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1 Introduction

Empirical analysis has recently provided evidence in favor of an inverted U-shaped
relationship between competition and growth (see Aghion et al. 2005); nonetheless,
only few theoretical models of growth and innovation are capable of explaining such
empirical evidence. This paper proposes a novel rationale for the inverted U-shaped
relationship, stemming from a modified quality ladder model in which we assume that
firms compete à la Cournot in the intermediate good sector, where positive externalities
or spillovers on costs are present. It is just the presence of a spillover effect which justifies
the fact that a higher product market competition may enhance growth, because it can
influence positively the profits that reward innovators.

Standard Industrial Organization theory (Salop 1977, Dixit and Stiglitz 1977) and
the first generation of Schumpeterian growth models (Grossman and Helpman 1991;
Aghion and Howitt 1992; Barro and Sala-i-Martin 2004) predict that innovation and
hence growth should decline with competition, because more competition reduces the
rents that reward successful innovators. This discourages firms from investing in R&D,
thus reducing the innovation rate and as a consequence the long run growth rate of
the economy. However, the empirical literature, as Gerosky (1995), Nickell (1996)
and Blundell et al. (1999), suggests a positive correlation between competition and
growth. The theoretical literature tried to solve this dilemma by modifying radically
the assumptions of the basic Neoschumpeterian model.

For example Aghion et al. (1999) introduce agency considerations in the decision-
making problem of innovating firms. In particular they embed the agency model of
Hart (1983) in an endogenous growth framework and show that competition has a
positive effect on growth because, combined with the threat of bankruptcy, it can act
as a discipline device, capable of fostering technology adoption and growth. However
empirical evidence of these effects is mixed, as shown, for instance, by Grosfeld and
Tressel (2001) and Nickell et al. (1997).

Another approach (see Aghion et al. 1997; Aghion et al. 2001) extends the basic
Schumpeterian model by allowing incumbent firms to innovate. This is obtained by
assuming a technological progress which is more “gradualist” (“step-by-step”) than the
standard models, where the leap-frogging of the previous incumbent is possible: inno-
vation allows a firm to move one step ahead, with the lagging firm remaining active
and eventually capable to catch up. In this models it is assumed that each intermediate
good sector is characterized by a duopoly in which firms compete both in production
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and in R&D. Hence, since in this framework R&D is undertaken by the incumbents,
the incentive to innovate depends not so much upon post-innovation rents per se, but
more upon the difference between post-innovation and pre-innovation rents (the lat-
ter are equal to zero in the basic Schumpeterian model). In this case product market
competition may act by reducing firms’ pre-innovation rents more than it reduces their
post-innovation rents. In other words, competition may increase the incremental profits
from innovating and thereby encourage R&D investments aimed at escaping competi-
tion. This happens in those industries where both firms are technological par (leveled or
neck-and-neck sectors), while in unleveled sectors the Schumpeterian effect of business
stealing always prevails. The effect of an increase in product market competition on
growth is ambiguous and depends on the size of innovation. If the latter is sufficiently
large, the Schumpeterian effect always dominates; if it is sufficiently close to its lower
bound, the escape competition effect prevails; finally for intermediate values the pre-
dicted relationship between competition and growth is an inverted-U-shape: the escape
competition effect tends to dominate for low initial levels of competition, whereas the
Schumpeterian effect tends to dominate at higher levels of competition. This prediction
is in line with earlier findings of Scherer (1967), Levin et al. (1985) and others1 and
has also been tested by Aghion et al. (2005) using data from a panel of U. K. firms
(the data run from 1973 to 1994). The same result is obtained by d’Aspremont et al.
(2010) in a model where there are the possibility of multiple winners2 of the patent
race, asymmetric firms in the product market and imperfect patent protection.

Another attempt to show the existence of a nonmonotonic relationship between
competition and growth can be found in Denicolò and Zanchettin3 (2004). They build
a Neoschumpeterian model in which they allow for several firms to be simultaneously
active in each industry (because the innovation is non drastic) and identify circum-
stances (a large size of innovation or a high intensity of competition, or both) in which
the productive efficiency effect (the reduction of total industry costs due to the fact
that low-cost firms have a large portion of the market) dominates the business stealing
effect. This and the presence of a front loading effect (in more competitive markets, a
larger fraction of innovation rents accrues in the early stages of the innovative firm’s
life cycle) imply that the equilibrium rate of growth tends to increase with the intensity

1See Cohen and Levin (1989) for a brief survey of the empirical literature.
2The number of firms is endogenously determined and the set of successful ones is drawn by a

Bernoullian random process.
3They measure competition as a switch from Cournot to Bertrand competition, so as a switch of

the equilibrium price under the different regimes of competition.
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of competition.
Recently also Acemoglu et al. (2012) provided a new explanation of the inverted-

U shaped relationship between competition and growth based on the standardization
process of the new technologies. Standardization is a costly process which is undertaken
by newcomers: the lower is this cost, the higher is the intensity of competition. When
standardization is very costly, growth is low because the new product does not enter
the standardization process and so it is produced by employing skilled workers and
this reduces the scale of production and the profitability. On the other hand, when
standardization is cheap, the growth rate is still low because innovators enjoy ex post
profits only for a short while.

In our paper we modify a standard quality ladder model and differently from Aghion
et al. (2001) we assume that R&D is driven by outsider firms and the winners of the
race sell licenses over their patents, instead of entering directly the intermediate good
sector. As a reward they get the aggregate profit of the industry4. Moreover, we
depart from Aghion et al. (2001) models because, instead of assuming a duopoly in
which firms compete à la Bertrand, we suppose that in the intermediate good sector
an unspecified number of firms compete à la Cournot (see Li and Yanagawa 2011 for
an exhaustive brief survey on the existing literature on patent licensing, oligopoly and
technological progress). These are quite natural assumptions. For example Mukherjee
(2005) shows that when there is licensing after R&D and firms compete à la Cournot,
the innovators will always undertake non-cooperative R&D. Moreover we assume that
in the intermediate sector there are spillovers on costs in the form of strategic comple-
mentarities. Amir (1996, 2005a, 2005b) indagates exhaustively on games with strategic
complementarities, in particular on the case of Cournot oligopoly: he brings Cournot
equilibrium and the theory of super modular games together in order to enrich the
results on Cournot equilibrium. The latter constitutes our key assumption. In fact
our goal is to prove that there exists an interval of values of the spillover parameter
such that the relationship between competition and growth is an inverted-U-shape, giv-
ing thus another theoretical foundation to the empirical evidence. In such case, when
competition is low the spillover effect dominates the Schumpeterian business stealing
effect and an increase in product market competition fosters growth. This is justified
by the fact that incumbents firms may benefit from more competition as it increases
the positive externality by a reduction of costs. When, instead, competition is high, the

