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Abstract

In this note we re-examine the inverted-U relationship between competition and inno-

vation (originally modeled and tested by Aghion et al. [2005]) by using data from publicly

traded manufacturing firms in the US. We find strong support for the inverted-U relation-

ship. There is some suppport for the composition effect though it is much weaker than what

Aghion et al. [2005] find in the UK data. Finally, there is no consistent evidence to support

the claim that neck-and-neck industries innovate more than the unlevelled ones and that

the escape-competition effect is stronger in more neck-and-neck industries.
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1 Introduction

The question of the relationship between market structure and innovation is an old one. Since

the publication of Schumpeter’s Capitalism, Socialism and Democracy (Schumpeter [1950]),

many theoretical and empirical studies have attempted to examine various aspects of this rela-

tionship.1 Schumpeterian endogenous growth models pioneered by Aghion and Howitt [1992]

offer a new theoretical foundation for this relationship. The original model (see Aghion and

Howitt [1992]) predicts a negative monotone relationship between competition and innovation.

The reason is that if it is the expectation of higher profit that drives the innovation then any in-

crease in competition (that results in lower profits) will reduce innovation. However, empirical

works of Nickell [1996], Blundell et al. [1999], Carlin et al. [2004] and Okada [2005] find a pos-

itive relationship between competition and productivity (or innovation). Aghion et al. [2005]

(from here on, ABBGH) attempt to reconcile the theory with evidence. They develop a simple

model in Schumpeterian tradition and derive an inverted-U relationship between competition

and innovation.2 They test the predictions of their model using data from manufacturing firms

in the UK and find their predictions to accord well with the evidence.

In this short paper we re-test the theoretical predictions of their model using data from

publicly traded manufacturing firms in the US. We find strong support for the inverted-U

relationship and some weak support for the composition effect. However, there is no consistent

evidence in favor of the claim that neck-and-neck industries innovate more than unlevelled ones

and that the escape-competition effect is stronger in more neck-and-neck industries.

2 Theoretical Predictions

The theoretical predictions tested by ABBGH are the following:

A. There is an inverted-U relationship between product market competition and

innovation. [Proposition 2, ABBGH p.715]

B. As competition increases, distribution of industries moves from neck-and-neck to

unlevelled (the composition effect). In other words, the average degree of

neck-and-neckness declines. [Proposition 4, ABBGH p.717]

1See Tirole [1988], chapter 10 sections 10.1 and 10.2, for a brief discussion of theoretical models and Cohen

and Levin [1989], sections 3.2 and 3.3, for a survey of empirical studies of the Schumpeterian hypothesis. Kamien

and Schwartz [1982] is a good survey of both theoretical and empirical literature up to the early 1980’s.
2The idea of inverted-U relationship between competition and innovation goes at least as far back as Scherer

[1967], who found an inverted-U relationship between market concentration and employment of scientists and

engineers. In a recent paper, Mukoyama [2003] also finds an inverted-U relationship between competition and

growth where growth is driven by innovations.
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C. In more neck-and-neck industries, the peak of inverted-U is higher and occurs at a

higher level of competition. [Proposition 5, ABBGH p.717]

In the following we shall empirically test these predictions. The next section describes our

data set and compares it with the data set used by ABBGH.

3 Data

Our sample consists of manufacturing firms in the Primary, Secondary and Tertiary File of

Standard & Poor’s Compustat database. The sample period is 25 years from 1970 to 1994.

We use SIC 1987 to classify industries and exclude industries with less than two firms in any

year.3 The final sample has 645 firms with 9882 observations. These firms are spread over 128

four-digit industries.

There are two types of data used in the study:1) accounting data; and 2) patent data. The

accounting data are from Standard & Poor’s Compustat database (from here on, Compustat)

and the patent data are from Hall et al. [2001]. Of the 645 firms in the sample, 310 have at

least one patent. These firms have 179,954 patents and 1,349,000 citations altogether during

the sample period.

