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We extend recent low-temperature analyses of competing orders in the cuprate superconductors to the
pseudogap regime where all orders are fluctuating. A universal continuum limit of a classical Ginzburg-Landau
functional is used to characterize fluctuations of the superconducting order: this describes the crossover from
Gaussian fluctuations at high temperatures to the vortex-binding physics near the onset of global phase coher-
ence. These fluctuations induce affiliated corrections in the correlations of other orders, and in particular, in the
different realizations of charge order. Implications for scanning tunneling spectroscopy and neutron-scattering
experiments are noted: there may be a regime of temperatures near the onset of superconductivity where the
charge order is enhanced with increasing temperatures.
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I. INTRODUCTION

A number of recent perspectives1–8 have highlighted new
experimental9–14 and theoretical15–27 works exploring the in-
terplay between the multiple order parameters which charac-
terize the ground state of some of the cuprate superconduct-
ors. Good evidence was obtained for a strong coupling
between the superconducting order and density wave order
in spin/charge/bond correlations !described more precisely
below". In particular, by tuning the superconducting order by
an applied magnetic field at very low temperatures (T), a
strong field-dependent variation was observed in the latter
correlations.
In this paper, we explore the possibility of observing re-

lated connections in the finite temperature ‘‘pseudogap’’ re-
gion above the superconducting critical temperature Tc .
Here, the superconducting order has strong T-dependent
fluctuations; we will compute these fluctuations in the frame-
work of a two-dimensional Ginzburg-Landau theory, includ-
ing a precise characterization of strong fluctuations obtained
from numerical studies. We will show that the model of Ref.
16 predicts that such fluctuations lead to a corresponding
sympathetic variation in the autocorrelations of the other or-
ders. Working to linear order in the coupling between super-
conductivity and these orders, we provide a computation of
certain universal characteristics of the T dependence of the
latter fluctuations. Our results will also be formally extended
to T#Tc for completeness, but it must be noted that we
neglect the interlayer coupling and quantum effects, which
become important at lower T.28
We begin by defining the order parameters under consid-

eration. The primary order is the complex superconducting
order #(r) which describes the spatial variation in the order
associated with condensation of Cooper pairs. This is ex-
pected to undergo strong ‘‘phase’’ fluctuations29 for T near
Tc . Using the proximity of the underdoped cuprates to a
superfluid-insulator quantum transition, Refs. 30,31 argued
that ‘‘amplitude’’ fluctuations should be treated at an equal
footing,32 and proposed that such thermal fluctuations could

be described by a classical partition function of a suitable
universal continuum limit of the Ginzburg-Landau free en-
ergy: this will be reviewed here in Sec. III. Such an approach
describes the crossover from Gaussian superconducting fluc-
tuations at temperatures well above Tc , to the vortex physics
of the Kosterlitz-Thouless transition near Tc . A dynamic
theory with a similar static component !although with a lat-
tice cutoff" was recently used33–35 to describe the notable
measurements36 of the Nernst effect.
This fluctuating superconductor is also expected to have

appreciable correlations in other order parameters. The spin-
density-wave order is described by the complex three-
component vectors $x% , $y% , where %$x ,y ,z extends over
the three spin directions, and the spin operator on site r,
S%(r) is given by

S%!r"$Re&eiKsx•r$x%!r""eiKsy•r$y%!r"' . !1.1"

Here Ksx ,y are the spin-density-wave ordering wave vectors
along the x and y principle axes of the square lattice: near a
doping of ($1/8, we have Ksx$(3)/4,)) and Ksy
$() ,3)/4). In a similar manner we can define bond order
parameters *ax ,y(r) by examining the modulations in the
exchange energy of a pair of spins separated by a distance a:

S%!r"S%!r"a"$Re&eiKcx•r*ax!r""eiKcy•r*ay!r"' .
!1.2"

