrate antijamming and jamming games to jointly solve for

an optimal strategy, exploring Q-learning techniques used in

reinforcement learning. Given an optimistic assumption of

perfect sensing at the lower layer that allows correct outcome

of a channel to be fed back, Q-learning can result in optimal

channel access decisions that lead to the best cumulative

average reward in a steady state.

The rest of the paper is organized as follows. In Section

II, we explain our system model and underlying assumptions.

Section III presents mathematical formulation of CMNG. In

Section IV, we apply reinforcement learning to determine

optimal strategies for CMNG and show how Q-learning can be

used to solve antijamming and jamming games. We propose

both centralized and distributed control approaches based on

Minimax-Q, Nash-Q, and Friend-or-foe Q-learning algorithms.

In Section V, we evaluate the proposed methods with numer-

ical simulation and analyze their performance. In Section VI,

we discuss related work and provide the context of our work.

Section VII concludes the paper.

II. MODEL

A. Competing Mobile Networks

For clarity of discussion, let us consider two mobile net-

works, namely Blue Force (BF) or the ally and Red Force

(RF) or the enemy networks. Each network consists of two

types of nodes: communicator (comm) node and jammer. BF

and RF networks compete fiercely to achieve higher comm

data throughput and prevent the opponent’s comm activities

by jamming. The primary-secondary user dichotomy popular

in the DSA literature is not applicable here, and little or

no fixed infrastructural support is assumed. Mobile ad hoc

network (MANET) would be the most convincing network

model, but the network-wide cooperation and strategic use

of jamming against the opponent are critical to design a

winning media access scheme. A competing mobile network

can adopt a centralized control model where the node actions

are coordinated through a singular entity that makes coherent,

network-wide decisions. On the other hand, a distributed

control model allows each node to decide its own action. We

will evaluate both models in later sections of this paper.



B. Communication Model

Spectrum available for open access is partitioned in time

and frequency. There are N non-overlapping channels located

at the center frequency fi (MHz) with bandwidth Bi (Hz) for

i = 1, . . . , N . A transmission opportunity is represented by a

tuple 〈fi, Bi, t, T 〉, which designates a frequency-time slot at

channel i and time t with time duration T (msec) as depicted

in Fig. 1. We assume a simple CSMA in which comm nodes

first sense before transmitting in a slot of opportunity.

Time 

Frequency 

T 

t 

f
i 

 N  

channels 

B
i 

…
 … 

Fig. 1. Transmission opportunity 〈fi, Bi, t, T 〉 (shaded region)

In order to coordinate a coherent spectrum access and

jamming strategy network-wide, we assume that the nodes

(both comm and jammers) exchange necessary information

via control messages. We call the channels used to exchange

control messages ‘control channels.’ On the contrary, ‘data

channels’ are used to transport regular data packets. We

follow the DSA approach [2] that control or data channels are

dynamically determined and allocated. When a network finds

all of its control channels blocked (e.g., due to jamming) at

time t, the spectrum access at time t+1 will be uncoordinated.

C. Jamming

Xu et al. [5] provides widely accepted taxonomy of jam-

mers. A constant jammer continuously dissipates power into

a selected channel by transmitting arbitrary waveforms. A

deceptive jammer can instead send junk bits encapsulated in

a legitimate packet and conceal its intent to disrupt comm

nodes. A random jammer alternates between jamming and

remaining quiet for random time intervals. A reactive jammer

listens to the channel, stays quiet when the channel is idle, and

starts transmitting upon sensing an activity. We add strategic

jammer into the existing taxonomy, which is similar to the

statistical jammer described in Pajic and Mangharam [6]. A

strategic jammer, however, is more intelligent—it can adapt to

media accessing patterns of comm nodes, learn antijamming

schemes, and operate without being detected for long, causing

severe damages.