4The analysis would be unchanged if we assume that the innovator gets a fraction of the profit.
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business stealing effect prevails over the spillover effect. We use the number of firms in
each sector as a measure of competition, thus an increase in competition is expressed
by an increase in the number of competitors. We think that this is the most natural
measure of competition in a Cournotian framework5. It is customary in macroeco-
nomic literature to study the effect of competition by comparing economies with the
same market structure, but different degrees of substitutability between differentiated
goods (see Grossman and Helpman 1991; Aghion and Howitt 1992; Aghion et al. 2001;
Barro and Sala-i-Martin 2004). In these types of models the inverse of the degree of
substitutability coincides with the mark up. In our setup the mark up depends on
both the degree of substitutability and the number of firms in each industry. Hence if
the number of competitors increases then the mark up decreases, so that firms’ mar-
ket power reduces6. However we show in section 5 that our result is robust if we use
the degree of substitutability as measure of competition. Moreover, the same applies
when we endogenize the number of firms in the intermediate sector. In the industrial
organization literature Belleflamme and Vergari (2011) study the relationship between
different measures of competition (number of firms, degree of product differentiation,
Cournot vs. Bertrand) and the incentive to innovate and find a non-monotonic rela-
tionship. In particular, under Cournot competition the incentive either decreases with
the number of firms or is un inverted-U shape.

We think that this novel theoretical mechanism can actually provide an alterna-
tive, innovative and realistic explanation of the inverted-U-shaped relationship between
competition and growth7.

Our explanation hinges upon the presence of spillover effects in the intermediate
sector, and there is a wide empirical literature which offers a substantial support to the
idea that economies of scale are an important phenomenon both at aggregate and at
sectorial level. For example, Basu and Fernald (1997), Sbordone (1997), Jimenez and
Marchetti (2002) show that, for the U. S. economy, the overall level of returns to scale
(in a Cobb- Douglas production function) should be placed in the interval [1; 1.2], so

5See for example Motta (2004).
6The use of the degree of substitutability may also have undesirable effect: as stressed by Koeniger

and Licandro (2006), a change in the elasticity of substitution modifies a fundamental parameter,
which in turn may lead to different equilibrium allocations that cannot be straightforwardly compared
across economies. In particular an increase in the degree of substitutability has only a reallocation
effect which moves resources to the most efficient sector, without modifying relative prices. Hence this
may lead to an overestimation of the impact of competition on the economy’s growth rate.

7The presence of spillovers in manufacturing industries is well known and it is also proved empirically
(see, e.g., the literature we report below).
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that external increasing returns to scale should affect the economy’s dynamics in the
long run as well as in the short run. Increasing returns and economies of scale can
give rise to (favorable) spillover effects in the firms cost functions. Moreover also the
literature on knowledge spillover is abundant. For example there are many works about
knowledge spillovers both at regional and international level8. Keller (2002) analyzes
whether the scope of technological knowledge spillovers is global or local (the dataset
encompasses the world’s innovative activity between 1970 and 1995). He finds that the
diffusion of technology is geographically localized, in accordance with the conclusions of
Adams et al. (1993), Jaffe and Trajtenberg (1999) and Eaton and Kortum (1996; 1999).
However this literature does not distinguish between inter and intra-sectoral spillovers.
Our model supposes the existence of intra-sectoral spillovers and this assumption is also
supported by empirical findings offered by the literature. Rouvinen (2002) analyzes
Finland manufacturing firms over the period 1985-1997 and finds evidence about the
existence of intra and inter-sectoral spillovers by estimating the variable cost function.
On the other hand, Malerba et al. (2004), by means of a panel data analysis of six
OECD countries in the 1981-1995 time interval, show that the effect of intra-sectoral
knowledge spillovers is 70% higher than the effect of national inter-sectoral spillovers.
Brandt (2007) estimates the cost function using data on manufacturing industries of
six OECD countries over the period 1980-1998. His main findings are that knowledge
spillovers explain some of the productivity growth observed and are identified as an
external source of economies of scale. Moreover, international intra-industry spillovers
are the most important source of externalities in the investigated industries: they turn
out to be more significant than R&D spillovers. Finally, Badinger and Egger (2008), by
considering 13 OECD countries and 15 manufacturing industries in the year 1995, find
that knowledge spillovers occur both horizontally and vertically, whereas other types of
productivity spillovers are primarily of the intra-industry type.

Also the empirical urban economic literature supports the presence of spillovers: it
shows the importance for productivity and growth of localization economies9 (economies
of scale arising from spatial concentration economies) and urbanization economies10

(economies of scale arising from city size itself). Rosenthal and Strange (2001), for
example, test the microfoundation of agglomerations economies for U.S. four-digit SIC

8See, among the others, Coe and Helpman (1995), Van Stel and Nieuwenhuijsen (2004).
9See, e.g., Moomaw (1981), Sveikauskas (1975), Nakamura (1985), Henderson (1986) and Ciccone

and Hall (1996).
10See, e.g., Glaeser et al. (1992) and Henderson et al. (1995).
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codes manufacturing industries in the fourth quarter of 2000 at different levels of ge-
ographic aggregation and find that there is evidence of the importance of all sources
of localization economies (the Marshall’s three theories of industry agglomeration); in
particular knowledge spillovers are relevant at the zipcode level, input sharing at state
level and labor market pooling is important at all levels11.

The paper is structured as follows. Section 2 describes the overall framework of
the model and contains an interpretation of the consequences of the introduction of
Cournot oligopoly (with spillover effects) in the intermediate sector. In Section 3 the
steady-state expressions for the growth rate, the interest rate and the probability of
innovation are derived. Section 4 discusses our main result: there exists an interval of
values of the spillover parameter such that the relationship between competition and
growth is an inverted-U-shape. Section 5 presents a numerical analysis for the UK
economy, which is based on the calibration of the degree of substitutability between
intermediate goods, the spillover intensity and the size of the leading-edge innovation.
Moreover we show that the relationship between competition and growth is bell-shaped
both if we consider the degree of substitutability between intermediates as a measure
of competition and if we endogenize the number of firms. Finally, Section 6 concludes.

2 The model

2.1 The agents

Our starting point is the standard version of the Schumpeterian growth scheme as
exposed in Barro, Sala-i-Martin (2004), Ch. 7 (a quality ladder model). In this scheme
there are four types of agents in the economy. Producers of final good that use labor and
intermediate goods input to produce output which is sold at a unit price and it is used
for consumption, for the production of the intermediate goods and, finally, it is invested
in R&D. The final good sector is perfectly competitive. R&D firms devote resources
to discover a new quality of the existing intermediate good: once this one has been
invented, the winner of the race obtains a perpetual patent. We modify this framework
by considering the case in which R&D is undertaken by outsider firms. Moreover, the
winning one can sell a given number of licenses for each sector to allow other firms to
produce the quality-improved good. Thus the last one is an oligopolistic market and

11Also Ellison et al. (2010) assess the importance of all the Marshallian theories of industry agglom-
eration in U.S. three-digit SIC codes manufacturing industries from 1972 to 1997.
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we assume that firms compete in quantity (Cournot competition). In particular we
suppose that there exist m intermediate sectors (with m large) and in each sector there
are n firms producing the same good; finally there are households who consume the
final good and their saving finances R&D. The behavior of these agents will be detailed
in the following sections.