The special case a$0 of *ax ,y is a measure of the charge-
density wave order. Comparison between Eqs. !1.2" and !1.1"
suggests that the ordering wave vectors are related by Kcx ,y
$2Ksx ,y , and this is observed experimentally.
A number of other order parameters which are invariant

under spin rotations, like *ax ,y , can also be defined.16,21
These include the site charge density, the average electron
kinetic energy in a bond, or modulations in the pairing am-
plitude. By symmetry, all such quantities will have modula-
tions at the wave vectors Kcx ,y , and we can therefore expect
that their order parameter fluctuations will track those of
*ax ,y . Differences in microscopic physics can, of course,
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make some of these modulations much larger than others. We
will not explicitly consider all such possibilities here, and the
reader should view *ax ,y as a suitable representative of the
order parameters characterizing modulations at the wave
vectors Kcx ,y in observables invariant under spin rotations.
We will subsequently refer to the order represented by *
simply as charge order.
While the focus of this paper is on the interplay between

the superconducting fluctuations and the orders mentioned
above, it should be clear to the reader that our considerations
are quite general. Simple extensions lead to similar effects in
the interplay of superconductivity with most of the other
orders in the zoo of possibilities considered in the theory of
the cuprates.
In considering correlations of # , $ , and * in the fluc-

tuation region, it is important to consider the influence of
random static impurities which are invariably present in the
cuprates. As almost all impurities preserve electron number
and spin rotation invariance, their influence on # and $ will
consist of perturbations in the random exchange class !this is
discussed more explicitly in Sec. II". In contrast, the order *
breaks only lattice symmetries, and is consequently subject
to the far more disruptive random field perturbations.37 In
two spatial dimensions, this implies that true long-range or-
der cannot develop as T→0, and that the * correlation
length saturates at a finite value. We will assume here that
there is a local onset of * , $ , and # orders at temperatures
where the pseudogap develops, but at lower temperatures *
correlations are predominantly controlled by the random-
field disorder, and have only a weak, intrinsic T dependence.
This is also consonant with the result that thermal fluctua-
tions are irrelevant at the random-field transition in higher
dimensions.37 In contrast, the fluctuations of # and $ are
strongly T dependent, and can have an infinite correlation
length as T→0. The # order becomes quasi-long-ranged at
T$Tc and has the strongly T-dependent Gaussian-to-vortex
crossover noted above at T%Tc . The $ order can also have
the exponential rapid T dependence associated with the
breaking of O!3" spin rotation symmetry as T→0.
This paper will consider the regime above Tc where

+#!r",$0, +$x ,y%!r",$0, +*ax ,y!r",-0. !1.3"

The nonzero value +*, is due to the presence of random-
field perturbations which explicitly break lattice symmetries,
and so allow * to locally have a nonzero mean value which
will fluctuate randomly as a function of r. As noted above,
we assume that +*, only has a weak intrinsic T dependence.
However, the fluctuations of the # , $ , and * orders are not
independent, and so the strong T dependence associated with
the Gaussian-to-vortex crossover in # will induce a corre-
sponding T-dependent variation in +*,. This paper will com-
pute this variation and suggest associated experimental tests.
Strictly speaking, because there is only quasi-long-range or-
der in # below Tc , the expectation values !1.3" apply also
for T#Tc : indeed, our methods and results extend also to
T#Tc . However, as noted earlier, we neglect the effects of
interlayer couplings and of quantum fluctuations, and so our
low T results should be treated with caution.

Our theory for the fluctuating orders and their interplay is
summarized in Sec. II, which also contains our main results.
Details of the continuum theory of the superconducting fluc-
tuations and its Gaussian-to-vortex crossover appear in Sec.
III. Section IV discusses experimental tests and possible ex-
tensions of our theory.

II. CORRELATIONS BETWEEN FLUCTUATING ORDERS:
MAIN RESULTS

This section will introduce the free energies which control
the fluctuations of the order parameters, and state our main
results on the T dependence of the * order at T%Tc .
We describe the fluctuations of the superconducting order

#(r) by a classical continuum partition function over the
Ginzburg-Landau free energy30

ZGL$! D#!r"e!FGL /(kBT),

FGL$! d2r" .2

2m*
#“r#(r)#2"a!T "##!r"#2"

b
2 ##!r"#4$ .

!2.1"
We use here the notation of Refs 33–35 m*, a(T), and b are
parameters which can be computed, in principle, from the
microscopic physics of the underlying electrons. The coeffi-
cient of ##(r)#2, a(T), vanishes at a mean-field transition
temperature, a(Tc

MF)$0, which will be distinct from the
temperature Tc at which there is a Kosterlitz-Thouless tran-
sition, i.e., a(Tc)#0. The purely two-dimensional, and clas-
sical theory !2.1" is expected to apply to the cuprates only for
T%Tc : below Tc we have to also account for three-
dimensional effects arising from interlayer couplings, and for
quantum effects at low enough T. All such effects will be
neglected here, but for completeness, we will nevertheless
discuss properties of the theory !2.1" over the full range of T
values.
An important point is that the functional integral in Eq.

