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We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced
by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large-
N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin
spectrum. Our results apply to phases with and without long-range spin-density-wave order, and to the mag-
netic quantum critical point separating these phases. We discuss the relationship of our results to a number of
recent neutron-scattering measurements on the cuprate superconductors in the presence of an applied field. We
compute the pinning of static charge order by the vortex cores in the “spin-gap” phase where the spin order
remains dynamically fluctuating, and argue that these results apply to recent scanning-tunneling-microscopy
(STM) measurements. We show that, with a single typical set of values for the coupling constants, our model
describes the field dependence of the elastic-neutron-scattering intensities, the absence of satellite Bragg peaks
associated with the vortex lattice in existing neutron-scattering observations, and the spatial extent of charge
order in STM observations. We mention implications of our theory for NMR experiments. We also present a
theoretical discussion of more exotic states that can be built out of the spin- and charge-order parameters,
including spin nematics and phases with “‘exciton fractionalization.”

DOI: 10.1103/PhysRevB.66.094501

I. INTRODUCTION

The determination of the ground state of the cuprate su-
perconductors as a function of the hole density has been one
of the central problems in condensed matter physics in the
last decade. At zero hole density, it is well established that
the ground state is a Mott insulator with long-range magnetic
Néel order. At moderate hole density, it is also widely ac-
cepted that the ground state is a d-wave superconductor, all
of whose important qualitative properties are identical those
of the standard BCS-BdG theory. At issue are the ground
states which interpolate between these well understood lim-
its, and the manner in which they influence the anomalous
properties at temperatures (7) above T (the critical tempera-
ture for the onset of superconductivity).

While a plethora of interesting proposals for these inter-
mediate states have been made, we will focus here on (in our
view) the simplest possibility: the order parameters charac-
terizing the intermediate ground states are simply those of
spin- and charge-density waves (SDW and CDW), and su-
perconductivity (SC) itself. Apart from a small range at very
low doping, which shall not be of interest in this paper, we
know from neutron-scattering experiments that there is SDW
order collinearly polarized at the wave vectors

2\ (1 1 2@\ (1 1
st(?)(z‘%)’ st(?)(z’z‘ﬂ)’
(1.1)

where a is square lattice spacing and the wave vector shift
from two sublattice order 0<<9<1/2 is a function of the
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doping concentration. In particular, strong motivation for our
study here was provided by the remarkable experiments of
Wakimoto ez al.'? They showed that the onset of supercon-
ductivity in La,_sSrsCuO, occurs first at §=0.055 (in a
first-order insulator-to-superconductor transition) into a state
which also has long-range spin-density-wave order at 7=0
with a wave vector of the form (1.1), i.e., as § is moved
away from the insulator at §=0, the first conducting state is
a SC+ SDW state. As the ground state for large enough & is
an SC state, it follows that there must be at least one quan-
tum phase transition between the SC+SDW and SC states,
and we will work with the simplest possibility that there is
one direct transition at some critical 6= J,.. Wakimoto et al.
also showed that such a transition associated with the van-
ishing of the SDW moment occurred for §,~0.14 (see Fig. 1
in Ref. 2). We shall assume that the SC+SDW to SC quan-
tum phase transition is second-order: direct evidence for
critical magnetic fluctuations in La,_ sSrsCuO, for 6~0.14
was provided in the neutron-scattering experiments of Aeppli
et al’?

We will also discuss the appearance of local and long-
range CDW order in the above phases. It is important to note
that, throughout this paper, we use the term ‘‘charge-density
wave” (or “charge order”) in its most general sense: such
order implies that there is a periodic spatial modulation in all
observables which are invariant under spin rotations and
time reversal, such as the electron kinetic energy, the ex-
change energy, or even the electron pairing amplitude. The
modulation in the site charge density may well be unobserv-
ably small because of screening by the long-range Coulomb
interactions.
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We note that the doping dependence of the magnetic order
in the cuprates can be quite complex, varies significantly
between different compounds, and is influenced by the de-
gree of disorder: the magnetic order may well be spin-glass-
like at the lowest energy scales at some 6. The SDW order is
also enhanced in the vicinity of special commensurate values
of the doping such as 6=1/8 (see, e.g., Fig. 1 in Ref. 2),
along with a suppression of SC order. In general, we do not
wish to enter into most of these complexities here, although
we will mention (in Sec. I A) how our theory could be ex-
tended to explain the commensuration effects—some other
relevant issues will be discussed in Sec. VII. Our primary
assumption is that the low-energy collective excitations can
be described using the theory of the vicinity of a quantum
critical point between the SC+ SDW and the SC phases; evi-
dence supporting this assumption was also reviewed in Ref.
4. This critical point is present either as a function of & in the
material under consideration, or in a generalized parameter
space but quite close to the physical axis.

It is also important not to confuse this magnetic quantum
critical point, with other proposals for quantum critical
points near optimal doping that have appeared in the recent
literature > These latter critical points are near 6~0.19, and
are probably not associated with long-range spin-density
wave order at a wave vector of the form (1.1). This paper
will discuss magnetic transitions at smaller doping.

Upon accepting the existence of a second order quantum
critical point at T=0 between the SC+ SDW and SC phases,
a powerful theoretical tool for the analysis of experiments
becomes available.” The structure of the critical theory, and
its associated classification of eigenperturbations, allows a
systematic and controlled theory of the spin excitations in the
SC and SDW phases on either side of the critical point. Such
an approach was recently exploited to study the influence of
nonmagnetic Zn and Li impurities in the SC phase.® In this
paper we will use the same tools to study the influence of an
applied magnetic field, oriented perpendicular to the CuO,
layers, on both the SC and the SC+ SDW phases. An outline
of our results has already appeared in previous
communications:”~'" here we will present the full numerical
solution of the our self-consistent equations for the dynamic
spin spectrum in an applied field, along with a number of
results. Measurements of the spin and charge correlations in
the presence of such an applied magnetic field have appeared
recently in a number of illuminating neutron-scattering,'>~'*
NMR,"”""7 and STM experiments,'® and we will compare
their results with our prior predictions.

A. Order parameters and field theory

The field theory for a SC to SC+ SDW transition in zero
applied magnetic field can be expressed entirely in terms of
the SDW order parameter which we will introduce in this
subsection; the quantum fluctuations of the SC order can be
safely neglected, a point we will discuss further in Sec. VII.
Consideration of the applied magnetic field will appear in the
following subsection.

PHYSICAL REVIEW B 66, 094501 (2002)

We introduced above the wave vectors of the SDW order-
ing K, and K{,; almost all of our analysis will apply for
general values of @, but the value 9=1/8 is of particular
interest above a doping of about 1/8. To obtain an order
parameter for such a SDW, we write the spin operator
S, (r,7), a=x,y,z, at the lattice site r as

S, (r,7)=Re[e®sxTdD  (r,7)+ eiKSY'r(I)ya(r,T)] ,
(1.2)

where @, ,, are the required order parameters. Except for
the case of two sublattice order with =0 (which we ex-
clude for now), the fields ®, ,, are complex. These fields
can describe a wide variety of SDW configurations, but we
now list the two important limiting cases.

(i) Collinearly polarized SDW’s, for which

q)ya(r,r)=ei0(r‘7)na(r,7), (1.3)
where n, is a real vector and 6 is also real (and similarly for
®,,). Parametrized in this manner, and for ni=const (sum-
mation over the repeated index « is implied here and hence-
forth), the order parameter ®,, belongs to the space (S,
XS81)/Z,, where S, is the n-dimensional surface of a sphere
in n+1 dimensions, and Z, is the discrete cyclic group of p
elements. The Z, quotient is necessary because a shift 6
— 6+ 7 is equivalent to a rotation which sends n,— —n, .
(ii) Circular spiral SDW’s, for which

Do (r,7)=n, (1, 7) +in,,(r,7), (1.4)
where n,,, are two real vectors obeying n%a= n%a and
1y aM2,=0 (and similarly for ®,,). Now for n%az const, the
order parameter ®,, belongs to the space SO(3)=S53/Z,
(see e.g., Sec. 13.3.2 in Ref. 7).

The experimental evidence'®*” supports the conclusion
the SDW ordering in the cuprates in collinear, but the present
formalism allows a common treatment of both the collinear
and spiral cases. This complex-vector formulation of the
SDW order allows treatment of the SDW quantum transition
by a straightforward generalization of the real-vector theory
used for the Néel state in the insulator; related points have
been made by Castro Neto and Hone?' and Zaanen.?? The
same approach was also used by Zachar er al.* to treat the
onset of SDW order at finite temperatures, as we will indi-
cate below.

Along with the SDW order, CDW order may also appear.
We parameterize the charge density modulation by

Sp(r,7)=Re[e'Kev "¢ (r,7)+e K" (r,7)], (1.5)

where K., , are the CDW ordering wave vectors and ¢, ,
the corresponding complex order parameters. The quantum
numbers of the observable dp are identical to those of S i s
and so by squaring Eq. (1.2) we see that associated with the
SDW is a CDW with” K. =2K,,, K., =2K;, (modulo re-
ciprocal lattice vectors)
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b (r, 1)@ (r,7) and ¢ (r,7)x D] (r,7). (1.6)

Note that this CDW is absent for the case of a circular spiral
SDW (in which case (Di!ya= 0) but is necessarily present for
a collinear SDW. In principle, in a state with condensates of
both @, and ®,,, a CDW can also be present at wave
vector K, +K;,; we will not consider this possibility here
as it does not seem to be experimentally relevant. As was
emphasized in the third paragraph of Sec. I, we are using the
term CDW here in its broadest sense: there is a modulation at
the wave vector K. in all observables which are invariant
under spin rotations and time reversal. The precise nature of
the CDW order may be determined from an analysis of the
STM spectrum—this has been discussed recently in Refs.
24 25.

The order parameters @, ,, ¢, , allow a rich variety of
phases and phase transitions in the presence of background
SC order. These will be discussed in some detail in Sec. VI.
Central to a description of these phases is an understanding
of the symmetries respected by any effective action for the
order parameters. We describe these below and then focus on
a particular phase transition of physical interest.

An obvious symmetry is that under spin rotations; this is
described by the group SU(2), and the fields @, ,, transform
as §=1 vectors labeled by the index «. In addition, there is
an independent sliding symmetry

D, oD, (L.7)

x,ya

associated with the translational symmetry of the underlying
lattice model: translating r to r+ (ma,0) (m integer) in Eq.
(1.2) leads to Eq. (1.7) with ,=mm(1—2) and 6, =m [
¥ was defined in Eq. (1.1)]. For 1 irrational, we see that all
real values of 6, , can be generated with the different choices
for m, and hence the sliding symmetry is U(1)XU(1). For
rational ¥, with 1/2—9=p'/p, and p’, p relatively prime
integers, only integer multiples of 6, ,=27/p are allowed in
Eq. (1.7); in this case the sliding symmetry is reduced to
Z,XZ,. The difference between U(1) and Z, will not be
material to any of our results for p>2. In a similar manner,
we can also determine the action of other elements of the
square lattice space group on @, ,, and we mention two
important cases: under a spatial inversion we have @, ,
—®7 ,, and under the interchange of x and y axes, we have
(I)xa(_)q)ya *

We now apply these symmetries to determine the effective
action of a physically relevant transition discussed earlier in
the introduction (and in the phase diagrams of Sec. II): that
between the SC+SDW and SC phases. This transition is
driven by the condensation of ®, |, ; if the SDW order is
collinear, it will drive a concomitant CDW order, as dis-
cussed above. Supplementing the symmetries by a renormal-
ization group (RG) procedure which selects terms with
smaller powers of @, and fewer spatial and temporal gra-
dients, we obtainlo'“’ﬁ’26 the effective action

PHYSICAL REVIEW B 66, 094501 (2002)

SCIJZ J dzrd7[|(77q)xa|2+v%|axq)xa|2+v§|ayq)xa|2
+ |(?T(I)ya|2+U%|(?xq)ya|2+vﬂ&yq)ya|2+s(|(I)xa|2
uy Us
+ |q)ya|2)+ ?(|®xa|4+ |q)ya|4)+ 7(|q)%a|2

+ |q)§a|2)+wl|q)xa|2|q)ya|2+W2|q)xaq)ya|2

+ws | OF,D, /7. (1.8)

Note that first-order temporal gradient terms such as
®* 9.®,, are forbidden by spatial inversion symmetry.2® In
principle, first-order spatial gradient terms such as
id¥ 0.D,, are permitted by all symmetries; such terms lead
to a shift in the wave vector at which SDW fluctuations are
largest, and we assume that they have already been absorbed
by our choice of K, . Here v; and v, are velocities, which
are expected to be of order the spin-wave velocity v of the
Néel state in the undoped insulator. The parameter s tunes
the system from the SC phase (s>s.) to the SC+SDW
phase (s<<s.), where s=s, is the nonuniversal location of
the quantum critical point between these phases; experimen-
tally, s can be varied by changing the doping concentration.
The action also contains a number of quartic nonlinearities:
the RG analysis shows that these are strongly relevant per-
turbations about the Gaussian theory, and will play a crucial
role in our analysis below. The coupling u, selects between
the collinear and spiral SDW states: for u,>0, the circular
spiral state (which has (D)zca=0) is selected, while u,<<0
prefers a collinear SDW. The couplings w3 lead to corre-
lations between the orders at K, and K;,—if these are at-
tractive, the s <s, phase will have simultaneous orderings at
both wave vectors, and spatial pattern will have a checker-
board structure.

We have also neglected the couplings to the low energy
nodal quasiparticles, which are additional excitations of the
SC phase carrying spin; their effects are suppressed by the
constraints of momentum conservation, as they can damp the
® quanta effectively only if K, , equal the separation be-
tween any two nodal points. The case where this nesting
condition is satisfied has been considered ea.rlier,% but we
will not enter into it here for simplicity: essentially all of our
results here on the phase diagram in an applied magnetic
field apply also to the case where the nesting condition is
obeyed. For completeness, in Appendix A we also discuss the
role of spin symmetry breaking Dzyaloshinskii-Moriya inter-
action present in La,_ 5SrsCu0,.”” We show that it helps
stabilize collinear SDW order in a certain direction; however,
its effect is very small and will be neglected in the rest of this
paper.

For the particular rational value 9=1/8, the U(1)
XU(1) sliding symmetry is reduced to a discrete ZgXZg
symmetry under which 6, , in Eq. (1.7) are only allowed to
be multiples of /4. This reduced symmetry allows addi-
tional terms in Eq. (1.8) whose structure has been discussed
earlier.!'?® Such terms help choose between site- and bond-
centered density Waves,11 and could also lead to the enhance-
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ment of the moment observed by Wakimoto er al.? near &
= 1/8. However, these terms are very high order (eighth) in
the ® fields, and consequently they have a negligible effect
on the issues we are interested in here: so we will not con-
sider them further.

It is useful to compare our treatment here of the SC
+SDW to SC transition with others in the literature. It is
essential for our purposes that the spin/charge ordering is
taking place in a background of SC order, as that gaps out the
fermionic excitations except possibly at special points in the
Brillouin zone. Theories*®*° which consider SDW/CDW or-
der in a Fermi liquid have additional damping terms in their
effective action which change the universality class of the
transition, change the dynamic exponent to z=2, and do not
obey strong hyperscaling properties as the quartic couplings
are marginally irrelevant in this case. We have also taken a
genuinely two-dimensional view on the SDW/CDW
(“stripe””) fluctuations in our approach. An alternative
approach® assumes there are intermediate scales on which
the physics of the one-dimensional electron gas applies, al-
though a crossover to similar two-dimensional physics oc-
curs on large enough scales.’’

B. Influence of an applied magnetic field

An applied magnetic field has a Zeeman coupling to the
spin of the electrons, and this is present for any direction of
the applied field. However, the Zeeman splitting of the mag-
netic levels has only a minor effect, and can be safely ne-
glected compared to the much stronger effects near s=s,
that we consider below. We discuss the influence of the Zee-
man term in Appendix B, and will not consider it further in
this paper.

The dominant effect of the field is via its coupling to the
orbital motion of the electrons, which is sensitive only to the
component of the field orthogonal to the layers. The reason
for this strong effect is simple: there is SC order in the orbital
wave function of the electrons, and the diamagnetic suscep-
tibility of the SC state to the applied field is infinite. How-
ever, as the SC order is noncritical across the transition at
s=s,, it is mainly a quiescent spectator and its response can
justifiably be treated in a static, mean-field theory. Conse-
quently, we model the complex SC order parameter #(r) in
the familiar Abrikosov theory with the free energy per layer
(we use units with i=kz=1 throughout)

.7:=f d*r
%

1 e )
7Vr— 7A (r)

a4 o)+

2m*

X

2
1. (1.9)

Note that unlike CDXW, ¢ is not a fluctuating variable, and
described completely by its mean value (which will be r
dependent). We will work entirely in the limit of extreme
type-II superconductivity (with Ginzburg-Landau parameter
KgL=2); so there is no screening of the magnetic field by

the Meissner currents, and V X A=Hz, the applied, space-
independent magnetic field.
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To complete the description of the model studied in this
paper, we now need to couple the SC and SDW order param-
eters together. The simplest term allowed by symmetry is a
connection between the local modulus of the order param-
eters

Spy= Kf d?rd 7| p(r) P[| D, o(r,7)|*+| D, o(r,7)]].
(1.10)

For k>0, we can induce a competition between the SC and
SDW orders, in that the SDW order will be enhanced where
the SC order is suppressed and vice versa. The microscopic
origin of the coupling « is discussed in Appendix C.