D. Rewards

A comm node receives a reward of B (bits) upon a suc-

cessful transmission at the attempted slot. Definition of the

successful transmission follows the classic ALOHA, which

requires that there should be only one comm node transmission

per Tx opportunity. If there were two or more simultaneous

TABLE I
OUTCOME AND RESULTING REWARD AT TX OPPORTUNITY SLOT

BF BF RF RF
comm jammer comm jammer Outcome Reward

Tx ∅ ∅ ∅ BF Tx success RBF +=B
∅ Jam Tx ∅ BF jamming RBF +=B
Tx Jam ∅ ∅ BF misjamming None
∅ ∅ Tx ∅ RF Tx success RRF +=B
Tx ∅ ∅ Jam RF jamming RRF +=B
∅ ∅ Tx Jam RF misjamming None
Tx ∅ Tx ∅ Tx collision None

transmissions at a Tx opportunity (regardless of the same or

opposing network comm nodes), a collision would occur, and

no comm node gets a reward.

Jammers do not create any reward by themselves but can

take away an opposing comm node’s otherwise successful

transmission. For example, a BF jammer earns a reward B by

jamming the slot in which a sole RF comm node transmits.

If there were no jamming, the RF comm node would have

earned B. Also, a BF jammer can jam a BF comm mistakenly

(e.g., due to faulty intra-network coordination), which we call

misjamming. Table I summarizes the outcome at a slot of

transmission opportunity (‘∅’ means no action).

III. MATHEMATICAL FORMULATION OF COMPETING

MOBILE NETWORK GAME (CMNG)

This section provides formal introduction of Competing

Mobile Network Game (CMNG), a stochastic game for com-

peting cognitive radio networks, Blue Force (BF) and Red

Force (RF).

A. Basic Definitions and Objective

We define CMNG the tuple:

GCMNG = 〈S,AB , AR, R, T 〉

where S is the set of states, and AB = {AB,comm, AB,jam},

AR = {AR,comm, AR,jam} are the action sets of BF and RF

networks. Notice that the action sets break down to include

both the comm and jammer actions. CMNG is a stochastic

game [7], which extends Markov Decision Process (MDP) [8]

by incorporating an agent as the game’s policy maker that

interacts with an environment possibly containing other agents.

Under the centralized control model (Section II.A), CMNG

considers one agent per network that computes strategies for

all nodes in the network whereas there are multiple agents (i.e.,

each node) per network under the distributed control model.

We interchangeably use the terms strategy and policy of the

stochastic game π : S → PD(A) that denotes the probability

distribution over the action set. CMNG has the reward function

R : S ×
∏

A{B,R},{comm,jam} → R that maps node actions

at a given state to a reward value. The state transition function

T : S ×
∏

A{B,R},{comm,jam} → PD(S) is the probability

distribution over S. S,A, π, and R evolve over time, thus are

functions of time. We use a lower case letter with superscripted

t for their realization in time (not tth power of), e.g., st (∈ S)

means the CMNG state at time t, and similarly atB (∈ AB)

and atR (∈ AR) for BF and RF node actions at t.



TABLE II
COLLISION PARAMETERS

Parameter Description

IB,C # of control channel collisions caused by BF comms only
IB,D # of data channel collisions caused by BF comms only
IR,C # of control channel collisions caused by RF comms only
IR,D # of data channel collisions caused by RF comms only
IBR,C # of control channel collisions caused by BF and RF comms
IBR,D # of data channel collisions caused by BF and RF comms

The objective of CMNG is to win in the competition of

dominating the open spectrum access, which can be achieved

by transporting or jamming more comm data bits. For BF

network, this is equivalent to find an optimal distribution π∗

of possible actions that maximizes the expected cumulative

sum of discounted rewards:

π∗ = argmax
π

E

[

∞
∑

t=0

γtR(st, atB , a
t
R)

]

(1)

where γ is a reward discount ratio, strategy π decides BF node

actions, RF node actions are measurable to determine the state,

and the reward can be observed over time.

B. States and Actions

Consider that the spectrum under competition is partitioned

in N channels, each of which can be described by a Markov

chain. If there are L discrete states for each channel, we

require to track LN states for CMNG. Unfortunately, this

results in O(LN ), an exponential complexity class with respect

to the number of channels. We instead choose a terser state

representation s = 〈IC , ID, JC , JD〉 where IC denotes the

number of control channels collided, ID the number of data

channels collided, JC the number of control channels jammed,

and JD the number of data channels jammed.

