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Abstract

Scale economies are commonplace in operations, yet, due to analytical challenges, rel-

atively little is known about how …rms should compete in their presence. This paper
presents a model of competition between two …rms that face scale economies; i.e., each
…rm’s cost per unit of demand is decreasing in demand. A general framework is used,

which incorporates competition between two service providers with price and time sensi-
tive demand (a queuing game) and competition between two retailers with …xed ordering

costs and price sensitive consumers (an EOQ game). Reasonably general conditions are
provided under which there exists at most one equilibrium with both …rms participating
in the market. We demonstrate, in the context of the queuing game, that the lower cost

…rm in equilibrium may have higher market share and a higher price, an enviable situa-
tion. We also allow each …rm to outsource their production process to a supplier or to

their customers (e.g., co-production). Even if the supplier’s technology is no better than
the …rms’ technology and the supplier is required to establish dedicated capacity (so the
supplier’s scale can be no greater than either …rm’s scale), we show that the …rms strictly

prefer to outsource. We conclude that scale economies provide a strong motivation for
outsourcing that has not previously been identi…ed in the literature.

¤Thanks is extended to the seminar participants at the following universities: the
Department of Operations Research, University of North Carolina; the Department of
Industrial and Operations Engineering, Univeristy of Michigan; the Graduate School of
Business, Stanford University; the Anderson School of Business, Univeristy of California at
Los Angeles; the 1999 MIT Summer Camp, Sloan School of Business, MIT; the Operations
Management Department, University of Michigan; and the Management Department, Uni-
versity of Texas at Austin. Thanks is also extended to Philip Afeche, Frances Frei, Noah
Gans, Martin Lariviere and Erica Plambeck for their many helpful comments. The previ-
ous version of this paper was titled “Service Competition, Outsourcing and Co-Production
in a Queuing Game.” An electronic copy is available from the …rst author’s web page.



Scales economies are commonplace in operations. But while there is a considerable opera-

tions management literature that identi…es scale economies and develops strategies to exploit

them, relatively little is known about how …rms should compete in their presence. Even the

economics literature on competition among …rms generally assumes constant or decreasing

returns to scale, so as to avoid the signi…cant analytical complications scale economies create

(Vives, 1999). Nevertheless, research is needed on this challenge.

This paper studies competition between two …rms that face scale economies; i.e., cost per

unit of demand is decreasing in demand. A general framework is employed: it includes,

among others, competition between service providers (i.e., a queuing game) and competition

between two retailers with …xed ordering costs (i.e., an Economic Order Quantity game).

Firms compete for demand with two instruments: the explicit prices they charge consumers

and the operational performance levels they deliver. An example of the latter in the context

of the queuing game is the …rm’s expected service time, where faster service means better

operational performance.

Competition with scale economies is brutal for two reasons. First, a …rm must capture

a positive threshold of demand or else it is not pro…table (i.e., small players cannot be prof-

itable). Second, scale economies increase price competition: a price cut increases demand,

which lowers the average cost per unit of demand. As a result, an equilibrium may not exist,

even with symmetric …rms (i.e., …rms with the same cost and demand). However, when

an equilibrium exists in which both …rms have positive demand, then it is unique, under

reasonable conditions. Hence, competition in this setting does have some structure. We

show that the low cost …rm always has a higher market share in equilibrium, which is not

surprising. What is unexpected is that the low cost …rm can also have the higher price,

which is certainly an enviable position: the …rm uses its lower cost to dominate with oper-

ational performance, which allows the …rm to charge a premium and capture more demand

than its rival. As an added bonus, the higher demand also allows the …rm to operate more

e¢ciently than its rival. Furthermore, in low margin conditions a small cost advantage

can yield an enormous pro…t advantage even if it does not result in a large market share

di¤erence.

In this environment, …rms could bene…t from any strategy that mitigates price competi-

tiveness. We show that outsourcing is one such strategy. We suppose that there exists a
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supplier with the same technology as the …rms. This supplier is able to manage either …rm’s

operations and charges a constant fee per unit of demand for that service. The supplier

establishes dedicated capacity for each …rm that outsources, so the supplier is unable to pool

demand across …rms to gain e¢ciency. In other words, the supplier is operationally no more

e¢cient than either …rm. Yet, we show that there are contracts that yield the supplier a

positive pro…t and yield a higher pro…t to either …rm than if they insourced (i.e., did not

outsource with the supplier). Hence, all …rms are better o¤ with outsourcing. In this

setting, the …rms do not outsource because the supplier is cheaper (by assumption either

…rm is able to generate exactly the same cost as the supplier without paying the supplier’s

margin). Instead, they outsource because outsourcing dampens price competition. It is

also possible that a …rm can bene…t from a unilateral move to outsource, i.e., a …rm may

…nd outsourcing pro…table even if its competitor does not outsource. These results do not

occur with a constant returns to scale technology. Hence, we conclude that in the presence

of scale economies …rms can bene…t from outsourcing even if their supplier is unable to gain

any scale advantages.

Outsourcing to another …rm is not the only way to change the nature of the production

process. If the …rm is o¤ering a service, then the …rm may be able to outsource some of the

production process onto its customers; i.e., the …rms can make its customers co-producers.

Again, we show that …rms may use co-production even if it increases a …rm’s cost; i.e., the

price discount the …rm must give consumers to compensate for their co-production is greater

than the cost the …rm would incur if the …rm did the service itself.

The next section reviews literature relevant to this work. §2 details our model. §3

analyzes equilibrium behavior between two …rms. §4 considers the impact of outsourcing.

The …nal section concludes.

1 Literature review

The body of research related to this work can be divided into three broad sets. The …rst

includes papers that use queuing theory to study the delivery of services. The second set

studies competition between …rms that set inventory policies. The third is the literature on

outsourcing and vertical integration in operations management, marketing and economics.
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As mentioned in the introduction, competing queues is one of the games that falls into

our framework. There are many papers that investigate competition when customers are

sensitive to time: Armory and Haviv (1998), Chayet and Hopp (1999), Davidson (1988), De

Vany (1976), De Vany and Saving (1983), Gans (2000), Gilbert and Weng (1997), Kalai,

Kamien and Rubinovitch (1992), Lederer and Li (1997), Li (1992), Li and Lee (1994), and

Loch (1994). In most of these models …rms compete either with prices or with processing

rates, but not both.1 Those authors recognized that allowing for both decisions creates

signi…cant analytical complications; in particular, the …rms’ pro…t functions are not well

behaved (unimodal). Further, qualitative statements regarding competition in that setting

are not possible since pure strategy equilibria do not exist. A second distinction is that in

many of those models customers wait in a single queue.2 In our model, the …rms maintain

separate queues and customers are not able to jockey between. Further, with a single

queue framework total market demand is constant (i.e., all customers join the queue and

are eventually served). We allow for demand functions in which total market demand may

decrease.

Deneckere and Peck (1995) and Reitman (1991) do consider a model in which …rms simul-

taneously choose prices and processing rates, and customers choose …rms based on expected

utility maximization. However, there are no scale economies in their production processes,

which is the main focus of this paper.

Gans (2000,2002) and Hall and Porteus (2000) consider competition between …rms when

customer chooses between …rms based on their past service encounters. In our model,

1 Li and Lee (1992) analyze a model with …xed processing rates and then discuss how the

model could be expanded to allow the …rms to choose prices as well. However, they

emphasize that the lack of pure strategy equilibria in that game imposes a signi…cant

challenge to the analysis of the expanded game. In Lederer and Li (1997), the …rms

have …xed overall production capacity, but they decide how to allocate that capacity across

multiple customer classes. In the single class version of their model, the …rms only compete

on price.

2 Gilbert and Weng (1997) do consider a model with separate queues, however the arrival

process to each queue is set so that each …rm has the same expected waiting time.
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customers correctly anticipate the expected operational performance of each …rm and so

demand is not determined by past actions.

Chase (1978) and Karmarkar and Pitbladdo (1995) recognized that an important design

decision for a service …rm is the degree to which the …rm outsources delivery of the service to

customers; i.e., the amount of co-production. Ha (1998) considers the interaction between

pricing and co-production. In his model a service operation’s workload is decreasing in the

amount of e¤ort customers exert in preprocessing, which the …rm can in‡uence via its price

schedule. We assume the amount of co-production is …xed and the …rm need only provide

a …xed compensation to customers.

Several papers consider pricing and capacity decisions for a single server: Dewan and

Mendelson (1990), Stidham (1992), Stidham and Rump (1998), and So and Song (1998).

(The …rst three papers seek to maximize system value, while the last maximizes a …rm’s

pro…t.) In fact, the queueing game in this paper is a competitive extension of Stidham’s

model; when there is a single …rm in the queueing game, that …rm faces the same problem

that a monopolist would face in Stidham (1992). (See Cachon and Harker 1999 for details.)

Stidham (1992) and Stidham and Rump (1998) also provide an extensive discussion on the

stability of the …rm’s pricing and capacity decisions. Given the formulation of our queueing

game, equilibrium stability is not an issue.