Although S, will be the primary coupling between the
SDW and SC orders, an additional allowed term will be im-
portant for some purposes.'’ To understand this, notice that
all terms in Sy, and Sy, are invariant under the sliding sym-
metry (1.7). This means that, with the present terms, the
CDW order is free to slide arbitrarily with respect to any
vortex lattice that may be present in the SC order ¢. This
clearly cannot be true, as lattice scale effects should pin the
two modulations with respect to each other. The simplest
additional coupling which will provide this pinning can be
deduced by noticing that there should be a coupling between
the charge modulation in Eq. (1.5) and the local modulus of
the superconducting order; this is induced by the term'!

Su=-712 f dr|(r)|’Re e Kex D2 (r,7)

+eKe T (r,7)].

(1.11)

Notice that we are now performing a discrete summation
over the lattice sites r, rather than integrating over a spatial
continuum: this is a direct consequence of the rapidly oscil-
lating factors e™®ex'T and e®ey'T which do not have a smooth
continuum limit. Indeed, in regions where #(r) is smoothly
varying, these rapidly oscillating factor will cause the sum-
mation over r to vanish. So the expression (1.11) is appre-
ciable only over regions where /(r) is rapidly varying, and
this happens only in the cores of the vortices. As the centers
of the vortices are identified by the zeros of ¢(r), and we are
mainly interested in scales larger than vortex core size, we
can replace Eq. (1.11) by the following expression, which is
more amenable to an analysis in the continuum theory: "'

Slal: - g Z

J dTRe{ei“’[@fa(rv ,7)+ P2 (r,,n1}.
r, ,{(r,)=0

ya
(1.12)

Here the summation is over all points r, at which (r,)
=0 (these are the centers of the vortices), and @ is a phase
which depends upon the microscopic structure of the vortex
core on the lattice scale. The action Sy, is not invariant under
the sliding symmetry, and so will pin the CDW order.

We are now in a position to succinctly state the field-
theoretic problem which will be addressed in this paper. We
are interested in the partition function for SDW/CDW fluc-
tuations defined by
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Zp(r)]= f DD, (r,7) DD, 4(r,7)

J:

Xexp| — T_SEI)_Sd)zp—Slat . (1.13)
accompanied by the solution of
Sln r

M =0 (1 .14)

oY(r)

which minimizes —1In Z[ ¢(r)] to determine the optimum
(r). Note the highly asymmetrical treatment of the SDW
and SC orders: we include full quantum-mechanical fluctua-
tions of the former, while the latter is static and nonfluctuat-
ing. This asymmetry is essentially imposed on us by the
perspective of magnetic quantum criticality, and the fact that
we are developing a theory of the SC+SDW to SC transi-
tion. This asymmetry should also be contrasted with the sym-
metric treatment of SC and SDW quantum fluctuations in
other approaches.32

C. Physical discussion

The primary purpose of this paper is to determine the
phase diagram and low-energy spectrum of SDW and CDW
fluctuations of Z as a function of the applied field H. A
summary of our results has already appeared’™!! and detailed
numerical solutions appear in the body of the paper; here we
expand on the central physical idea to provide an intuitive
understanding of our results to readers who do not wish to
study the details in the remainder of the paper. We will ini-
tially ignore the pinning described by Sy, , but will discuss
its consequences in Sec. [C 1.

Let us begin in the SC phase with s>s_. and consider the
® ., fluctuations in a simple Gaussian theory (the consider-
ations of this subsection apply equally to ®,, which we
will not mention further). Assume #(r) has been determined
by the minimization of F, and so takes the standard form in
an Abrikosov flux lattice. The Gaussian fluctuations of @,
are described by the effective action

So= | @rartlo o P +ollo P

+03] 9, Do) 2+ V(1) | D 0[] (1.15)

To leading order, the effective potential W(r) is given by V
=), where

Vo(r)=s+ k| y(r)]?. (1.16)

A sketch of the spatial structure of V,(r) is shown in Fig. 1:
because ¥(r) vanishes at the centers of the vortices, 1,(r)
has well-developed minima at each such point. Indeed, there
can even be regions in each vortex core where V,(r) <0, and
Arovas et al.¥ and Bruus et al>* argued that superconduc-
tivity would “rotate” or transform into static Néel order in
such a region. In our treatment of dynamic SDW,9’35 we see
that the structure of the magnetism is determined by the so-
lution of the Schrodinger equation®®

PHYSICAL REVIEW B 66, 094501 (2002)

Vortex cores

FIG. 1. A sketch of the potential Vy(r) (thick full line) in the
presence of a vortex lattice. Also shown is the exciton wave func-
tion E,(r) which solves Eq. (1.17) for V(r)=)V,(r) with eigen-
value A%. Note that there is no drastic change in this picture as
A?\,0: the peaks in Z(r) remain exponentially localized within
each vortex core, on a length scale much smaller than the vortex
lattice spacing. We argue in the text that strong interaction correc-
tions to V,(r) invalidate this form for E,(r) and the correct struc-
ture is shown in Fig. 2.

[—vidi—v3d, + V(D)]Eo(r)=A’Ey(r), (1.17)
where Z,(r) is the lowest eigenmode of Eq. (1.17), the ei-
genvalue A? is required to be positive for the stability of the
Gaussian theory S;. The energy A is the spin-gap, and
Eo(r) then specifies the envelope of the lowest energy SDW
fluctuations; in other words = (r) is the wave function of a
S=1 exciton associated with dynamic SDW fluctuations.
Note that A2 can be positive even if there are regions where
V(r)<0. A sketch of the spatial form of Z,(r) is shown in
Fig. 1 for a particular small value of A% and V(r)=V,(r).
Observe that = (r) is peaked at the vortex centers, but de-
cays rapidly outside the vortex cores over a SDW localiza-
tion length [~v | ,/\V,— A?, where V, is the value of V,(r)
outside the vortex cores (see Fig. 1).

Remaining within the Gaussian theory specified by Egs.
(1.15) and (1.16), we now consider the consequences of rais-
ing the value of H in the hope of reaching the SC+SDW
phase. With increasing H, the vortex cores will approach
each other, and we expect that the value of A? will decrease.
Indeed, the picture of Fig. 1 holds all the way up to the point
A=0; beyond this field the Gaussian theory becomes un-
stable and this signals the onset of the SC+SDW phase
driven by the condensation of @, . Note that the localiza-
tion length [~v,/\V— A? of the SDW order peaked in the
vortex cores remains finite all the way up to the critical point.
This localization length [ must be clearly distinguished from
the spin correlation length &;: the latter is associated with
correlations between different vortices, and arises because
there is an exponentially small coupling between magnetism
in neighboring cores. Thus this simple Gaussian theory
yields a picture of dynamic magnetism appearing first in the
vortex cores, with possible weak correlations between neigh-
boring cores. Such a viewpoint was also discussed by Lake
et al."? who proposed “spins in the vortices” but noted that
the large value of &, implied coupling between nearby vorti-
ces. Following our work,” Hu and Zhang®’ also presented a
picture of dynamic SDW fluctuations similar to the one
above.
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We now argue that corrections beyond the Gaussian
theory approximation invalidate the above picture when A
becomes small.” Indeed, the picture of nearly independent,
localized magnetic excitations in each vortex core holds only
then A is of order the spin exchange energy J; such high
energy magnetic excitations are expected to strongly damped
by the fermionic quasiparticles. Also, the validity of the
present continuum model is questionable at scales as short as
vortex core size and at energies of order J: a full solution of
the BCS theory of the underlying electrons is surely needed,
and subsidiary order parameters may well develop within the
vortex cores. However, as A is lowered, we will now argue
that the physics is actually dominated by the large region
outside the vortex cores, where the present continuum ap-
proach can be used without fear, and the subtle issues of the
short-distance physics within the core can be sidestepped.
The central weakness in the analysis of the previous para-
graph is that it does not account for the repulsive interactions
u;, between the bosonic ®,, exciton modes that are con-
densing. As has been discussed in different contexts long
ago.”®%% such interactions are crucial in determining the
structure of the lowest-energy state in which condensation
occurs. In particular, it is well known that the effect of inter-
actions is to delocalize the lowest-energy states: bosons ini-
tially prefer to occupy strongly localized, low-energy states,
but then their repulsive interaction with subsequent bosons
drives the energy of such states up. Bray and Moore®® pre-
sented an argument demonstrating that in the vicinity of the
condensation, the localization length must diverge as one
approached the bottom of the band of states of interacting
bosons in the presence of an external potential. To apply their
argument in the present context, we need to replace Eq.
(1.16) by

4 2
V(I‘) = VO(r) +(ul—;—u2)<|q)xa(rv7-)|2>56
(du,+2

B2 0, e s,

=s+ k| (r)|*+ 3

(1.18)

the additional terms arise from a Hartree-Fock decoupling of
the quartic interaction terms in Sg, , and the expectation val-
ues have to be evaluated self-consistently under the Gaussian
action in Eq. (1.15) which itself depends upon W(r). Note
that the perspective of magnetic criticality requires that we
account for the u,, interactions, as these are strongly rel-
evant perturbations about the Gaussian theory; so we are led
to Eq. (1.18) also by a naive application of the RG approach.
We will present detailed numerical solutions of equations
closely related to Eq. (1.18) in the body of the paper. An
adaption of the argument of Bray and Moore®® to Eq. (1.18)
was given in Ref. 9, and we will not repeat it here: the main
result is that the length scale [ characterizing the lowest-
energy state Z,(r) cannot remain finite as AN\,0. Instead the
states around neighboring vortex cores overlap strongly, and
H(r) is characterized by the vortex spacing itself. A sketch
of the actual structure of E,(r) is shown in Fig. 2. The spin
correlation length &, does not have a direct connection with
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(Energy)?
F 3

Vortex cores

FIG. 2. A sketch of the potential Vy(r) (thick full line) in the
presence of a vortex lattice along with the true form of the exciton
wave function = (r) which solves Eq. (1.17) with the full potential
W(r) in Eq. (1.18). The spatial structure of Zo(r) as AZ\,0 is
characterized by the vortex lattice spacing.

Lo}
—

the spatial form of =,(r) itself, but is instead related to an
integral over a band of states which solve Eq. (1.17) at finite
momentum, as we shall discuss in Sec. I C 1 and later in the
paper.

It is worth noting here that the passage from Eq. (1.16) to
(1.18) in zero field is precisely that needed to reproduce the
known properties of magnetic quantum critical points in
other situations. In one dimension, Eq. (1.16) would imply
that there is no barrier to magnetic long-range order, while
Eq. (1.18) correctly implies that the presence of the Haldane
gap, and reproduces its magnitude in the semiclassical limit.”
At finite temperature, Eq. (1.18) yields the correct crossovers
in the magnetic correlation length in the vicinity of the spin
ordering transition in two dimensions. Although we will not
present detailed solutions on this case here, Eq. (1.18) is also
expected to provide a reasonable description of the magnetic
crossovers at finite temperatures in the vicinity of the SC
+ SDW to SC transition in the presence of a magnetic field.

With the knowledge of the spatial structure of the exciton
wave function = (r) in Fig. 2, the origin of our main results’
can be easily understood. As the vortex cores occupy only a
small fraction of the system volume, the magnitude of the
energy A? is influenced mainly by the structure of ¢(r) in
the remaining space. Here, the predominant consequence of
the magnetic field is the presence of a superflow with veloc-
ity vy= — 6F/ A circulating around each vortex core. Focus-
ing on the region around a single vortex at the origin r
=(0,0), the superflow obeys |v,|~1/r in the wide region
&o<r<L, where £ =1/\2m*« is the vortex core size, L,
~(e*H/c) V% so the average superflow kinetic energy is

fLuer
6 2 H H°
. ( 2), (1.19)

(vjyor———=—In
j dr Hey "
&0

where H?, is the upper critical field for the destruction of the
Meissner state at the coupling constant corresponding to the
point M in Fig. 3 below. This kinetic energy is a scalar with
the same quantum numbers and symmetry properties as |]|*:
hence, via the coupling in Sg, in Eq. (1.10), the value of Eq.
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FIG. 3. Zero temperature phase diagram as a function of the
coupling s and the magnetic field H in an extreme type-II supercon-
ductor described by Eq. (1.13). The theory is accurate in the region
of small A, and only qualitatively correct elsewhere [ H is measured
in units described in Eq. (3.2)]. The phases without SC order are
likely to be insulators, and the “normal” phase is expected to have
residual CDW order, which is initially induced by the pinning terms
in Sy, as discussed in Sec. I C 1. The positions of the phase bound-
aries are summarized in Sec. III. The path P, denotes the location
of the original neutron-scattering measurements of Lake et al. (Ref.
12), and the path P, the subsequent neutron scattering measure-
ments of Khaykovich et al. (Ref. 13) and Lake et al. (Ref. 14). The
STM measurements of Hoffman er al. (Ref. 18) are also along
path P;.

(1.19) feeds into all the effective coupling constants in Sg, in
Eq. (1.8). The most important modification is that the tuning
parameter s gets replaced by

H [H
Sef(H)=s—C—-In , (1.20)

HCZ H

where C is a constant of order unity. The implication of Eq.
(1.20) is that we may as well replace V(r) in Egs. (1.15) and
(1.18) by

W(r)~su(H) (1.21)

to obtain a first estimate of the consequence of the magnetic
field in the vicinity of the SC+ SDW to SC transition. The H
dependence in Eqgs. (1.20) and (1.21) is sufficient to deter-
mine our main results:’ the small H portion of the phase
diagram in Fig. 3, the intensity of the elastic scattering Bragg
peak in the SC+ SDW phase, and the energy of the lowest-
energy SDW fluctuation in the SC phase. In particular, it
follows directly from Eq. (1.20) that the small H portion of
the AM phase boundary in Fig. 3 between the SC and SC
+ SDW phases behaves as

2(s—s.)

T UG —s)]° (122)

Note that this phase boundary approaches the s=s., H=0
quantum critical point with vanishing slope. This implies that
a relatively small H for s>s,. will successfully move the
system close the AM phase boundary, and so produce low
energy spin excitations. This should be contrasted to the cor-
responding H-dependent phase boundary of the SDW phase
in insulators which is discussed in Appendix B; here, there is
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no orbital diamagnetism, only the Zeeman coupling is opera-
tive, and the phase boundary approaches H=0 with infinite
slope. Evidently, Zeeman effects are much weaker and can
be justifiably neglected.

We conclude this subsection by a brief discussion of ear-
lier works®>3440=%% o vortex magnetism, and the change in
perspective that has been offered here by our analysis. It was
proposed in by Sachdev*® and Nagaosa and Lee*! that vortex
cores in the underdoped cuprates should have spin gap cor-
relations characteristic of Mott insulators. Zhang>> and Aro-
vas et al.> described vortex core correlations in terms of
static Néel order, and estimated that the field-induced mo-
ment would be proportional to H [in our phase diagram in
Fig. 3, vortices with static moments are only present in the
SC+ SDW phase, and as we will review below in Sec. V D,
the average moment increases as’ HIn(1/H) for small H].
Our discussion here also uses the SDW order parameter, but
allows it to fluctuate dynamically into a spin gap state, and
so interpolates between these earlier works. A separate de-
scription of vortex cores in terms of ‘“‘staggered flux”
correlations***® has also been proposed. One of our central
points here is that while the vortex core correlations may
well be quite complicated (they are dependent on lattice
scale effects, and difficult to distinguish from each other as
the short-distance ““order” fluctuates dynamically), these is-
sues can be sidestepped: a reliable continuum theory can be
developed by considering first the dominant effects arising
from the interplay between superconductivity and magnetism
in the superflow region outside the vortex cores. Spin-
density-wave correlations induced in these regions may leak
into the vortex cores, but our treatment is not expected to be
reliable in the latter region: the nature of the electronic cor-
relations in the vortex cores remains an open question.

Our continuum treatment of dynamic and static spin-
density-wave order differs from earlier works in several key
aspects. An important feature of Refs. 33,34 is the static
mean-field treatment of the SDW order in the vortex cores,
which is imposed by their “SO(5)” picture of SC order out-
side the cores ‘“‘rotating” into static antiferromagnetism in
the cores.*® This should be contrasted to our approach, in
which magnetic quantum criticality implies dynamic mag-
netic fluctuations while the SC order can be safely consid-
ered static. Further, Refs. 33,34 assumed the (near) equality
of the gradient and “mass™ terms for the SC and two-
sublattice SDW order parameters, as naturally suggested by
the dynamic SO(5) symmetry, which requires a symmetry
between the excited states in the SC and SDW phases. As a
result they found static two-sublattice magnetization induced
by the vortex core, over a scale which was of order the
vortex core size &, and in a regime where superconductivity
was essentially completely suppressed. This assumption was
relaxed in a recent paper,”’ where following our work,’ the
possibility of a generalized dynamic SDW in regions larger
than the nonsuperconducting core, and coexisting with well-
established superconductivity, was appreciated. Hu and
Zhang®’ also suggested that a small proximity-type coupling
between the magnetic domains centered on the neighboring
vortices may be sufficient to stabilize static long-range mag-
netic order in a SC+SDW phase, in which enhancement of
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the SDW in the vortex cores was the dominant effect. As we
have reviewed at length above, the strongly relevant exciton
self-interactions lead to a different description of the SC
+ SDW phase;’ in the SC phase, as one approaches the SC
+SDW phase, the SDW order is induced over large length
scales outside the vortex core, and the influence of the super-
flow is paramount. Only in the regime where magnetic field
is small and the system is well within the SC phase (and far
from the SC to SC+SDW boundary), can we speak in terms
of localized bound state pulled below the continuum. How-
ever, this limit is of little experimental interest, since it cor-
responds to high energy magnetic excitons (which, as dis-
cussed above, are probably strongly overdamped by other
excitations associated with the vortex cores) with a vanish-
ingly small intensity.