!2.1" is not defined on its own and needs an ultraviolet regu-
lator. In the physical system this is provided by the underly-
ing electron physics on the lattice, but this is very difficult to
characterize explicitly. Here, we shall follow the procedure
proposed in Ref. 30: the ultraviolet dependence can be ac-
counted for by a suitable renormalization in the value of
a(T). However, because we do not know the explicit form of
the ultraviolet cutoff, we cannot a priori compute the needed
shift in a(T). This lack of knowledge can be circumvented
by using the experimental value of Tc as an input into our
calculation. The knowledge of the actual Tc , combined with
the parameters in Eq. !2.1" then allows a quantitative com-
putation of the Gaussian-to-vortex crossover with no free
parameters. We reiterate that Eq. !2.1" cannot be regarded as
a fully predictive theory on its own, and so cannot, even in
principle, predict the actual value of Tc : once Tc is deter-
mined by other means, precise quantitative predictions for
other observables become possible.
The Gaussian-to-vortex crossover can be expressed in

terms of the following dimensionless parameter
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g/
.2

m*b
"a!T "

kBT
!
a!Tc"
kBTc

$ . !2.2"

The parameter g should be a monotonically increasing func-
tion of T. For T&Tc , g0!1/T , at T$Tc , we have g$0,
and above Tc , g takes positive values. We will see later that
the present continuum theory eventually breaks down at
large T, when g begins to acquire a nonmonotonic depen-
dence on T. The value of 1/#g# is a measure of the strength of
corrections to the mean-field theory of ZGL .
It is important to note that the T dependence of a(T) in

Eqs. !2.1" and !2.2" is nonuniversal, and this will lead to
some nonuniversality in the T dependence of all our predic-
tions. However, one of our main points is that there is a
universal dependence on the parameter g. Moreover, once we
assume a linear T dependence of a(T) near Tc &as is com-
monly done, and we will do in Eq. !3.13"', the T dependence
of our predictions becomes specific.
Aided by the results of Ref. 30, 39, and 40 we will show

that it is possible to obtain precise predictions for a variety of
correlators of ZGL . We quote a result which will be useful in
our analysis here of multiple order parameters:

.2

m*
" +###2,T

kBT
!

+###2,Tc
kBTc

$$D!g ,T/Tc", !2.3"

where D(g ,T/Tc) is a universal function. The averages on
the left-hand side are evaluated under the partition function
ZGL at the indicated temperature. We will show in Sec. III
that it is possible to reexpress the two argument function
D(g ,T/Tc) in terms of a single argument function F(G) as in
Eq. !3.12", where G depends upon g and T/Tc as in Eq.
!3.11". Here we present results for the initial crossover from
the Gaussian to the vortex regime, which occurs when g
'1:

D!g ,T/Tc"$!
1
2)

ln!380gT/Tc""
1

2)2g
ln!13.3gT/Tc"

"
1

4)3g2
& ln2!13.3gT/Tc"!2 ln!7.86gT/Tc"'

"O!1/g3". !2.4"

The numerical constants appearing in the arguments of the
logarithms are universal. These constants, and the constants
appearing in the arguments of all subsequent logarithms, de-
pend on only two universal numbers that have to be deter-
mined by computer simulations: the latter numbers are the
constant Gc computed first in Ref. 30, and the constant 1
computed in Refs. 39,40. Additional higher-order terms in
Eq. !2.4" have also been computed and these will be pre-
sented in Sec. III: we show there that it is possible to account
for all logarithmic terms that appear at higher orders in g.
Numerical results for the full range of values of g appear in
Sec. III. The expression !2.3" has ignored the possible T
dependencies of m* and b for simplicity: it is possible to

account for these in a similar manner, as will become clear
from the discussion in Sec. III.
It is worth noting here that vortices are already present in

the Gaussian theory associated with zeros of #(r).41 The
result !2.4" accounts for the initial correlations between these
vortices, but does not include the vortex-binding physics of
the Kosterlitz-Thouless transition. The latter is only ac-
counted for by the numerical results in Sec. III.
Let us turn now to the density wave order parameters $ ,

* . The complete effective action for these order parameters
has a rather complicated structure and was discussed in Ref.
16. A simple Gaussian form will be satisfactory for our pur-
poses here:

F$$! d2r&K$x#“x$x%#2"K$y#“y$x%#2"1$
!2#$x%#2

"h$x!r"$%
2 !r""h$x* !r"$%*2!r""!x↔y ""•••' ,

F*$! d2r&K*x#“x*ax#2"K*y#“y*ax#2"1*
!2#*ax#2

"h*x!r"*ax!r""h*x* !r"*ax!r""!x↔y ""•••' .