Many papers investigate queue joining behavior in which customers compete for fast

service, but the service provider is not a game participant: Bell and Stidham (1983), Kulkarni

(1983), Lippman and Stidham (1977), Mendelson (1985) and Naor (1969). Afèche and

Mendelson (2001) extend this work considerably by incorporating generalized delay cost

structures (i.e., a customer’s delay cost could be proportional to a customer’s valuation of

the service) and priority auctions.

We now turn to models of inventory competition. Bernstein and Federgruen (1999) study

a two echelon supply chain with one supplier and multiple competing retailers. Each retailers

demand rate is deterministic, but a function of the …rms’ prices. Further, each retailer incurs

…xed ordering costs. Hence, our EOQ game is functionally equivalent to their decentralized

game (i.e., the game with simple wholesale price contracts.) However, their focus is on

channel coordination, which we do not consider, they do not consider outsourcing and they

allow for competition among more than two …rms. Bernstein and Federgruen (2001) study
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price and operational performance competition among multiple …rms that choose base stock

policies, where a …rm’s operational performance is its …ll rate. However, they work with

multiplicative demand shocks, so their model has constant returns to scale.

There are a number of papers that study competing …rms with demand spillovers; i.e., a

portion of the unsatis…ed demand at one …rm (due to stockouts) transfers to the other …rm:

Palar (1988), Lippman and McCardle (1995), Karjalainen (1992) , Anupindi and Bassok

(1999). Our model does not have demand spillovers.

Finally, there is an extensive literature on outsourcing and vertical integration. In op-

erations management the focus is on when outsourcing reduces costs (see McMillan, 1990;

Venkatesan, 1992; vanMiegham, 1999). Those papers do not consider the impact of outsourc-

ing on equilibrium prices. In economics the focus is on the location of the …rm boundary;

i.e., what assets does the …rm own. Transaction cost theory suggests this decision hinges

on asset speci…city, i.e., if the asset’s next best use has signi…cantly lower value, then a …rm

will own the asset (e.g., Williamson, 1979). Grossman and Hart (1986) propose the …rm

boundary depends on contract incompleteness: if a …rm cannot specify all possible future

uses for an asset in a contract then the …rm will seek ownership if control is su¢ciently

important. A third, and more recent approach, suggests that asset ownership in‡uences

relational contracts, which are unwritten agreements between parties that are support only

in repeated games (i.e., if one party breaks a relational contract the other party can punish

through future actions). (See Baker, Gibbons and Murphy, 2001.) Our theory of outsourc-

ing is di¤erent. We explicitly assume away asset speci…city and contract incompleteness,

and our single choice model does not allow for future punishment. In our model outsourcing

creates value by changing a …rm’s competitive behavior. In particular, the …rm becomes

less price competitive.

The paper with the most similar …nding to our outsourcing result is from the marketing

literature, McGuire and Staelin (1983). They show that competing suppliers prefer to

outsource the retailing function to independent retailers rather than to perform their own

retailing when demand is su¢ciently price competitive. Outsourcing bene…ts the suppliers

when retail price competition is high because double marginalization between the supplier

and the retailer mitigates price competition between the two suppliers. In our setting,

outsourcing mitigates price competition for di¤erent reasons. In our model, price competition
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derives in part from the need to increase demand to reduces costs, which is not present in

McGuire and Staelin (1983) because they consider a constant returns to scale production

process. Indeed, if there were constant returns to scale in our production process, then

outsourcing would provide no bene…t. Further, we consider the outsourcing of the production

function and not the retailing function and both …rms are better o¤ with outsourcing for all

levels of price competition.

There is also work in economics on divisionalization. Baye, Crocker and Ju (1996) show

that in a competitive environment a …rm may divide itself into multiple competing divisions

even if divisionalization is costly because divisionalization mitigates price competition. As

with divisionalization, outsourcing divides a …rm into multiple pieces (a supplier and the

…rm). But there are three key di¤erences between divisionalization and outsourcing. First,

with divisionalization the parent …rm sums its pro…ts across divisions whereas with outsourc-

ing there is no aggregation of pro…ts. Second, with divisionalization all divisions compete

for consumers whereas with outsourcing the supplier does not compete for customers. (With

divisionalization a process is replicated, with outsourcing it is divided.) Third, even though

…rms choose to divisionalize, in equilibrium they are worse o¤ after dividing, whereas with

outsourcing …rms are better o¤.

2 Model de…nition

Two …rms, …rm ! and …rm ", compete in a market based on their full prices. Unless otherwise

noted, rules, parameters and functions that are de…ned for …rm ! apply analogously for …rm

". Let #! be …rm !’s full price. It includes two components: #! = $! + %!& The …rst is

the explicit fee, $! ¸ 0' …rm ! charges customers per transaction (e.g., a service occasion or

a product purchase). The second, %! ¸ 0' is the …rm’s expected operational performance,
where better performance means a lower %!. For example, in a service context, %! could be

a customer’s disutility for the expected time to complete the …rm’s service.

Firm !’s expected demand rate is (!(#!' #") ¸ 0 and …rm "’s is ("(#" ' #!) ¸ 0& For nota-

tional parsimony, we often write the demand functions without arguments; e.g. (!' with the

understanding that (! is always a function of the full prices. Several points are worth em-

phasizing regarding this demand structure. First, demand depends on expected operational
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performance. In other words, consumers do not have, or are unable to act upon, infor-

mation that suggests either …rm’s operational performance will deviate from the expected

performance: e.g., in the service context, consumers do not observe the …rms’ queue lengths

before choosing …rms (which would suggest either an above or below average service time).

Second, a …rm’s demand depends only its full price and not on the composition of that full

price: a high priced …rm with fast service has the same demand rate as a low priced …rm

with slow service if their full prices are equal. Third, a …rm’s demand does not depend

on the variability of its operational performance, which would create signi…cant analytical

complications. Finally, there is no ex-post reallocation of demand. For example, poor

realized service at …rm ! does generate additional demand at …rm ".

The prices, f$!' $"g, and the operational performance levels, f%!' %"g' are the …rms’ only
actions. Allowing each …rm to choose its price requires no justi…cation. To justify that

each …rm commits to its operational performance, consider the natural alternative: each

…rm commits to an explicit operational decision; e.g., the …rm’s capacity. Operational

performance depends on that operational decision and the …rm’s demand rate; e.g., for a …xed

demand rate the waiting time in queue decreases as service capacity is added, and for a …xed

capacity waiting time increases with the demand rate. Hence, to evaluate a …rm’s expected

operational performance, a consumer must observe a …rm’s operational decision, forecast the

…rm’s demand and understand the relationship between them. But because demand depends

on operational performance, the poor consumer must solve for an equilibrium: what demand

rate generates an operational performance that leads to that demand rate? This surely

imposes a high computational burden on consumers. Our construction is gentler. Because

a …rm commits to its operational performance, the consumer does not need to forecast the

…rm’s demand: the realized demand rate has no impact on the consumer’s choice. However,

the …rm must have the ability to adjust its operational decisions in response to changes in

the demand rate so that its operational performance commitment is indeed credible. In

the short run, this may be possible for small deviations in the demand rate, but probably

not possible for large deviations. Over a long horizon, this assumption is not onerous: the

…rm solves for the demand-rate-operational-performance equilibrium (and not consumers)

and then chooses the operational decisions to generate that equilibrium.

Firms simultaneously choose their actions and then demand occurs over an in…nite hori-
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zon.3 Both …rms are risk neutral and seek to maximize their expected pro…t rate. For

…xed #! and #"' and hence for …xed demand rates, we assume there exists a unique optimal

operational performance for each …rm. Furthermore, conditional that optimal operational

performances are chosen, …rm !’s pro…t function has the following form

)!(#!' #") = (#! ¡ *!)(!(#!' #")¡ +!(!(#!' #")#!' (1)

where *! , 0' +! ¸ 0 and 0 · -! . 1 are constants. Firm "’s pro…t function, )"(#" ' #!),

is analogous. As with the demand functions, we often write the pro…t functions without

arguments; e.g. )! and )". In (1), #!(! resembles the standard revenue function, with the

distinction being that actual revenue depends on $! and not #!. The second term, *!(!, is the

standard linear cost function. The third term, +!(
#!
! ' generates the …rm’s scale economies:

the cost per unit of demand, *! + +!(
#!¡1
! ' is decreasing in (!& If -! = 0 then there is a …xed

cost independent of demand. Given the pro…t functions (1), this game can be analyzed as

a game in which each …rm decides on a single action, its full price.