1. Pinning of charge order in the SC phase.

Our physical discussion has so far neglected the influence
of the pinning potential in S}, in Eq. (1.12). We will continue
to neglect this term in most of this paper, apart from compu-
tations in Sec. IV E whose content we briefly describe here.
This analysis is motivated by the STM experiments of Hoff-
man et al.'®

The SC phase of Fig. 3 preserves spin rotation invariance,
and so has (®,,)=0 and, by Eq. (1.2), (S,)=0 [if we were
to account for the small Zeeman term (Appendix B), the
analogous statement holds for the spin density in the plane
perpendicular to the magnetic field]. In the absence of S,
all the remaining terms in the partition function Z in Eq.
(1.13) are invariant under the sliding symmetry &,
—e® ., and so we also have (®2 )=0 and, by Egs.
(1.5),(1.6), (Sp)=0 in the SC phase. Now if we include the
effect of Sy, perturbatively (which is all we shall do here),
the pinning of the dynamic fluctuations by the vortex cores
leads to static CDW order with (®2 )#0 and (&p)+#0,
while the continued preservation of spin rotation invariance
implies that we still have (®,,)=0 and (S,)=0. (Of course
in the other SC+ SDW phase, spin rotation symmetry is bro-
ken, and so (®,,)#0 and (S,)#0, along with static CDW
order.)

The nucleation of static CDW order, but with dynamic
SDW order, in the SC phase by the vortices was first pre-
dicted in Refs. 10,51, where a connection was also made
with lattice scale studies of bond-centered charge order cor-
relations in superconductors with preserved spin rotation
invariance.”® These latter works found a significant doping
range over which the charge order had a period pinned at
four lattice spacings, which is the period observed in the
STM experiments of Hoffman ez al.' (the same period also
appeared in density matrix renormalization group studies by
White and Scalapino®?). Here we are interested in the spatial
extent of the envelope of the period four charge order. Fol-
lowing Ref. 11, here we will compute this envelope using
our present models for dynamic SDW/CDW fluctuations in
the SC phase, and the pinning of a static CDW by S,

After this paper was originally released, we learned of the
microscopic model of Chen and Ting> for the STM experi-
ments, which follows the earlier work of Ref. 48. Their
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model has static order for both the SDW and CDW, and thus
would apply only in the SC+ SDW phase of our phase dia-
gram in Fig. 3. It appears unlikely to us that the slightly
overdoped BSCCO sample used by Hoffman ez al.'® is in the
SC+ SDW phase.

The simple model of the field-induced dynamic SDW
fluctuations we have described in this section can be readily
extended to compute the static CDW order induced by ¢ in
the SC phase. Indeed, the upshot of our preceeding discus-
sion of the extended structure of Z,(r) is that we can use the
Gaussian theory Sg; in Eq. (1.15) with V(r) given by the
constant value in Eq. (1.21): computing (®2_) in the theory
Sg -i;lSlat for this value of V(r) and to first order in ¢, we
find

3
(@2, (r,7))=2>,
x T, 8 WS/Z[Seff(H)] 1/4U 52
e72|r7ru\v/xeff(_l-1)/v
—iw
X fe e (123)
v

where |[r—r,|=v{[(x—x,)/v;]*+[(y—y,)/v,]*}""* and v
=(v,v,) " the result (1.23) holds for large [r—r,|, and the
divergence at small |r—r,| it cutoff by lattice scale effects.
Note that the static CDW order decays exponentially around
each vortex core over a length scale &.=v/[2 Vs x(H)]
which has been increased by the influence of the field-
induced superflow [by the decrease of s.x(H) in Eq. (1.20)].
Note also that this length scale is not related to any localiza-
tion scale associated with the SDW state = (r); indeed, we
have argued above that the latter state is extended. In the
present simple Gaussian calculation, we used the very simple
constant potential given in Eq. (1.21) in the Schrodinger
equation for the exciton, Eq. (1.17); all eigenstates of such an
equation are extended plane-wave states. Instead, the expo-
nential decay in Eq. (1.23) arises from the integral over all
the oscillating (but extended) excited states of Eq. (1.17).
The body of the paper will show that the same feature also
holds when the full form of W(r) is used, and not just the
crude approximation in Eq. (1.21) (see Figs. 15 and 16).

It is useful to make an analogy between the above result
and the phenomenon of Friedel oscillations in a Fermi liquid.
A Fermi liquid state has no static SDW or CDW order, but
there are enhanced fluctuations of these orders at 2k, the
wave vector which spans extremal points of the Fermi sur-
face. In the presence of an external impurity, static CDW
oscillations at 2k are induced, while full spin-rotation in-
variance is preserved. The amplitude of these oscillations
decay with a power-law because the Fermi liquid has gapless
spectrum of SDW/CDW excitations.

In the present situation, the physics of the doped Mott
insulator induces a preference for excitonic SDW fluctua-
tions at the wave vectors K, , and for CDW fluctuations at
the wave vectors K., ,=2K,, . The SC phase has a spin
gap A at these wave vectors, and so such spin correlations
decay exponentially on the scale £&,=v/A (as we have noted,
this is not a localization scale of the spin exciton states,
which are all extended). The vortex core pins the phase the
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dynamic SDW fluctuations which reside above this spin gap,
and the resulting ““Friedel oscillations of the spin gap” are
manifested by static CDW oscillations at the wave vectors
K., , whose envelope decays exponentially over a length
scale £.= &,/2. These may therefore be viewed as the Friedel
oscillations associated with the excitonic bound states that
are present below the particle-hole continuum of the d-wave
superconductor. In a weak-coupling BCS/RPA theory one
can also expect additional Friedel oscillations associated
with the continuum of particle-hole excitations, whose wave
vector is determined by the quasiparticle dispersion. Such a
picture may be appropriate in the strongly overdoped limit in
zero magnetic field, with pinning provided by impurities.
However, as one lowers the doping in the SC phase (to ap-
proach the boundary to the SC+SDW phase), an excitonic
bound state appears, and we have focused on its physics
here; the wave vector of this exciton is determined by strong-
coupling effects in the doped Mott insulator. The strength of
this exciton could also be enhanced relative to the particle-
hole continuum in the vicinity of vortices in an applied mag-
netic field—this effect requires explicit consideration of the
fermionic quasiparticles, and so is beyond the scope of the
theories considered here.

The outline of the remainder of this paper is as follows.
We will begin in Sec. II by a discussion of the phase diagram
of the spin and charge-density-wave order parameters in zero
magnetic field. More complex phases and phase diagrams are
also possible, associated the composites and ““fractions” of
these order parameters, but we will postpone their discussion
until Sec. VI. We will turn to the influence of the magnetic
field in Sec. III: here we will restrict our attention to the
quantum transition described by Sg, , but most of the zero-
field transitions discussed in Sec. VI have a related response
to an applied magnetic field. Sec. III contains a description
of the phase diagram in the magnetic field, while the subse-
quent sections describe the dynamic and static properties of
the two phases on either side of the critical point in some
detail: Sec. IV describes the SC phase, while Sec. V de-
scribes the SC+ SDW phase. Section VII reviews earlier the-
oretical and experimental work on the interplay of magne-
tism and superconductivity, and discuss its relationship to
our treatment here. We conclude in Sec. VIII by considering
implications of our results for recent experiments; readers
not interested in theoretical details may skip ahead to Sec.
VIII now. A number of technical and numerical details ap-
pear in the appendixes.

II. PHASE DIAGRAM IN ZERO MAGNETIC FIELD

We orient ourselves by discussing the phase diagrams of
models with various types of spin- and charge-density-wave
order. We will restrict our attention in this section to zero
external field, assume that a background SC order is always
present in all the phases. As we have argued above, this
implies that we need not consider the SC order parameter
explicitly, and its influence only serves to renormalize vari-
ous couplings in the effective actions. A somewhat different
viewpoint, with a more explicit role for the SC order, has
been taken recently by Lee.>*
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FIG. 4. Mean-field, zero-temperature phase diagram of the zero
magnetic  field model Sgp+S,+Sp, defined in  Egs.
(1.8),(2.1),(2.2), with u,<0.

Here, we consider phases that are characterized simply by
the condensates of one or more of the order parameters @, ,,
and ¢, ,, introduced in Sec. I A. More complex phases as-
sociated with composites or ‘““fractions” of these fields are
also possible and these will be considered later in Sec. VI.
However, the remainder of the paper will only deal with the
influence of the magnetic field on phases and phase bound-
aries associated with the order parameters ®, ,, and ¢, ;
the more complex cases have similar properties which can be
described in an analogous manner.

To characterize the simple phases we need an effective
action Sy for the ¢, ,, while that for ®, ,, is Sg in Eq.
(1.8); the former can be written down using a reasoning simi-
lar to that for Eq. (1.8), and we obtain

qu:f d*rd7||d,¢. >+ 01|10, b.*+ 03|10, .2+,

_ _ , i
+0i10:0, 1+ 0319, 8, +5( .+, )+ S (| 0l*

+|¢y|4)+‘;1|¢x|2|¢y|2 . (21)
The correspondence (1.6) implies that for K., =2K,, and
K., =2K;, the SDW and CDW order parameters are coupled
by

Spp=— xf d*rd1 ¢F D, + ¢ D] Fec];  (22)

without loss of generality, we can assume that the coupling
A>0. At the mean-field level, the properties of the quantum
model 8¢+ 84+ Sg ¢ are essentially identical to the classical
models considered by Zachar er al.*® for spin and charge-
ordering transitions at nonzero temperature; so we can di-
rectly borrow their results, and a characteristic mean-field
phase diagram is shown in Fig. 4.
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Next, we discuss the critical properties of the various
second-order quantum transitions in Fig. 4. Near the transi-
tion between phase II (SC+ SDW) and the symmetric phase
I (SC), the primary order parameters are @, . We can in-
tegrate out the noncritical ¢, , fields and this merely renor-
malizes the couplings in Sg . So the theory Sg is the critical
theory for this transition at H=0. This is a model of some
complexity, and the universal critical properties of related
simpler models are the focus of some debate in the
1iterature,55_59 these earlier results are briefly reviewed in
Appendix D. These previous studies correspond to the case
where @, and @, are decoupled (w;=w,=w3=0), and
weakly first-order transitions are obtained in some cases. We
will address the generalization of these previous analyses to
the case of nonzero w3 in future work. Here, we will be
satisfied by considering the simplest, and most symmetric,
case of a second-order transition: for the special values v,
=V,, U;=w,, Uy=wr=w;=0 the model Sy has O(12)
symmetry, and its properties are identical to that of the (N
=12)-component ¢* theory S, to be described shortly be-
low. The influence of H on other second-order or weakly
first-order transitions should be very similar, with the
changes only modifying the numerical values of certain
asymptotic critical parameters. Part of our reason for not
expending much effort on this point is that these asymptotic
critical are not particularly relevant for the experimental situ-
ation in H#0 anyway: after including the small effects of
S in Eq. (1.12), the “sliding” symmetry of Sy disappears,
and the asymptotic critical properties of the SC+ SDW to SC
transition in H#0 become identical to the (N=3) compo-
nent ¢* theory S, . We will discuss the H#0 properties of
S, at some length in this paper, and we expect that closely
related results apply to the generalized Sg and to Sg+ Sy -

Near the transition between phases III and I in Fig. 4, the
roles of ®, ,, and ¢, , are reversed. Now we can integrate
out the noncritical ®, ,, , this renormalizes the couplings in
Sy, and the renormalized Sy is the critical theory for this
transition at H=0. At nonzero H, a model closely related to
the one discussed above applies. We will not explicitly
present the results for this model here, as most physical prop-
erties are essentially identical to those of Sp+Sy+Spy -

The remaining second order quantum transition in Fig. 4
is that between phases II and III. Both these phases have
(¢,)#0, and the charge order can be viewed as a noncriti-
cal spectator to the transition. For specificity, let us assume
that (¢,) is real and positive, while (¢,)=0; other cases
lead to similar final results. Now replace ¢, , by their expec-
tation values in S+ Sy in Egs. (1.8),(2.2), and examine
fluctuations of @, ,, at the Gaussian level: those of Re[® ]
have an energy lower than all other components. Close to
phase boundary between II and III we can therefore assume
that the critical theory involves only ¢,(r,7)
=Re[ D, ,(r,7)], and all other components only renormalize
the couplings in its effective action. In this manner, we can
conclude that the II to III phase transition is described by the
familiar (N=3)-component ¢* field theory, with effective
action

PHYSICAL REVIEW B 66, 094501 (2002)

1
5[(af¢a)2+vz(vr¢a)z

S,= J d*rdr

R0 P e P S o)

where the index a=1- - - N, and the field ¢ ,(r,7) is real. We
have rescaled spatial co-ordinates to make the velocities v,
equal to the common value v. For completeness, we have
also included the coupling to the SC order ¢ which derives
from Eq. (1.10). An analysis of the properties of the theory
FIT+S,, defined in Egs. (1.9) and (2.3), in nonzero field
shall occupy us in most of the remainder of the paper. Recall
also that the N=12 case of this theory also describes a par-
ticular case of the I to II transition discussed earlier.

II1. PHASE DIAGRAM IN A MAGNETIC FIELD

We now embark on a presentation of the main new results
of this paper: a description of the phase diagram and the
dynamic spin spectra of 7/T+S,,, defined in Egs. (1.9) and
(2.3), as a function of the applied field H. As discussed near
Eq. (2.3), this theory describes the response of a number of
specific phase boundaries of states with SDW/CDW order to
an applied magnetic field; the number of components of ¢,
takes the values N=3,12 depending upon the transition of
interest, but we expect similar results for all values of N
=3. Actually, closely related analyses can be applied to most
of the phases to be discussed in Sec. VI. The basic effect,
that all couplings associated with the non-superconducting
order parameter acquire a H In(1/H) depends, is very robust
and leads to analogous phase diagrams in almost all cases.

The theory F/T+ S, has a rather number of coupling con-
stants, and it is useful to use our freedom to rescale lengths,
times, and field scales to obtain an irreducible set of param-
eters whose values control the structure of our results. First,
as is conventional in the standard Ginzburg-Landau theory of
superconductivity, we introduce the superconducting coher-
ence length &, and the field scales H,. and H?.z:

H da
C B ’
0 2m* ac
H.,= P (3.1)
e

as we noted earlier, H ?2 is the value of the upper critical field
at the point M in Fig. 3, and H?.z = \/EKHC , where « is usual
the Ginzburg Landau parameter. We will also see below in
Sec. IV B that the coupling a acquires a shift renormaliza-
tion due to its coupling to ¢, fluctuations: we assume that
renormalization has already been performed in the defini-
tions (3.1). We now use the length &, the velocity v, and the
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parameters in Eq. (3.1) to set various length, time, tempera-
ture, field, and coupling constant scales; we define the di-
mensionless parameters

~ T - T 7 ol
r=—, T=—, =—,
o o %
A—— g=\By. e.- i
=T = —y, Pa=NUS0Pq »

Hy, a !

~ é - & ~ f(z)a

S= 8, U= U, K= —K. (3.2)
v v v°B

It is evident from the above that we are measuring length
scales in units of &, and energy scales in units of v/§.

Collecting all the transformations, let us restate the prob-
lem we are going to solve; we drop all the tildes, and it is
henceforth assumed that all parameters have been modified
as in Eq. (3.2). The partition function in Eq. (1.13) is now
simplified to

f
2= [ Pestenen| - 75 ). 63

where S, is as in Eq. (2.3) but with v =1, while F is now
given by
2 2 L : 2
F=Y | dr| =[P+ S [ +[(Ve—i&)yf* | (34)
The dimensionless constant Y is given by

H>Ed
Y= (3.5)
470

where d is the interlayer spacing (this factor of d is needed to
make Y dimensionless, and arises because F is the free en-
ergy per layer); in determining Y, a useful unit of conversion
is 1 (T)2=0.0624 meV A~3. The vector potential A in Eq.
(3.4) now satisfies
V. XA=H?. (3.6)
An important property of the continuum theory (3.3) is
that all dependence on the short distance cutoff can be re-
moved by a single ‘“mass renormalization:” this amounts to
measuring the tuning parameter s in terms of its deviation
from s =y, , the critical point between the SC+ SDW and SC
phases at H=0. Consequently all physical properties are
functions only of the dimensionless parameters u, «, Y,
H/H?,, and s—s, . We will present numerical results for the
frequency and spatial dependence of various observables be-
low as a function of H/H’, and s—s, for the simple set of
values u=k=Y=1; we do not expect any qualitative
changes for other values of these last three parameters. Also,
it will occasionally be convenient to exchange the parameter
s—s, for A, the value of the spin gap in the s>s,. SC phase
at H=0.
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The technical tool we shall use in our analysis of Eq. (3.3)
is the large N expansion. This approach® is known to yield
an accurate description of the vicinity of spin ordering quan-
tum critical points in two dimensions, and we expect the
same to hold here in the presence of a nonzero H. Details of
the approach will emerge in the following sections: here we
summarize the main N=c results for the positions of the
phase boundaries appearing in Fig. 3.