2.2 Final good sector

The production function of the representative final good firm i is given by

Yi = L1−α

i

m�

h=1

x̃α

ih

where 0 < α < 1, Yi is output, Li is labor input, x̃ih =
�

n

j=1 x̃ihj =
�

kh
k=0 q

kxihk, q >

1 represents the quality-adjusted amount employed of the hth type of intermediate good,
h refers to the generic intermediate sector h = 1, ..,m. The potential grades of each
intermediate good are arrayed along a quality ladder with rungs spaced proportionately
at interval q > 1. Fixing at 1 the beginning quality, the subsequent rungs are at the
levels q, q2 and so on. Thus, if kh improvements in quality have occurred in sector h,
the available grades in the sector are 1, q, q2, ..., qkh . Increases in kh are possible thanks
to the successful application of the research effort.

Hence the production function becomes:

Yi = L1−α

i

m�

h=1

�
kh�

k=0

qkxihk

�α

Assuming that ∀h only the best quality is produced12, the production function
becomes:

Yi = L1−α

i

m�

h=1

qαkhxα

ihkh

Each firm seeks to maximize profit13:

Max
{Li,xihkh

}
πi = Yi − wLi −

m�

h=1

phkhxihkh
= L1−α

i

m�

h=1

qαkhxα

ihkh
− wLi −

m�

h=1

phkhxihkh

12This will be proved in the following.
13We set the price of the final good equal to one.
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The first order conditions are:

Li =

�
1− α

w

� 1
α

�
m�

h=1

qαkhxα

ihkh

� 1
α

phkh = αqαkhxα−1
ihkh

L1−α

i

From the latter we get the demand function from firm i to sector h:

xihkh
= Liq

αkh
1−α

�
α

phkh

� 1
1−α

To find the total demand in sector h we have to aggregate for all i:

xhkh
=

�

i

xihkh
= Lq

αkh
1−α

�
α

phkh

� 1
1−α

(2.1)

where L =
�

i
Li represents the aggregate labor force, assumed to be constant. The

demand function for good produced in sector h is a decreasing function of the price.
To solve the Cournot problem in the intermediate goods sector, we need the aggre-

gate inverse demand function:

phkh = αqαkhxα−1
hkh

L1−α (2.2)

2.3 Intermediate good sector

We assume that the winner of the R&D race does not produce directly the invention
but sells the right to produce the new good to a given number of firms in each sector.

We suppose that there are m sectors and n firms in each one competing à la Cournot.
We assume that in each sector h there are positive externalities or spillovers which are
modeled as strategic complementarities: ∂2πhj/ (∂xhjkh

∂xhlkh
) > 0, ∀i, l. This means

that the marginal profit of firm j increases as another competitor, say l, rises its pro-
duced quantity. This implies that firm j will find rising its quantity convenient.

A profit function satisfying this property is:
πhj = phkhxhjkh

− c
�
xhjkh

/
��

l �=j
xhlkh

�γ�
, γ > 0 where γ represents the spillover

coefficient and c (.) is a cost function. This assumption means that when a firm l �= j

increases its production of the intermediate good, the production cost of firm j reduces.
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This implies that the marginal revenue of j increases, so that the firm find it convenient
to increase production.

We now specify the cost function. In the benchmark model the marginal cost of inter-
mediate firms is one unit of final good14. In the present case, strategic complementarity
implies that the marginal cost equals 1/

��
l �=j

xhlkh

�γ

. Defining
�

l �=j
xhlkh

= x−j , the
profit function of j is:

πhj = phkhxhjkh
− xhjkh

(x−j )
γ (2.3)

The cost function deserves some explanation, because, due to the hypothsis on
the technology, the only way to include spillovers in this industry is to modify the
marginal cost. In the benchmark model shown in Barro and Sala-i-Martin (2004), Ch.
7, each producer uses the same technology: one unit of the final good is needed to
produce one unit of intermediate good, so that the marginal cost is equal to one. In
order to include the spillover effect we need to divide the cost function by the quantity
produced by competitors. Actually there is no other way to represent a spillover effect
in this simple technological framewok, but to directly create a link with the quantities
produced by rival firms. Nevertheless, several reasons may justify such cost-reduction
effect as, for example, technological and intellectual spillovers between companies which
are related to exchanges of information, skilled labor, etc. (an example of spillovers on
the cost function which is similar to the one adopted here can be found in d’Aspremont
and Jaquemin 1988. Moreover, in an industry populated by many firms producing an
homogeneous good it is easy to find the presence of common infrastructural services
which can certainly reduce the production cost of each single producer (this is an
example of Marshallian externality). In our model the spillover effect is represented
by the other firms’ choice variables, and we excluded the quantity produced by the
representative firm. This assumption is commonly used in the empirical literature on
intra-industry spillovers on the cost function (see for example Bernstein and Nadiri
1989, Suzuki 1993, Rouvinen 2002). Nevertheless, empirical works estimating this type
of cost function are rare, and this is due to the lack of high quality data and to the
difficulty of estimating this specific functional form. In general, the empirical literature
on spillovers can be splitted in two subgroups: the first one is the primal approach or
technology flow, and the second one is the cost function or dual approach, which is
intimately connected to advances in flexible functional forms. Actually, the estimations

14The final good is taken as the numeraire.
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focus on these generalised functional forms, without any particular theory behind.
In a Cournot oligopoly, each firm chooses the quantity to be produced in order to

maximize (2.3), where phkh characterizes the inverse demand by the final good sector.
The resulting optimal price and quantity (we provide the derivations in the Ap-

pendix) are given by15

p∗
hkh

=

�
(n+ α− 1)

1

n

��
n− 1

n

�
Lq

αkh
1−αα

1
1−α

�γ� 1−α
α+γ−1

(2.4)

and

x∗ (h) = x∗
hjkh

=
1

n
L

α−1

α+γ−1 q−
α

(α+γ−1)khα− 1
(α+γ−1)

�
(n+ α− 1)

1

n

�
n− 1

n

�γ�− 1
α+γ−1

(2.5)

2.3.1 Comparative statics

Now we pass to examine the influence of the spillover parameter over the optimal
quantity and price. The results are contained in the following Proposition.

Proposition 1. If (L1−αqαkhα (n+ α− 1) /n) > ((n− 1) /n)α−1, then the equilibrium
quantity (2.5) is an increasing function of the spillover coefficient γ and the optimal
price, which is given by (2.4), is a decreasing function of γ.