Some additional reasonable restrictions are needed on the demand functions. Demand is

never negative, and for any …nite #" ¸ 0' there exists a …nite #! such that (! = 0. De…ne

~#!(#") to be the smallest of those full prices; i.e., …rm ! can always price itself out of the

market.4 We assume ~#!(#")¡ #" is decreasing in #"' i.e., …rm !’s price premium to exit the

market is decreasing in …rm "’s price. For all #! . ~#!(#")' (!(#) is di¤erentiable, /(!0/#! . 0'

/(!0/#" , 0 and ¡/(!0/#! ¸ /(!0/#" & The latter implies …rm !’s demand is more sensitive

to …rm !’s full price than to …rm "’s full price. Furthermore, (!(0' 0) , 0 (i.e., …rm ! can

have positive demand for a su¢ciently low price), which implies that ~#!(#") , 0. Finally,

there exists some #! such that )!(#!' ~#"(#!)) , 0; i.e., demand is su¢ciently large that …rm !

can earn a positive pro…t if …rm " exits the market.

To summarize, the …rms play a simultaneous single move game with full prices as their

3 We do not consider sequential choice games: e.g., …rms choose f%!' %"g and then after
observing those choices they choose f$!' $"g, or …rm ! choses f$!' %!g and then …rm " chooses
f$"' %"g. Bernstein and Federgruen (2001) consider the former type of sequential choice
and Chayet and Hopp (1999) consider the latter.

4 While it is possible to relax this assumption, it is cumbersome to also include the

case ~#!(#") =1&
8



strategies and (1) as their pro…t functions. It remains to identify speci…c models that

conform to this structure. Two such model are detailed next.

2.1 A queuing game

Suppose each …rm provides a service. Let %! be the expected amount of time a customer

spends at …rm !, including time in queue and time in service. Suppose customer inter-

arrival times at …rm ! are exponentially distributed with mean 10(!& Customers wait in a

single …rst-come-…rst serve queue to receive service at …rm ! and there is no balking. The

processing times at …rm ! are exponentially distributed with rate 1!. The expected time a

customer spends at …rm ! is

%! = (1! ¡ (!)¡1 ' (2)

assuming 1! , (!& The steady state distribution of the number of customers at either …rm

is the same as the number of units in an 20201 queue.

Let 3! be …rm !’s capacity cost rate per unit of capacity, 3! , 0. From (2), …rm !’s expected

capacity cost per unit time is 3!
¡
(! + %

¡1
!

¢
& Naturally, …rm ! incurs a higher capacity cost

when it lowers its customers’ service time.

Firm !’s pro…t rate is

)!(#!' %!' #") = (#! ¡ %! ¡ 3!) (! ¡ 3!%¡1! '

where recall $! = #! ¡ %!. For …xed #' the above is strictly concave in %! and the optimal

operational performance, %¤! (#)' is %
¤
! (#) =

p
3!0(!(#)& Given the above, )!(#!' %¤! (#)' #") =

)!(#!' #") and

)!(#!' #") = (#! ¡ 3!) (! ¡ 2
p
3!(!'

which conforms to (1) when *! = 3!' +! = 2
p
3!' and -! = 102&

2.2 An EOQ inventory game

Suppose each …rm sells a product. Demand is deterministic with rate (!& The …rm pays a

wholesale price 4! per unit purchased, incurs a …xed cost 3! for each replenishment, which

arrives immediately, and incurs 5! per unit of inventory per unit of time. Neither …rm

backorders demand, so from a customer’s perspective the …rms have identical operational

performance: let %! = %" = 0& In this game there is an industry standard regarding opera-

tional performance (i.e., no backorders) so competition between the …rms occurs only with
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their explicit prices. Nevertheless, a …rm’s pro…t depends on the cost of delivering that

performance, which depends on demand.

Firm !’s pro…t rate is

)!(#!' #") = (#! ¡ 4!) (! ¡
¡
3!(!6

¡1
! + 5!6!02

¢
'

where #! = $!' and 6! is the …rm’s order quantity, i.e., its operational decision. The latter

part of the …rm’s cost corresponds to the cost function of the well known economic order

quantity (EOQ) problem. The cost minimizing order quantity is 6¤! = (23!(!05!)
¡1$2. The

…rm’s expected pro…t rate is then

)!(#!' #") = (#! ¡ 4!) (! ¡ (25!3!(!)1$2

which conforms to (1) when *! = 4!' +! =
p
25!3! and -! = 102&

3 Analysis of equilibrium

A Nash equilibrium in this game is a pair of full prices, f# ¤! ' # ¤" g' such that neither …rm has

a pro…table unilateral deviation. In this game analysis of equilibrium is complex because

the …rms’ pro…t functions are not unimodal. Hence, standard theorems for demonstrating

existence and uniqueness cannot be applied. Nevertheless, we present conditions under

which each …rm’s pro…t function has a single interior local maximum. That provides enough

structure to obtain some results on existence and uniqueness of equilibrium.

De…ne …rm !’s reaction correspondence

7!(#") = f#! ¸ 0 : #! 2 argmax
%!
)!(#!' #")g&

A pair of full prices, f# ¤! ' # ¤" g is a Nash equilibrium if # ¤! 2 7!(# ¤" ) and #¤" 2 7"(# ¤! )& De…ne
# ¤! (#") as the smallest solution to …rm !’s …rst-order condition:

# ¤! (#") = min
½
0 · #! . ~#!(#") :

/)!
/#!

= 0

¾
'

where # ¤! (#") = ? if there is no solution to the …rst-order condition. Due to scale economies,

there may exist multiple solutions to the …rst-order condition or there may be no solution.

The problem is that )! is negative and convex if #! is too close to ~#!(#"); i.e., if demand is too

low. However, according to the next theorem, under reasonable conditions 7!(#") contains
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only one element if there exists some full price that generates positive pro…ts for …rm !. The

condition in the following theorem is assumed throughout.

Theorem 1 If

¡(!
µ
/(!
/#!

¶¡1
is decreasing and strictly convex in #! for #! · ~#!(#")' then

7!(#") =

8<: f#! : #! ¸ ~#!(#")g #¤! (#") = ? or )!(#¤! (#")' #") . 0
f#! : #! ¸ ~#!(#")g [ # ¤! (#") )!(#

¤
! (#")' #") = 0

#¤! (#") )!(#
¤
! (#")' #") , 0

&

Proof. Di¤erentiate and rearrange terms:

/)!
/#!

= (! +
³
#! ¡ *! ¡ -!+!(#!¡1!

´ /(!
/#!

=

µ
¡/(!
/#!

¶Ã
¡(#! ¡ *!) +

"
¡(!

µ
/(!
/#!

¶¡1
+ -!+!(

#!¡1
!

#!
& (3)

Since /(!0/#! . 0 and (! , 0 for #! . ~#!(#"), it follows that /)!0/#! , 0 for #! = 0&

Furthermore, /)!0/#! ! 1 as #! ! ~#!(#")& Thus, it is optimal for …rm ! to either price

itself out of the market, #! ¸ ~#!(#")' or to choose some interior 0 . #! . ~#!(#") that satis…es

the …rst order condition. Recall that # ¤! (#") is the smallest #! that satis…es the …rst order

condition. It is the unique interior optimal #! if )!(#¤! (#")' #") , 0 and if it can be shown

there exists a unique pair (# 0! ' #
00
! ), 0 . #

0
! · # 00! . ~#!(#"), such that /)!0/#! is positive for

0 · #! · # 0! ' negative for # 0! · #! · # 00! and positive for # 00! · #! · ~#!(#"). If that holds and

# 0! . #
00
! ' then #

¤
! (#") = #

0
! is a local maximum and # 00! is a local minimum. If #

0
! = #

00
! then

)!(#
0
! ' #") . 0&

From (3), /)!0/#! . 0 when

(#! ¡ *!) ,
"
¡(!

µ
/(!
/#!

¶¡1
+ -!+!(

#!¡1
!

#
& (4)

(4) neither holds for #! = 0 (because (!(0' #") , 0) nor for #! = ~#!(#") (because then (!(#) =

0)& The left hand side is positive and linearly increasing in #!. The right hand side is positive.

Therefore, the f# 0! ' # 00! g pair exists if the right hand side is strictly convex for #! · ~#!(#").

(Note that # 0! = #
00
! is possible.) The second term on the right hand side of (4), -!+!(

#!¡1
! '

is strictly convex in #! if ¡(! (/(!0/#!)¡1 is decreasing. Thus, the right hand side of (4) is

strictly convex if ¡(! (/(!0/#!)¡1 is also strictly convex.¤
11



The following demand functions satisfy the above requirement: linear demand,

(!(#!' #") = 8! ¡ 9!#! + :!#"
with 8! , 0' 9! , 0 and 9! , :! , 0; and truncated logit demand,

(!(#!' #") =

·
;

8!<
&%!

8!<&%! + 8"<&%"
¡ =
¸+

with 8! , 0, 9 . 0 and ; , 2= , 0.5 Note that (! may be convex in #!' but not too convex.6

The next theorem further characterizes each …rm’s optimal response. In particular, it

demonstrates that there is a single discontinuity in 7!(#") (at º#") and 7!(#") is a function for

all #" , º#" &

Theorem 2 There exists an º#" ¸ 0 such that )!(#¤! (º#")' º#") = 0 and )!(# ¤! (#")' #") , 0 for
all #" , º#" &

Proof. By assumption, )!(# ¤! (#")' #") , 0 for some #"& From the envelope theorem:

()!(#
¤
! (#")' #")

(#"
=

/)!(#
¤
! (#")' #")

/#!