!2.5"

Apart from the usual Gaussian terms,16 the above contains
complex random fields h$(r) and h*(r) which pin the ‘‘slid-
ing’’ mode of the charge-density wave. These fields arise
from impurities which preserve spin rotation invariance: as a
consequence, note that the random coupling is linear in the
fields * , but that there is only a random-exchange coupling
to O!3" rotations in the spin-density wave order. These
simple facts have a number of interesting implications.

!i" There can be no long-range charge order in two spatial
dimensions, even at T$0. This implies that there can be no
T$0 quantum critical point, tuned by the hole concentration,
associated with the onset of such order. A quantum critical
point associated with the restoration of O!3" symmetry re-
mains possible.

!ii" The strong relevance of such random-field perturba-
tions suggests that in the absence of couplings to other criti-
cal order parameters, the correlation length 1* can be as-
sumed to be roughly temperature independent at low
temperatures.

!iii" The theories !2.1" and !2.5" describe a phase in which
the expectation values in Eq. !1.3" hold.
Finally, as promised, let us consider the influence of the

# fluctuations described by ZGL on the charge order corre-
lations. The simplest coupling between the orders is a
2###2(#*ax#2"#*ay#2) term, and, as in Ref. 16, this leads to
the leading-order correction

1*
!2!T "$1*0

!2!T ""2+###2,T . !2.6"

Here 1*0(T) is the ‘‘bare’’ correlation length of the * order,
which is expected to be only temperature dependent near Tc .
We input the value of +###2, as computed in Eq. !2.3" and
Sec. III, and obtain our main predictions for the supercon-
ducting fluctuation-induced modification in the * correlation
length.
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III. CONTINUUM THEORY OF THERMAL
SUPERCONDUCTING FLUCTUATIONS

This section will review the results of Ref. 30 relevant to
obtaining Eqs. !2.3" and !2.4" and its extensions. Appendix A
will review the work of Prokof’ev, Ruebenacker, and
Svistinov39,40 on the dilute two-dimensional Bose gas and
show that the results of their numerical simulations can be
mapped onto universal quantities needed here.
Reference 30 studied the following continuum theory of a

N$2 component real scalar 3a , a$1,2:

F3$! d2r"12 !“r3a"
2"

R̃
2 3a

2"
U
24 !3a

2"2$ !3.1"

!Here we have changed notation for the field, from $% in
Ref. 30, to 3a here, to prevent confusion with the spin-
density wave order." This theory maps onto Eq. !2.1" with
the following correspondences:

#$!m*!31"i32"/. ,

R̃$2m*a!T "/.2,

U$12m*2b/.4. !3.2"

It was argued30 that the continuum limit of F3 required
only the single renormalization of R̃ to R:

R̃$R!
2kBTU
3 !4 d2k

4)2

1
k2"R

. !3.3"

Here we have introduced an ultraviolet cutoff 4 which is
needed to regulate the theory F3 . The renormalization in Eq.
!3.3" is associated with logarithmic ultraviolet divergence of
the one-loop ‘‘tadpole’’ diagram; the renormalized R in the
propagator on the right-hand side accounts for tadpoles-on-
tadpoles, etc. All other diagrams are ultraviolet convergent
and hence the simple structure of the renormalization theory.
It is important to note that !3.3" is the exact definition of

R, and consequently R is not the fully ‘‘self-energy’’ of the
3a field at zero external momentum; R only accounts for the
resummation of tadpole graphs. In practice, the relationship
!3.3" implies that, when we perform a Feynman graph ex-
pansion of any observable, we can ignore all tadpole graphs,
and replace R̃ by R in all propagators. Note also that as the
bare coupling R̃ extends from !5 to 5 , the renormalized
coupling R extends from 0 to 5 .
After the renormalization of R̃ to R, all subsequent corr-

elators of F3 are ultraviolet convergent and so we can safely
take 4→5 in them. This implies that all these correlators are
universal functions of the single dimensionless quantity that
can be obtained from the parameters in Eq. !3.1": this is the
analog of the ‘‘Ginzburg ratio,’’ defined here as

G$
kBTU
R . !3.4"