Given the current state and the action sets of BF and RF

nodes, the next state of CMNG is computable. The actions

of the opponent is inferred from channel measurements and

sensing. To estimate IC , ID, JC , and JD, we need to observe

the parameters in Tables II and III to calculate

IC =
∑

x∈{B,R,BR}

Ix,C

ID =
∑

x∈{B,R,BR}

Ix,D

JC =
∑

x∈{B,R},y∈{B,R,BR}

Jx,y,C

JD =
∑

x∈{B,R},y∈{B,R,BR}

Jx,y,D

For illustrative purposes, we present an example where

each BF and RF network has C = 2 comm nodes and

J = 2 jammers, and there are N = 10 channels in the

spectrum. Suppose the channels are numbered 1, . . . , 10. The

BF node actions at t are atB = 〈atB,comm, atB,jam〉 where

atB,comm and atB,jam are vectors of sizes C and J , and

similarly atR = 〈atR,comm, atR,jam〉 for the RF node actions.

Let atB,comm = [7 3]; this means that BF comm node 1

TABLE III
JAMMING PARAMETERS

Parameter Description

JB,R,C # of BF control channel jammed by RF jammers
JB,R,D # of BF data channel jammed by RF jammers
JB,B,C # of BF control channel jammed by BF jammers
JB,B,D # of BF data channel jammed by BF jammers
JB,BR,C # of BF control channel jammed by BF and RF jammers
JB,BR,D # of BF data channel jammed by BF and RF jammers
JR,B,C # of RF control channel jammed by BF jammers
JR,B,D # of RF data channel jammed by BF jammers
JR,R,C # of RF control channel jammed by RF jammers
JR,R,D # of RF data channel jammed by RF jammers
JR,BR,C # of RF control channel jammed by BF and RF jammers
JR,BR,D # of RF data channel jammed by BF and RF jammers

transmits in channel 7, and BF comm node 2 in channel

3. Let atB,jam = [1 5]; that is, BF jammer 1 jams channel

1, and BF jammer 2 jams channel 5. For RF network, let

atR,comm = [3 5] and atR,jam = [10 9]. Also, BF network

uses channel 2 for control, and the RF control channel is

channel 1. These node actions and control channel usages form

a bitmap shown in Fig. 2 where 1 indicates transmit, jam, or

markup as control channel, and 0 otherwise. Both BF jammers

are successful here, jamming the RF control and comm data

transmissions in channels 1 and 5, respectively. BF and RF

comm data transmissions collide in channel 3, and BF has

a successful data transmission in channel 7 whereas RF has

no success in comm data. RF jammers end up unsuccessfully,

jamming empty channels 9 and 10. This example results in

state st = 〈IC = 0, ID = 1, JC = 1, JD = 1〉.

 

Channel # 
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RF comm Tx 

RF jamming 

1 2 3 4 5 6 7 8 9 10 

0 1 0 0 0 0 0 0 0 0 
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1 0 0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 
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RF control 

BF jamming success 

on RF control channel 
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Fig. 2. CMNG action-state computation example

C. State Transition Probability Distribution

In this section, we derive the full, analytical formula for

the CMNG state transition probability distribution that can be

used for numerical approximation.

1) Counting parameters for state transition: The following

conditional probability distribution determines the transition

function T :

p(st+1|st, atB , a
t
R)

= p(It+1
C , It+1

D , J t+1
C , J t+1

D |ItC , I
t
D, J t

C , J
t
D, atB , a

t
R)

To express It+1
C , It+1

D , J t+1
C , and J t+1

D , we need to define the

counting parameters related to collision and jamming:



• mC1
def
= # of collided control channels previously uncollided

and unjammed;

• mC2
def
= # of collided control channels previously collided;

• mC3
def
= # of collided control channels previously jammed;

• mD1
def
= # of collided data channels previously uncollided and

unjammed;

• mD2
def
= # of collided data channels previously collided;

• mD3
def
= # of collided data channels previously jammed;

• nC1
def
= # of jammed control channels previously uncollided

and unjammed;

• nC2
def
= # of jammed control channels previously collided;

• nC3
def
= # of jammed control channels previously jammed;

• nD1
def
= # of jammed data channels previously uncollided and

unjammed;

• nD2
def
= # of jammed data channels previously collided;

• nD3
def
= # of jammed data channels previously jammed.