/# ¤! (#")
/#!

+
/)!(#

¤
! (#")' #")

/#"

=
³
# ¤! (#")¡ *! ¡ -!+!(#!¡1!

´ /(!
/#"

= ¡(! /(!
/#"

µ
/(!
/#!

¶¡1
, 0

because /)!(# ¤! (#")' #")0/#! = 0 when )!(# ¤! (#")' #") ¸ 0& Thus, when #¤! (#") exists, )! is

strictly increasing in #" & (When # ¤! (#") does not exist, )! is strictly increasing in #! and so

~#!(#") is optimal for …rm !&) Hence, there exists some º#" such that )!(#¤! (º#")' º#") = 0 and

)!(#
¤
! (#")' #") , 0 for all #" , º#"&¤
Due to the discontinuity in 7!(#")' existence of a Nash equilibrium is not assured.7 Al-

5 The 9 constant must be the same for …rm ! and …rm " due to the ¡/(!(#)0/#! ¸
/(!(#)0/#" requirement. = , 0 ensures that a …nite ~#!(#") exists. ; , 2= ensures

that (!(0' 0) , 0&

6 Convex 10(!(#) is the most general condition for quasi-concave payo¤ functions when

- ¸ 1 (i.e., costs are convex and increasing in demand), which is equivalent to the con-
dition that the slope of ¡(!(#)(/(!(#)0/#!)¡1 is less than 1. Thus, the condition in Theo-
rem 1 is more restrictive. However, it is not a necessary condition.

7 Discountinuities in the reaction correspondence do not automatically rule out the ex-
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ternatively, there may be multiple equilibria. However, it is possible to provide conditions

under which there is at most one Nash equilibrium in which both …rms have positive demand.

(In other words, if there are multiple equilibria under those conditions, then in all but one

of them at least one of the …rm exits the market.) We refer to any equilibrium in which

both …rms have positive demand as a full-participation equilibrium.

Theorem 3 De…ne

>!(#!' #") = 1 + -!+!(1¡ -!)(#!¡2!

/(!
/#!
&

If for both …rms

(!
/2(!
/# 2!

+

¯̄̄̄
(!
/2(!
/#!/#"

¡ >!(#!' #")/(!
/#!

/(!
/#"

¯̄̄̄
.

µ
/(!
/#!

¶2
(1 + >!(#!' #")) (5)

holds for all f# ¤! (#")' #"g when )!(#¤! (#")' #") ¸ 0, then there exists at most one full-
participation equilibrium; i.e., an equilibrium in which both …rms have positive demand.

Proof. The …rst step is to show if j70!(#")j . 1 for all #" ¸ º#" and the same for …rm ", then

there is at most one equilibrium with positive demand for both …rms. (This is less restrictive

than showing that the best-reply mapping is a contraction, which it is not.) The second step

shows (5) implies those conditions. For the …rst step proof is by contradiction. Suppose

there are two equilibria, f# ¤! ' # ¤" g and f# ¤¤! ' # ¤¤" g with # ¤" . # ¤¤" & Since both …rms have positive
demand, º#! · #¤! ' º#! · # ¤¤! and º#" · # ¤" ' i.e., the reaction functions are continuous between
the two equilibria. j70!(#")j . 1 implies

¯̄
7!(#

¤¤
" )¡ 7!(# ¤" )

¯̄
. # ¤¤" ¡ # ¤" and

¯̄
70"(#!)

¯̄
. 1 implies

j#¤¤! ¡ # ¤! j , # ¤¤" ¡ # ¤" . But j# ¤¤! ¡ # ¤! j ,
¯̄
7!(#

¤¤
" )¡ 7!(# ¤" )

¯̄
= j# ¤¤! ¡ # ¤! j: a contradiction. For

the second step, assuming )!(# ¤! (#")' #") ¸ 0' the implicit function theorem provides

/7!(#")

/#"
= ¡ /2)!

/#!/#"

µ
/2)!
/# 2!

¶¡1
Using the …rst-order condition, the above derivatives can be written as

/2)!
/#!/#"

=
/(!
/#"

>!(#!' #") + (!

µ
¡/(!
/#!

¶¡1
/2(!
/#!/#"

/2)!
/# 2!

=
/(!
/#!

(1 + >!(#!' #")) + (!

µ
¡/(!
/#!

¶¡1
/2(!
/# 2!

&

istence of Nash equilibrium. For example there exists a Nash equilibrium if 7!(#!) is every-

where decreasing (see Vives 1999). But that condition does not hold in this game.

The theory of supermodular games (see Topkis, 1998) applies even if there are dis-

continuities, but this game is neither supermodular nor log-supermodular.

13



Note that substitution of the …rst-order condition into the positive-pro…t condition, #!¡ *!¡
+!(

#!¡1
! ¸ 0' yields

1 + (1¡ -!)+!(#!¡2!

/(!
/#!

¸ 0&
Therefore >!(#!' #") ¸ 1¡ -! , 0& Hence /7!(#")0/#" . 1 holds if

(!
/2(!
/# 2!

+

·
(!
/2(!
/#!/#"

¡ >!(#!' #")/(!
/#!

/(!
/#"

¸
.

µ
/(!
/#!

¶2
(1 + >!(#!' #"))& (6)

Further, /7!(#")0/#" , ¡1 holds if

(!
/2(!
/# 2!

¡
·
(!
/2(!
/#!/#"

¡ >!(#!' #")/(!
/#!

/(!
/#"

¸
.

µ
/(!
/#!

¶2
(1 + >!(#!' #"))& (7)

Since ¡(!(/(!0/#!)¡1 is decreasing it follows that (/(!0/#!)2 , (!/2(!0/# 2! . Hence, com-

bining (6) with (7) yields (5).¤
Since >!(#!' #") , 0 for all f# ¤! (#")' #"g' the condition in Theorem 3 can be written in a

simpler, albeit more restrictive form:

/2(!
/#2!

+

¯̄̄̄
/2(!
/#!/#"

¯̄̄̄
.
1

(!

µ
/(!
/#!

¶2
(8)

The above clearly holds for linear demand. (In fact, with linear demand it holds for all

f#!' #"g&) But (8) does not hold for logit demand. Fortunately, the more cumbersome

condition (5) does hold for logit demand when - · 102. (Recall that - = 102 in both the
queuing and inventory games.)8

While Theorems 3 provides conditions under which there is at most one equilibrium with

both …rms participating in the market, it does not guarantee the existence of an equilibrium.

In fact, as is shown by example later, a Nash equilibrium may not even exist in a symmetric

game (a game in which the …rms’ parameters are identical). Nevertheless, the next theorem

provides a condition for the existence of a Nash equilibrium.

Theorem 4 In a symmetric game, i.e., 8! = 8"' *! = *"' +! = +"' -! = -"' and (!(#1' #2) =
("(#1' #2) for any #1 and #2, there exists a unique Nash equilibrium and both …rms have
positive demand in equilibrium if the conditions in Theorem 3 hold and #¤! (º#") ¸ º#" &

8 /2(!0/#!+j/2(!0/#!/#"j . 0 for all #! and #" is often presented as a uniqueness condition
in economics (see Vives, 1999). That condition is even more restrictive than (8) for

two reasons: the right hand side constant is positive in (8); and (8) need only be satis…ed on

the reactions functions.
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Proof. From Theorem 3 7!(#") . 1& Hence, there exists a full-participation equilibrium,

f# ¤! ' #¤" g' with # ¤! = # ¤" ¸ º#" if # ¤! (º#") ¸ º#" & In words, because the slope of …rm !’s reaction

function is less than 1, the reaction function must intersect #! = #" if it starts above that

line. Given that ~#!(#") ¡ #" is decreasing in #" (by assumption) it follows that # ¤! (#") ¸ #"
for all #" · º#". Therefore, there is no equilibrium with #" . º#".¤
To explore the condition in Theorem 4 further, de…ne

º(! = (!(#
¤
! (
º#")' º#")'

i.e., º(! is …rm !’s positive demand when …rm !’s optimal pro…t is zero. In a symmetric game

with linear demand

º(! = ((1¡ -)+9)
1

2¡# &

Thus, after some algebra, if º#" , 0' then # ¤! (º#") ¸ º#" simpli…es to

º(!

µ
2¡ - ¡ :09
1¡ -

¶
· 8¡ (9¡ :)* = (!(*' *)

The above is more likely to hold as 8, : or - increase and as 9' + or * decrease, i.e., the

existence of equilibrium becomes more likely as base demand increases, scale e¤ects decrease

(+ decreases or - increases), as cost decreases and as the market becomes less price sensitive

(9¡ : decreases).
To illustrate the possible equilibrium con…gurations, consider the queueing game with

logit demand: 8 = ¡9 = ; = 1; = = ? = 1E-5& Figure 1 displays each …rm’s reaction

function in a symmetric game with low capacity cost, *! = *" = 0&1& In this situation each

…rm always participates in the market and there is a unique equilibrium. Figure 2 shows

that either …rm may choose to not participate in the market if costs are higher, *! = *" = 0&4'

and the other …rm chooses a low full price. Yet, there still is a unique equilibrium and both

…rms participate in the market. If costs are increased substantially, *! = *" = 3&75' there

may not exist an equilibrium, as is shown in Figure 3, even in a symmetric game. If costs

are further increased, *! = *" = 4&75' then two equilibria emerge, as shown in Figure 4.