Proof. Consider the expression of the optimal quantity (2.5) and derive it with respect
to γ so to obtain:

∂x∗(h)
∂γ

= 1
n

�
L1−αqαkh n+α−1

n

� 1
1−α−γ

�
n−1
n

� γ
1−α−γ

�
1

(1−α−γ)2
Log

�
L1−αqαkhαn+α−1

n

�
+ 1−α

(1−α−γ)2
Log

�
n−1
n

��

The second term in the square bracket is negative. Hence if (L1−αqαkhα (n+ α− 1) /n) >

((n− 1) /n)α−1, then ∂x∗ (h) /∂γ is positive.
We also know that the price is decreasing in xhkh

. If each oligopolist is rising its own
output, then also the total quantity produced in sector h will increase, determining a
fall in the price.

15The second order conditions for a maximum are satisfied. In fact

SOC = α (α− 1) qαkhx
∗(α−2)
hjkh

L
1−α [(α− 2) + 2n] < 0
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The economic intuition is the following: if the spillover coefficient rises, this causes
a reduction of costs for each firm, so that the output that equals marginal revenue to
marginal cost must increase.

2.3.2 The MARK UP

Given that the optimal quantity and price are influenced by the spillover coefficient, we
may expect that the mark up is also affected by γ. In this section we show that this
does not happen.

We adopt the following definition of the mark up:

MU =
P −MC

MC
=

P

MC
− 1

where
MC =

1

(n− 1)γ x (h)∗
γ

is the marginal cost.
By using the expressions of the optimal quantity and price, we can rewrite MU in

this way:

MU =
1− α

n+ α− 1

Hence the mark up does not depend on the spillover parameter. In particular, it is
equal to the mark up that we would obtain if strategic complementarities were absent16.

Hence, the effects of γ on price and marginal cost must have the same magnitude,
and this is due to the symmetry among the oligopolists. At a first glance, it may seem
that the introduction of the spillover parameter in our model is irrelevant, but this is
not the case: γ has nonetheless a sizable effect on both equilibrium price and quantity,
as shown in the previous section. The fact is simply that, on one hand, γ has a negative
impact on the equilibrium price and this implies a reduction of the mark up. But on
the other hand, an increase in the spillover parameter reduces marginal costs MC, and
this would imply an increase of the mark-up. The two effects are exactly balanced.

Taking the limit for n which tends to infinity, we find the usual property of the mark
up:

16This can be proved by redoing the previous calculations with γ = 0.
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lim
n→+∞

1− α

n+ α− 1
= 0

Finally, the mark up depends negatively on α, that is the degree of substitutabil-
ity between the differentiated products, as in the standard quality-ladder model it is:
∂MU/∂α = −n/ (n+ α− 1)2 < 0.

2.3.3 The optimal profit

Given the optimal quantity and price, we are able to compute the maximum profit for
firm j in industry h:

π∗OLIG

hj
= π̄q

α(1−γ)
1−α−γ kh (2.6)

where
π̄ = (αL1−α)

1−γ
1−α−γ [(n+ α− 1) (1/n) ((n− 1) /n)γ]−

α
α+γ−1 (1− α) /n2. The optimal

profit is positive for all 0 < α < 1, n ≥ 2, γ > 0. Moreover, we can note that
limn→∞ π∗OLIG

hj
= 0.

2.3.4 The engine of growth

If we substitute (2.5) into the aggregate production function we obtain:

Y = L
(1−α)(γ−1)

γ+α−1 α− α
α+γ−1

�
1

n

�α �
(n+ α− 1)

1

n

�
n− 1

n

�γ�− α
α+γ−1

m�

h=1

q
α(γ−1)
α+γ−1kh

We define Q (γ) ≡
�

m

h=1 q
(α(γ−1)kh/(α+γ−1)) as the Adjusted aggregate quality in-

dex17, so that the last equation can be rewritten in this way:

Y = L
(1−α)(γ−1)

γ+α−1 α− α
α+γ−1

�
1

n

�α �
(n+ α− 1)

1

n

�
n− 1

n

�γ�− α
α+γ−1

Q (γ)

The key element in fostering the growth of aggregate output turns out to be the dy-
namics of the quality-ladder positions, kh, in the various sectors. The impact of Q (γ)

is amplified by the spillover effect represented by γ, as the exponent of q in Q (γ) is an
17The term "adjusted" is justified by the fact that with respect to the basic model in this case the

spillover parameter appears.
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increasing function of γ. We should expect this effect because of the influence of the
externality on the optimal quantities of intermediate goods.

2.4 The R&D sector

2.4.1 Modeling destruction

In the previous sections we assumed that only the best quality kh of the intermediate
good h would be produced and used in each intermediate industry: this implies that
the innovation process is drastic.

We now pass to investigate under which condition a drastic innovation occurs.
The different intermediate goods are perfect substitutes but are weighted by their

respective grades, and each unit of the leading-edge good is equivalent to q units of the
good of the previous quality. Thus, if the state of the art is sold at a price given by(2.4),
the next best quality will be sold, at most, at the price phkh/q. As a consequence, the
following relationship holds: phkh−1 ≤ phkh/q = MC = 1/xγ

−j
, and when a drastic

innovation occurs, it must be: phkh/q < 1/xγ

−j
.

By substituting (2.4) and (2.5), we obtain:

n

n+ α− 1
< q

Note that it is: q−1 < 1, while it is n/ (n+ α− 1) > 1; furthermore, the term
n/ (n+ α− 1) is decreasing in n. Thus for a high enough n, the inequality n/ (n+ α− 1) <

q is satisfied and the right-hand-side is also decreasing in α.
We finally note that the fact of having drastic innovation or not does not depend

on the degree of spillover18.

2.4.2 Modeling creation

We consider an endogenous Poisson process. This means that the time which should
be waited for innovation to occur is a random variable which is distributed as an expo-
nential. The parameter of this distribution constitutes the arrival rate of the Poisson
process. We assume that it depends positively on the R&D aggregate expenditure in
sector h, zhkh , and negatively on kh for a given zhkh : the negative impact of zhkh is due
to the increasing difficulty in innovation after the initial and easier stages. The flow
probability to move from kh to kh+1 is equal to:

18The same justification we gave for the mark up independence from the spillover parameter applies.
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p (kh) = zhkhϕ (kh)

Hence probability p is an endogenous variable, because the level of R&D effort is
chosen by the R&D firms.

2.4.3 Determination of R&D effort (steady-state analysis)

We assume that R&D is undertaken by outsiders, and in order to obtain the research
arbitrage condition (and to determine p), the cost of R&D activity must be equated
to respective benefits. A successful innovation grants an infinitely lived patent, hence
the benefits of innovation are given by the flow of profits starting from the moment of
innovation and discounted by the cumulative interest factor and the probability to be
replaced by another innovation. By equating costs and benefits we obtain:

zhkh = p (kh)nE (πhjkh+1)

Actually, once an outsider R&D firm succeeds in innovating, it obtains a perpetual
patent, whose expected value is equal to: E (πhjkh+1), which is subsequently sold as
license to the n firms in the intermediate sector h. Thus, as a reward, the innovator
obtains the entire aggregate profit of the industry h:

zhkh = zhkhϕ (kh)

ˆ +∞

t

nπ∗OLIG

hjkh+1e
−r(τ−t)e−p(kh+1)(τ−t)dτ

If we assume that the economy grows along a steady state path, then the interest rate
is constant and the former equation can be recast in this way:

1 = ϕ (kh)n
π̄q

α(1−γ)(kh+1)
1−α−γ

r + p (kh + 1)

r + p (kh + 1) = ϕ (kh)nπ̄q
α(1−γ)(kh+1)

1−α−γ

We need now to specify the functional form of ϕ (kh) . We assume constant returns
to scale in the relationship between the rate of return of R&D (r + p (kh + 1)) and the
demand-driven effect (coming from final good producers) which is represented by the
term q(α(1−γ)(kh+1)/(1−α−γ)) (recall that aggregate output is proportional to the latter
factor). Thus we adopt the following specification: ϕ (kh) = q−(α(1−γ)(kh+1)/(1−α−γ))/η,
where η is a parameter representing the cost of doing research. In other words, a suc-
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cessful innovation becomes more difficult the greater the output that would be produced
at the newly attained ladder position kh + 119.