There are three key empirical variables: competition, innovation and technology gap. For

all three we follow the definitions in ABBGH and results reported in the next section are based

on industry-level variables.4 Table 1 presents a summary of these variables in our sample

vis-a-vis ABBGH’s sample. Some observations are in order. The mean of our competition

measure is 0.18 less than the mean of ABBGH’s competition measure. This is not because

the US firms are this much more profitable than the UK firms.5 Instead, it is because of the

following adjustment that we make in our data. When we compute lerner’s index (LI) for our

data, some 13% of the values are negative. If we set all negative LI’s equal to zero (as ABBGH

do), we have a huge spike at 0 in the distribution of LI’s. To avoid this, we set lowest 3% of

LI’s equal to zero and readjust the rest such that the minimum is zero. The third percentile

of our distribution of LI’s is -0.1565, hence we add 0.1565 to all our LI’s except the lowest 3%

which are set equal to zero. The above adjustment notwithstanding, the US firms earn slightly

higher profits than the UK firms but dispersion of their profits is also higher.

The second key empirical variable is innovation which we approximate by citation-weighted

patents. The US firms patent a lot more (the mean is more than twice the mean for the UK

3This is done to ensure that there is at least one laggard in each industry.
4The results are broadly the same when firm-level variables are used. In case of industry-level variables, an

observation represents an industry-year. Our sample has 2,481 such observations compared to 354 in ABBGH’s

sample.
5The median profit before tax as a percentage of sales is 9.14% for the US firms in our sample and 8.02% for

the UK firms in ABBGH’s sample.
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firms in ABBGH’s sample) and these patents are cited more (citations per patent in the US

data are 7.50 compared to 3.33 in the UK data). However, dispersion of the US firms’ patents

is also much higher.

The third key variable is technological gap. The ABBGH data we received did not have

the TFP included and quite a few observations of data on number of employees were missing.

Hence, we could not compute TFP for all the firms in ABBGH’s sample and as a result

we have only 273 observations for TFP compared to 354 for other variables in ABBGH’s

data. This may partially explain why the technology gap statistics for ABBGH’s sample as

reported in table 1 are different from those reported in ABBGH [p.727]. Another reason could

be the method used to compute TFP.6 However, the statistics reported in table 1 for both

ABBGH’s and our sample have been computed using the same method and hence should be

directly comparable. According to our computations, the US industries are more neck-and-

neck (average technological gap is low) and dispersion of their technological gap is also lower

as compared to the UK industries.

4 Empirical Methodology

Following ABBGH, we assume patents to follow a Poisson process. Patents generally do not

satisfy the Poisson assumption of equal mean and variance.7 To take care of this problem we

augment the Poisson model to a negative binomial (NB) model.8

Let xi be the vector of explanatory variables for an industry-year i and let yi denote

citation-weighted patents. Then the distribution of yi is given by

f(yi|xi, νi) =
e−λiνi(λiνi)

yi

yi!
, (1)

where λi = exiβ is the conditinal mean and νi is the error term. We assume ν to follow a

gamma distribution with mean 1 and variance α i.e.

g(ν) =
ν

1−α

α e−
ν

α

α
1

α Γ( 1

α
)

(2)

6We compute TFP at the firm level as (Y/L)/(K/L)α, where Y is the output, K is the capital stock and L is

the number of employees. We set α equal to 1/3. This measure of TFP is far from perfect. To test the credibility

of our TFP estimates we compute simple average of firm-level TFP for each industry-year and compare the

results with productivity estimates in NBER-CES Manufacturing Industry Database. The correlation between

our estimates and NBER’s 4-factor and 5-factor productivity estimates is around 0.2 and statistically significant

at 1% level of significance.
7The unconditional mean and variance of patents in our sample are 18 and 5036, respectively.
8 See Greene [2003] pp.744-5 and Cameron and Trivedi [1998] pp. 62-5 for some details on negative binomial

model. The model we use is NB2 in Cameron-Trivedi terminology.
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The conditional variance of yi is assumed to depend on the conditional mean and is given

by λi(1+αλi), which reduces to λi if α = 0. α is the overdispersion parameter to be estimated

alongwith other parameters of the model.9 We estimate the parameters by maximum likelihood

method. Under the above assumptions the command nbreg in Stata (S.E.) 8.0 produces the

parameter estimates with standard errors and confidence intervals.

We use two specifications for conditional mean. Denoting citation-weighted patents by

y, competition by c, technology gap by m and the vector of year dummies by z, the log of

conditional mean in the two models is:

Model I : ln(yjt) = α0 + α1cjt + α2c
2

jt + δz + εjt (3)

Model II : ln(yjt) = α0 + α1cjt + α2c
2

jt + β1(m · cjt) + β2(m · c2

jt) + δz + εjt (4)

Model I assumes a log-quadratic model in which technology gap does not play any role.