Now we can write the number of collided control channels

It+1
C = mC1 +mC2 +mC3, the total number of collided data

channels It+1
D = mD1 + mD2 + mD3, the jammed control

channels J t+1
C = nC1 + nC2 + nC3, and the jammed data

channels J t+1
D = nD1 + nD2 + nD3.

We define the counting parameters that describe how BF

and RF networks choose control and data channels at time t:

• αt
C1

def
= # of control channels chosen from previously uncollided

and unjammed channel space;

• αt
D1

def
= # of data channels chosen from previously uncollided

and unjammed channel space;

• αt
C2

def
= # of control channels chosen from previously collided

channel space;

• αt
D2

def
= # of data channels chosen from previously collided

channel space;

• αt
C3

def
= # of control channels chosen from previously jammed

channel space;

• αt
D3

def
= # of data channels chosen from previously jammed

channel space.

We define the parameters to describe how BF and RF
jamming actions are chosen at t:

• αt
I1

def
= # of channels chosen from previously uncollided channel

space for jamming;

• αt
I2

def
= # of channels chosen from previously collided channel

space for jamming;

• αt
J1

def
= # of channels chosen from previously unjammed

channel space for jamming;

• αt
J2

def
= # of channels chosen from previously jammed channel

space for jamming.

We have a constraint αt
C1 + αt

D1 < N t
1 where N t

1 = N −
(ItC+ItD+J t

C+J t
D) gives the total number of uncollided and

unjammed channels. We also have αt
C2 + αt

D2 < N t
2 where

N t
2 = ItC + ItD is the total number of collided channels, and

αt
C3 + αt

D3 < N t
3 where N t

3 = J t
C + J t

D is the total number

of jammed channels.

2) Combinatorial analysis: We should consider combina-
tions of (mC{1,2,3}, mD{1,2,3}) and (nC{1,2,3}, nD{1,2,3})
subject to the constraints represented by IC , ID, JC , and JD.
Using the binomial coefficient

(

n
k

)

= n!
k!(n−k)! , the probability

of mC1 control and mD1 data channels collided given that
BF and RF networks choose from previously uncollided and

unjammed channels is:

p(mC1,mD1|I
t
C , I

t
D, J

t
C , J

t
D, a

t
B , a

t
R)

=

(

αt
C1

mC1

)(

αt
D1

mD1

)( Nt
1−αt

C1−αt
D1

αt
I1

+αt
J1

−mC1−mD1

)

( Nt
1

αt
I1

+αt
J1

)

The probability of mC2 control and mD2 data channels col-
lided given that BF and RF networks choose from previously
collided channels is:

p(mC2,mD2|I
t
C , I

t
D, J

t
C , J

t
D, a

t
B , a

t
R)

=

(

αt
C2

mC2

)(

αt
D2

mD2

)( Nt
2−αt

C2−αt
D2

αt
I2

−mC2−mD2

)

(Nt
2

αt
I2

)

The probability of mC3 control and mD3 data channels col-
lided given that BF and RF networks choose from previously
jammed channels is:

p(mC3,mD3|I
t
C , I

t
D, J

t
C , J

t
D, a

t
B , a

t
R)

=

(

αt
C3

mC3

)(

αt
D3

mD3

)( Nt
3−αt

C3−αt
D3

αt
J2

−mC3−mD3

)

(Nt
3

αt
J2

)

The probability of nC1 control and nD1 data channels
jammed given that BF and RF networks choose from pre-
viously uncollided and unjammed channels is:

p(nC1, nD1|I
t
C , I

t
D, J

t
C , J

t
D, a

t
B , a

t
R)

=

(

αt
C1

nC1

)(

αt
D1

nD1

)( Nt
1−αt

C1−αt
D1

αt
I1

+αt
J1

−nC1−nD1

)

( Nt
1

αt
I1

+αt
J1

)

The probability of nC2 control and nD2 data channels
jammed given that BF and RF networks choose from pre-
viously collided channels is:

p(nC2, nD2|I
t
C , I

t
D, J

t
C , J

t
D, a

t
B , a

t
R)

=

(

αt
C2

nC2

)(

αt
D2

nD2

)(Nt
2−αt

C2−αt
D2

αt
I2

−nC2−nD2

)

(Nt
2

αt
I2

)