Given this assumption, the research arbitrage condition turns out to be equal to:

r + p (kh + 1) = n
π̄

η

or also

p = n
π̄

η
− r (2.7)

So that if r is constant over time, then p also is constant.

3 The growth process

We assume Ramsey consumers, so that the growth rate of consumption is equal to

g =
ċ

c
=

1

σ
(r − ρ) (3.1)

where 1
σ

is the intertemporal elasticity of substitution and ρ > 0 is the discount
rate20.

Given that this is a lab-equipment model, the market clearing condition, Y = C +

X+Z, which states that output is consumed and used in the production of intermediate
goods (X) and in R&D (Z), implies that all the terms are proportional to Q (γ) and
so gC = gY = gX = gZ = gQ = g.

To compute the growth rate of Q (γ), we first consider what happens in each sector
h, then, by applying the law of large number, we describe the economy in the aggregate.

The proportional increase in quality in each sector is:
q(α(1−γ)(kh+1)/(1−α−γ)) − q(α(1−γ)kh/(1−α−γ))/q(α(1−γ)kh/(1−α−γ)) = qα(1−γ)/(1−α−γ) − 1. In
aggregate terms, the expected proportional increase of quality is:

g =
Q̇ (γ)

Q (γ)
= p

�
q

α(1−γ)
1−α−γ − 1

�
(3.2)

We assume that qα(1−γ)/(1−α−γ)−1 > 0, so it must be that (1− γ) / (1− α− γ) > 0.
We thus obtain a system of three equations, (2.7), (3.1) and (3.2) in three unknowns,

19This is a commonly used function (see Barro and Sala-i-Martin 2004, p. 327).
20We assume that the population growth rate is equal to zero.
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r, g and p.

Solving the system. By solving the system composed by (2.7), (3.1) and (3.2) ,
we obtain the steady-state expressions for g, r and p as a function of the model’s
parameters:

g =
n π̄

η
− ρ

1 + σ

�
q

α(1−γ)

1−α−γ − 1

�
�
q

α(1−γ)

1−α−γ − 1

�
(3.3)

where π̄ = (αL1−α)(1−γ)/(1−α−γ) [(n+ α− 1) (1/n) ((n− 1) /n)γ]−α/(α+γ−1) (1− α) /n2,

r =

n π̄

η
σ

�
q

α(1−γ)

1−α−γ − 1

�
+ ρ

1 + σ

�
q

α(1−γ)

1−α−γ − 1

�

p =
n π̄

η
− ρ

1 + σ

�
q

α(1−γ)

1−α−γ − 1

�

The growth rate, as given by (3.3), depends negatively on the households’ preference
parameters, ρ and σ, and on the R&D cost. On the other hand, it is an increasing
function of π̄ and q.

Before discussing the conditions required for having a positive growth rate g, recall
that it must be: qα(1−γ)/(1−α−γ)−1 > 0 and, as consequence, α (1− γ) / (1− α− γ) > 0;
this inequality provides a first constraint on the parameters’ values and determines also
the presence of the usual scale effect.

4 The relationship between competition and growth

In order to analyze the relationship between competition and growth, we must however
check that the balanced growth path is feasible: this in turns implies that some sufficient
conditions on the model’s parameters have to be satisfied for having a positive g.

We first derive the steady-state growth rate with respect to the number of firms n

in the intermediate good sector, which is the chosen measure of competition21. Our
results are summarized in the following proposition:

21In Appendix B we show that the results are preserved also when the number of firms is considered
as a discrete variable.
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Proposition 2. Suppose that the number of firms is a continuous variable. If γ >

1, n ≥ 2, the balanced growth rate g in equation (3.3) is a decreasing function of the level
of competition in each intermediate sector, as measured by n. If γ < 1− α, the steady
state growth rate is an inverted-U-shape function of n for γ ∈

�
(1− α) / (1 + α)2 , 1− α

�
,

while for γ ∈
�
0, (1− α) / (1 + α)2

�
, the balanced growth rate is still a decreasing func-

tion of n.

Proof. In order to analyze the sign of the derivative of the growth rate with respect
to the degree of competition, it is sufficient to compute the derivative of nπ̄ (n) with
respect to n, since this is the unique term of g which depends on n. Hence:

sign

�
∂g

∂n

�
= sign

�
∂ (nπ̄ (n))

∂n

�

Differentiating
nπ̄ (n) = π̄ = (αL1−α)(1−γ)/(1−α−γ) [(n+ α− 1) (1/n) ((n− 1) /n)γ]−α/(α+γ−1) (1− α) /n

with respect to n yields

∂ (nπ̄)

∂n
=

1− α

n2

�
αL1−α

� 1−γ
1−α−γ

�
n+ α− 1

n

�
n− 1

n

�γ�− α
α+γ−1

�
�
− α

α + γ − 1

�
1− α

n+ α− 1
+ γ

1

n− 1

�
− 1

�
(4.1)

The sign of this derivative depends on the sign of the curly bracket, which in turn
depends on the term −α/ (α + γ − 1). We must distinguish two cases:

- If γ > 1− α, i.e.: the spillovers are sufficiently high, then
{−α/ (α + γ − 1) [(1− α) / (n+ α− 1) + γ/ (n− 1)]− 1} < 0, thus ∂g/∂n < 0.

However, we should exclude the values of the spillover parameter in the interval: γ ∈
(1− α, 1), otherwise the BGP will not be feasible.

- If γ < 1− α, that is the degree of spillover is relatively low, then the sign of
{−α/ (α + γ − 1) [(1− α) / (n+ α− 1) + γ/ (n− 1)]− 1} is ambiguous. In order to
make it clearer, we analyze the sign of this derivative in correspondence of the lower
bound of the number of firms: n = 2. In particular

∂ (nπ̄)

∂n
|n=2 =

1− α

4

�
αL1−α

� 1−γ
1−α−γ

�
1 + α

2

�
1

2

�γ�− α
α+γ−1

�
�
− α

α + γ − 1

�
1− α

1 + α
+ γ

�
− 1

�
> 0
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if and only if {−α/ (α + γ − 1) [(1− α) / (1 + α) + γ]− 1} > 0. This occurs when
γ > (1− α) / (1 + α)2 ≡ γ̃. Note that γ̃ ∈ (0, 1− α). Moreover limn→∞ (nπ̄) = 0. Thus
if γ ∈ (γ̃, 1− α) the relationship between competition and growth is nonmonotonic: it
is increasing for small values of n and decreasing for large values of n. When instead
it is γ ∈ (0, γ̃), the function nπ̄ (n) is decreasing in a neighborhood of n = 2 and for
n → ∞.