With either equilibrium only one …rm participates in the market. Figure 5 demonstrates

that with asymmetric costs, *! = 4&75 and *" = 0&4' there may exist a single equilibrium in

which only one …rm participates in the market (in this case it is …rm ")&9

9 In fact, there is a continuum of equilibria in this case, where any f ~#!(# ¤" ) , #¤" ' #¤" g is an
15



From a predictive point of view it is heartening that there exists at most one full-

participation equilibrium. But if there is no equilibrium then, by de…nition the game is

not stable, and we are unable to say much more with this model.

To move away from the issue of existence, consider the characteristics of a full-participation

equilibrium. The …rst result is expected.

Theorem 5 Consider two games that are identical except with respect to two parameters:
one game has *'! and +

'
! whereas the other has *

(
! and +

(
! where *

'
! · *(! ' +'! · +(! and at least

ones of those inequalities is strict. Suppose a full-participation equilibrium exists in both
games. Then # '! . #

(
! ' where #

'
! is …rm !’s equilibrium full price in the …rst game and #(! is

…rm !’s equilibrium full price in the second game.

Proof. Given that …rm "’s parameters are held constant, 7"(#") is unchanged across these

two treatments. The result follows if 7'!(#") . 7
(
! (#") where the former is …rm !’s reaction

function with f*'!' +'!g and the latter is with f*(! ' +(! g& From the implicit function theorem

/7!(#")

/*!
= ¡/)!(#)

/#!/*!

µ
/2)!(#)

/# 2!

¶¡1
&

Since
/)!(#)

/#!/*!
= ¡*!/(!(#)

/#!
, 0'

it follows that /7!(#")0/*! , 0& The analogous process demonstrates the needed result for

the +! parameter.¤
From Theorem 5 it follows that if the game is symmetric with respect to parameters and

demand with the exception that one …rm has a lower cost than the other, then the low

cost …rm has a higher market share. But Theorem 5 makes no claim regarding the …rms’

explicit prices. In fact, it is quite possible that the low cost …rm has a higher market share

and a higher explicit price; a highly enviable position from a manager’s perspective.10 To

illustrate, suppose *! = 0&1' *" = 0&4 and all other parameters are as de…ned in Figures 1 and

2. In that case # ¤! = 2&65' #
¤
" = 2&76' $

¤
! = 2&21 and $

¤
" = 1&84& Firm ! can have a higher

price and a higher market share because …rm ! serves its customers more quickly, thereby

allowing it to charge a premium.

equilibrium.

10 In the inventory game, a …rm’s full price equals its explicit price, so in that case

the theorem states the low cost …rm has the lower explicit price as well.
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To explore further when the low cost …rm has a higher explicit price we study a particular

game that is amenable to analysis. Consider the queuing game with the following symmetric

linear demand

(!(#!' #") = 8¡ 9(#! ¡ #")& (9)

Firm !’s pro…t function is )! = (#! ¡ *!) (! ¡ 2
p
*!(! where recall that $! = #! ¡

p
*!0(!. If

in addition the …rms have symmetric costs, *! = *" = *' then there exists a unique full-

participation equilibrium, f# ¤! ' # ¤" g'

#¤! = *+
³ *
8

´1$2
+
8

9
(10)

)!(#
¤
! ' #

¤
" ) =

82

9
(1¡ @) (11)

where @ is de…ned as

@ =
9*1$2

83$2

and @ 2 (0' 1) to ensure positive pro…ts.
Now suppose …rm "’s cost is increased slightly. The next theorem provides the conditions

for which $! , $" in the new equilibrium (assuming it exists). In other words, when (13)

holds a slight increase in …rm "’s cost increases …rm !’s price in equilibrium more than …rm

"’s price.

Theorem 6 If a full-participation equilibrium exists in the symmetric queuing game, i.e.,
*! = *" = * and demand is given by (9) then

/$¤! (*' *)
/*"

,
/$¤"(*' *)
/*"

(12)

when
1 ,

p
8* (1¡ @) ' (13)

where $¤! (*!' *") is …rm !’s explicit price in the full-participation equilibrium.

Proof. De…ne #¤! (*!' *") as …rm !’s equilibrium full price. From di¤erentiation,

/$¤!
/*"

=
/#¤!
/*"

+ (102)*
1$2
! (

¡3$2
!

µ
¡9/#

¤
!

/*"
+ 9
/# ¤"
/*"

¶
/$¤"
/*"

=
/#¤"
/*"

+ (102)*
1$2
" (

¡3$2
"

µ
9
/# ¤!
/*"

¡ 9/#
¤
"

/*"
¡ ("
*"

¶
where the arguments for # ¤! (*!' *") and $

¤
! (*!' *") have been dropped for notational clarity.

From the implicit function theorem and Cramer’s rule

/# ¤!
/*"

=
jA%!j
jA j ;

/# ¤"
/*"

=

¯̄
A%"
¯̄

jA j
17



where, jA j ' jA%! j and
¯̄
A%"
¯̄
are evaluated at the symmetric equilibrium and

jA j =
¯̄̄̄
¯

)2*!
)%2!

)2*!
)%!)%"

)2*"
)%!)%"

)2*"
)%2"

¯̄̄̄
¯ = 92 (3¡ @)

jA%! j =
¯̄̄̄
¯ ¡

)2*!
)%!)+"

)2*!
)%!)%"

¡ )2*"
)%")+"

)2*"
)%2"

¯̄̄̄
¯ = 92

µ
1 +

1

2
p
*8

¶µ
1¡ 1

2
@

¶
¯̄
A%"
¯̄
=

¯̄̄̄
¯

)2*!
)%2!

¡ )2*!
)%!)+"

)2*"
)%!)%"

¡ )2*"
)%")+"

¯̄̄̄
¯ = 92

µ
1 +

1

2

1p
*8

¶µ
2¡ 1

2
@

¶
Given that @ . 1 (12) can be simpli…ed to (13).¤
Given @ . 1' (13) fails to hold only if

1

8
. * .

83

9
&

Hence, in markets with low demand, 8 . 1' (13) always holds (because * . 8). In markets

with greater demand, (13) is more likely as the market becomes more price sensitive, i.e, as

9 increases.

Table 1: Equilibrium results with symmetric linear demand: 8 =
1&25' : = 9' *! = (@09)

283

@ 9 *"0*! (¤"0(28) $¤"0$
¤
! %¤! 0%

¤
" ()¤" ¡ )¤! )0)¤"

0.5 0.20 0.99 0.50 0.999 1.01 0.06
0.5 0.20 0.95 0.52 0.997 1.07 0.28
0.5 0.20 0.90 0.54 0.993 1.15 0.49
0.9 0.20 0.99 0.52 1.000 1.04 0.67
0.9 0.20 0.95 0.58 1.001 1.21 1.30
0.9 0.20 0.90 0.67 1.004 1.49 1.37
0.5 0.75 0.99 0.50 1.001 1.01 0.03
0.5 0.75 0.95 0.51 1.003 1.04 0.12
0.5 0.75 0.90 0.52 1.007 1.09 0.23
0.9 0.75 0.99 0.51 1.001 1.02 0.30
0.9 0.75 0.95 0.53 1.007 1.08 0.88
0.9 0.75 0.90 0.55 1.013 1.17 1.14

Table 1 provides some data on the impact of a cost advantage. In those scenarios …rm "’s

cost is either 1%, 5% or 10% lower than …rm !’s cost (*"0*! = 0.99, 0.95 and 0.90 respectively).

This cost advantage gives …rm " a modest market share advantage ((¤"0(28)). Firm " may

have lower equilibrium price than …rm ! when demand is not price sensitive (9 = 0&2)' and

always has a higher equilibrium price when demand is price sensitive (9 = 0&75)& However,
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the price di¤erence between the …rms across all scenarios is small ($¤"0$
¤
! ). What is not small

is …rm "’s operational performance advantage (%¤! 0%
¤
" ' where recall a higher ratio means worse

performance for …rm !). In these scenarios, rather than beating its competitor on price, …rm

" exploits its cost advantage to o¤er customers better operational performance. The result

is a substantial pro…t bonus for …rm "&

4 Outsource to a supplier

This section explores the motivation for outsourcing. Suppose now there exists a third …rm,

called the supplier. The supplier does not (or cannot) sell directly to consumers, but the

supplier has the ability to perform the …rms’ operations. (van Mieghem 1999 takes the same

approach to subcontracting). For example, the operation in question may be a call center,

which could be owned and managed by a …rm, or, the …rm could outsource that function to

the supplier.