Model II (which reduces to Model I if β1 = β2 = 0) assumes that the coefficients of c and c2

vary with technology gap. To see this we can rewrite Model II as

ln(yjt) = α0 + (α1 + β1m)cjt + (α2 + β2m)c2

jt + δz + εjt. (5)

If we further assume that technology gap depends on competition, the last equation simply

says that competition affects innovation in two ways, one direct and another indirect. The direct

effect is captured by α1 and α2, and the indirect effect, that operates through technology gap,

is captured by β1 and β2.

To control for possible endogeneity of competition, we use one-year lagged values for com-

petition.10 The dependent variable in NB regressions is citation-weighted patents. We assume

that an innovation takes place when a patent is applied and not when it is granted.

5 Results

5.1 Prediction A

We start with the main prediction of the model. We estimate models I and II using the entire

sample. Table 2 reports the results. Both models fit the data well but highly significant LR-

test statistic implies that model II is preferable. However, the predicted values from model II

are almost identical to those from model I. These results confirm the existence of inverted-U

9For all the regressions that we report in the next section, we test the hypothesis that α = 0. Invariably in all

cases, it is rejected at 1% level of significance. This lends support to our choice of an NB model over a Poisson

model.
10The correlation between ct and ct−1 is around 0.81 and our conculsions remain the same whether we use ct

or ct−1.
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relationship between competition and innovation. They also show that the effect of technology

gap on this relationship is small, though statistically significant.

In Figure 1 we show the scatter plot of citation-weighted patents (CWP’s) against compe-

tition and superimpose the predicted values of CWP’s from model II. To make it comparable

to figure 1 in ABBGH [p.706], the scatter plot contains the observations that lie between tenth

and ninetieth percentiles of citation-weighted patents. Figure 1 shows a clear inverted-U rela-

tionship and a comparison with figure 1 in ABBGH suggests that this relationship is robust to

change in country.

To further test the robustness of this relationship we used R&D as the LHS variable and

also tested the model using firm-level data. The inverted-U relationship remained robust to

these changes. We conclude that there is strong support for the inverted-U relationship in the

US data.

5.2 Prediction B

We test prediction B by means of linear and quadratic OLS regressions of competition on

technology gap (m) and report the results in Table 3. We also run the same regressions for

ABBGH’s data set for easy comparison. Both linear and quadratic regressions do well to

explain each data set, however, linear regression performs slightly better in case of ABBGH’s

data and quadratic performs better in case of the US data. It is notable that slope coefficient

from linear regression using ABBGH’s data set is about fifteen times larger than the slope

coefficient from the same regression using the US data. To see this more clearly, in Figure

2 we scatter plot technology gap against competition for both data sets and superimpose the

technology gap as predicted by the better fitting model in each case. The slope of the fitted

line in case of the US data is very flat compared to the one for ABBGH’s data. This shows

that although technology gap varies positively with competition, the variation is much smaller

in the US data.

As an additional test of this prediction, we divide the US data into n subgroups by the

level of competition.11 For each group we find the fraction of industries that have m greater

than the median. The model predicts that this fraction should fall with competition. Figure 3

shows the fraction of low-gap industries against competition for n = 50 and 100. The graphs

do not show any clear trend. We try other values of n but the results are very similar. The

simple linear regressions (not shown in the graph) have negative but statistically insignificant

coefficients.12

To sum up, although the evidence in support of composition effect in US data is not as

11We ignore a group if it has less than two observations.
12The slope coefficient when n = 50 is −0.55 with a p-value of 0.11. When n = 100 the slope coefficient is

−0.27 and p-value is 0.45.
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clear as in the UK data, we do find that average technology gap increases with competition.

However, the magnitude of this increase is very small.

5.3 Prediction C

Before presenting our results for prediction C, we show in Figure 4 the inverted-U relationship

as predicted by the model for three different values of h. We have set γ = 1.135. The figure

shows visually what prediction C states in words: as the degree of neck-and-neckness increases

(i.e. h increases), the peak of inverted U gets higher and moves to the right. So much so

that for very high values of h, the relationship looks more positive than inverted U. It is

important to recall the reason for this change: as degree of neck-and-neckness inceases, the

escape competition effects gets stronger. This not only increases the overall innovation (the

peak is higher) but also more than offsets the Schumpeterian effect over a greater range of

competition and hence the peak moves to the right. In the extreme case, when h is 0.225, the

escape-competition effect dominates the Schumpeterian effect for almost the entire range of

competition and we see that the resulting relationship is almost positive throughout.13