The tetracritical point M where all four phases meet is at
H=1,s—s.=«k.

The line BM represents the upper-critical field for the
vanishing of superconductivity in the presence of SDW or-
der; it is at

K2 K

H=1-— auY +m(s—sc).

(3.7)

The line CM, the boundary for SDW order in the insula-
tor, is at s —s,.= K.

The line DM, the upper-critical field for superconductivity
in the absence of SDW order is at

N?u? 2 Nu
6 2—K+S—SC —E . (38
a

Nk

=1+
HlSﬂTY

Experimentally, the most important and accessible phase
boundary is AM, the line representing onset of SDW order in
the SC phase. The position of this line cannot be determined
analytically: we will present detailed numerical results and
an expansion in the vicinity of M; for small H its location
behaves as

2(s—s.)

T kIn[1/(s—s.)]° (39

as may be readily deduced from Eq. (1.20), and was quoted
already in Eq. (1.22).

Our numerical as well as analytical studies will be divided
into two parts, one for “SC” region of Fig. 3 in Sec. IV, and
the other for “SC+ SDW” region in Sec. V.

IV. PHYSICAL PROPERTIES OF THE SC PHASE

This section will describe an analysis of Eq. (3.3) in the
regime where spin rotation invariance is preserved with
(@q)=0. As we discussed earlier at the end of Sec. I C, upon
including the effect of the lattice pinning term (1.12) in a
nonzero H, this phase does have static CDW order with
(¢, ,)#0, while preserving spin rotation invariance: this
will be discussed in Sec. IV E.

A. Large N saddle point equations

The index a in S, in Eq. (2.3) extends over «
=1,...,N, and depending upon the transition in Fig. 4 we
are interested in, we have either N=3 or N=12. For both
cases, it is known that an accurate description of the physical
properties is described by the large N expansion, whose
implementation we shall now describe.

First, we introduce an auxiliary field

094501-11
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V(r,7)=s+ k| y(r)|>+ 2ue’(r,7). 4.1)

We will often place a subscript H on various quantities (as
for ¢ above) to emphasize that they are being evaluated at a
nonzero H. Let us also denote

s'=s+ | gy(r)|*. (4.2)

Now we add an innocuous term to S¢, , whose only effect is
to multiply the partition function by a constant after a func-
tional integration over W(r,7):

S 2 2
S¢—>S¢,—f d rJ'O drg(v—Zucpa—s’)

5 T 1
—f d rJ;) drT 5(

1
&T()Da)2+ E(Vr()oa)z

1V2+1V2+1V’ 43
8u~ 2 %4y | “3
After integrating out ¢, (a@=1---N), we have
N 2_ w2
= | DV(r)exp —ETrln(—é’T—Vﬁ—V)
: Vs'+ : Vv 44

Now by taking N— while keeping Nu constant, we obtain
the saddle point equation in which V is a function of r but
independent of 7:

Vu(t)=s+k|gy(r) >+ 2NuTD, Gy(r.r.m,). (45)
where the ¢, propagator G y(r,r’,w,) is given by
Gu(rr',0,) =(rllw, = Vi+ V(] '[r'),  (4.6)

with w, a Matsubara frequency. In this case, the large-N
expansion is equivalent to a self-consistent one-loop calcula-
tion.

The saddle point equation for superconducting order pa-
rameter follows from Eq. (1.14): it is just the conventional
Ginzburg-Landau equation with one additional term from the

¢, coupling

_1+§—yr2 Gu(r,r,0,)+ | y(r)|*=(V,—iA)* | p(r)

=0. 4.7)

So the two unknown functions Vy(r) and ¢y(r) are to be
determined simultaneously by the solution of Egs. (4.5) and
(4.7). As stated above, the expressions in these equations
depend upon the short distance cutoff, but we show in Sec.
IV B that this can easily be removed by a simple shift of
parameters.
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B. Renormalization of parameters

It is first useful to obtain the complete solution of Egs.
(4.5) and (4.7) at H=0. Let s=s,. be the point where mag-
netic order appears (so that (¢,)#0 for s<s.), where® V
=0. Then Eq. (4.5) tells us that

d’k 1
_S +K|¢0C| +2Nuf J’ 2+k2,

(4.8)

where . is the r independent value of (r) at s=s, and
H=0, while Eq. (4.7) gives

NKJ J'dzk 1 o
Y 472 w4 k2 .

It is useful to normalize things so that y.=1 at s=s., H
=0 and T=0. This is achieved if we renormalize « to re-
move the offending term in Eq. (4.9). We make the shift in
Eq. (1.9) [before the rescalings in Eq. (3.2)]

— 14|+ (4.9)

NKB

(4.10)

a—a+t

j 47? wz-i-vzk2

Then, after Eq. (3.2), Eq. (4.7) is modified to

1+NK S Gl ) fdwdzk 1
R rr,)— I
Y| TG Tmehe 8 w2tk
+u(r)P = (V= iA)? [ ¢y (r) =0, (4.11)
while Eq. (4.9) simply becomes
Yo.=1. (4.12)
Now move to s>s., where we have a spin gap
Ao=1V,>0. (4.13)
Subtracting Eq. (4.8) from Eq. (4.5) we get
NMAO
Aj=s=s.t (il ~1)———. (4.14)
where Eq. (4.11) yields
NKAO
=1+ : :
ol " =1+ o5 (4.15)
Inserting Eq. (4.15) back into Eq. (4.14) we obtain
A+ Nu 1 < Ag= 4.16
0T o\ T quy R0 e (4.16)

Let us now use the above equations to simplify the equations
for H#0 and T#0. The new form will be independent of
lattice cutoff.

From Eqgs. (4.5),(4.8),(4.16) we obtain
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V(1) = A5+ k[ | ¢hy (1) |* = ho|* 1+ 2Nu

TE GH(r7r’wn)

do d*k 1

], (4.17)
27 447 w2+k2+A§

where |i|? is given in Eq. (4.15). Using Egs. (4.17) and
(4.11) we obtain

K2
1= g o=t

4MY

The expressions (4.17),(4.18) are the main equations we
shall solve for the unknowns Vy(r) and ¢y(r) in this paper.
It can be checked that at H=0, T=0, these equations are
solved by VHZA(% and ¢y=1,. We describe the numerical
solution of these equations for H#0 in Appendix E and
present the results in the following subsection. A useful step
in this numerical solution is the following parametrization of
the Green’s function Gy(r,r’',w,) in Eq. (4.6)

A%k EE () E ulr)

Gy(r,r',w,)= s
il =2 w2+ E%(K)

n J1BzA4?
(4.19)

where 2 uk(r) are the complete set of eigenfunctions of the
analog of the Schrodinger equation (1.17)

[~ Vit Vu(0)]E () =EL(K)E k(r).  (420)
Here k is a “Bloch” momentum which extends over the first
Brillouin zone of the vortex lattice, u is a “band” index, and
E ,(K) are the corresponding energy eigenvalues. All of our

numerical analysis was performed for the values u=«k=Y
=1 and N=3.

C. Phase boundaries

Equations (4.17) and (4.18) can be readily solved to ob-
tain the locations of the CM and DM phase boundaries in
Fig. 3. On DM, the superconducting phase parameter ¢y(r)
vanishes and all parameters become r independent; thus Eq.
(4.17) becomes

Nu

“or

VW,

421)

Nu
Vir= 5= kldho|*+5— (V= Ag) =s = 5.~

where we used Eqgs. (4.15) and (4.14). Then from Eq. (4.18)
we have

PHYSICAL REVIEW B 66, 094501 (2002)

004  0.06 0.08 0.10  0.12

FIG. 5. The lowest eigenvalue of Eq. (1.17), E¢(0) vs H for s
—5.=0.2. The linear continuation of the line to solve Ey(0)=0
gives us the critical H for this s , which is about 0.117 with an
uncertainty of =0.002.

2

K
o oy Tay OV
=1 < + o[ N Vyt+
T 4uY duY \2m¥HTE
=1+ Nic | (N + L 4.22
B 87Y |\ 1672 KT 4|’ (4.22)

which is the result quoted in Eq. (3.8). Similarly, it is easy to
see that the phase boundary CM is at s —s,.= k.

It remains to determine the location of the phase boundary
AM, which is also physically the most interesting one. We
determined this boundary by a full numerical solution of
Eqgs. (4.17) and (4.18) for a range of parameters. Stability of
the SC phase requires that all the eigenvalues Ei(k) of Eq.
(1.17) remain positive. The lowest of these eigenvalues is
E((0) and we followed its behavior as a function H: a typical
result is shown in Fig. 5. We expect E(0) to vanish linearly
in the deviation from the critical field, as the critical theory is
expected to be in the universality class of the ordinary O(3)
¢* field theory, and the latter has critical exponent zv=1 in
the large N limit. So we can determine the critical field by a
linear extrapolation, and this is also shown in Fig. 5. Com-
bining the results of such calculations at a range of values of
s, we obtain our numerical result for the location of the AM
boundary shown in Fig. 6.

Some further analytic results on the location of the AM
phase boundary can be obtained in the vicinity of the multi-
critical point M. It can be shown that the deviation of the
phase boundary from M is linear in the large N limit, i.e., it
isat H=1—90(x—s+s,), where @ is a numerical constant.
We describe these results in Appendix F, including the deter-
mination of @. The results obtained in this manner are con-
sistent with our complete numerical analysis described
above, and this is a strong check on our numerical analysis.

Finally, we recall our result (3.9) for the behavior of AM
at small H and s—s.. Here there is a crucial logarithm
which follows from Eq. (1.20), and whose physical origin
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1.2

H

M

0.8

SC+SDW

0.4
+d +b
b sC
g
0 A:d s " o
f . ,
-0.5 0 0.5 S-S¢ 1

FIG. 6. Numerical results for the phase boundary AM in Fig. 3
for u=k=Y=1. Also shown is a portion of the phase boundary
BM whose position is known analytically from Eq. (3.7). Different
aspects of the physical properties are described in the remainder of
the paper at the points labeled a—I.

was discussed in Sec. I C. The signal of this logarithm are
clearly visible in the phase boundary in Fig. 6.

D. Dynamic spin susceptibility

In this section we describe the evolution of the dynamic
spin fluctuation spectrum in the SC phase of Fig. 3. This is
clearly specified by the Green’s function G y(r,r',,) in Eq.
(4.6) which we computed above in determining the phase
boundary. More specifically, we see from Eq. (1.2) that the
observed dynamic spin susceptibility x(q,w) is given by

X(q,w)OCX<P(q+ st ’w) +X<p(q_st ’w)
+x.(q+K;, ,0) +x,(q—K,, ,0), (4.23)

where x,, the dynamic susceptibility for the field ¢, , is
given by

1 . 7
Xo(k,w)= ‘—/f d’rd*r'e™ TG L (rr' )

|C G(P)|2
;G lezdpﬁ(p-FG k)Ei(p)—wz’
(4.24)
L 4
L ]

FIG. 7. Reciprocal lattice of the vortex lattice. The density plots
in Figs. 8,9, 10, and 11 have k varying along the arrow shown, with
numerical values as shown.
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point f
0.4
@ | Intensity
50+
v 40
0.2}
30
20
F .
0.0 : 0
0 1 2 4 3 4

FIG. 8. Density plot of Imy,, in Eq. (4.24) in the SC phase for
momenta along the arrow in Fig. 7. The plot is for s —s.=0.1 and
H=0.01 (point f in Fig. 6). In this, and all subsequent plots of
Imy,, , the delta function peaks in (4.24) have been broadened into
Lorentzians with energy width 0.01 for display purposes only.

where V is the volume of the system, the p integration is over
the first Brillouin zone of the reciprocal vortex lattice, G
extends over the reciprocal lattice vectors of the vortex lat-
tice, Ei(p) are the eigenvalues of Eq. (4.20) (see also Ap-
pendix E), and the parameters c,(p) are defined in Eg.
(E2). We present results for Im[ y,(k,w)] below.

It is clear from Eq. (4.24) that in the present large N
approximation, the spectrum of x, consists entirely of sharp
delta functions. These specify the dispersion of S=1 ‘“exci-
tons” which describe the SDW fluctuations, and are con-
nected with the zero field “resonance’ peak discussed early
on in Sec. I. The excitons scatter off the vortex lattice, and
our results describe the evolution of the resulting spectrum as
one moves towards the onset of SDW order by increasing the
applied magnetic field. We show the structure of
Im[ y,(k,w)] by broadening the delta functions into sharp
Lorentzians, and displaying the results in density plots. The
momentum k in these plots varies along the direction of the
reciprocal lattice shown in Fig. 7. The results for a smaller

point e

0.8

@ ’ Intensity
504+

0.4+ J 40
30
20
10

0.0 : . . °

0 1 2 k 3 4

FIG. 9. As in Fig. 8 but for larger H=0.035, which brings the
system very close to the AM phase boundary to the SC+SDW
phase (point ¢ in Fig. 6).
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point m
1.6+
® | _
Intensity
v 5+
D,B-I i
| 3
2
1
0.0 : . 0
0 1 2 4, 3 4

FIG. 10. As in Fig. 8 but with larger s—s,.: H=0.1 and s—s,
=0.9 (point m in Fig. 6).

value of s—s, are shown in Figs. 8 and 9, and those for
larger value of s—s. are in Figs. 10 and 11. Note that for
very small H, there is less dispersion for the lowest mode:
this is an indication that this excitation is centered on the
vortex core, and there is weaker coupling between neighbor-
ing vortices. As the field is increased, this coupling increases,
and the dispersion looks closer to that of a nearly free par-
ticle, with weak reflections at the Brillouin zone boundaries
of the vortex lattice. Also, the energy of the minimum exci-
tation decreases with increasing field, until it vanishes at the
AM phase boundary to the SC+ SDW phase.

We also show in Figs. 12 and 13 the spatial structure of
the modulus of the superconducting order parameter
|(r)|?. The Brillouin zone boundary reflections above
arise from the scattering of the exciton off the potential cre-
ated by |¢p(r)[*.

Finally, for experimental comparisons, it is useful to plot
the intensity of the lowest exciton mode as a function of the
applied field. From Eq. (4.24) we see that this intensity is
[c00(0)|%. We show a plot of this quantity in Fig. 14. Observe
that except for very small values of H, the intensity is of
order unity, which is the behavior expected for an extended

point |
4.0 !f"
@ Intensity
5+
2.0 4
3
2
1
0.0 ; ; ; 0
0 1 2 k 3 4

FIG. 11. As in Fig. 10 but with a large H=0.8, which brings the
system very close to the AM phase boundary to the SC+SDW
phase (point / in Fig. 6).
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FIG. 12. Spatial dependence of the modulus of the supercon-
ducting order parameter |y(r)|> plotted on the rectangular half
unit cell of the vortex lattice indicated by Fig. 13. This result is for
s—s,=0.5 and H=0.1 (point k in Fig. 6).

exciton scattering off a periodic potential as in Fig. 12. As
H—0, the behavior crosses over to that expected when the
vortex cores are essentially decoupled, and the lowest mode
is associated with a state localized around each vortex core:
in this limit, we expect®’ the intensity ~H.

E. Pinning of charge order

This section will consider the consequences of the pinning
term Sy, in Eq. (1.12). We argued at the end of Sec. I C that
this term pins the charge order, and leads to a static CDW
with (¢, ,)#0 [recall Eq. (1.5)] in the SC phase, while pre-
serving spin rotation invariance with (@x’ya>=0. We have
recently proposed'' this as an explanation for the CDW ob-
served around the vortex in the STM measurements of Hoff-
man et al.'® Section I C, also gave an initial estimate [in Eq.
(1.23)] of the spatial structure of this pinned CDW: here we
will obtain a more precise result, using the full solution of
the SDW fluctuations in the presence of the vortex lattice.
Using the relationship (1.6) between the CDW and SDW
orders in the vicinity of the SC to SC+ SDW transition, we
conclude that to first order in ¢

(¢r (1)) Le " O(r) (4.25)

with

Q(r)=TY, > Gi(r.r,.0,), (4.26)

v

x)'*

FIG. 13. Half unit cell of the triangular vortex lattice in real
space.
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0.8
0.6 L] S'Sc=0 . 2
|coa(0)12 4 5-5.=0.5
0.4
0.2
0
0 0.1 0.2 0.3 0.4

H

FIG. 14. Intensity of the lowest exciton mode in the SC phase
|coo(0)|? as a function of H for two values of s—s.. .

where r, extends over the vortex lattice sites; clearly Q(r)
has the full periodicity of the vortex lattice.