We model outsourcing with a two stage game. In the …rst stage, called the negotiation

stage, both …rms attempt to negotiate an outsourcing contract with the supplier. The

contract has two parameters, 4, and %, : 4, is the amount the supplier charges the …rm per

customer the supplier serves for the …rm, and %, is the operational performance the supplier

guarantees. For example, in a call center context the contract could specify a fee for each

call processed (4,) and a guaranteed average waiting time (%,). We assume that it is easy to

monitor the supplier’s operational performance and so ensuring compliance with contractual

terms is not an issue. In addition, we rule out any renegotiate of contractual terms after

they are set. For notational convenience, we will often de…ne the contract in terms of *,

and %,, where *, = %,+4,& We do not explicitly model this negotiation process (e.g., which

…rm makes the …rst o¤er or the process by which the …rms converge to a signed contract).

Instead, we will focus on identifying the set of contracts that leave both parties at least as

well o¤ as they would be if no contract were signed.11

11 Much of the supply chain contracting literature assumes one of the …rms makes a take-

it-or-leave-it o¤er to the other …rm, thereby implicitly assigning all bargaining power to the

o¤ering …rm. We could adopt that approach, but then the outcome of the analysis
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In the second stage, called the competitive stage, the …rms compete for customers as in

§2. For analytical tractability we assume in the second stage the …rms play the queuing

game, *! = *" = *' and demand has the linear form given by (9),

(!(#!' #") = 8¡ 9(#! ¡ #")

The negotiations in the …rst stage do not necessarily lead to signed outsourcing agree-

ments. The supplier, being a rational player, will sign a contract only if she expects to earn a

non-negative pro…t. The …rms, also acting rationally, will sign contracts only if they expect

to earn at least as much with the contract as they would without an outsourcing agreement,

i.e., each …rm has the option to “insource” and compete in the second stage with complete

control of his operations. To be speci…c, if negotiations in the …rst stage fail to reach an

agreement (i.e., the …rm insources), then the …rm, as in §2, has two decisions in the second

stage, his explicit price and his operational performance, and incurs a cost * per unit of

capacity installed. But if a …rm has a signed outsourcing agreement with the supplier, then

in the second stage the …rm only chooses its explicit price, since his operational performance

is speci…ed by the outsourcing agreement, and incurs a 4, cost per unit of demand.

One would expect to observe outsourcing agreements if the supplier is able to o¤er the

…rms a good deal because the supplier has lower costs than the …rms: e.g., the supplier has

better technology, lower labor costs (e.g., due to the absence of unions) or greater scale. The

latter is possible if the supplier is able to combine the demands of multiple …rms. While

the “low cost” explanation for outsourcing is plausible, it does not appear to be suitable for

all cases. For example, there are cases observed in practice in which outsourcing occurs

between a …rm and a supplier that establishes a dedicated facility for the …rm (e.g., a

factory that produces output only for the …rm or a call center that process calls only from

the …rm’s customers) and the supplier’s technology is arguably no better than her clients’

technology. Thus, we seek an alternative explanation for outsourcing. To control for the low

cost hypothesis, we assume the supplier does not have better technology or lower costs, i.e.,

all outsourcing agreements involve dedicated operations (the supplier cannot pool demand

would be a single contract, the one that leaves the receiving …rm indi¤erent between

accepting it or not and assigns all incremental gains from the contract to the o¤ering

…rm. It is unlikely that outsourcing contracts are managed in that way in practice.
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across both …rms) and the supplier’s cost is identical to either …rm’s. To be speci…c, for

any operational performance level and demand rate, the supplier’s cost with an outsourcing

agreement is identical to what the …rm’s cost would be if the …rm choose instead to insource:

i.e., the supplier incurs a cost * per unit of capacity that must be installed to generate the

promised operational performance given the anticipated demand rate.

Since the supplier is unable to o¤er lower costs to the …rms, it is not at all clear that there

even exists an outsourcing contract that the parties can agree to in the …rst stage. If for any

operational performance level and demand rate the …rm can achieve the same cost as the

supplier without having to pay the supplier’s margin, then why would a …rm agree to any

contract that gives the supplier a positive margin? But there is a ‡aw in that argument: it

does not account for how the equilibrium in the competitive stage depends on the outcome

of the negotiation stage. In other words, a …rm that has an outsourcing agreement behaves

di¤erently in the competitive stage than one that does not, and this di¤erence is signi…cant.

4.1 Both …rms outsource

In this section we …rst demonstrate the …rms prefer that they both outsource rather than

they both insource. But just as the two players in a Prisoners’ Dilemma game prefer that

they both cooperate over they both defect, this does not mean the outcome will be both

…rms outsourcing. Several conditions are necessary for that to happen: a …rm must prefer

to outsource if the other …rm outsources (which does not happen in the Prisoners’ Dilemma,

defect is optimal if the other cooperates) ; a …rm must prefer to outsource if the other …rm

insources (which also does not happen in the Prisoners’ Dilemma, defect is optimal if the

other defects); and the supplier must earn a non-negative pro…t with both contracts.

Lets begin with the scenario that both …rms insource (i.e., they both fail or refuse to

negotiate a deal with the supplier in stage one). This scenario is evaluated in section

3: the equilibrium full price is (10), and the equilibrium pro…t is (11), repeated here for

convenience,

)!(#
¤
! ' #

¤
" ) =

82

9
(1¡ @) ' (14)

where @ = 9*1$28¡3$2 and @ 2 (0' 1) ensures positive pro…ts.
The next scenario to consider in stage two has both …rms outsourcing. In this case each

…rm in the competition stage faces linear demand and a constant marginal cost. This is the
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classical di¤erentiated Bertrand competition game with constant marginal cost. It is well

studied in economics (Vives, 1999) and it is known to have a unique closed form equilibrium.

For simplicity, assume the outsourcing agreement, f4,' %,g' is the same for the two …rms,
which has several justi…cations: the …rms are a priori identical, so it is not clear why one

of them would be able to negotiate a better deal; antitrust regulations generally require

suppliers to treat their customers equally unless it can be shown that there are di¤erences

in costs to serve customers (which do not exist in this case by assumption); and it is less

likely that both …rms outsource if one …rm’s contract is less favorable than the other …rm’s

(because that …rm is then more likely to prefer insourcing). In the competition stage …rm

!’s pro…t is )!(#!' #") = (#! ¡ *,)(!(#!' #")' where recall *, = 4, + %, and $! = #! ¡ %,. The

equilibrium full price is #¤! = (809) + *, + %, and each …rm’s pro…t is

)!(#
¤
! ' #

¤
" ) =

82

9
& (15)

A quick comparison of (15) with (14) reveals that each …rm’s pro…t is higher when the

…rms both outsource than when they both insource. Remarkably, the result is independent

of the outsourcing terms. The reason follows from two observations: (1) when both …rms

outsource they set their price, (809 + *,)' equal to a …xed markup over *,, and (2) neither

…rm’s demand decreases in its full price as long as the …rms choose the same full price (i.e.,

there is a constant market size and prices only function to allocate that market between the

…rms). Hence, the sum of the …rms’ costs is independent of the full prices as long as the

…rms choose the same full price.

Now that we have established that both …rms prefer the competitive stage with both

…rms outsourcing rather than both insourcing, we need to con…rm they will indeed make

that choice and the supplier can earn a non-negative pro…t. Let’s begin with the supplier.

The supplier’s pro…t from her contract with …rm ! is

),(*,' %,) = (*, ¡ %, ¡ *)(! ¡ *

%,
where (! is …rm !’s demand rate in the stage two equilibrium, *((! + %¡1, ) is the supplier’s

capacity cost rate and recall 4, = *,¡ %,. To know whether a non-negative expected pro…t
will be earned with this contract, the supplier must anticipate what (! will be. Clearly it

depends on …rm !’s pro…t function if …rm ! signs the outsourcing contract:

)!(#!' #") = (#! ¡ *,)(!(#!' #")
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where note #!¡*, = $!¡4,& The above tells us that the equilibrium #!, which will determine
(!, depends only on *, and not on how *, is divided between 4, and %,& As a result, if *, is

…xed, then (! is …xed (i.e., independent of %,), ),(*,' %,) is strictly concave in %,' the supplier’s

optimal operational performance is

%, = (*0(!)
1$2 (16)

and the supplier’s pro…t is

),(*,) = (*, ¡ *)(! ¡ 2 (*(!)1$2 & (17)

The supplier can then accept any outsourcing contract as long as ),(*,) ¸ 0& From (16) and
(17), the set of such contracts, parameterized by ?' is

f*,' %, : *, = *+ 2?(*0(!)1$2' %, = (*0(!)1$2' ? ¸ 1g' (18)

where (! is what the supplier anticipates the competitive stage demand rate for the …rm will

be. (Note that *, , %,' which ensures a non-negative 4,&)

Recall that our main objective is to determine if there exists a set of outsourcing contracts

that all three …rms can agree to sign. Suppose the supplier anticipates that the …rm signing

the contract will have a competitive stage equilibrium demand rate (! = 8& In that case,

from (18), the set of acceptable contracts is

f*,' %, : *, = *+ 2?(*08)1$2' %, = (*08)1$2' ? ¸ 1g& (19)

We next explore whether (19) is acceptable to the …rms. To do so we must explore what

would happen if only one …rm made an outsourcing agreement.