For T&Tc , where R̃&0, we have G→5 . Conversely, for
T'Tc , R̃'0, and G→0.
The field theory !3.1" exhibits a Kosterlitz-Thouless tran-

sition at some critical temperature, and the arguments above
imply that this transition occurs at a universal critical value
G$Gc . The numerical studies of Ref. 30 found Gc6102.
The value of Gc can also be obtained from the subsequent,
and more precise, numerical simulations of Refs. 39,40; this
connection is discussed in Appendix A, and !A5" yields

Gc$96.9(3. !3.5"

We are interested here in the value of +3a
2,. This quantity

requires a single additive renormalization before the con-
tinuum limit is obtained; hence we can write

+3a
2,

kBT
$2!4 d2k

4)2

1
k2"R

"F!G", !3.6"

where F(G) is a universal function. A number of analytic
results for this universal function can be obtained from the
methods of Ref. 30, and details appear in Appendix B. For
G→0 !corresponding to T'Tc), perturbation theory in pow-
ers of U about the 3a$0 saddle point yields

F!G→0 "$!2.355 711)10!4"G 2"O!G 3". !3.7"

All subsequent terms in the above expansion involve only
integer powers of G and there are no logarithms. For G→5
!corresponding to T&Tc), we expand about a saddle point
with 3a-0. As shown in Ref. 30, this is done by introducing
a ‘‘dual’’ coupling GD related to G by

1
G "

1
2GD

$
1
6)

ln% G
GD

& . !3.8"

Note that as G→5 , GD$3)/ln G. For large G, the expansion
of F is

F!G→5"$
1
2)

ln% G
GD

&!
6
G "O!GD

2 ". !3.9"

All subsequent terms in the present expansion involve only
integer powers of GD , with no additional logarithms. As dis-
cussed in Appendix A, the numerical results of Ref. 39,40
yield the values of F for all values of G. In particular, at the
critical point G$Gc we have from Eq. !A8"

F!Gc"$0.502(0.003. !3.10"

The theory of the Kosterlitz-Thouless transition implies that
F(G) will have a weak essential singularity at G$Gc , similar
to that in the specific heat. A plot of the values of F(G)
appears in Fig. 1. It is interesting to note that either the small
G or the small GD expansions is accurate for the entire range
of G values.
The discussion so far presents our most complete results

for the properties of FGL and F3 with essentially no approxi-
mations. There is, however, still some residual cutoff depen-
dence. This can be removed by subtracting corresponding
results at two different values of the bare coupling R̃/T &or
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m*a(T)/T], while U is fixed. Depending upon the physical
situation, changing R̃/T may also involve some changes in
the values of U. However, such changes are expected to be
small and we neglect any T dependence in U and 4 in the
remainder of this section. This allows to obtain an explicit
relation between the dimensionless number G used in the
present section, and the number g in Eq. !2.2". Dividing Eq.
!3.3" by kBT and subtracting the corresponding equation at
the critical point, and using the definitions in Eqs. !3.2" and
!3.4", we obtain

g$
6
G !

6
Gc

"
1
)
ln% TGc

TcG
& . !3.11"

As expected, g extends from "5 to !5 as G extends from 0
to "5 . Applying the same procedure to Eq. !3.6" we obtain
the universal function in Eq. !2.3"

D!g ,T/Tc"$
1
2)

ln% TcGTGc
&"F!G"!F!Gc". !3.12"

The expressions !3.5", !3.7"–!3.12" constitute the central re-
sults of this paper. Using as input the values of g and T/Tc ,
we compute G from Eq. !3.11" and GD from Eq. !3.8"; then
using results !3.7" and !3.9" we can compute F(G), and fi-
nally insert in Eq. !3.12" to obtain D(g ,T/Tc). In particular,
the small G expansion in Eq. !3.7" yields Eq. !2.4". Of
course, it is better to numerically solve for G from Eq.‘!3.11",
rather than obtaining the solution order-by-order in 1/g as
was done for Eq. !2.4".
We now present some numerical results for the param-

eters used by Mukerjee and Huse.35 They set a(T)$a0(T
!Tc

MF). Inserting this in Eq. !2.2" yields

g$
7s!0 "

kBTc
% 1!