We used our numerical solution of Egs. (4.17) and (4.18)
to compute the function (r), which is proportional to the
amplitude of the static CDW induced by the vortex lattice in
the spin gap phase. We show our results for Q(r) in Figs. 15

0.2

IR
0.1

FIG. 15. Plots of the function Q(r) (filled symbols) in Eq.
(4.26) representing the static CDW order pinned by the vortices,
along with the lowest SDW eigenfunction Z ¢(r) of the dynamic
spin fluctuations above the spin gap (open symbols), at s—s.
=0.2. The spatial coordinate x is along the line connecting two
nearest-neighbor vortices and its scale has been chosen so that the
vortex lattice spacing is unity (see Fig. 13). The field takes the
values H=0.02 (squares, point & in Fig. 6) and H=0.1 (triangles,
point g in Fig. 6); the latter field is close to the AM phase boundary
in Fig. 6. Note that the spin exciton state at point g is well extended
through the lattice, while the charge order remains localized around
the vortices. For point & the localization length of the spin exciton
state is about twice that of the charge order. These results are con-
sistent with the discussion in Sec. I C 1. As was also noted below
Eq. (1.23), the continuum expression (4.26) actually has a diver-
gence for r equal to any r, : our numerical computation uses a finite
momentum cutoff A, and this rounds out the divergence at dis-
tances [r—r,|<A"'; we have verified this by numerical computa-
tions at different A . In the same units as those for x in the figure, we
used A~36 above.
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FIG. 16. As in Fig. 15 but for s—s,=0.5. The field takes the
values H=0.1 (squares, point k in Fig. 6) and H=04 (triangles,
point j in Fig. 6); the latter field is close to the AM phase boundary
in Fig. 6. Now both points have extended spin exciton states (that at
point j is essentially a plane wave), while the charge order is expo-
nentially localized.

and 16 for a representative set of values in the SC phase.
Also shown in the same figures, for orientation, is the form
of Ey(r), the lowest-energy eigenfunction of the dynamic
SDW equation (1.17) which appears in the Green’s function
(4.19). For very small field, both (r) and = ,(r) are local-
ized around the vortex centers, with the localization length of
the former being about half that of the latter. However, for
larger fields, the exciton wave function Z,(r) gets delocal-
ized, while the CDW order remains localized. This localiza-
tion arises from the summation over all the states in Eq.
(4.19) and is in keeping with the discussion at the end
of Sec. IC 1.

V. PHYSICAL PROPERTIES OF THE SC+SDW PHASE

We now turn to the analysis of the partition function (3.3)
in the phase with broken spin rotation invariance and {¢,)
=0. This phase is reached when the lowest S=1 exciton
mode in Sec. IV, Ey(r), reaches zero energy [Eq(0)=0]
and then condenses. The presence of the condensate leads to
long-range SDW order. We will adapt our large N computa-
tion to include such a condensate in the following subsec-
tion, and then describe the spatial structure of the condensate
and the dynamic spin excitations.

A. Large-N saddle point equations

The analysis here is parallel to that in Sec. IV A. We
introduce the auxiliary field W(r,7) defined in Eq. (4.1) and
write the action in the form similar to Eq. (4.3). However, to
account for the condensate, we have to select a particular
orientation in spin space, and treat the corresponding spin
component in a selective manner. So we write

Pa=— ( \/ﬁnvﬂ-l ST -

TTN-1)s (5.1)

and integrate out only 7 ,7,, ...,7Ty_; to obtain
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2

Z=f DV(r,7)Dn(r,7)exp| — Trin(— 92— V2+))

il

1 1 N N N
Y S P 2_ Y 2_ Y, 2
+ 8uV2 4MVS 3 (d,n) 5 (V.n) 2Vn
(5.2)

where s’ was defined in Eq. (4.2). Now we take N— o while
keeping Nu fixed, and ignoring the difference between N and
N—1. This leads to saddle point equations for the time-
independent field Vy(r) and the SDW condensate ngy(r);
these equations replace Eq. (4.5), but contain additional
terms due to the spontaneous spin polarization

Vi(r)=s+ k| gy (r)|2+2NuT Y, Gy(r.r,w,)+2Nun(r)
' (5.3)

and

[ Vit Vy(r)Iny(r)=0, (54)
where Gy is given by Eq. (4.6). Comparing Egs. (5.4) and
(4.6) it is easy to see that the spectrum of G, as defined in
Eq. (4.19) has one mode with Ey(k)—0 as k—0; this is, of
course, the Goldstone spin wave mode associated with the
spontaneous SDW condensate.

The equation which determined the superconducting order
parameter (r) was Eq. (4.7), and this is now replaced by

Nk
[—1+— T, Gu(r.r,w,)+2Nun’(r)

+|¢H<r>|2—(vr—iA>2} Y(r)=0. (5.5)

B. Renormalization of parameters

Now we proceed as in Sec. IV B to remove all depen-
dence of Egs. (5.3), (54), and (5.5) on the short-distance
cutoff. First consider the case when 7=0, H=0, and s
=s,., where Eqgs. (4.8) and (4.9) hold. Now after we shift
parameter « in as in Eq. (4.10), the Ginzburg-Landau equa-
tion (5.5) is modified to

Nk )
—1+ oy T, Gy(r.r,w,)+2Nun’(r)

J’dw k1
2w A7* wr+k?

—(V,—iA)?

+|'/’H(1')|2

Yu(r)=0. (5.6)

Next, subtracting Eq. (4.8) from Eq. (5.3) while noticing that
. is already renormalized to unity, we have
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Vy(r)=s—s.+ k[ | y(r)|>— 1]+ 2Nun3,(r)

TE Gy(rr,mw,)—

@y

+2Nu

f dod*k 1
8w w4 k>

(5.7

From Egs. (5.7) and (5.6) we have
K> 5 K
-5 [gm(o) > =11+ Ty Ve —sts]

—(V,—iA)? |¢y(r)=0. (5.8)

The final set of equations for the properties of the SC
+SDW phase are Egs. (5.7), (5.4), and (5.8); these are to be
solved for the unknowns Vy(r), ¢y(r), and ny(r). We de-
scribe the numerical solution in Appendix G.

C. Phase boundaries

We have already determined the positions of several
phase boundaries in Fig. 3 in Sec. IV C, and it remains only
to determine BM. First notice that at the transition into a
nonsuperconducting phase, the order parameter (r) van-
ishes, and thus Vy(r) and {y(r) are spatially uniform. So
from Eq. (5.4) we have V,;=0. Plugging this into Eq. (5.6)
we obtain the position of the phase boundary BM specified
in Eq. (3.7).

D. SDW order parameter

The presence of a static spin condensate implies that the
dynamic spin susceptibility contains sharp Bragg peaks at
zero frequency and at wave vectors separated from the SDW
ordering wave vectors by the reciprocal lattice vectors of the
vortex lattice as suggested by Zhang®? and discussed by us in
Ref. 9; these are in addition to the dynamic spectra specified
in Eq. (4.24). This means that the dynamic structure factor
So(k,) [which is related to the susceptibility Xo(K,0) in
Eq. (4.24) by the usual fluctuation-dissipation theorem] has
the contributions

S¢(k,w):<2w>a<w)§ Ifel?2m)?8(k—G), (59)

where G extends over the reciprocal lattice vectors of the
vortex lattice, and

(5.10)

where the spatial integral is over U/ the unit cell of the vortex
lattice with area A;;. Note that, by Eq. (4.23), the physical
momentum is related to k in Eq. (5.9) by shifts from the
SDW ordering wave vectors K, and K, .

Figures 17 and 18 show plots of the Bragg scattering in-
tensity |f¢|?, for the two smallest values of G and two values
of s—s., as a function of H. As argued in Ref. 9, the corre-
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FIG. 17. Bragg scattering intensity |f¢|> as a function of H at
s—s,=0. Shown are the values at G=0 (squares) and at G=G;
(triangles), which is the smallest nonzero reciprocal lattice vector of
the vortex lattice. Note that the intensities at G=G; have been
magnified by a factor of 150 to make them visible on this plot. The
intensities are zero at H=0, because s=s, is the quantum critical
point in zero field. The line shows 0.63H In(3.61/H), which is the
best fit to the functional form in Eq. (5.11).

spondence (1.20) implies that the scattering intensity at zero
wave vector, |fo|? should increase with as

(Ifol?)<H In(1/H). (5.11)

The fits to this functional form in Fig. 17 show that this
works quite well. Notice also that the intensity at the first
nonzero reciprocal lattice vector G, is quite small, and that it
decreases with increasing H. This suggests that observation
of this satellite peak is best performed at as small a field as
possible —of course, H should be large enough so that |G| is
large enough to be outside the resolution window of the peak
at G=0. It is interesting to observe here that we can view
the Bragg peak at G; as arising from condensation at the
nonzero k minimum in Fig. 9 of the dispersion of the exciton
in the SC phase.

For completeness, we also show the real space form of the
condensate ny(r) in Figs. 19 and 20 for two points in the

1.2
|l
1 of, »
0.8
0.6
0.4
0.2
.. 200[f [
0 M hd * + * >
0 0.1 0.2 0.3 0.4 H 0.5

FIG. 18. As in Fig. 18 but for s—s,=—0.3, showing |f¢|? at
G=0 (squares) and at G=G; (diamonds). Unlike Fig. 18, the in-
tensity |fy|> is nonzero even at zero field. The intensities at G
=G, have now been magnified by a factor of 200. The line is 0.3
+0.98H In(2.12/H), which is the best fit to the functional form in
Eq. (5.11)
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FIG. 19. Spatial form of the SDW order parameter ny(r) in the
SC+SDW phase at s —s,=—0.3, H=0.35 (point b in Fig. 6) over
vortex lattice shown in Fig. 13. Notice that the vertical scale ex-
tends over a rather short range, and the modulation in nyg(r) is quite
small relative to the uniform component.

SC+SDW phase. The spatial form of the modulus of the
superconducting order parameter for the first set of param-
eters is shown in Fig. 21. This last figure is the analog of Fig.
12 which was for the SC phase.

E. Dynamic spin susceptibility

Finally, we follow the presentation in Sec. IV D and dis-
cuss the dynamic spin spectrum in the SC+ SDW phase. The
nonzero w spectral densities presented here appear along
with the =0 contributions in Eq. (5.9). We will restrict our
attention to the susceptibility transverse to the ordering di-
rection: this is given by the fluctuations of the last N—1
components in Eq. (5.1), which are in turn related to the
Green’s function G in Egs. (5.3) and (5.5). So the trans-
verse dynamic spin susceptibility is given by a formula

017

0.16

0.15

FIG. 20. As in Fig. 19; in the SC+SDW phase at s—s5.=0.5,
H=0.45 (point i in Fig. 6) over a single vortex lattice unit cell
shown in Fig. 13.
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FIG. 21. Spatial dependence of the modulus of the supercon-
ducting order parameter |,(r)|? plotted on the rectangular half
unit cell of the vortex lattice indicated by Fig. 13. As in Fig. 19, this
result is for s=s. and H=0.35 (point b in Fig. 6).

analogous to Eq. (4.24). As before, we present the results by
broadening the delta functions to sharp Lorentzians.

Our results for the spectral densities are shown in Figs.
22,23, 24, and 25 for a series of values of s —s,. and H in the
SC+ SDW phase. Note first that there is always a gapless
spin-wave mode. In addition there are features arising from
scattering off the vortex lattice: these are strongest in the
vicinity of the quantum critical point A at zero field.

VI. OTHER PHASES IN ZERO MAGNETIC FIELD

The next two sections involve a slight detour from the
main flow of the paper. This section we will examine phases
and phase transitions associated with composites or “‘frac-
tions” of the primary order parameters @, ,, and ¢, , . This
is done mainly for completeness. Readers not interested in
this detour may skip ahead to next section without loss of
continuity.

pointd
0.8
Q Intensity
5+
4
0.4 5
2
1
0.0 - ' " i y 0
0 1 2 k 3 4

FIG. 22. As in Fig. 8, but for the transverse susceptibility in the
SC+SDW phase. The parameter values are s=s. and H=0.05
(point d in Fig. 6).
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FIG. 23. As in Fig. 22 but for the values s=s,. and H=0.3
(point ¢ in Fig. 6).

A. Phases with nematic order

In Sec. IA we argued that a generalized non-two-
sublattice spin density wave order may be associated with a
charge density wave. Another interesting possibility is that of
spin nematic order, which has been previously discussed in
Refs. 60-63. If the CDW order parameter may be under-
stood as a spin zero combination of two S, operators
[6p(r,7)~S i(r,r)], then the spin nematic order parameter
0 p(r,7) corresponds to their spin two combination

~ _ Oap o
Q op(r,7)~S (1, 7)S g(r,7) 3 Si(r,7).  (6.1)

We pause briefly to also mention here an ““Ising nematic™
order which has also been considered recently.*° This order
resides in real space associated with the lattice, and is dis-
tinct from the spin-space nematic order we are considering
here. Order parameters with the Ising nematic order are
|®,4|*—|P,,|* and | ¢,|*—|¢,|*, and these clearly measure
a spontaneous choice between the x and y directions of the
lattice. Our effective actions for @, ,, and ¢, , are rich
enough to also allow such orders.

point a

Intensity
5+

4

3

FIG. 24. As in Fig. 22 but for the values s —s.,=—0.3 and H
=0.35 (point a in Fig. 6).
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FIG. 25. As in Fig. 22 but for the values s—s.=0.5 and H
=0.45 (point i in Fig. 6).

Returning to our discussion of spin nematic order in Eq.
(6.1), we see that spin nematic order parameters that are
consistent with the SDW order in Eq. (1.2) may be at wave
vectors (00) and K, , :

Qaﬁ(r’T) = Qoag(r,T)
+Re[Qap(r,m)e e+ 0 o p(r,m)e™ o],
(6.2)

It is natural to call Q,pz a uniform spin nematic order pa-
rameter, and Q, ,,p a spin nematic density wave (SNDW).
Both order parameters are symmetric (Q;,5= Q;s,). but the
uniform spin nematic O,z must be real, and the spin nem-
atic density wave Q, ,,5 may be complex. The uniform spin
nematic couples to the SDW order parameters @, ,, as

SQO,KIDZ_)\I'Z

i=x,y

d2r dr QOaﬁ

X

.2
q);raq)iﬁ_kq)iaq)irﬂ_§5aB|q)i6|2>' (63)

The spin nematic density wave Q,,g4(r,7) couples to ®,,
via

1
Qiaﬁ( D Pp— 3 5aﬁ<1>§5) +e.c.
(6.4)

So..0.=—\2 f d*rdr

with a similar coupling between Q,,4(r,7) and @, .

The effective action for the spin nematic order parameters
may be written from the analysis of the symmetries of Eq.
(6.2). The interplay of the spin nematic and spin density
wave orders may produce an extremely rich phase diagram.
We will not attempt to explore its full richness, but restrict
ourselves to the discussion of some simple illustrative ex-
amples. It is also worth pointing out that the appearance of
the spin nematic order (either uniform or SNDW) does not
give rise to the additional Bragg peak at zero energy, but
produces a difference in the scattering cross sections for dif-
ferent neutron polarizations.
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<Q>#0
<p>=0

IT1

FIG. 26. Mean-field zero-temperature phase diagram of the
model S¢+SQ0+SQO @ in zero magnetic field for the case u,<<0.

1. Uniform spin nematic

To write the effective action for the uniform spin nematic
Qoqap We can give essentially the same arguments as in de-
riving the Landau free energy for the classical nematics (see,
e.g., Ref. 64)

(0:Q0ap)(9:Q0pa) + UzQ(ﬁQOaB)(ﬁQOBa)

SQOZ f d*rdr
1 1
+ EA Q0apQopa™t gB 000905720 ya

1 1
+ ZCI(QOaBQOBa)2+ ZC2QOaﬁQO,ByQ075QO5a .
(6.5)

By an appropriate spin rotation, the uniform spin nematic
order parameter may always be brought into the diagonal
form (this follows from the fact that it is a real and symmet-
ric matrix)

1
—5lgtmn) 0 0
= 1 6.6
QOa,B 0 _ E(q_ ) 0 ( )
0 0 q

When (g)#0 but {7)=0 we have a uniaxial spin nematic,
and when both expectation values are finite we have a biaxial
spin nematic.

Let us start by considering the interplay of the uniform
spin nematic with the collinear SDW (for simplicity we only
consider one of the SDW orders, say ®,,). A schematic
mean-field phase diagram at 7=0 for Sg, + SQ0+ SQo @ with

BN\;<<0 and u,<<0 is shown in Fig. 26. Thick lines corre-
spond to the first-order transitions, and thin lines correspond
to the second order transitions. Phase I (SC) has no magnetic
order of any kind; phase II (SC+ SDW) has commensurate
SDW order, which is accompanied by a uniaxial spin nem-
atic order; phase III (SC+UN) has a uniaxial spin nematic
order. For BA{>0 and u,<<0 the phase diagram qualita-
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FIG. 27. Mean-field zero-temperature phase diagram of the
model S®+SQO+SQ0 @ in zero magnetic field for the case u,>0.

tively remains the same, however, phase II has a finite ex-
pectation value of both ¢ and % in Eq. (6.6), so it has an
SDW order accompanied by the biaxial spin nematic order. A
schematic phase diagram in the case u#,>0 is shown in Fig.
27. Phase II may now be a circular spiral SDW (Ila), an
elliptic spiral SDW (IIb), and a collinear SDW (Il¢).