It remains to understand the behavior of this function in the interval n ∈ (2,+∞).
To this aim we propose the following argument. The derivative (4.1) is equal to zero
if and only if −α/ (α + γ − 1) [(1− α) / (n+ α− 1) + γ/ (n− 1)] − 1 = 0 which is a
second order equation in n:

(1− α− γ)n2 − 2 (αγ − α− γ + 1)n+ (1− α) (1− γ − αγ) = 0

This equation admits two real roots. In fact, by computing the discriminant we
found that it is equal to α2 (1− α) γ > 0, ∀0 < α < 1, γ > 0. We should now check
whether these roots are greater or smaller than 2.

In order to do this, we study the product and the sum of the solutions, which are
given by n1n2 = (1− α) (1− γ + αγ) / (1− α− γ) and n1+n2 = 2 (αγ − α− γ + 1) / (1− α− γ).
They are both positive as we are in the region where γ < 1 − α, so that the roots are
greater than zero. Moreover, it can be shown that in our case

n1 + n2 > 2 and 1 < n1n2 < 2 (4.2)

We now have to distinguish between two cases:
1- If γ ∈ (γ̃, 1− α), we know that the function nπ̄ (n) is increasing in a neighborhood

of n = 2 and limn→+∞ nπ̄ (n) = 0. Thus we can find a unique global maximum in the
interval (2,+∞), while the other stationary point must be smaller than 2, in order to
satisfy (4.2). We can conclude that the shape of the balanced growth rate as a function
of competition is an inverted U in the relevant interval.

2- If γ ∈ (0, γ̃), we can immediately note that the function can not attain a minimum
and then a maximum in the interval (2,+∞), otherwise conditions (4.2) would not be
satisfied; in particular it would be that n1n2 > 2 and if conditions (4.2) must be satisfied,
the case in which it is n1 > 2 and n2 > 2 must be excluded. Hence, we are left with
only two possibilities: i) one of the two stationary points is greater than 2 and in this
case it must be a flex with an horizontal tangent; ii) both n1 and n2 are smaller than 2.
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In both cases the function turns out to be monotonically decreasing in the interval
(2,+∞), and under ii) it is strictly decreasing.

These considerations conclude the proof.

The economic intuition of this result is the following. There are two ways of foster-
ing spillovers: an increase in γ, which represents the intensity of the external economies
of scale and an increase of the number of firms in each industry, which determines an
increase in the aggregate quantity produced by the whole industry and so a reduction
of each firm’s marginal cost. Here, for a fixed γ, we study the effect of a change in
the number of firms. Suppose that the spillovers are high. Then existing firms in the
intermediate good sector would not be favored by an increase in strategic complemen-
tarities due to the entrance of new firms, as the incumbents are already big: the unique
consequence would be a reduction of profits.

On the other hand, if spillovers are relatively low, then it can be possible that for a
low number of firms the spillover effect dominates the business stealing effect because
the few existing firms would benefit from more competition as it increases the strategic
complementarities. But when n rises beyond a certain threshold, the business stealing
effect prevails again, inducing a decline of the steady state growth rate. In this case,
the relationship between competition and growth is an inverted-U-shape. Hence for
low values of the spillovers parameters, when the number of firms is small enough,
the spillover effect is greater than the business stealing effect. This interpretation can
be supported by the following considerations. Consider the model without strategic
complementarities, i. e. γ = 0. In this case π̄ becomes

π̄γ=0 =
�
αL1−α

� 1
1−α

�
(n+ α− 1)

1

n

�− α
α−1

�
1− α

n2

�

As a consequence

∂π̄γ=0

∂n
= (αL1−α)

1
1−α

�
(n+ α− 1) 1

n

�− α
α−1

�
1−α

n4

� �
αn

n+α−1 − 1
�
< 0

∀0 < α < 1, n ≥ 2

and
∂(nπ̄)γ=0

∂n
= (αL1−α)

1
1−α

�
(n+ α− 1) 1

n

�− α
α−1

�
1−α

n2

� �
α

n+α−1 − 1
�
< 0

∀0 < α < 1, n ≥ 2

Thus if there were no spillovers in the intermediate good sector, then the relationship
between competition and growth would be negative.
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We now introduce the remaining conditions which guarantee the positivity of the
balanced growth rate.

Proposition 3. The balanced growth rate g, which is given by expression (3.3), is pos-
itive if (1− α) /2 (αL1−α)(1−γ)/(1−α−γ) [(1 + α) /2 (1/2)γ]−α/(α+γ−1) > ηρ. If this condi-
tion is satisfied, then it is possible to identify a closed, compact set of admissible values
for the firms’ number in the intermediate good sector, which are also sustainable in the
long run.

Proof. We previously assumed that qα(1−γ)/(1−α−γ) − 1 > 0. So, in order to have a
positive long run growth rate, it must be: π̄ > ηρ/n, i.e.: nπ̄ > ηρ. Define nπ̄ = h (n)

and ηρ ≡ i (n) = i, which is a constant function with respect to n. Function h (n)

is continuous in n for n > 122 and it is monotonically decreasing if γ > 1. When
instead it is γ < 1− α, h (n) is increasing (w.r.t. n) and then decreasing if γ is in the
interval γ ∈

�
(1− α) / (1 + α)2 , 1− α

�
; finally, for γ ∈

�
0, (1− α) / (1 + α)2

�
, h (n) is

decreasing , as shown in the previous proposition.
We now provide a sufficient condition on the parameters ensuring that i lies below

h (n) for n = 2: h (2) > i. This imply that, by continuity, the two functions must cross
at least once, let us say in ¯̄n.

The sufficient condition for having a positive BGP growth rate and a compact,
closed set of firms that can survive in the long run

�
[2, n]

�
is:

h (2) = (αL1−α)
1−γ

1−α−γ
�
1+α

2

�
1
2

�γ�− α
α+γ−1

�
1− 1+α

2

�

= (αL1−α)
1−γ

1−α−γ
�
1+α

2

�
1
2

�γ�− α
α+γ−1 1−α

2 > ηρ ≡ i

that is
1− α

2

�
αL1−α

� 1−γ
1−α−γ

�
1 + α

2

�
1

2

�γ�− α
α+γ−1

> ηρ

This concludes the proof.