Suppose …rm ! does not accept an outsourcing contract, but …rm " does. The …rms’ pro…t

functions are then

)!(#!' #") = (#! ¡ *) (!(#!' #")¡ 2
q
*(!(#!' #")

)"(#!' #") = (#" ¡ *,) ("(#" ' #!)

where recall $" = #" ¡ %,& The next theorem details what happens in the competitive stage

with a subset of the contracts in (19). (A full participation competitive stage equilibrium

does not exist with higher ?.)
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Theorem 7 Suppose …rm ! insources but …rm " signs an outsourcing contract from (19)
with 1 · ? . 30(2@) + 8¡1$2& De…ne

; = (!(#)08

B(;' ?) = ;+
1

3
@;¡1$2 ¡ 2

3
@?

C(;) = ;2 ¡ @;1$2&

where recall @ = 9*1$28¡3$2 and @ 2 (0' 1). In the competition stage there exists a unique
equilibrium; …rm !’s demand is (¤! = 8;

¤, where ;¤ is the largest solution to

B(;'?) = 1;

2 , ;¤ , 1; …rm !’s demand is greater than …rm "’s demand; …rm "’s pro…t is (8209)(2¡;¤)2;
…rm !’s pro…t is (8209)C(;¤); and …rm’s pro…t is greater than …rm "’s pro…t.

Proof. Both …rms exiting the market cannot be an equilibrium because total demand is

constant at 28& Now rule out that …rm " exits the market; i.e., chooses #" = (809) + #!&

Firm "’s pro…t is concave in #", so that full price is not optimal if /)"(#!' #")0/#" evaluated

at #" = (809) + #! is negative; i.e., if

¡9
³8
9
+ #! ¡ *¡ 2?(*08)1$2

´
. 0

Substitute …rm !’s …rst-order condition into the above and simplify yields ? . 30(2@)+8¡1$2&

Similarly, it can be shown that if …rm " anticipates …rm ! exits the market, then there exists

an #! such that …rm ! earns positive pro…t; i.e., …rm ! exiting the market is also not an

equilibrium. We now show there exists a unique interior equilibrium.

Any interior equilibrium, f# ¤! ' # ¤" g' satis…es the …rst-order conditions:
/)!
/#!

= (¤! ¡ 9
¡
# ¤! ¡ *¡ (*0(¤! )1$2

¢
= 0

/)"
/#"

= (¤" ¡ 9
¡
# ¤" ¡ *,

¢
= 0

with (¤! = (!(#
¤
! ' #

¤
" )& It is not feasible to obtain closed form solutions for # ¤! and #

¤
" ' so we

express the equilibrium implicitly in terms of ;' which is a proxy for …rm !’s market share.

If (! is the equilibrium demand rate, then from the two equations above we have

# ¤! = *+ (*0(!)
1$2 + (¤! 09 (20)

# ¤" = *, + (28¡ (¤! )09 (21)

where recall, (" = 28 ¡ (!& If (¤! is indeed an equilibrium, then it must be that (
¤
! =

8¡ 9(# ¤! ¡ # ¤" )' where # ¤! and # ¤" are given in (20) and (21). Thus, substitute (20) and (21)
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into (¤! = 8¡ 9(# ¤! ¡ # ¤" ) and simplify:

;+
1

3
@;¡1$2 ¡ 1

3

9

8
(*, ¡ *) = 1&

Given that *, ¡ * = 2?*1$28¡1$2' the above can be written as

B(;'?) = 1& (22)

For the remainder of this proof ; ¸ 0 is implied. B(;'?) is convex; let ¹; minimize B(;' ?)'

¹; = (@06)2$3& It can be shown that B( ¹;'?) . 1' so there are two solutions to (22)& )! is

concave for ; , (@04)2$3'
/2)!
/# 2!

= ¡9 ¡2¡ (102)@;¡3$2¢ '
and B((@04)2$3' ?) . 1' so the smaller solution to (22) is a local minimum for …rm ! and the

larger solution is a local maximum. Let ;¤ be that larger solution to B(;' ?) = 1& It is easy

to con…rm that ;¤ , 1 when ? ¸ 1. ;¤ is the unique interior equilibrium if both …rms earn

positive pro…t. Substitute …rm !’s …rst-order condition into the pro…t function to yield …rm

!’s equilibrium pro…t in terms of equilibrium demand:

)!(#
¤
! ' #

¤
" ) = (

2
! 09¡

p
*(¤! = (8

209)C(;)

Since C(;) , 0 for ; , 1 it follows that …rm ! indeed earns a positive pro…t at ;¤& A

similar approach yields …rm "’s pro…t. The boundary condition on ? ensures that ;¤ . 2'

hence …rm " also earns a positive pro…t. Firm "’s demand is (¤" = 28¡(¤! = 8(2¡;¤)' which

is less than (¤! = 8;
¤ given that ;¤ , 1& Finally, we wish to show C(;¤) , (2 ¡;¤)2.

Firm !’s pro…t is increasing in ? and …rm "’s is decreasing in ?' so it is su¢cient to compare

pro…ts for ? = 1& Use B(;¤' 1) = 1 to solve for @ and substitute into the pro…t condition.

That yields 8 , 3
p
;¤ + 40

p
;¤' which simpli…es to 0 , (3

p
;¤ ¡ 2)(p;¡ 2)' which holds

for ;¤ 2 (1' 2)&¤
According to Theorem 7, in the insource-outsource scenarion (one …rm insources, the

other outsources) then the insource …rm has a higher market share and a higher pro…t.

Nevertheless, according to the next theorem, there exists a subset of (19) with which both

…rms prefer to outsource whether the other …rm outsources or not. Furthermore, twith that

subset of contracts the supplier earns a non-negative pro…t because the supplier’s anticipated

demand rate with each contract (8) indeed materializes in equilibrium.
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Theorem 8 De…ne

?̂ = 1 +
3

2@
(B(;̂' 1)¡ 1)

where ;̂ is the unique solution to C(;̂) = 1 and @ 2 (0' 1)& It holds that ?̂ , 1& If both …rms
have the opportunity to sign an outsourcing contract chosen from (19) with 1 · ? . ?̂' then
each …rm prefers to outsource whether the other …rm outsources or insources.

Proof. Suppose …rm " outsources. We …rst check that …rm ! prefers to outsource too. If

…rm ! outsources then it earns 8209& If …rm ! insources, then it earns, from Theorem 7,

(8209)C(;¤)' where B(;¤' ?) = 1& Hence, …rm ! prefers to outsource if C(;¤) . 1& From

B(;¤' ?) = 1 solve for @ in terms of ;¤ :

@(;¤) =
3(;¤ ¡ 1)
2?¡ 10p;¤ &

Substitute @ = @(;¤) into the condition C(;¤) . 1 and simplify:

(;¤ + 1)
³
2?
p
;¤ ¡ 1

´
. 3;¤

The above can be con…rmed numerically for ;¤ 2 (1' 2) and ? = 1& Given that B(;' ?) is
linearly decreasing in ?' it is straightforward to show that B(;¤' ?̂) = 1 = C(;̂)' i.e., with

? = ?̂ …rm ! is indi¤erent between insourcing and outsourcing (C(;¤) = 1).

Now suppose …rm ! insources and check that …rm " prefers to outsource even though …rm

! insources. If …rm " insources then it earns (8209)(1¡@)& If …rm " outsources, then it earns,
from Theorem 7, (8209)(2 ¡ ;¤)2' where B(;¤' ?) = 1& Thus, …rm " prefers to outsource

if (2 ¡ ;¤)2 , 1 ¡ @& De…ne D(;) = (2 ¡ ;)2 + @& So …rm " prefers to outsource when

D(;¤) , 1& Because D(;) is decreasing and convex for ; 2 (1' 2)' and ;¤ . ;̂ for all? . ?̂,

D(;¤) , 1 if D(;̂) , 1& From C(;̂) = 1 solve for @ in terms of ;̂ :

@(;̂) = (;̂2 ¡ 1)0
p
;̂&

Substitute @ = @(;̂) into the condition D(;̂) , 1 and simplify:

(2¡ ;̂)2 + (;̂2 ¡ 1)0
p
;̂ , 1

The above can be con…rmed numerically for ;̂ 2 (1' 2). Hence, both …rms prefer to outsource
no matter whether the other …rm outsources or not.¤
The …rms bene…t from outsourcing even though outsourcing provides no operational ad-

vantage because outsourcing mitigates price competition. In either the competitive stage

equilibrium with both …rms outsourcing or the competitive stage equilibrium with both …rms
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insourcing each …rm’s demand equals 8' and so their costs are identical in either game. But

in the former their equilibrium price is *+ (809) + 2(*08)1$2 whereas in the latter their equi-

librium price is * + (809)& Prices rise with outsourcing because with outsourcing the …rms

face constant returns to scale; i.e., their costs per customer are 4, no matter how many

customers they have. Outsourcing eliminates the need to cut prices to increase demand to

lower costs; i.e., it eliminates the additional price competition due to scale economies.