The probability of nC3 control and nD3 data channels
jammed given that BF and RF networks choose from pre-
viously jammed channels is:

p(nC3, nD3|I
t
C , I

t
D, J

t
C , J

t
D, a

t
B , a

t
R) =

(

αt
C3

nC3

)(

αt
D3

nD3

)(Nt
3−αt

C3−αt
D3

αt
J2

−nC3−nD3

)

(Nt
3

αt
J2

)

3) Posterior distribution: The combinatorial analysis leads

to the posterior state transition probability distribution for

CMNG presented in Eq. (2). To solve for an optimal strategy,

we need to evaluate this posterior distribution. Unfortunately,

the dynamic settings of CMNG (e.g., changes in number

of channels, comm nodes, jammers) make the analytical

computation difficult. Moreover, it would be impractical to

rework Eq. (2) whenever a CMNG parameter changes or nodes

join and exit their network. We can alternatively sample the

distribution, using a statistically rigorous technique such as

Markov Chain Monte Carlo (MCMC); however, the MCMC



performance relies on the choice of a proposal distribution that

must work well for CMNG, which by itself is an active area of

research. In the next section, we propose Q-learning [9] based

methods that can avoid complex state transition computations

by a technique called value iteration [10].

IV. DETERMINING OPTIMAL STRATEGIES WITH

Q-LEARNING

As a decision maker, the agent in Q-learning has a choice

to maximize the reward by choosing the best known action or

trying out one of the other actions in the hope of better payoffs

in the long run. The former strategy is termed exploitation,

and the latter exploration. In this section, we propose three

comparable methods based on Minimax-Q [11], Nash-Q [12],

and Friend-or-foe Q [13] learning algorithms that can solve

for optimal antijamming and jamming strategies in CMNG.

A. Q-learning Background

Q-learning evaluates the quality of an action possible at

a particular state and the value of that state. The Bellman

equations characterize such optimization:

Q(s, a) = R(s, a) + γ
∑

s′

p(s′|s, a)V (s′) (3)

V (s) = max
a′

Q(s, a′) (4)

The key strength of Q-learning is the value iteration technique

that an agent performs an update Q(s, a) = R(s, a) + γV (s′)
in place of Eq. (3) without explicit knowledge of transition

probability p(s′|s, a). We remind that a strategy π is the prob-

ability distribution of actions a at state s. Linear programming

can solve for π∗ = argmaxπ
∑

a Q(s, a)π in place of Eq. (4).

B. Decomposition of CMNG

The coexistence of the two opposing kinds (i.e., comm

and jammer) in BF and RF networks decomposes CMNG

into two subgames, namely antijamming and jamming games.

Fig. 3 illustrates the antijamming-jamming relationship among

the nodes. In antijamming game, the BF comm nodes strive

to maximize their throughput primarily by avoiding hostile

jamming from the RF jammers. Additionally, imperfect co-

ordination within the BF network that causes a BF jammer

to jam its own BF comm node (i.e., misjamming) should be

avoided. Collision avoidance among comm nodes is another

objective of antijamming game.

In jamming game, the BF jammers try to minimize the

RF data throughput by choosing the best channels to jam.

A BF jammer can target a data channel frequently accessed

by the RF comm nodes or alternatively aims for an RF

control channel, which would result a small immediate reward

but a potentially larger value in the future by blocking RF

data traffic. Misjamming avoidance is also an objective for

jamming game. For BF network, the primary means to avoid

misjamming in jamming game is to coordinate the actions of

the BF jammers. This is different for the case of antijamming

game where the avoidance is done by coordinating the actions

of the BF comm nodes.

BF 

Comm 

BF 

Jammer 

RF 

Jammer 

RF 

Comm 

Anti-jamming game 

Jamming game 

Fig. 3. Antijamming and jamming relationship

C. Minimax-Q Learning for CMNG

Minimax-Q assumes a zero-sum game that implies

QB(s
t, atB , a

t
R) = −QR(s

t, atB , a
t
R) = Q(st, atB , a

t
R). This

holds tightly for the CMNG jamming subgame where the

jammer’s gain is precisely the comm throughput loss of the

opponent. In order to solve antijamming and jamming sub-

games jointly, we propose a slight modification to the original

Minimax-Q algorithm in Littman [11]. First, we divide the

strategy of BF network πB into its antijamming and jamming

substrategies, πB1 and πB2. Then, we add an extra minimax
operator to our value function in Eq. (5). The modified Q-

function in Eq. (6) can be computed iteratively, using Eqs. (7)

and (8). αt gives the learning rate that decays over time,

αt+1 = αt · δ for 0 < δ < 1.