Tc
T & . !3.13"

The parametrization a(T)$a0(T!Tc
MF) is chosen to be

valid near Tc , but can also be reasonably extended as T→0
&in BCS theory, we expect a divergent a(T→0)
0!ln(1/T), but this divergence is expected to be cutoff near
a superfluid-insulator transition'. By 7s!0"/!.2a(0)/(m*b)
in Eq. !3.13", we mean the value of the helicity modulus of
ZGL extrapolated to T$0 in this manner &the London pen-
etration depth is related to the helicity modulus by 2L

!2

$16)e27s(T)/(.2c2)]. It is worth noting here that 7s(0)
and Tc are, in general, independent of each other, and the
Nelson-Kosterlitz relation38 only constrains 7s(Tc)/Tc
$2/) .
This framework now predicts all physical properties with

two input parameters: the values of 7s(0) and Tc . Mukerjee
and Huse35 also defined a parameter 8 as a measure of the
strength of fluctuations. This is related to the parameters used
here by 8$2kBTc

MF/7s(0). In our numerical results below,
we set 7s(0)/(kBTc)$(2/8)(Tc

MF/Tc)$6.8 following their
parameters.
An important subtlety should be noted here. The use of

Eq. !3.13" in Eq. !3.11" normally yields a value for G which
decreases monotonically with increasing T, as seems reason-
able, given our understanding of physical properties of the
continuum theory. However, because the value of g in Eq.
!3.13" saturates as T→5 and because of the presence of the
ln(T/Tc) term on the right-hand side of Eq. !3.11", for very T
the value of G eventually starts increasing with increasing T.
This is clearly unphysical and is an indication that the
present continuum theory breaks down at large enough T.
For the value of 8̄ being used here, this unphysical non-
monotonicity arises only at T/Tc%20, and we will therefore
restrict our attention to values of T below this.
Solving Eqs. !3.13" and !3.11" for G as a function of

T/Tc , we use the results of this section and Appendix A to
obtain the plot of Fig. 2 for the quantity appearing in Eq.
!2.6". Note, again that either the small G or the large G ex-
pansion is reasonable accurate.

IV. CONCLUSIONS

We conclude this paper by discussing some of the experi-
mental and broader implications of our work. Our primary
result !2.6" for the coherence length of the charge order can
be tested against neutron scattering and scanning tunneling
spectroscopy !STS" experiments. However, the strong
random-field disorder may make 1* inaccessible to a neutron
probe which averages over the entire sample. In contrast,
STS provides a local probe, and so may be more sensitive to
the effects discussed here.
Consider an STS experiment with a field of view of area

A, such as those performed in Refs. 7,13,14,42 and 43. Qua-
siparticle interference contributions, such as those computed
in Ref. 18,44–47, appear at low temperatures, but we can
expect that these will significantly broaden at temperatures
above Tc . We therefore focus here only on the contribution

FIG. 1. Plots of the universal function F(G). The line on the left
is the small G approximation in Eq. !3.7". The line on the right is the
large G approximation in Eqs. !3.8" and !3.9". The square symbols
are the numerical data of Ref. 40 transformed by Eqs. !A9" and
!A10". The plus marks the position of the Kosterlitz Thouless tran-
sition.
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of the * fluctuations, which also lead to modulations in the
local density of the states measured in STS, as shown in Ref.
18,47. We know that the STS measurements are in the linear-
response regime. So, when we perform the Fourier transform
of the local density of states at the ordering wave vector Kc ,
we find that the signal is proportional to the uniform part of
the charge order parameter, *̃/*(q$0). Let us estimate *̃ .
We have for the free energy

+F,q$0,A'!+h2,1/2*̃A1/2"1*
!2*̃2A . !4.1"

Here we used that the result that the random field energy
scales as the square root of the area. We can now minimize
Eq. !4.1" with respect to *̃

*̃0
+h2,1/21*

2

A1/2
. !4.2"

Taking 1*
2 (T) from Eq. !2.6" we obtain the temperature de-

pendence of the STS signal at the wave vector Kc .
For the case of competition between the superconducting

(#) and charge (*) orders, the coupling 2 in Eq. !2.6" will
be positive. In this situation we have a seemingly counterin-
tuitive effect: as T is increased through Tc , the amplitude of
the charge order is enhanced. The physical origin of this is
not difficult to understand: the increase in phase coherence as