Having understood prediction C better, we are ready to analyze our results. To test this

prediction, first we follow ABBGH and split our sample in two groups by the level of technology

gap. The ‘low-gap’ group consists of industries with technology gap less than the median and

‘high-gap’ group includes above-median industries. We fit models I and II to both groups

and report the results in Table 4. For low-gap industries, model II fits better while for high-

gap industries model I does a better job. Figure 5 shows the citation-weighted patents as

predicted by the better fitting model for each group (compare it with figure 3 in ABBGH,

p.720). The result is partially in line with prediction C in that the peak of inverted U is

higher for low-gap (i.e. more neck-and-neck) industries. However, the peak in case of low-gap

industries occurs at a lower level of competition while the model predicts it to occur at a

higher level of competition. This observation suggests that although the escape-competition

effect is stronger, the Schumpeterian effect dominates it quickly. This result suggests that this

prediction warrants more testing. Hence we explore it a little further.

By virtue of a larger data set (we have 2481 industry-year observation compared with

354 in ABBGh’s data set) we can break up our sample into more subgroups to see how the

inverted-U relationship changes as we move towards more neck-and-neck industries. We do

two such experiments. First, we divide the sample into four sub-samples according to the level

of technology gap (m). The boundaries are set at three quartiles of m i.e. the first group

contains industries with m less than the first quartile, the second with m between first and

13Proposition 2 in ABBGH stipulates the following condition for the inverted U pattern to hold: x < x̃ < x̄.

When γ = 1.135, this boils down to h ∈ (0.0670, 0.2274). Since 0.225 is close to the upper limit on h, we call

this an extreme case.
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second quartiles, the third with m between second and third quartiles and the last with m

greater than the third quartile. We fit both models I and II to each sub-sample and pick the

model that performs better. Figure 6 plots the predicted citation-weighted patents for each of

the four groups. To discuss the results we start with the least neck-and-neck group (m > q3)

and move gradually towards the most neck-and-neck group (m < q1).

When we move from the least neck-and-neck group (m > q3) to the next group (q2 < m <

q3) in order of neck-and-neckness, we observe that the peak moves to the right (as predicted

by the model) but is lower (which is opposite of what the model predicts). When we move

further to the next group (q1 < m < q2), the peak is slightly higher and is to the right (both

changes are in line with the model). Finally when we move to the most neck-and-neck group

(m < q1), the peak jumps to a very high level (as predicted) but moves to the left (which is

again opposite to what the model predicts). These results cast doubt on prediction C as we do

not see a consistent pattern.

To take this experiment a step further, we pick 10% of the most neck-and-neck industries and

compare them with 10% of the least neck-and-neck industries and 10% of the industries from

around the median. In other words now our groups are: industries with m > p90; industries

with p45 < m < p55; and industries with m < p10. Just like the last experiment we fit both

models I and II to each group and pick the better fitting model. Figure 7 plots the predicted

citation-weighted patents. When we move from least neck-and-neck group (m > p90) to the

group with m around the median (p45 < m < p55), we see that the peak becomes slightly

higher and moves to the right. In fact the relationship for the group with m around the median

resembles what we saw in figure 4 when h was equal to 0.225. So far this experiment lends strong

support to the model: as we increase the degree of neck-and-neckness the escape-competition

effect has become very strong. However, when we move further to the most neck-and-neck

group m < p10, the reverse happens: the peak of inverted U is lower and occurs at a much

lower level of competition. This is exactly opposite of what the model predicts. If we compare

the least and the most neck-and-neck groups, we see that the peak of the inverted U is roughly

the same for two groups and, contrary to prediction C, occurs at a lower level of competition

for most neck-and-neck industries.

We conclude that there is no clear-cut evidence in the US data to support the claim that the

peak of inverted U is higher and occurs at higher levels of competition for more neck-and-neck

industries. In other words, there is no consistent evidence that as the degree of neck-and-

neckness increases the escape-competition effect gets stronger relative to the Schumpeterian

effect.
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6 Concluding Remarks

We test the theoretical predictions in ABBGH by using data from publicly traded manufactur-

ing firms in the US. We find strong support for the inverted-U relationship between competition

and innovation. There is some support for the composition effect but it is weaker than what

ABBGH find in the UK data. Finally, we find no clear support in favor of the claim that as

the degree of neck-and-neckness increases the peak of inverted U becomes higher and occurs at

higher levels of competition.