2. Spin nematic density wave

For the spin nematic density wave the third order terms
are prohibited by symmetry: they carry oscillating factors
e ™exy™ and vanish after integrating over space in the long
wavelength limit. Hence,

(&TQj\:aﬁ)(ﬁTQxﬁa) + EQ(V_)Qiaﬁ)(ﬁQxﬁa)

Sszf d*rdr
L ¥ 1~ T 2 1 T
+ EA QXQBQXﬁLY_l_ZC](QXa,BQXﬁa) + ZczQ_xa'B

1_
X QxﬁyQ;tyﬁQx&adl_ZC3QiaﬁQ;8ny‘y§Qx5a (67)

and there is a similar action SQ .
y

The order parameter for the spin nematic density wave
can be conveniently written using five complex numbers (see
also Ref. 65)

- % - l//‘xz lr//x3 (v[/x4
wxl
Qxa,BZ l//-‘f3 - f + ¢x2 lﬁxS (68)
2
¢x4 lpxS wX]

V3

with normalization condition =, s|i,|*=1. This rep-
resentation makes obvious the connection between the order
parameter for the spin nematic density wave and condensates
of spin-2 particles, for which Ciobanu er al.®® argued that
there exist three distinct phases (not related to each other by

spin rotations), depending on the parameters C,, C,, and
C5. The phase diagrams of the spin nematic density wave
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order vs the SDW order is similar to the case of uniform spin
nematic (Figs. 26 and 27) with the main difference that the
phase boundary between I and III is now second order.

B. Exciton fractionalization

Before concluding the section on the phases in zero field
we would like to point out another interesting possibility for
the system described by the generalizations of Sg, . Consider
this model in the regime where the spiral fluctuations are
strongly suppressed, so we need to consider the collinear
SDW order only; this happens in Eq. (1.8) for u,<0 and
with |u,| large. For simplicity we restrict our discussion to a
SDW at wave vector Ksy s CDya . As discussed in Sec. I A, the
collinear SDW can be written in the form (1.3), which we
reproduce here for completeness:

CI)),a(r,T)=ei0(r’7)na(r,7). (6.9)

We also noted below Eq. (1.3) that such a separation of the
physical order parameter @, into the phase 6 and the real
vector n, has an implicit ambiguity as we can simulta-
neously change the sign of both without altering @, . For-
mally this means that, for incommensurate Ky, . the order
parameter @, , belongs to the space (5,XS§,)/Z,. For com-
mensurate K ,=2mp'/(pa), where p’, p are relatively
prime integers, higher order terms not contained in Eq. (1.8)
(but mentioned below it) imply € prefers a discrete set of
values'!! and the space is restricted to (§,XZ,)/Z,. Also,
if full SU(2) spin rotation symmetry is absent, and the spins
have an easy-plane restriction, then the first S, factor
changes to S;.

The Z, quotient in the order parameter space can be ex-
plicitly implemented as an Ising gauge symmetry, and it puts
important constraints on the effective low energy theory. The
lattice model consistent with such symmetry has the form

81:% ]‘YO'ijn,-anja-i-(Z) JCO'l‘jCOS(ei_Gj), (610)
1 1

where i and j are sites on the space-imaginary time lattice,
the sum over (ij) extends over nearest neighbor links of this
lattice, J® and J¢ are couplings imposing the propagation of
SDW and CDW order, respectively, n;,=n,(r;,7;), 0,
=0(r;,7;), and 0;;= =1 is an Ising gauge field that lives on
the links of the lattice. One can easily see that the lattice
action (6.10) is invariant under the Z, gauge transformation

Nig—™ 0Ny,
w
0,—0;+ 5(1 —0y),

(6.11)

(Tl‘j—> 0'10'”0']

for o;==*1.

Models of the kind (6.10) have been discussed earlier in
various contexts.®%"7! It was pointed out, for example, that
another term allowed by symmetry is a Maxwell term for the
lattice gauge field
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, (6.12)

S,=—K2,
[m]

H gij
O

where the sum on [ extends over the plaquettes of a (2
+ 1)-dimensional lattice. Such a term may be generated by
integrating out the high energy degrees of freedom or may be
present due to certain frustrating terms in the original micro-
scopic Hamiltonian.®~7! This term has a striking effect on
the properties of the model (6.10): it gives rise a phase in
which the exciton @, fractionalizes, and fluctuations of n,,
are separated from the fluctuations of 6. Loosely speaking,
the SDW and the CDW fluctuations get decoupled.

It is useful to discuss the consequence of the confinement-
deconfinement in the symmetric phase in which global sym-
metries are preserved: the models of this paper are invariant
under SU(2) spin rotations, and the sliding U(1) symmetry
[for commensurate values of K, , the U(1) symmetry is re-
duced to a discrete Z, “clock” symmetry, but essentially
unchanged considerations apply nevertheless'®!']. The im-
mediate manifestation of the confinement-deconfinement
transition in such a symmetric phase is the change in the
degeneracy of the lowest-energy excitations. In the confining
phase their degeneracy is 6: this six-fold degenerate excita-
tion corresponds to the quanta of the exciton field @, ,
which have six real components. In contrast, in the decon-
fining phase we have separate excitations with degeneracies
of 3 and 2, corresponding to quanta of n;, and 6;, respec-
tively. This may be understood by noting that the unbroken
symmetry ground state of the model S;+S, is a singlet
ground state of the SO(3) X SO(2) rotors, where in the con-
fining phase the angular momenta of the two rotors (/,,/,)
=(Lso@) sLsozy) are bound by the constraint /;+1/,
=even, but this constraint is not present in the deconfining
phase. Hence, in the confining phase the lowest excitation
has (/,==*=1,,=1), which gives the degeneracy of 6. In the
deconfining phase we can have excitations (/;==*1,/,=0)
and (/,=0,,=1), and these have degeneracies 3 and 2, re-
spectively. We point out that the exact degeneracy of [, =
*1 states requires the absence of the Berry’s phase for the
the SO(2) rotor, and comes from the inversion symmetry of
the system, as was noted below Eq. (1.8). It is not related to
the possible particle-hole symmetry of the underlying micro-
scopic model.

It is worth emphasizing that the exciton fractionalization
discussed above has a very different physical interpretation
from that of electron fractionalization discussed in “RVB”
theories of doped Mott insulators:* in the latter there are
elementary S=1/2 spinons which do not appear in our frac-
tionalized states above. Instead our exciton fractionalization
is within the sector of spin and charge density waves, and the
collective spin excitations only have integer spin.

Zaanen et al.”* have recently discussed fractionalization
in a microscopic picture of spin and charge order in “fluctu-
ating stripe’” states: the physical content of their analysis is
quite similar to that of our discussion above. However their
proposed effect action does not include the CDW phase field
0, , and we believe this is essential for a complete description
of stripe physics.

PHYSICAL REVIEW B 66, 094501 (2002)

FIG. 28. A schematic picture of the non-two-sublattice collinear
SDW order and associated CDW as a periodic array of antiphase
domain walls in Néel order at (7/a,m/a). Arrows show the change
of sign of the Néel order across a hole rich domain wall. The fields
n;, and 6; are space independent in the above configuration.

We have implicitly assumed above that the exciton frac-
tionalization transition occurs in a background of SC order.
However, a similar transition is also possible within a Fermi
liquid. We believe that such a quantum critical point is a
promising candidate for describing the finite temperature
crossovers in the normal state of the cuprates. Ordinary
SDW/CDW transitions in a Fermi liquid®® have the unsatis-
factory (in our view) feature of flowing to a free field fixed
point because they are in their upper-critical dimensions. In
contrast, the exciton fractionalization transition may well re-
main strongly coupled even in the presence of Fermi surface.
Corresponding speculations of fractionalization influencing
finite temperature quantum criticality were also made by
Zaanen et al.”* Again, their and our proposals should be dis-
tinguished from those associated with electron fractionaliza-
tion made in, e.g., Ref. 73.

C. Topological defects

An alternative picture of fractionalization, and of the vari-
ous order parameters above, may be given in the language of
the topological defects of the SDW phase; the condensation
of distinct defects in the SDW state distinguishes the new
phases that appear. To simplify the presentation of this sub-
section we will describe the case of an easy plane antiferro-
magnet, in which the vectors ®;,=e'%n;, may only be in
the x-y plane, but will also state the results for systems with
full SU(2) spin rotation symmetry. A related discussion of
defects in SDW states also appears in Ref. 74.

We start by giving a simple cartoon”*’*"> of the non-two-
sublattice SDW order ®, = const and the associated CDW
in Fig. 28. Hole rich stripes (indicated by the dashed lines)
act as antiphase domain walls for the hole poor antiferromag-
netic domains. The Néel order shown by arrows changes sign
when crossing such domain walls (the Néel order should not
be confused with the vector n;, which appears in the defini-
tion ®,;,=e'%n;, ; the former oscillates as shown in Fig. 28,
while n;, is constant in this configuration.).

Schematic pictures of the topological defects of the col-
linear SDW state are shown on Figs. 29-31 with crosses
indicating the locations of the centers of defects (see also
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FIG. 29. Elementary topological excitation of the collinear
SDW phase: a composite of 1/2 vortex in 6; and 7 disclination in
N, . Both ¢'% and n, change sign when going around this topo-
logical defect, but the physical order parameter ®,,;=e'%n;, is
single valued. »

Ref. 72). These defects can also be formally classified by
computing the homotopy groups; for systems with an easy-
plane spin symmetry the relevant homotopy group’® is
T [(S,X8,)/Z,]=ZXZ, while for full SU(2) spin symme-
try it is [(S,XS,)/Z,]=Z. These mathematical state-
ments actually obscure some of the physical content, as will
become clear from our discussion below.

We first discuss the physical content of the defect classi-
fication for the easy-plane case. Consider the most elemen-
tary topological defect: this is a composite of a 1/2 vortex for
the phase 6; and a 7 disclination (i.e., 1/2 a meron) for the
vector n;, (see Fig. 29); this defect is also a central actor in
the discussion of Zaanen e al.”* When circling around such
a defect both ¢'? and n,, change sign, however, the physical
order parameter ®,,=e¢'%n;, is uniquely defined. Given the
circulations in 6; and n; ,, we label this defect (1/2,1/2).
Actually, we can make four such elementary defects by
changing the signs of the circulation of 6; and = disclination
and taking all of such combinations: we label these as
(*1/2,£1/2) in an obvious manner. Pairs of such elemen-
tary defects may be combined to give a full vortex for 6,
which is trivial in the n;, sector [see Fig. 30; this is the
defect (1,0)] and a meron for the n;, , that it is trivial in the
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FIG. 30. Elementary topological excitation of the collinear
SDW phase: a vortex in ;. The circulation of 6 is equal to 2.
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FIG. 31. Elementary topological excitation of the collinear
SDW phase: a meron of n;, . Such an object is stable only in sys-
tems with an easy-plane symmetry. Far away from the vortex core
n;, winds in the plane similar to a usual vortex. Closer to the vortex
center it may acquire an out of plane component. Systems with full
SU(2) spin rotation symmetry only have pointlike, instanton defects
in spacetime: hedgehogs.

0, sector [see Fig. 31; this is the defect (0,1)]. Continuing in
this manner, we see that all defects are labeled (m/2,m,/2)
with m, , m, integers such that m | +m, is even. These labels
lie on the analog of a FCC lattice in two dimensions; this is
equivalent to a square lattice after a rotation by 45°, and
hence the homotopy group is ZX Z. This mathematical state-
ment hides the fact that there is a fundamental physical dif-
ference between the (*1/2,=1/2) and the (1,0),(0,1) de-
fects, which we have discussed above.

Next we turn to the case with full SU(2) symmetry. Now
the 1/2 meron in n;, is actually equivalent to the —1/2
meron (they are both better called 7 disclinations), and so
there is no distinction between (1/2,1/2) and (1/2,—1/2);
moreover, the (0,1) defect is topologically trivial. Conse-
quently the spacetime line defects can simply be labeled
m4/2, where m is an integer representing the phase winding
of 6;, and hence the homotopy group is Z. However, there
continues to be a fundamental physical distinction between
the cases with m; odd and even. For m, odd, there must be
a corresponding r disclination in n,, , while for m; even the
n;, configuration can be constant. The SU(2) case also has
point defects in spacetime, the “hedgehogs,” which prolifer-
ate at spin disordering transitions.

The various phases discussed above can be easily under-
stood using the picture of topological defect condensation in
a phase with conventional SDW order (the SC+SDW
phase).

When the elementary 1/2 vortex-m disclination compos-
ites condense we have a conventional (unfractionalized) dis-
ordered phase (the SC phase).

When vortices and merons (or hedgehogs) condense, but
1/2 vortex-7r disclination composites remain gapful excita-
tions, we find exciton fractionalization as discussed above.
The uncondensed 1/2 vortex-7 disclination composites cor-
respond to the finite energy “visons”® of the fractionalized
phase of the Z, gauge theory.

When only the merons (or hedgehogs) condense we find
the CDW phase with no spin order.

When only the 6 vortices condense we get the spin nem-
atic phase with no CDW order.
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VII. EARLIER WORK ON SC AND SDW ORDERS

As we noted earlier, this section is a detour from the main
flow of arguments in this paper. For completeness, we review
earlier theoretical and experimental work on the interplay of
magnetism and superconductivity, and discuss connections to
our treatment here. Less specialized readers may skip ahead
to the conclusions if they wish.

Early neutron-scattering measurements of the evolu-
tion of the magnetic order in La,_ 5(Sr,Ba)sCuO, with &
observed spectra which were interpreted’® as evidence for
the proximity of a quantum critical point at which the SDW
order vanished, and which obeyed strong hyperscaling prop-
erties. It was proposed’”®’3 that such a quantum critical
point (with dynamic exponent z=1) controlled physical
properties over a range of doping concentrations. Further
support for such a proposal appeared in the NMR experi-
ments of Imai and collaborators®’ which displayed cross-
overs characteristic of the vicinity of a magnetic quantum
critical point, with the critical point at a doping concentration
6=6.~0.12; similar evidence was presented recently by
Fujiyama et al** (for a review of the NMR data in this con-
text, see Ref. 4). The concentration §.=0.12 is well within
the superconducting phase, and so the magnetic transition
takes place within a background of superconducting order,
i.e., there is a second order transition between a phase with
coexisting SC and SDW order (the SC+ SDW phase) and an
ordinary superconductor (the SC phase). As we noted in Sec.
I, the neutron-scattering measurements of Aeppli er al.® at
0=0.14 provided rather direct evidence for such a magnetic
quantum critical point. Additional evidence for microscopic
coexistence of SC and SDW orders has appeared in a number
of recent experiments.'>!320:83-87

[For completeness, we also note here the additional
phases present at very low & which were not the subject of
study in this paper: in La, _ sSrsCuQy,, the three-dimensional,
two-sublattice, insulating Néel state is present for §<0.02,
and is followed by an insulating SDW state with its wave
vector polarized along the diagonal (1,#1) directions.? As
noted in Sec. I, at §=0.055 there is a first-order insulator-to-
superconductor transition to the SC+SDW phase,'? which
has the SDW oriented along the (1,0), (0,1) directions; we
discussed the properties of this SC+ SDW phase in this pa-
per.]

A significant implication of the existence of a magnetic
critical point at = §,. is that remnants of the magnetic exci-
tations should be visible in the SC phase at 6> 6, . As origi-
nally discussed in Ref. 35, for such critical points there is a
sharp, gapped S=1 collective mode (a spin exciton) which
would appear as a “‘resonance’” in the neutron-scattering
cross section. This resonance should appear at the SDW or-
dering wave vector in (1.1), and recent evidence for gapped,
low energy spin excitations at such a wave vector is in Refs.
88,89. Strong resonant scattering is also seen at the Néel
order wave vector (7r,7r) in the SC phase:88’9"93 this re-
mains at relatively high energies and may be viewed as a
remnant of commensurate correlations at short length
scales.'” Batista er al.® have argued that the strong gapped
response at (7,7r) is due to the superposition of the response

77,78
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at the two neighboring SDW ordering wave vectors at = 1 in
Eq. (1.1).

Another perspective on this quantum critical point, which
was useful in our analysis, was provided by Zhang’s SO(5)
theory.*® This theory goes beyond the picture of competing
SC and SDW orders in the ground state and adopts a stronger
assumption of a microscopic dynamic symmetry between
them; this has been supported by analytic®*™®’ and
numeric”®*? studies of a number of models. The generator of
the enlarged SO(5) symmetry is the 7 excitation, a S=1
collective mode with charge 2 and momentum (r,7).”*% A
sharp distinction between the models with and without the 7
excitation is possible in the weak interaction limit of a gen-
eralized BCS-RPA theory, where by going to the normal state
one can check for the existence of a sharp collective mode
with the quantum numbers of the 7 particle.'”” However, a
clear distinction is absent in the physically relevant strong
coupling regime. For example, in the SC phase charge is
only conserved modulo 2, and this charge 2 particle is in fact
indistinguishable from the neutral S=1 exciton in earlier
theories® of the SDW ordering transition (see also Ref. 101).
This exciton is smoothly connected to the S=1 excitation in
a paramagnetic Mott insulator,'’” and an interpretation of its
“resonance peak” as a generator of SO(5) rotations does not
hold. In zero applied magnetic field, it is possible to formu-
late a theory of the exciton ,8'35 and the associated SDW fluc-
tuations, without any explicit reference to the SC order; the
SC correlations only serve to modify various couplings in the
effective action for the SDW order. What we abstract from
the analysis of Zhang®? is the idea that the strength of the SC
order itself should be viewed as a parameter which tunes the
system across the magnetic quantum critical point: this em-
phasizes a local competition between the SC and SDW or-
ders.