T is lowered is associated with an enhanced coherent motion
of the Cooper pairs, and this leads to a decrease in the am-
plitude of the spatial modulations.48
An alternative statement of the same physics can be made

in terms of the vortices. As we argued in Ref. 16, vortices
nucleate static charge order, and this was proposed as an
explanation of the experiments of Ref. 13 !other
approaches4,22,23,25–27 have proposed static spin order in the
vortices—in our theory, static spin order is not nucleated by
vortices and appears only in phases with global magnetic
order16". Increasing T above Tc causes a proliferation of vor-
tices and hence an enhancement of charge order.
While our discussion in this paper has been entirely at the

level of the Landau theory of multiple order parameters, it is
important to keep in mind that such a theory is an effective
model, and does not preclude other interpretations which fo-
cus directly on the electronic quasiparticles. In particular we
can view the competition between charge order and super-
conductivity as the competition for the ordering of low-
energy quasiparticles near the Fermi surface. So as the su-
perconducting pairing of these quasiparticles is reduced
above Tc , they are more susceptible to charge ordering.
An interesting direction for future work is to combine the

continuum theory of the Ginzburg-Landau functional pre-
sented here with the theory of time-dependent superconduct-
ing fluctuations presented in Refs. 33–35: this has the pros-
pect of placing more precise quantitative constraints on the
analysis of the Nernst effect experiments. Moreover, the ac-
curacy of either the small G or large G expansions suggests
that useful analytic results may be possible. Results for the
fluctuation conductivity in such an approach, including cor-
rections to the Aslamazov-Larkin fluctuation conductivity,
have appeared recently.49 A similar dynamic approach can
also be applied to computing the linewidths of the electronic
quasiparticles in the pseudogap regime: the strong amplitude
fluctuations in # should lead to significant broadening in the
electronic spectral functions measured in photoemission ex-
periments.
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APPENDIX A: CORRESPONDENCE WITH THE DILUTE
BOSE GAS

This appendix discusses the connection between the
analysis of the dilute Bose gas in Refs. 39,40 and the results
of Ref. 30 and the present paper. Let us make it clear at the
outset that we are not advocating a dilute Bose gas descrip-
tion of the underdoped cuprates; rather, the finite temperature
properties of the dilute Bose gas are characterized by some

FIG. 2. Plots of the universal function (T/Tc)D(g ,T/Tc) as a
function of T/Tc for 7s(0)/(kBTc)$6.8. From Eq. !2.3" we see that
+###2,T$(T/Tc)+###2,Tc"(m*kBTc /.

2)(T/Tc)D(g ,T/Tc); so
+###2,T is determined from the above plot up to an additive, non-
singular, linear dependence on T determined by +###2,Tc. This lin-
ear T dependence can compensate for the linear T dependence in the
plot above so that +###2,T saturates at high T. Also, as noted in the
text, the present theory breaks down at large enough T and its main
utility is in capturing the singular increase in +###2,T as T crosses
Tc . The solid line is the small G approximation obtained by solving
Eqs. !3.5", !3.7", !3.10", !3.11", !3.12", and !3.13". The dashed line
is the large G approximation obtained by solving Eqs. !3.5", !3.8",
!3.9", !3.10", !3.11", !3.12", and !3.13". The square symbols are the
numerical data of Ref. 40 processed via Eqs. !3.11", !3.12", !3.13",
!A9", and !A10". The plus marks the position of the Kosterlitz-
Thouless transition.
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universal numbers which appear also in the models of inter-
est in the present paper.
The dilute Bose gas is defined by the partition function

ZB$! D9!r,:"e!SB /.,

SB$!
0

./kBT
d:! d2r".9*

;9

;:
"

.2

2m #<r9#2!=#9#2

"
UB

2 #9#4$ . !A1"

We follow the notation of Refs. 39,40 throughout this appen-
dix. The only exception is that the boson interaction U has
been replaced by UB to prevent confusion with the coupling
U in Eq. !3.1".
Integrating out the nonzero Matsubara frequency modes

in the Bose gas, the action for the zero-frequency modes
takes the form !3.1" with the coupling constants

!
.2R̃
2m $=!2UB! d2k

4)2 % 1
e (.

2k2/(2m)!=)/(kBT)!1

!
kBT

.2k2/!2m "!=
& ,

U$
12m2UB

.4
. !A2"

The integral above is divergent in the ultraviolet, but if we
use Eq. !3.3" to obtain the value of the renormalized cou-
pling R we obtain a convergent integral

R"
2m=

.2
$
4mUB

.2
! d2k

4)2 % 1
e (.