D. Nash-Q Learning for CMNG

Nash-Q [12] can solve a general-sum game in addition

to zero-sum games. This makes an important distinction to

Minimax-Q although the Nash-Q value function for a zero-sum

game in Eq. (9) is different from Eq. (5) by only one extra

term π̂R(a
t
R). This means that Nash-Q requires to estimate

the policy of the opponent’s agent. For CMNG, the BF agent

needs to learn π̂R1 and π̂R2, the antijamming and jamming

substrategies of RF network. The Q-function for the zero-

sum Nash-Q is given by Eq. (10). For a general-sum game,

the BF agent should compute QB and QR separately at the

same time while observing its reward rtB = rB(s
t, atB , a

t
R)

and estimating the RF rtR by Eqs. (11) and (12). Nash-Q

emphasizes the finding of a joint equilibrium under the mixed

strategies (πB , π̂R).

E. Friend-or-foe Q-learning (FFQ) for CMNG

Although Nash-Q is applicable to both zero-sum and

general-sum games, its convergence guarantee is consid-

ered too restrictive [13]. Game-theoretically, Friend-or-foe Q-

learning (FFQ) introduced in Littman 2001 [13] does not

solve any new problem. FFQ is a computational enhancement
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and provides better convergence properties by relaxing the

restrictive conditions of Nash-Q. For this relaxation, FFQ

requires extra information that other agents in the game should

be classified friendly cooperative or hostile.



TABLE IV
SUMMARY OF SIMULATION SETUP

Parameter Description Value used

N # of channels 10
Ncomm # of comm nodes per network 2
Njam # of jammers per network 2
pTx Node’s Tx probability 1
B Reward for successful Tx 1
τ Total # of time slots simulated 2,000

In FFQ, the BF agent maintains only one Q-function:

QB(s
t
, a

t
B , a

t
R) =(1− α

t)QB(s
t
, a

t
B , a

t
R)

+ α
t[r(st, at

B , a
t
R) + γΨB ] (13)

If the opponent (RF agent) is identified as a friend, the Q-

function for the BF network is updated by

ΨB = max
at
B
,at

R

QB(s
t, atB , a

t
R) (14)

On the other hand, if the opponent is considered a foe, the

Q-function is updated under the minimax criterion

ΨB = max
πB(AB)

min
π̂R(AR)

∑

at
B

QB(s
t, atB , a

t
R)πB(a

t
R) (15)

V. EVALUATION

In this section, we evaluate the performance of Minimax-

Q, Nash-Q, and FFQ learning based strategies under the 2-

network CMNG of Blue and Red Forces.

A. Implementation

We have implemented Minimax-Q, Nash-Q, and FFQ learn-

ing algorithms in MATLAB, using linprog function from

Optimization Toolbox. We require to maintain the Q table,

which is a three-dimensional array that can be looked up using

state, BF and RF action vectors. At the end of each time slot,

we compute the next state from the sensing result of each

channel. Recall that state computation is done by counting

IC , ID, JC , and JD parameters described in Section II.B. The

action vector space is discrete, and we have pre-generated and

indexed all possible action vectors for BF and RF. A strategy π

is a two-dimensional array indexed by state and action vector

(either BF or RF). The V table for the value function is indexed

only by state.

The key is to integrate the updates for Q and V tables with

a linear program that finds the optimal distribution π at each

iteration. The procedure (for BF) is summarized below.

1) At current state s, choose a_BF according to pi[s,:]

and execute

2) Sense RF node actions a_RF, observe instantaneous

reward r, and compute next state s’

3) Update Q[s,a_BF,a_RF]

4) Solve linear program to rebalance pi[s,:]

5) Update V[s]

6) Decay learning rate alpha, transit to s’ by s=s’, and

go back to Step 1 and repeat

We rewrite the minimax optimization

max

[

min
∑

i

Qiπi

]

s.t. ...

to be solved by linprog to:

max y s.t. y ≤
∑

i

Qiπi, ...