This proposition identifies an upper bound for the sustainable number of firms in
the long run, which includes the scale effect of endogenous growth models: the larger
is L, the greater is the growth rate and the upper bound of the sustainable interval of
n. Furthermore, the lower are η or ρ, the larger is the admissible number of firms, and
these two parameters also have a negative impact on the growth rate.

22We remark that we are interested in n ≥ 2.
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5 Calibration

5.1 The spillover parameter

We now adopt our framework for calibrating the values of the spillover parameter and
the parameter representing the size of the leading-edge innovation for the UK economy.
We have chosen this methodology taking into account the fact that it is difficult to
get high quality data on firms’ costs because the same firms has an incentive to keep
this information private. Anyways our numerical analysis is sufficient to prove the
existence and the importance in terms of relationship between competition and growth
of intra-industry spillovers.

We use UK data, so to be consistent with Aghion et al. (2005) seminal paper23. We
also need to calibrate the income share of intermediate goods α, because estimations
of a production function with only labor and intermediates are not present in the liter-
ature. To this aim, we use the equation of the mark up, MU = (1− α) / (n+ α− 1),
along the lines of Aghion et al. (2005); they use the price-cost margin24 as a measure
of product market competition, which is an approximation of the Lerner index. As the
quantification of marginal costs is notoriously difficult, Aghion et al. (2005) approxi-
mate the price-cost margin with the ratio between operating profits (net of the financial
costs) and sales. To compute this quantity, they use a panel of 311 firms of seventeen
two-digit SIC codes industries over the period 1973-1994. The average Lerner index is
4%, which yields a mark up of 4.2%. Finally, by using the average number of firms of
these sectors, we obtain α = 0.263.

We calibrate the steady state interest rate r through equation (3.1). To this end
we set g = 2.18% (source: World Bank, 1973-1994), ρ = − log β = − log 0.99 = 0.01

(source: DSGE literature; see for example King and Rebelo 2000), σ = 125, so to obtain
r = 3.18%.

23Most of the empirical works on the relationship between competition and growth are based on UK
data because the United Kingdom experienced a large number of policy changes that led to exogenous
variation in the nature and magnitude of competition.

24Price-cost margin is defined as the difference between price and marginal cost divided by price.
25If we consider a greater value for the inverse of the intertemporal elasticity of substitution, this

does not change the conclusion on the spillover parameter. The same applies if we consider a different
discount rate, for example ρ = 0.03. Thus our analysis is robust to changes in parameter values.
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Finally, we use the remaining steady state equations:




g = p

�
q

α(1−γ)
1−α−γ − 1

�

p = n π̄

η
− r

calibrate γ and q.
In order to measure η we choose the average Industry R&D expenditures (by per-

former) over GDP, which is equal to 0.0143 (source: National Science Foundation,
1975-1992). We then set L = 1 and p = 0.04, consistently with the estimation per-
formed by Caballero and Jaffe (2002).

Hence the resulting calibrated parameters are equal to:

1. γ = 0.5782 ∈ (0.462, 0.737) ≡
�

1−α

(1+α)2
, 1− α

�
;

2. q = 1.8652.

These results support our theoretical model: since γ ∈
�
(1− α) / (1 + α)2 , 1− α

�
, the

relationship between competition and growth is inverted-U shape for the UK economy.

5.2 The degree of substitability as a measure of competition

Earlier studies consider the degree of substitability α between the intermediates in
order to analyze the relationship between competition and growth (see Grossman and
Helpman 1991; Aghion and Howitt 1992; Aghion et al. 2001; Barro and Sala-i-Martin
2004). Given the complexity of expression (3.3), we can not provide an analytical result,
but a numerical example can show that the analytical result of proposition 2 is robust.
In order to plot equation (3.3) as a function of α we use the calibration of section 5.1:

n 311/17
ρ 0.01
σ 1
L 1
η 0.0143
γ 0.5782
q 1.8652

Table 1: Baseline calibration

Figure 5.1 shows that the relationship between competition and growth, as measured

23



by an increase of the degree of substitutability between the intermediates , and growth
is bell-shaped:

Figure 5.1: The degree of substitutability as a measure of competition

5.3 Endogenizing the number of firms

Up to now we assumed that the number of firms in the intermediate sector is exogenous.
It may be natural to think that an inventor decides how many firms to license her
innovation to in order to maximize her profit. Hence the R&D firm solves the following
problem:

maxn zhkhϕ (kh)
´ +∞
t

nπ∗OLIG

hjkh+1e
−r(τ−t)e−p(kh+1)(τ−t)dτ

which is equivalent to
maxn nπ∗OLIG

hjkh+1

where π∗OLIG

hjkh+1 is given by (2.6). Since the only element related to n is nπ̄ (n), the first
order condition is given by26

∂ (nπ̄)

∂n
=

1− α

n2

�
αL1−α

� 1−γ
1−α−γ

�
n+ α− 1

n

�
n− 1

n

�γ�− α
α+γ−1

�
− α

α + γ − 1

�
1− α

n+ α− 1
+ γ

1

n− 1

�
− 1

�
= 0

We know from proposition 2 that

• if γ > 1 or γ ∈
�
0, (1− α) / (1 + α)2

�
, function nπ̄ (n) is decreasing for n ∈

[2,+∞). The optimal number of firms is therefore 2;
26See the proof of proposition 2.
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• if γ ∈
�
(1− α) / (1 + α)2 , 1− α

�
, function nπ̄ (n) is bell-shaped for n ∈ [2,+∞).

In this case argmax {nπ̄ (n)} solves

(1− α− γ)n2 − 2 (αγ − α− γ + 1)n+ (1− α) (1− γ − αγ) = 0

and the optimal number of firms turns out to be27:

n∗ =
(αγ − α− γ + 1) +

�
(αγ − α− γ + 1)2 − (1− α) (1− α− γ) (1− γ − αγ)

(1− α− γ)

When n is endogenous comparative statics on competition should therefore be done by
varying the degree of substitutability between the intermediate goods. By using the
baseline calibration of table 5.1 we find that in both cases the relationship between
competition and growth is an inverted-U shape (Figure 5.2):

Figure 5.2: n endogenous

6 Conclusions

Empirical evidence suggests the presence of an inverted U-shaped relationship between
competition and growth. But early models of endogenous growth show that a stronger
competition erodes the innovator’s prospective monopoly rent and reduces the incentive
to innovate. Only recently theory was able to explain the nonmonotonicity of the
above relationship. Our model can be viewed as another attempt to justify it from a
theoretical point of view. We found a set of circumstances under which the behavior
of the growth rate as a function of the number of firms in each industry switches form
increasing to decreasing. The growth rate increases with the number of firms for small

27See the proof of proposition 2 for futher details.
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degrees of competition, as the spillover effect dominates the business-stealing effect;
when competition becomes tougher, and the Schumpeterian effect of a reduction of
profits prevails, the growth rate decreases with the number of firms.

By applying our model to the UK data, for the 1973-1994 period, we found that the
calibrated value of the spillover parameter lies in the region where the the relationship
between competition and growth is non-monotonic.