2k2/(2m)!=)/(kBT)!1

!
kBT

.2k2/!2m "!=
"
2mkBT/.2

k2"R &
$
2m2kBTUB

).4
ln% 2m=

.2R!e=/(kBT)!1 "
&

6
2m2kBTUB

).4
ln% 2mkBT

.2R & . !A3"

In the last expression we have expanded to leading order in
UB , as required from consistency with previous approxima-
tions. Now using the definition of the dimensionless coupling
G in Eq. !3.4", we obtain the value of the chemical potential
at the Kosterlitz-Thouless transition

=c$
mkBTUB

).2
ln".21=

mUB
$ , !A4"

with universal number 1= computed in Ref. 39 related to the
universal number Gc computed earlier in Ref. 30 by

1=$
G ce!6)/Gc

6 . !A5"

References 39,40 obtained 1=$13.3(0.4, which is in rea-
sonable agreement with the value Gc6102 obtained in Ref.
30; the latter value of Gc yields 1=614.1 from Eq. !A5".
The same method can be used to compute the boson den-

sity n. Integrating out the nonzero frequency modes and
mapping onto the classical theory !3.1" we obtain

n$! d2k

4)2% 1
e [.

2k2/(2m)!=]/T!1
!

T

.2k2/!2m"!=
& "

m

.2
+3a

2,

$! d2k

4)2 % 1
e [.

2k2/(2m)!=]/T!1
!

T

.2k2/!2m "!=

"
2mkBT/.2

k2"R & "
mkBT

.2
F!G"

$
mkBT

2).2
ln% 2mkBT

.2R & "
mkBT

.2
F!G", !A6"

in the last equation we have made the same simplification as
that in the last equation in Eq. !A3". The result !A6" yields
the expression obtained in Ref. 39 for the critical density

nc$
mkBT

2).2
ln% .21

mUB
& , !A7"

with the universal number 1 given by

1$
G c

6 e2)F(Gc). !A8"

The simulations of Refs. 39,40 obtained 1$380(3, and in-
serting this result in Eq. !A8" allows us to compute F(Gc).

FIG. 3. Feynman graph expansion of Eq. !3.1" for the correlator
!3.6".
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Finally, subtracting Eq. !A7" from the last equation in Eq.
!A6" we obtain

n!nc
mkBT/.2

$
1
2)

ln!G/Gc""F!G"!F!Gc"$2!X ".

!A9"
The function 2(X) was computed in numerically Ref. 40,
and its argument X can be related to our coupling G by !A3",
yielding

X$!
6
G "

6
Gc

!
1
)
ln% Gc

G & . !A10"

These earlier results for 2(X) therefore yield the needed
function F(G) from Eqs. !A9" and !A10".

APPENDIX B: WEAK AND STRONG COUPLING
EXPANSIONS

This appendix presents discusses the expansion for the
universal function F(G) appearing in Eq. !3.6" for small and
large G.
For small G, a simple Feynman graph expansion of Eq.

!3.1" can be carried out to order G 2, with the diagrams
shown in Fig. 3. All propagators in Fig. 3 involve the bare
‘‘mass’’ R̃ . A simple calculation shows that the graphs
!a,b,c,e" are all absorbed by the first term on the right-hand
side of Eq. !3.6", after substitution of Eq. !3.3". This is a
simple example of our claim that all ‘‘tadpole’’ diagrams can
be neglected after substituting R for R̃ . Only Fig. 3!d" con-
tributes to F(G) in Eq. !3.6" and yields

F!G"$
2G 2

9 ! d2p

4)2! d2q

4)2! d2k

4)2

)
1

!k2"1 "2!q2"1 "&!p"k "2"1'&!p"q "2"1'

$
2G 2

9 ! d2p

4)2 " 1
2)p!p2"4

ln% !p2"4"p
!p2"4!p & $

)" 1
4)p!p2"4 "

( p"
2

!p2"4
ln% !p2"4"p

!p2"4!p & ) $ .
!B1"

We evaluated the last integral numerically and obtained Eq.
!3.7".
For large G, the method described in Appendix C of Ref.

30 was used. To one loop order, the result

F!G"$
3RD

kBTU
"
1
2)

ln% RRD
& !B2"

is easily obtained, where, as in Ref. 30, RDGD$RG. In ob-
taining Eq. !B2", we have to explicitly account for all tadpole
graphs, and the relationship in Eq. !2.4" of Ref. 30 between
R̃ and RD . The large momentum behavior of the expansion
about 3a$0 and 3a-0 saddle points should be the same,
and this ensures that the ultraviolet divergences cancel. At
two loop order, 35 Feynman graphs appear; these were
evaluated as in Appendix C of Ref. 30, and their sum was
found to vanish. Consequently, there is no order GD term in
F, and the result !3.9" follows.
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