Modified V-functions in Eqns. (5) and (9) feature double

minimax operators due to splitting CMNG into two subgames.

There are two ways to solve these double minimax optimiza-

tions. First, we can assign a priority for each subgame and

solve the higher priority subgame first (e.g., relax πB1 before

πB2). This approach, however, requires to solve two linear

programs in series. We can instead bind aB,comm and aB,jam

into one vector after disallowing some obviously harmful

actions between a comm node and jammer in the same team

(e.g., actions lead to misjamming) and solve only one linear

program per iteration. Our results are based on the second

approach.

B. Simulation Setup

Table IV describes simulation parameters and the values

used. The spectrum under competition has N = 10 channels.

Both BF and RF networks have 2 comm nodes and 2 jammers.

We set each node’s Tx probability pTx = 1. Therefore, all

nodes in BF and RF networks transmit at every time slot. Upon

a successful (i.e., uncollided and unjammed) transmission, the

comm node earns a reward B for its network. Similarly, the

network for a jammer receives B when the jammer makes a

successful jamming. We normalize B to 1, which translates to

the maximum possible reward of 4 for each network at each

time slot. For example, when all two BF jammers successfully

jam the two RF comm nodes and the BF comm nodes

transmit without collision or being jammed by RF jammers,

BF network will receive a reward value of 4. Each network

is assumed to use only one control channel. When Q-learning

is used and the control channel gets jammed, the agent will

receive no information update, halt in the next time slot, and

not compute V- and Q-functions or π. We simulate each run

for 2,000 time slots and observe reward performances.

C. Experimental Scenarios

We configure BF network to run strategies based on Q-

learning and RF network to run simple, non-learning strategies

static and random. Under the static strategy, RF comm nodes

and jammers act on statically pre-configured channels that

remain the same during a simulation. Under the random

algorithm, the RF nodes choose uniformly random channels

at each time slot. We have simulated all 6 possible scenarios

for CMNG between BF and RF networks:

1) Minimax-Q (BF) vs. Static (RF)

2) Nash-Q (BF) vs. Static (RF)

3) FFQ (BF) vs. Static (RF)

4) Minimax-Q (BF) vs. Random (RF)

5) Nash-Q (BF) vs. Random (RF)

6) FFQ (BF) vs. Random (RF)



D. Results and Discussion

We adopt average cumulative reward of a network over time

as the performance evaluation metric:

R̄τ =
1

τ

τ
∑

t=1

Ntot
∑

k=1

rtk (16)

where τ is the count of simulated time slots, and rtk the

reward from kth node in the network at time t. Note the

total number of nodes per network Ntot = Ncomm + Njam.

Hence, the metric R̄τ reflects both the comm and jammer

rewards. In Fig. 4, we plot the cumulative average rewards for

BF network operating Q-learning based methods Minimax-Q,

Nash-Q, and FFQ against RF network’s static strategy over

time. Fig. 5 depicts the cumulative average rewards for BF

network operating under Minimax-Q, Nash-Q, and FFQ based

strategies against RF network’s random strategy.
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Blue Force = Minimax−Q

Red Force = Static
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Red Force = Static

Fig. 4. Q-learning vs. Static

Under the simulation parameters that we have chosen, the

Q-learning algorithms converge to a steady-state distribution

of the BF actions within 1,000 iterations. Under such con-

vergence, the BF average cumulative reward metric seems to

approach to an asymptotically optimal value. We observe that

the minimax criterion results in a more aggressive strategy than

Nash-Q: 1) Minimax-Q converges to a steady-state cumulative

average reward value faster; and 2) it outperforms Nash-Q by

achieving slightly higher rewards over time. Static strategy has

almost no chance against the learning algorithms as its steady-

state average cumulative reward approaches to zero. On the

contrary, learning seems harder against the random strategy

particularly due to its effectiveness in jamming.

When running Minimax-Q or Nash-Q, we have configured

the BF network with the centralized control, having a single

agent that strategizes for the whole network. This means that

the agent makes all access and jamming decisions in the net-

work under an assumption that the nodes collaboratively sense
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Fig. 5. Q-learning vs. Random

channels and observe the outcome, the agent can collect this

information to facilitate Q-learning, and the nodes cooperate

by following the agent’s decision.