We also mention that these SO(5) models naturally de-
scribe a competition between the SC and the two sublattice
SDW (Néel) phases. Non-two-sublattice SDW can then ap-
pear as a result of the competition between phase separation
and long range Coulomb interaction,'®!1% across a first-
order transition from the SC to the SDW phase. In this paper
we will describe effective models for the non two-sublattice
SDW directly, across a second-order transition from the SC
to SC+ SDW state.

The precise nature of the interplay of SC and SDW orders
in the cuprates at nonzero temperatures in three-dimensional
models been a controversial subject (this paper dealt with
two-dimensional quantum models at 7=0, and so the issues
in this paragraph are only peripherally related to our main
discussion). Following earlier general analyses,'”> Zhang®?
pointed out four generic possibilities for the phase diagram,
proposed the appearance of exact SO(5) symmetry in the
classical theory of a finite temperature bicritical point (this
symmetry is actually only present in the equal-time
correlators'®), and suggested that this is the situation most
likely realized for the cuprates. In the presence of such a
bicritical point, there is a first-order transition between the
SC and SC+ SDW phases at low temperatures, and the en-
ergy of the exciton (or 7 particle) remains relatively large in
the SC phase. The possibility of a critical point that is best
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described as corresponding to the regime exactly on the bor-
der between the bicritical and tetracritical behavior was sug-
gested in Ref. 107 [the projected SO(5) models discussed in
that paper lead to such fine tuning for the effective theories].
Other critical points, including a tricritical one, have been
suggested recently by Kivelson et al.'® We have argued
here, instead, that many features of the experiments require
the energy of the exciton to vanish at a quantum critical point
describing a second order transition between the SC and
SC+ SDW phases; this appears when the finite temperature
multi critical point is tetra critical (i.e., the four phases SC,
SDW, SC+SDW, and ‘“normal” all meet at one finite tem-
perature point) and has strongly broken equal-time SO(5)
symmetry. We also note that Aharonylog has recently shown,
by an exact renormalization group analysis of fluctuations,
that the finite temperature multicritical point has a “decou-
pled” structure, which does indeed exhibit tetracritical be-
havior. A finite coexistence region between the supercon-
ducting and antiferromagnetic phases in the cuprates has
been also recently discussed by Martin ez al.!!°

We have also mentioned the recent study of Kivelson
et al.'® of a variety of finite temperature multicritical phase
diagrams in three dimensions involving the SC and SDW
order parameters. They pay particular attention to the possi-
bility of a two-phase coexistence of SC and SDW order pa-
rameters, which should be distinguished from the homog-
enous SC+ SDW phase we have discussed in this paper. In
the presence of a finite field in the two-phase coexistence
case, we would expect that the SC component has a
H In(1/H) term in its free energy, while the SDW component
only has an analytic H* correction. Consequently, with in-
creasing H, the fraction of the SDW component will grow at
the expense of the SC component with an H In(1/H) depen-
dence.

We mention that several other proposals for the experi-
mental consequences of the competition between the SC and
SDW orders in the cuprates may be found in Refs. 111115,
and 116.

VIII. CONCLUSIONS

The primary purpose of this paper has been a description
of the phase diagram in Fig. 3 and of the static and dynamic
properties of its low field phases. The point of departure of
our work was the existence of a second-order quantum tran-
sition between the SC and SC+ SDW phases in zero applied
magnetic field (our methods can also be extended to weakly
first-order transitions, but we did not discuss this here): we
reviewed in Sec. I the early theoretical proposals and the
experimental evidence in support of such a transition. In a
nonzero field we found that this transition extended into a
line of second-order transitions indicated by AM in Fig. 3.
This transition line approaches the H=0 axis with a vanish-
ing derivative, which implied that relatively small fields
could have a significant effect on the low energy spin fluc-
tuation spectrum: this is our qualitative explanation for the
field-induced enhancement of low-energy SDW correlations
observed by Lake e al.'* Our analysis also showed that the
critical properties of the transition in finite field were in all
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cases described by the familiar O(3) symmetric ¢* field
theory: these have already been described in some detail in
earlier work.”> This mapping to the simple O(3) continuum
field theory occurs when the spin correlation length becomes
larger than the vortex lattice spacing (as is always the case
close enough to AM), and accounts for the fact that Sy, pins
the charge order fluctuations and so reduces the order param-
eter to a real, three-component vector. In principle, the Zee-
man coupling to the O(3) field theory modes should also be
included in the asymptotic critical region, but existing
work”'"” has shown how to do this. We believe that experi-
mental discovery of the critical field along the phase bound-
ary AM is an exciting possibility for future investigations.
Such a study should begin with a sample with its s value
slightly larger than s.; application of a field should then
allow tuning of the system across the quantum critical be-
havior associated with the AM phase boundary. The precise
experimental control available over the value of H should
allow unprecedented access to an interesting, interacting
quantum critical point in two dimensions. In the following
subsection we discuss a number of very recent experimental
studies, and compare them to our results to the extent pos-
sible: we also mention proposals for future experiments.

Implications for experiments

So far, the most direct connection of our results with ex-
periments is provided by neutron-scattering measurements of
the field dependence of the ordered moment in the SC
+SDW phase. Two such experiments have been
performed'*!* in different but related compounds, and both
show a reasonable fit to the predicted’ H In(1/H) depen-
dence. The experiment of Khaykovich ez al.'> appears to be
in a parameter regime similar to that of Fig. 18: there is an
appreciable ordered moment at zero field, and the elastic
scattering intensity roughly doubles in a field about a quarter
of H,,. This is an important consistency check on our entire
approach, as all numerical parameters in our computation
had physically reasonable values. As is clear from Fig. 18,
the intensity of the satellite peaks associated with the recip-
rocal lattice vectors of the vortex lattice is quite small for
these parameters: this explains why such a satellite peak was
not seen in the experiments even though they had the requi-
site wave vector resolution. The experiments of Lake ez al.'*
are in a regime similar to that of Fig. 17: they had quite a
small moment at zero field, but this grew rapidly with field
with a clear H In(1/H) dependence. Again, as Fig. 17 shows,
the satellite vortex lattice peaks have a very small intensity,
and this is presumably why they were not observed. This
experimental sample appears to be rather close to s=s,., and
we hope that a future experiment will move just past s. and
study the transition across the AM phase boundary in Fig. 3.

Our theoretical computations also suggest an approach by
which the vortex (reciprocal) lattice may be detected in the
spin fluctuation spectrum. While its influence on the elastic
Bragg peaks®***%?7 was found to be very small in Figs. 17
and 18, the spectra in Figs. 8—10 and 22 show a more sig-
nificant influence in the inelastic neutron-scattering cross
section. These plots may be viewed as the ““band structure”
of the exciton moving in the vortex lattice, and the exciton
dispersion shows clear features at the Bragg reflection planes
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in the reciprocal lattice of the vortex lattice. So we predict
that a careful study of the inelastic-neutron-scattering spec-
trum may more easily yield evidence for the presence of the
vortex lattice.

Next, we turn to the recent STM measurements of Hoff-
man et al."® These authors have observed signals of charge
order in the vortex lattice of BSCCO in the electron density
of states at subgap energies. The charge order is at wave
vectors K.,=[7/(2a) 0] and K.,=[0,7/(2a)] (period of
four lattice spacings), is peaked at the vortex cores, and ex-
tends about to a distance which is about a quarter of the
inter-vortex spacing. These measurements are most likely in
the SC phase, where the SDW order is dynamically fluctuat-
ing. The nucleation of charge order by vortices in such a
phase (but with the spins remaining dynamic) was predicted
in Refs. 10, 51. Lattice scale theories?® of charge order in
superconductors with preserved spin rotation invariance also
found a substantial doping range of bond-centered charge
order with a period of four lattice spacings, as did density
matrix renormalization group studies.’> The spatial extent of
the envelope of this charge order in the SC phase has been
computed in the present paper: the length scale in the obser-
vations is quite similar to that in our computations in Figs.
15 and 16. These computations were carried out for the same
set of parameters (only the value of s—s, was changed to
tune the doping level) used to obtain general quantitative
consistency with the neutron-scattering experiments above.
The data of Hoffman et al. seems rather similar to the result
for 2(r) at point k in Fig. 16, and the location of this point
in the phase diagram of Fig. 6 is very reasonable, given the
optimal doping of their sample and of their H value. This
agreement suggests to us that the system studied by Hoffman
et al. has dynamic spin excitons, above a spin gap, which
extend throughout the vortex lattice, as in Figs. 15 and 16;
the charge order is then a signal of the pinning of these
excitons by terms like those in S, . An alternative model, in
which the spin order was confined only to the region where
charge order has been observed in STM, would have diffi-
culty explaining the neutron-scattering experiments: spin or-
der so confined should yield easily observable satellite elas-
tic Bragg peaks at the wave vectors of the reciprocal of the
vortex lattice.

Our computations also offer explanations for other fea-
tures of the STM data which would be difficult to understand
in terms of charge order nucleated independently in each
vortex core: there is a noticeable correlation between the
phase and orientation of the charge order between different
vortices, which extends across the entire experimental
sample. We believe this correlation is induced by the ex-
tended spin exciton states above the spin gap. Our model for
the STM experiments can therefore be summarized as fol-
lows: the superflow in the vortex lattice reduces the energy
of extended spin exciton states, and the sliding degree of
freedom associated with spin density is then pinned by the
vortex cores; this results in static CDW around each vortex,
but the SDW order remains dynamic and gapped. A particu-
lar strength of our model is that it consistently explains the
STM and neutron-scattering experiments using the same set
of parameters.
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For the future, our theory suggests that neutron-scattering
and STM studies of SDW/CDW order should be carried out
in systems where a uniform superflow has been induced di-
rectly by a current source, with no magnetic field penetrating
the sample. This will eliminate the vortex cores, but the su-
perflow should still enhance the tendency for SDW/CDW
order. Charge order can be pinned near impurities/defects of
various kinds (e.g., dislocations, grain boundaries, surfaces),
and so become visible to STM.

We briefly comment on the high field phases (SDW and
“normal”’) in Fig. 3, in which superconductivity is destroyed
by the magnetic field. This regime may be of relevance to the
experiments of Boebinger e al.''® Dynamic fluctuations of
the superconducting order surely become important as we
approach these phases, and so the theory of the present paper
is not complete. Nevertheless, given the nucleation of charge
order near the vortex cores in the SC phase (and its observa-
tion in the STM experiments'®), it is natural to presume that
this charge order survives into the ‘“normal” phase. The
transport properties of the nonsuperconducting phases re-
main a very interesting topic for future research, but our
naive expectation is that they are insulators.

Another interesting type of experiments on superconduct-
ors in the vortex state has been performed recently by Curro
et al."® and Mitrovi¢ et al.'®'” They measured the local field
dependence of the '’O spin-lattice relaxation rate (1/7;) and
spin-echo decay rate (1/7,), this allowed them to deduce the
rates as a function of position in the vortex lattice. Below we
suggest how these experiments can be interpreted in our pic-
ture of the mixed state of the cuprates. The spin-lattice re-
laxation rate 1/7; measures the rate at which nuclear spins
are overturned as a result of interaction with electron spins.
In the BCS picture of vortices in a d-wave
superconductor, >1*19120 this quantity is proportional to
N(0)? and therefore increases dramatically close to the vor-
tex cores due to suppression in the superconducting gap. On
the other hand, as discussed in detail earlier in this paper, for
the not too overdoped cuprates, charge density waves are
nucleated around the vortex cores, which should lead to a
suppression in the local quasiparticle density of states, and
hence 1/T,. This effect appears to have been observed in the
experiments of Ref. 16. Another mechanism for the nuclear
spin relaxation is via the collective excitations of the electron
system. In particular, the excitonic SDW excitations provide
a large number of low energy S=1 excitations for flipping
the nuclear spins. We suggest that a strong increase in the the
high field part of 1/T, (corresponding to the vortex cores)
with increasing magnetic field in the experiments of Mitrovi¢
et al'® reflects the growth of the SDW correlations and the
corresponding increase in the excitonic susceptibility. It
would be interesting to study this enhancement quantitatively
and compare it with the H In(1/H) behavior observed in
neutron-scattering experiments and derived theoretically in
this work. We mention that the non-two-sublattice SDW
makes this mechanism more effective for relaxing the 'O
nuclear spins, in contrast to the (7,7) electron magnetism
which leads to a magnetic field on the oxygen sites only
through the Dzyaloshinskii-Moriya interaction and weak fer-
romagnetism. The echo decay rate 1/T, is related to the in-
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homogeneity of the local magnetic fields. The appearance of
the local SDW order (or sufficiently slow fluctuations)
should therefore contribute to the increase in 1/7,. The SDW
enhancement is relatively stronger around the vortex cores,
which should give rise to the enhancement in 1/7, in this
region; this agrees with the experimental observations in Ref.
15. The analysis of our paper suggests that the difference in
1/T, will not become very large upon approaching the SC to
SC+ SDW boundary, as the SDW excitations become ex-
tended close to this phase boundary. As the magnetic field is
increased, the SDW fluctuations should become more pro-
nounced, so we expect that 1/7, will increase for all values
of the local field. By contrast, in the BCS theory, one would
expect that 1/7, decreases with increasing magnetic field,
since the field becomes more uniform.
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APPENDIX A: DZYALOSHINSKII-MORIYA INTERACTION

An orthorombic distortion of La, _ sStsCuQ, results in the
Dzyaloshinskii-Moriya (DM) interaction for the Cu spins

HDM:)\Zﬁ (_)ij‘gix§i+5, (A1)
L,

where the sum over & extends over all the nearest neighbors

of site i, and d is a unit vector in the direction of the
orthorombic a axis [i.e., a diagonal (1,1) direction].*” In this
appendix, we study the effect of the DM interaction on the
non-two-sublattice SDW, and for simplicity we consider a
SDW at one wave vector only. The Hamiltonian (A1) mixes
wave vectors q and Q+q, where Q= (7/a,m/a). In this
case we need to modify Eq. (1.2) to

S(r,1)=Rel 557D, (1,7) +¢ Ko O N (1,7)].
(A2)

Straightforward algebra shows that the contribution of the
DM interaction to the action is

|M?

2 )
(A3)

SDM+SM=f dzdr‘)\(KS)J-[CISXXMf—Fc.C.]Jr

where N(K;)=2\[cos(K,a,) +cos(K;,a,)] and the last
term comes from the fact that spin fluctuations M . are mas-

sive. We can now integrate M out, and find the anisotropy
term for the SDW order parameter
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FIG. 32. Phase diagram of Sy, in Eq. (1.8) including the Zeeman
coupling in Eq. (B1). The point A is the same as the corresponding
point in Fig. 3. The central argument of Appendix B is that it re-
quires a much larger field for s>s. near A to induce SDW order
above, than in Fig. 3.

N (K x

SDMz—Tf d*d7|® xd|?. (A4)

From Eq. (A4) we see that the DM interaction favors the

collinear SDW, with direction of & perpendicular to d,ie.,
along the orthorombic b axis (direction of the SDW ordering
is always in the CuO plane). We also expect that the anisot-
ropy becomes weaker with increasing doping due to a de-
crease of N(K;). However, the typical scale for the anisot-

ropy is small,?” and so we expect that the quartic u,|®2|?
term in Eq. (1.8) plays a dominant in selecting the collinear
SDW at low temperatures. We note that Spy is quadratic, so
it will favor the collinear SDW fluctuations even above the
transition temperature.

APPENDIX B:
ZEEMAN COUPLING TO THE MAGNETIC FIELD

This appendix briefly discusses the effect of the Zeeman
coupling to the magnetic field on the action Sg in Eq. (1.8)
for the SDW fluctuations. We will see that the effects are
weaker than those considered in the body of the paper, espe-
cially near the critical point A at s=s,. in zero field (see Fig.
3).

As reviewed in Ref. 121, in systems without an over-
damped particle-hole continuum of spin excitations (as is the
case here hear the ordering momenta K, ,), we can deduce
the coupling to the external field using simple gauge invari-
ance arguments. In particular, the primary consequence of
the external field is to rotate the spins uniformly about the
field axis, and this can be accounted for by the following
replacement to all temporal gradient terms

0T(I)xa—>57(1)a—i6aﬁyHﬁq)xy, (Bl)
and similarly for ®,,. Here H, is the three vector in spin
space representing the external field. The resulting Sg is
closely related to models that have been studied in some
detail™'"" in the context of double layer quantum hall sys-
tems. From this work, we can deduce the phase diagram
sketched in Fig. 32. The most important property of this
phase diagram is that zero field phase transition at s=s,
moves to finite field as H~(s—s.)*” where the exponent
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zv=1/2 in mean-field theory. Fluctuation corrections will
slightly increase this value, but the present critical field will
nevertheless remain larger than the field in Eq. (3.9) associ-
ated with the corrections arising from the superflow. In par-
ticular, the phase boundary in Fig. 32 approaches the H=0
line with an infinite slope. Consequently, the Zeeman shift is
subdominant to the stronger effects discussed in the body of
the paper.