We then recast the analysis by using the degree of substitutability between the
intermediates as measure of competition and we proved the robustness of our result.
Finally we endogenized the number of firms and found that the relationship between
competition and growth is still an inverted-U shape.

These considerations may provide a rationale for antitrust policies aimed at fostering
competition in innovative sectors: in industries where the strategic complementarities
are not too strong and not too weak, policy makers should enhance competition in order
to reach a higher growth rate.
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A Derivations of the optimal price and the optimal
quantity

Each representative firm in sector h solves the following problem

max
xhjkh

πhj = phkhxhjkh
− xhjkh

(x−j )
γ

The first order conditions are:

∂πhj

∂xhjkh
= 0 ⇒

p�
hkh

xhjkh
+ phkh = 1

(x−j )γ

Summing all the first order conditions for all firms in an industry (the sum over j

allows us to use the aggregate demand function xhkh
=

�
i
xihkh

), we obtain:

p�
hkh

n�

j=1

xhjkh
+ nphkh =

n

(x−j )
γ

p�
hkh

xhkh
+ nphkh =

n

(x−j )
γ

phkh =
1

(x−j )
γ − 1

n
p�
hkh

xhkh

Equation (2.2) can now be derived with respect to xhkh
:

p�
hkh

= α (α− 1) qαkhxα−2
hkh

L1−α

p�
hkh

xhkh
= α (α− 1) qαkhxα−1

hkh
L1−α

By using (2.1), the last equation turns out to be equal to:

p�
hkh

xhkh
= α (α− 1) qαkh

�
Lq

αkh
1−α

�
α

phkh

� 1
1−α

�α−1

L1−α = (α− 1) phkh (A.1)

Now consider the term 1/ (x−j )
γ. By definition it is: xhkh

=
�

n

j=1 xhjkh
, while, by

the assumption of symmetry, it is xhkh
=

�
n

j=1 xhjkh
= nxhjkh

⇒ xhjkh
= 1

n
xhkh

. So
x−j =

�
l �=j

xhlkh
= (n− 1) /nxhkh

. These facts, together with expression (2.1). allow
us to write:
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1
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=
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n
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L−γq−
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γ
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hkh

By plugging (A.1) and (A.2) into the sum of the first order conditions of industry
h, we obtain:

phkh =

�
n

n− 1

�γ

L−γq−
γαkh
1−α α− γ

1−αp
γ
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hkh
− 1

n
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which can be divided by phkh
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Thus the optimal price is

p∗
hkh

=

�
(n+ α− 1)

1

n

��
n− 1

n

�
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αkh
1−αα

1
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This expression allows us to compute the optimal quantity produced by each firm
in h. By the assumption of symmetry, it is

xhjkh
=

1

n
xhkh
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xhjkh
=
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αkh
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Thus the equilibrium quantity produced by the sector h oligopolists is equal to:

x∗ (h) = x∗
hjkh

=
1

n
L

α−1

α+γ−1 q−
α

(α+γ−1)khα− 1
(α+γ−1)
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B The discrete case

In Section 4 we considered the number of firms as a continuous variable. Actually n ∈ N,
thus both the domain and the codomain of the growth rate, g (n), are numerable. In
the following proposition we show that our main result is preserved in this case.

Proposition 4. If the number of firms in each intermediate sector is such that n ∈
N, n ≥ 2, then when γ > 1, the steady state growth rate g in equation (3.3) is a
decreasing function of n, while when γ < 1 − α, the relationship between competition
and growth is an inverted-U-shape function if
γ ∈

�
(1− α [log (2 + α)− log (1 + α)] / (log 3− log 2)) /

�
1 + α

�
log 4

3/ log
3
2

��
, 1− α

�
,

while it is monotonically decreasing if
γ ∈

�
0, (1− α [log (2 + α)− log (1 + α)] / (log 3− log 2)) /

�
1 + α

�
log 4

3/ log
3
2

���
.

Moreover, there exists the following link between the sufficient conditions in the con-
tinuous and discrete case that guarantee the non monotonicity of the above relationship:�

(1− α [log (2 + α)− log (1 + α)] / (log 3− log 2)) /
�
1 + α

�
log 4

3/ log
3
2

��
, 1− α

�
⊂

�
(1− α) / (1 + α)2 , 1− α

� .

Proof. We have proved that, if n is a continuous variable, when γ > 1, the growth rate is
monotonically decreasing in the number of firms. For this values of γ, the monotonicity
is thus preserved when n ∈ N.

We now focus on the case in which is γ < 1−α. Consider again the function nπ̄ (n) =

π̄ = (αL1−α)(1−γ)/(1−α−γ) [(n+ α− 1) (1/n) ((n− 1) /n)γ]−α/(α+γ−1) (1− α) /n and com-
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pute the first difference

(n+ 1) π̄ (n+ 1)− nπ̄ (n) =

(1− α) (αL1−α)
1−γ

1−α−γ

��
(n+ α) 1
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n

�
n−1
n

�γ�− α
α+γ−1 1

n

�

We now compute it for n = 2 and determine the (sufficient) condition on γ as a
function of α for which it is: 3π (3)− 2π̄ (2) > 0:

2

3
>

�
2 + α

3

�
2

1 + α

��
4

3

�γ� α
α+γ−1

By solving for γ we obtain:

γ >
1− α [log(2+α)−log(1+α)]

log 3−log 2

1 + α
�

log 4
3

log 3
2

� ≡ γ̂

The value γ̂ is lower than 1− α, as it can be shown by inspecting the graph of the
function f (α) = γ̂ + α when 0 < α < 1 (Figure B.1):

Figure B.1: f (α)

On the other hand, the lower bound of γ̂ is (1− α) / (1 + α)2, as it can be checked
from the graph of g (α) = γ̂ − (1− α) / (1 + α)2 (for 0 < α < 1) (Figure B.2):
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Figure B.2: g (α)

Thus we showed that
�
(1− α [log (2 + α)− log (1 + α)] / (log 3− log 2)) /

�
1 + α

�
log 4

3/ log
3
2

��
, 1− α

�
⊂

�
(1−α)

(1+α)2
, 1− α

�
.

Furthermore, we know that nπ̄ (n) in the continuous case becomes decreasing after
a certain n. This behavior is preserved in the discrete case, confirming the inverted-U-
shape feature of the relationship between the growth rate and the number of firms.

On the other hand, if γ ∈ (0, γ̂), the quantity 3π (3) − 2π̄ (2) is negative. In the
continuous case we showed that for very small values for γ the function nπ̄ (n) is de-
creasing for n ∈ (2,+∞). This implies that when γ lies in this interval, our function is
decreasing in the discrete case too.

This concludes the proof.

We should remark that in the proof of Proposition 3 we made use of the fact that
the growth rate is a continuous function of n. Actually both the functions nπ̄ ≡ h (n)

and ηρ ≡ i (n) ≡ i are discrete in n. However, for the growth rate to be positive,
an inequality is needed, so that we can disregard the intersection between the two
functions.
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