Our main conclusion is that although there is an inverted U relationship between com-

petition and innovation, the nature of this relationship does not change systematically with

change in technology gap. In other words, the average distance from technology frontier does

not fully explain whether the escape-competition or the Schumpetrian effect will be dominant.

Moreover, the technology gap also does not respond as much to competition in the US data as

it does in the UK data.

Despite casting doubt on some of their predictions, our findings do not undermine ABBGH’s

contribution. They are the first to highlight the escape-competition effect and provide a model

in which the interaction between escape-competition and Schumpeterian effects leads to the

inverted U relationship. The data for both UK and US manufacturing firms provide over-

whelming evidence that such a relationship exists and is robust to many variations. What is

not so clear, however, is how the interaction bewteen these effects changes with the level of

technology gap. Or whether the technology gap plays any role at all in explaining the inverted

U relationship.

The last observation leaves room for some other explanation for the inverted U that does

not depend on the technology gap. In other words, it is possible that the relationship between

competition and innovation is inverted U regardless of the technology gap. One idea that we

are currently pursuing is to use a partial equilibrium model on the lines of Ericson and Pakes

[1995]. In that environment it can be shown that, under certain conditions, there is an inverted-

U relationship between competition and innovation and this relationship does not depend on

the technology gap. This is work in progress.
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Table 1: A Summary Comparison of US Data with ABBGH’s Data

ABBGH Data US Data

Competition = 1 − LI

Mean 0.9502 0.7740

S.D. 0.0230 0.0446

p10 0.9184 0.7201

Median 0.9530 0.7735

p90 0.9754 0.8289

Innovation = Citation-weighted Patents

Mean 6.6158 16.6686

S.D. 8.4538 48.1890

p10 0 0

Median 3.0000 2.8343

p90 20.0000 36.4600

Technology Gap

Mean 0.3494 0.2168

S.D. 0.1705 0.1418

p10 0.1309 0.0522

Median 0.3375 0.1931

p90 0.6000 0.4187
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Table 2: Regression Results (Entire Sample)

Dep Var: Citation-weighted Patents

Model I II

c 94.97∗∗∗ 100.39∗∗∗

(14.91) (15.51)

c2 −61.62∗∗∗ −66.10∗∗∗

(9.71) (10.27)

m · c – −10.80∗

(6.40)

m · c2 – 12.69

(8.22)

LR-test – 10.50∗∗∗

Notes: (1) Figures in the parenthesis are robust standard errors.

(2) ***, ** and * mean significance at 1, 5 and 10%, respectively.

Table 3: Prediction B

Dependent variable: m

ABBGH Data US Data

Model: OLS Linear Quadratic Linear Quadratic

c 3.08∗∗∗ 21.49 0.20∗∗∗ 2.47∗∗

(0.44) (28.79) (0.06) (1.09)

c2 – −9.70 – −1.46∗∗

(15.20) (0.71)

F -stat 3.61∗∗∗ 3.44∗∗∗ 1.59∗∗ 1.85∗∗∗

Notes: (1) Figures in the parenthesis are standard errors.

(2) ***, ** and * mean significance at 1, 5 and 10%, respectively.
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Table 4: Regression Results (Low-gap and High-gap Industries)

Dependent variable: Citation-weighted Patents

Low-gap Industries High-gap Industries

Model I II I II

c 94.32∗∗∗ 99.65∗∗∗ 108.75∗∗∗ 93.67∗∗∗

(17.00) (16.45) (24.99) (26.95)

c2 −61.73∗∗∗ −68.41∗∗∗ −69.77∗∗∗ −57.67∗∗∗

(11.17) (10.89) (16.10) (18.07)

m · c – −54.16∗∗∗ – 14.03

(18.52) (11.33)

m · c2 – 64.02∗∗∗ – −17.12

(23.64) (14.50)

LR-test (I & II) – 19.40∗∗∗ – 2.23

Notes: (1) Figures in the parenthesis are robust standard errors.

(2) ***, ** and * mean significance at 1, 5 and 10%, respectively.
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Figure 5: Comparison of Inverted U in Low- and High-gap Industries
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Figure 6: Comparison of Inverted U among Industry-groups with Different Technology Gaps
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Figure 7: Comparison of Inverted U among Industry-groups with Different Technology Gaps
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