For FFQ, we have configured each BF node to be an

agent. This represents a scenario with the distributed control

where each node computes its own strategy. It is important to

understand that FFQ becomes identical to Minimax-Q under

our centralized control model because there are no other

friend agents to the sole agent under the centralized control

strategizing for the entire BF network, thus FFQ resorts to

using only the Foe-Q function in Eq. (15), which is the same

as the Minimax-Q function. Therefore, the use of FFQ learning

in CMNG makes sense for distributed control scenarios only.

There is no explicit cooperation among the nodes in the

distributed scenario for FFQ, and we have only provided each

BF node with information whether some node it senses on a

channel is a friend (i.e., another BF node) or foe (i.e., an RF

comm node or jammer). Interestingly, with such knowledge,

FFQ (despite under the distributed control) can achieve a good

performance that is comparable to Minimax-Q or Nash-Q in

the centralized setting where the information collected by each

node is conveniently made available to the network’s singular

policy maker. This suggests that FFQ is the most viable choice

for a network that lacks the centralized control (e.g., MANET)

among the three Q-learning techniques considered.

VI. RELATED WORK

Reinforcement learning [14] extends beyond the postulate

of Markov Decision Process that an agent’s environment is

stationary and contains no other agents. The original concept

of Q-learning was introduced by Watkins and Dayan [9].

Littman [11] proposed Minimax-Q learning for a zero-sum

two-player game. Littman and Szepesvári [10] showed that

Minimax-Q converges to the optimal value suggested by game

theory. Hu and Wellman [12] described Nash-Q that was



distinguished from Minimax-Q by solving a general-sum game

with a Nash equilibrium computation in its learning algorithm.

Nash-Q has more general applicability, but its assumptions

on the sufficient conditions for convergence guarantee are

known to be restrictive. Friend-or-foe Q-learning (FFQ) [13]

converges precisely to the steady-state value that Nash-Q

guarantees. The key improvement of FFQ is relaxation of

the restrictive conditions that Nash-Q has, but FFQ requires a

priori knowledge on other agents identified as either a friend

or foe.

This paper considers some similar problems discussed by

Wang et al. [2] such as finding a strategy against hostile jam-

ming. They formulated a stochastic antijamming game played

between the secondary user and a malicious jammer, provided

sound analytical models, and applied unmodified Minimax-Q

learning to solve for the optimal antijamming strategy. Our

work is novel and differentiated from existing work by the

following. We have brought in friendly jammers to provide

an integrated, stochastic antijamming-jamming game played

between two competing cognitive radio networks. We embrace

jamming as a means to compete in a hostile environment

typically assumed in tactical mobile networking. At the same

time, we try to best the enemy jammers that pose a serious

threat to the ally comm activities. We promote the notion

of strategic jamming enabled by reinforcement learning. We

modify existing Q-learning algorithms to solve for optimal

antijamming and jamming strategies jointly.

VII. CONCLUSION

We have seen promising applications of cognitive radio

in commercial domains that suggest new, more intelligent

approaches to utilize spectrum resource. There is a growing

interest to leverage agile capabilities of cognitive radio for

tactical networking, and in this paper we have investigated

the competition and coexistence among cognitive radio nodes

that form networks in an attempt to maximize their objective.

We have considered two different types of radio devices,

namely comm node and jammer, and studied the interaction

of their common and conflicting interests in a stochastic game

framework. In particular, we have applied reinforcement Q-

learning techniques to strategize optimal channel accessing

schemes for comm nodes and jammers to cope with a hostile

environment possessing the same capabilities. Our results

indicate that Minimax-Q learning is more suitable for an ag-

gressive environment than Nash-Q. More interestingly, Friend-

or-foe Q-learning is most feasible for distributed mobile ad

hoc networking scenarios that can hardly expect centralized

control.

We plan to build a prototype system that can be deployed

in the CMNG environment ultimately. Our immediate future

work includes algorithmic improvements to scale the number

of nodes in a network efficiently, adding more friendly and

enemy networks to the current two-network model, rigorous

analysis on the accidental use of incorrect information (due

to sensing imperfections) in learning, and design of system

components such as cognitive sensing and jamming detection

at the physical and MAC layers. We also envision to enhance

our computational framework through more robust linear pro-

gramming methodologies and parallelization.
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