APPENDIX C:
MICROSCOPIC THEORY FOR COUPLING
BETWEEN SC AND SDW ORDER PARAMETERS

In this appendix we discuss the microscopic origin of the
effective interaction « between the SC and SDW order pa-
rameters in Eq. (1.10). We will argue that repulsive x>0 is a
remarkable property of doped Mott insulators, but weakly
interacting electron systems quite possibly have k<<0.

We start by considering a weakly coupled Fermi liquid of
electrons c;, moving on the sites i of a square lattice which
is close to superconducting and commensurate antiferromag-
netic instabilities

Z= f DcDeeStel,

L

S[c]=foﬁd7'<2 cjaTci—H[c]),

Hc]= ; ekc};,c,m+ Himp— Ek: (AkaTch +H.c.)
g

0 b
+ —®D ¢l paTasCipgt=-
e P > Ci+0aTapCip o (C1)

Here A, = A((cos k,—cos k,)/2=Ad, is the superconducting
d-wave order parameter, and we assume a nearest-neighbor
tight binding dispersion of the electrons €,=—2¢(cosk,
+cos ky)— M, Q= (1,1), and everywhere in this section mo-
mentum integrals go over the first Brillouin zone. Hy,, de-
scribes the static potential of the impurities which gives rise
to a finite quasiparticle lifetime

lT =27 nimpN(0) V2, (C2)

where N(0) is the density of states on the fermi level and V
is the impurity potential.

Assuming that A, and & are small we can integrate out
the fermions and obtain

Z=e_5F,

F=Fg[Al+F Al @1+ k| Ao|>D2. (C3)

The diagrammatic representations of the terms that contrib-
ute to x are shown on Fig. 33. Solid lines correspond to the
quasiparticle propagators

G(p’wn):[iwn_Ep_i/(ZT)Sgn(w)]’ (C4)
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FIG. 33. Diagrams that contribute to the effective interaction
between the superconducting and antiferromagnetic orders for
Fermi liquids. Solid lines correspond to the quasiparticle propaga-
tors, zigzag lines correspond to the d-wave superconducting order
parameter and contribute a factor d,,; the wavy line describe the
SDW and a dashed line describes the static disorder potential.

zigzag lines correspond to the d-wave superconducting order
parameter and contribute a factor d,, ; wavy line describe the

SDW, and dashed line describes the static disorder potential.
We have

1 d*p
(a):’EJ dederQ% G(w,.p)G(—w,,—p)

XG(wn ’p+Q)G(_wn ’_p_Q),

2
dp G(wn ’p)G(_wn ’_p)

w

1 d’p
(&)= ,Ef (2)?

XG(wn ’p+Q)G(_wn ’_p_Q)’

n

<c>=nimpv2l ; L(w,)M(w,) (C5)

with

d*p
L= | e

’p
M(wn):f (27T)2G(wn ’p)G(_wn ?_p)G(wn ’p+Q)~

(C6)
It is useful to note that if we define the static spin suscep-
tibility at momentum Q in the superconducting state

d;G((D” 7P)G(_wn ’_p)G(wn 7P),

1 d’p
Q)_ - E % J (27T)2{Gsc(wn 7p)Gsc(wn »P"'Q)

+F(w,.p)F(w,.p+0)}, (C7)
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with the Green’s functions in the superconducting state de-
fined in the usual manner,122 then

_ Px(Q)
AAEIA, -

(C8)

which agrees with Egs. (B6) and (B7).
In the limit w7>1 the main contribution to xk comes from
the diagram (a) and we find for T—0

s !

o
K 7T<dp>N(0)B 10 (w,+127)[ >+ (w,+1/27)%]

1
~ = Z—quln(,u,r). (C9)

It is important to note that in deriving the expression (C9) we
relied on the fact that we have a d-wave superconductor with
d, o= —d, and took the average value of (di) on the Fermi
surface to be 1. Hence, such Fermi liquids on the square
lattice have an effective “‘attraction” between the antiferro-
magnetic and superconducting orders, which can be traced
back to the enhancement of the antiferromagnetic suscepti-
bility (C7) in the d-wave superconducting state.

We have so far examined the interplay between SC and
SDW orders near the boundary of their instability to a
weakly interacting Fermi liquid. Now let us turn to the same
interplay, but in the vicinity of a Mott insulator. Strong in-
teractions are required to produce the Mott insulator, and so
the perturbative approach of Eq. (C1) cannot be directly ap-
plied. Instead, we have to turn to alternative strong coupling
approaches, in which the existence of the Mott insulator is
built in at the outset. Such approaches have been discussed
recently, and these are expressed in terms of collective de-
grees of freedom which are natural in the vicinity of of Mott
insulator. Electron spin singlet states, spin one magnons,
Cooper pairs of holes, and fermionic quasiparticles are intro-
duced as individual excitations, and interactions between
them are obtained from the microscopic #-J Hamiltonian®!'?
(phenomenological models of just the bosonic degrees of
freedom have also been considered'”’). All these papers find
strong repulsion between magnon and hole pair states, aris-
ing from the constraint on the allowed Hilbert space. The
origin of this repulsion therefore lies in the short distance,
lattice-scale physics of allowed low-energy states near a
Mott insulator, rather than effects near the Fermi surface in
the weak-coupling analysis discussed earlier. The Cooper
pair-magnon repulsion immediately implies repulsion be-
tween the superconducting and antiferromagnetic orders,
since the superconducting and antiferromagnetic phases cor-
respond to the condensates of the corresponding particles. As
an example, see Fig. 2 in Ref. 51: the pairing amplitude is
weak in the region with magnetic order, but rises rapidly
once the magnetic order is suppressed.
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APPENDIX D: RENORMALIZATION GROUP ANALYSIS
OF COMPLEX VECTOR FIELDS

This appendix will briefly review existing theoretical re-
sults for the critical properties of field theories which are
similar to Sg, , but simpler. The analysis of the full S¢, theory
will be addressed in future work.

The simplification made here is to consider a field theory
with only one complex vector field ®,, with a=1---m;
the original model has two such fields ®,, and ®, ,. For
the case of only one such field, we can always rescale x and
y coordinates to make all velocities unity; then in d space
dimensions we are interested in the field theory with action

u
Sff d'r A7l |0,D 2+ |V,D 245|024 S|,

u
+ o). (D1)

This theory has upper critical dimension d=3, and can be
studied in an expansion in €=3 —d. Renormalization group
equations for the quartic terms were obtained to O(€®) by
Jones et al >~

dul 2 2
WZ6u1—Kd[(m+4)u1+4u1u2+4u2]
23 3 2
+2K; 5(3m+7)u1+22u1u2
+(5m+24)u1u§+4(m+2)ug ,
dl/l2 )
WZEMZ_Kd[muz‘FéM]Mz]

—2K5[(m—4)u%—2(5+3m)u%u1

1
—5(5m+41)u2u% , (D2)

where K,=2""!/[79°I'(d/2)]. These flow equations al-
ways have two unstable fixed points: the Gaussian point u
=u¥=0 and the isotropic O(2m) Heisenberg fixed point

< ! +0(€
Kymia O

uF=0. (D3)

For sufficiently large or small m there may also be two other
fixed points

€ 2 — 12 2
u —6—KdBm[3m —12m+144%3mR, e+ O(€°),

€
v¥=—R, [m*+m—12+3R)* e+ 0(€),

e (D4)
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where B, '=m3+4m?*—24m+144 and R,,=m>—24m
+48. The last two fixed points are absent in the case of m
=3. We note, however, that for m=2 and in the large m
limit a stable fixed point (the so-called chiral fixed point, see
Ref. 57) is possible for u#,>0, so it may control the transi-
tion to the spiral order. When u,<0, the system always
flows towards strong coupling u,— —%, so we expect the
transition to collinear order to be weakly first order.

APPENDIX E:
NUMERICAL SOLUTION IN THE SC PHASE

We will use the methods and notation described in
Brandt.'”* First, assume we know Vy(r). Write its Fourier
expansion in the form

vH(r)=§G) dge'ST, (E1)

where dg=d _ g are both real, and G are the reciprocal lattice
vectors of the triangular vortex lattice. Unlike the convention
followed by Brandt, the sum over G always includes G
=0, unless stated otherwise explicitly. In Brandt’s notation,
Eq. (E1) can be inverted by dg=(Vy(r)cos(G-r)), where
the angular bracket denotes a spatial average. Because of the
symmetry we can work on only half a unit cell of the vortex
lattice, and for simplicity we choose the half unit cell to be
the one plotted in Fig. 13.

To obtain G, we want all the eigenvalues and eigen-
functions of the Schrodinger equation (4.20). As in the usual
Bloch theory, these are labeled by a wave vector k in the first
Brillouin zone, and a band index w. The explicit form of
these are

6‘ik~r

Eﬂk(l‘)z \/T %: C#(;(k)eiG-r’ (E2)
u

where Ay is the area of the unit cell, and the ¢, (k) are
normalized so that

% e u(K)2=1. (E3)

If we choose M values of G (also as in Brandt), then w=1
--+M, and the c,g(k) are the orthonormal eigenvalues of
the M X M matrix Mg g/(k) where

> Mee(Ke o (R)=EL(K)c,6(k),
GI
Mg (k) =(k+G)* 8¢ g +dg-g - (E4)

After this diagonalization we obtain the Fourier components
of Eq. (El) as
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Nu

+
N Ay

dy=s—s.t«k

2 aG—l
G

coth[ Eg(K)/(2T)] B 1
Eg(k) Vk+G)>+A2]
(Es)

X2

k.G

and for G#0

2N A, kE’M CMG’[C,U,(G’+G)(k)

coth[ E,(k)/(2T)]
E, (k) '

e -6k ] (E6)
where the sum over k is over N, points which average over
the first Brillouin zone. Also note that c,g(Kk)
=c¢, [ R(K)], where R denotes a rotation by 7r/3. This
can be used to cut the number of k points in 1/6.

The iteration of Egs. (E5) and (E6) will produce the so-
lution to Eq. (4.17) for a given ¢y(r). The next step is to
solve Eq. (4.18), given Vy(r) in Eq. (E1). This is done just
as in Brandt. His Eq. (9) is replaced by

2

N 2 By, A2
auY |¢0| 4MY( H O)

(0]

(-Vi+2)o=2

K2
—(1—4u—Y)wz—wQ2—g} (E7)

and a corresponding change to Brandt’s Eq. (11). The new
form of Brandt’s Eq. (12) is

ag=ag

|

2
1= oy | 90l e V= 83)
4uY 'O 4y P TH 70

(0)[1—k*/(4uY)]

w—sz—g>
X

(E8)

After determining @ from above, we use this result to
obtain new Vy(r) by solving Eq. (4.17), and so on. By itera-
tion of Eqgs. (4.17) and (4.18), we will be able to have the
final solution to both of them.

Note that in order to get our numerical results, we did use
a finite momentum cutoff. However, the equations have been
designed to be cutoff independent and we did find that the
Fourier components of ¢,(r) and Vy(r) decreases rapidly
upon going to higher momenta.

APPENDIX F:
SPIN ORDERING PHASE BOUNDARY NEAR M

Here we discuss the analytical solution of Egs. (4.17) and
(4.18) in the vicinity of the multi-critical point M in Fig. 3,
with the aim of determining the location of the AM phase
boundary in its vicinity. Analytical progress is possible be-
cause the amplitude of the superconducting order | ¢ (r)|? is
small in this region. Our analysis will show that in this re-
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gion AM behaves as H=1—9@(k—s+s.), where Q is a nu-
merical constant. The earlier full numerical solution in Sec.
IV C led to the estimate 0~ 1.2, and we shall find a consis-
tent result here.

In addition to Eq. (E1), we use the Fourier expansions

dwd?*k
T Gy(r,r,o J = e'G
E,; a{ W~ 87 +k2+A2 %: ¢
(F1)
|¢H(r>|2=§ age'®T. (F2)

Note that this notation for a is slightly different from that
above and in Brandt.
Then Eq. (4.17) becomes

d():AO"‘K _|¢'0| )+2Nub0,

dg=rag+2Nubg, G#O0. (F3)

Second, we can solve Eq. (4.6) by a Feynman graph ex-
pansion in dg.(. This yields

b fWkdk coth( \/k2+d0/2T) 1 +Od,0)
“lo2m | 2\k+d, 2\ K2+ A2 670
Vdo—A
= %4—0(0]@0) at T=0 (F4)
and
b de (=  d*k coth( vk +do/2T)
¢ 2Jo (k+G)2—k2|  2K*+d,

coth[ V(k+G)>+d/2T]
- |+ O(d% 1)
2J(k+G)%>+d,
__ % +O(d? T=0, G#0 F5
= 8|G| ( ;&0) at 1'=0, #0. (F5)

Now we can solve Eqgs. (F3),(F4),(F5) for the d¢ in terms of
the ag .

Finally, we need to determine the ag by solving Eq.
(4.18). This can be done with the realization that for small
Yy , the functional form of the superconducting order param-
eter can be assumed to be equal to the Abrikosov solution.
So we assume

A
aopd
ag=— °2G, G+0, (F6)

where ag, is given in Eq. (8) of Brandt. Now, it remains to
obtain a single additional equation to determine a. This we
determine by multiplying Eq. (4.18) by ¢7(r) and averaging
over all space. Using the property of the Abrikosov solution
for yy(r), we obtain
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a3

4 Y(E dGa G~ Aoao> Ha0=0. (F7)

2 aga - G_|¢o| ao)

Equations (F3)—(F7) are now simple equations that can be
easily solved to obtain all the Fourier coefficients. The line
AM corresponds to dy=0. Our analytical result of the slope
of AM near M point is 0~ 1.1, which is in acceptable agree-
ment with that obtained from the full numerical solution.

APPENDIX G:
NUMERICAL SOLUTION IN THE SC+SDW PHASE

Here we will describe the solution of Egs. (5.7), (5.4), and
(5.8) for the unknowns Vy(r), ¢y(r), and ny(r). First, as
Eq. (54) is linear in ny(r), it is convenient to rescale

ny(r)—ny(r)/\2Nu, (G1)
and these equations become
Vir(r)=s =5+ k[ ¢ (r) > = 11+ nj(x)
LN TS G ) fdwdzk 1

r’r7 n - 5

! w, " ¢ 8 wr+k?
(G2)
[— Vit Vu(r)]ng(r)=0, (G3)

K2 5 K
(l—m)[|¢H(r)| —1]+ m[vH(r)_S+sc-]

—(V,.—iA)?|¢y(r)=0. (G4)

We use two-step iteration to self-consistently solve the
equations (G2, G3, G4). The first step consists of solving Eq.
(G2) and (G3), and the second step is solving (G4).

For the first step, we use a four-substep iteration. First,
define and calculate

() =s—sc+l|y(r)|*—1]
dod*c 1
TE Gy(r,r,m,)— j el

(G5)

+2Nu

Second, define and calculate the inverse of operator

A=—V2+ 9y(r). (G6)
Third, calculate ny(r) which satisfies
ny(r)=—A""nj(r). (G7)
Last, calculate Vy(r) using
V(1) = 55(r) + n(x). (G8)
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Choosing proper initial value for Vy(r) and ny(r) and
iterate Egs. (G5), (G6), (G7), (G8) will produce the solution
to both Egs. (G2) and (G3).

In practice, the above steps are performed in momentum
space. If we let

Vi(r) =2, dge'®™,
G

m(r)=§ gge'®T, (G9)

where G are the reciprocal lattice vectors of the vortex lattice

[note that f differs slightly from f¢ in Eq. (5.10) because of
the rescaling Eq. (G1)], then Egs. (G5)—(G8) become

%ac—l)

coth[ Eg(K)/(2T)] 1
Eg(K) " k+G[|’

(G10)

go=S—S. Tk

Nu

+
N Ay k£G#0

Nu

2NkAZ/{ k.G’ ME K)#0

8= —kKagt cuc'lCuc +6)(K)
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AGG’:GzéG,G’+gG—G’ . (G12)

Fe=—> Aéé(nf,(r)cos(G’-r)), (G13)
G/

dG=gG+(n§,(r)cos(G’ ‘T)). (G14)

Note that in the substep (G13) the equation is solved by
another smaller iteration.

The second step is very similar to the case with no mag-
netic order as in Appendix E. Eq. (G4) can be solved by a
two-substep iteration of the following equations:

2

(-V2+2)w=2 [1+G(r)]w—(1—4Z—Y>w2—wQ2—g},
(G15)

where

K> K

G(l’)Z(l—m)—m[VH(r)—S‘i‘sc], (G16)

and

_ 2_

. (wG— w0 —g) G17)

T A — Y (4uY)]

From the iteration results we are able to determine Vy(r),
ny(r) and Yy(r).

coth[E,(K)/(2T)]
+C,U,(G’*G)( ; (k) N (Gll)
N
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