To emphasize the importance of scale economies, consider the same game except with

constant returns to scale; i.e., …rm !’s pro…t function is

¦!(#!' #") = (#! ¡ *)(!(#!' #")

if it insources and

¦!(#!' #") = (#! ¡ 4,)(!(#!' #")
if it outsources, where 4, is the wholesale price the supplier charges and demand is the

original linear function, (!(#!' #") = 8¡ 9#! + :#". If they both outsource each …rm’s pro…t
is

¦¤! (4,) =
9((29+ :)8¡ 4,

¡
292 ¡ :2 ¡ 9:¢)2

(492 ¡ :2)2
and if they both insource their pro…t is ¦¤! (*)& Since the supplier can only o¤er 4, ¸ *' and
9 ¸ : implies 292 ¡ :2 ¡ 9: , 0' it is clear that the …rms do not bene…t from outsourcing;

i.e., ¦¤! (4,) . ¦¤! (*). (It is also possible to show that a single …rm cannot bene…t from

outsourcing if the other …rm insources.)

Table 2 presents some numerical analysis for each of the three scenarios in the competitive

stage. As costs increase or as the market becomes more competitive (9 increases), i.e., the @

parameter increases, the incremental gain to the …rms from outsourcing increases. Even if

the …rms negotiate the most attractive contract for them, ? = 1' a …rm does not bene…t from

insourcing if the other …rm outsources, even though the insourcing …rm can gain a signi…cant

market share advantage ((-028). In the insource-outsource scenario it is the outsourcing

…rm that fairs the worse, but that …rm still fairs better than if it were to insource as well.

Finally, it is not necessary that the supplier merely break even (? = 1)& The …nal column in

the table provides the supplier’s pro…t with the supplier’s most attractive contract, ? = ?̂&

But the supplier’s pro…t gain is clearly much smaller than the …rms’ gains from outsourcing:

even a monopoly supplier’s pro…t potential is limited by the …rms’ threat to insource.
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Table 2: Equilibrium results in the competitive stage under three scenarios with
contracts chosen from (19)

Insource-
insource
scenario

Insource-outsource scenario, ? = 1 Outsource-outsource
scenario, ? = ?̂

Market share Pro…t
@ )-0). (-028 (.028 )-.0). ).-0). ),0)

.

0.1 0.9 0.52 0.48 0.97 0.95 0.05
0.2 0.8 0.53 0.47 0.94 0.87 0.09
0.3 0.7 0.55 0.45 0.91 0.80 0.13
0.4 0.6 0.57 0.43 0.88 0.74 0.16
0.5 0.5 0.59 0.41 0.85 0.67 0.19
0.6 0.4 0.61 0.39 0.82 0.61 0.22
0.7 0.3 0.63 0.37 0.80 0.55 0.24
0.8 0.2 0.65 0.35 0.78 0.49 0.26
0.9 0.1 0.67 0.33 0.76 0.43 0.28
1.0 0.0 0.69 0.31 0.74 0.38 0.29
(- = insource …rm’s demand
(. = outsource …rm’s demand
)- = a …rm’s equilibrium pro…t in the insource-insource scenario
). = a …rm’s equilibrium pro…t in the outsource-outsource scenario
)-. = the insource …rm’s equilibrium pro…t in the insource-outsource scenario
).- = the outsource …rm’s equilibrium pro…t in the insource-outsource scenario

4.2 One …rm outsources

Theorem 8 establishes that there is a set of outsourcing contracts that all …rms are willing

to sign. While those contracts earn the supplier a non-negative pro…t on each contract, it is

essential that the competitive stage equilibrium demand rate with each contract be no less

than 8& Any lower demand rate could generate a negative pro…t for the supplier, and surely

would do so if ? = 1& That could occur if one …rm insources: in the insource-outsource

competitive stage equilibrium the insourcing …rm prices aggressively to build scale, thereby

leaving the outsourcing …rm with less than 8 demand, as shown in Theorem 7. Thus,

even though in our model it is not in the interest of a …rm to insource (i.e., there exists

outsourcing contract that make the …rm better o¤), it is useful to explore what would

happen if, for reasons that we do not model, one …rm surely insources. This imposes an

even higher challenge to the viability of outsourcing: the supplier needs better terms to

break even because the supplier correctly anticipates that the outsourcing …rm’s demand

rate will be less than 8 due to the price aggressiveness of the insourcing …rm. Hence, we
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now consider the outsourcing game described in the previous section with one modi…cation:

in the negotiation stage only the supplier and …rm " negotiate an outsourcing contract and

both …rms know for sure that …rm ! will insource.

According to the next theorem, even though the supplier is forced to operate at a lower

scale than the insourcing …rm and outsourcing provides no operational advantage, there

may exist contracts that are acceptable to both the supplier and …rm ". In other words,

outsourcing may be a pro…table unilateral strategy even though the outsourcing …rm’s scale

is lower than what it would have if it insourced.

Theorem 9 De…ne

~B(;) = ;+
1

3
@;¡1$2 ¡ 2

3
@(2¡;)¡1$2&

If 0 . @ . 304, then there exists a unique ~; is the interval [1' 2 ¡ (1 ¡ @)1$2] that sat-
is…es ~B( ~;) = 1& Furthermore, if …rm ! insources and …rm " outsources with contract
*, = * + 2(*0(¤")

1$2, %, = (*0(¤")
1$2' (¤" = 28 ¡ (¤! , and (¤! = 8 ~;' then in the competitive

stage equilibrium …rm "’s demand is indeed 28 ¡ (¤! , …rm "’s pro…t is 82(2 ¡ ~;)209' …rm "
prefers to outsource than insource and the supplier earns zero pro…t with that outsourcing
contract.

Proof. From (18), the supplier’s break even contract with ? = 1 and ~; = (¤! 08 is

*, ¡ * = 2*1$2(28¡ (¤! )¡1$2

= 2(*08)1$2(2¡ ~;)¡1$2&

As in Theorem 7, the …rst order conditions and the above contract lead to the following

implicit equation for the equilibrium in terms of …rm !’s demand rate relative to 8 :

~B(;) = ;+
1

3
@;¡1$2 ¡ 2

3
@(2¡;)¡1$2 = 1

The above can have up to three solutions. The solution with ; . 1 leads to a local

minimum for …rm !, so it is ruled out. If @ = 0' then ~; = 1 = 2¡ (1¡ @)1$2 and ~B( ~;) = 1&
If @ = 304' then ~; = 302 = 2 ¡ (1 ¡ @)1$2& For 0 . @ . 304 it can be shown that

~B(1) . 1 . ~B(2 ¡ (1 ¡ @)1$2) and ~B(;) is increasing for 1 . ; . 2 ¡ (1 ¡ @)1$2& Hence,
there is a unique ~B( ~;) = 1 in that interval. Finally, …rm " earns more by accepting the

outsourcing contract than by insourcing if 82(2 ¡ ~;)209 , 82(1 ¡ @)09' which simpli…es to
2¡ (1¡ @)1$2 , ~;&¤
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While the theorem assumes the supplier breaks even with the outsourcing contract (? = 1),

if @ . 304 then there exists some ? , 1 that achieves the same outcome and yields the supplier

a positive pro…t. For brevity, the analysis of the upper bound on ? is omitted.

4.3 Discussion

Taken together, Theorems 8 and 9 suggest that outsourcing is a very attractive strategy

in the presence of scale economies. Outsourcing mitigates downstream price competition

which generates incremental rents that can be captured by all of the …rms, i.e., there exists

a set of contracts that result in non-negative pro…ts for all …rms. The particular contract

that will be chosen depends the relative bargaining power of the …rms, which could depend

on a number of factors that we do not model (e.g., the number of suppliers that can provide

outsourcing services, which …rm makes the …rst o¤er, how long the negotiations last, etc.).

Nevertheless, we feel that the key contribution of this research is to demonstrate that viable

outsourcing contracts exist even if outsourcing provides no cost advantage.

It is worthwhile to discuss a number of extensions to this model. To begin, we assumed

that the …rms’s default pro…t level is zero, e.g., the supplier is willing to accept any contract

that yields a non-negative pro…t. It is not di¢cult conceptually to extend the results

to consider a positive pro…t threshold (e.g., to re‡ect the supplier’s outside opportunities

if the …rms fail to negotiate acceptable terms or to re‡ect additional coordination costs

that could occur with outsourcing), but that change is cumbersome analytically and would

clearly reduce the set of feasible outsourcing contracts without changing our main qualitative

insight.

While we have only a single supplier, our results extend to multiple suppliers. Because

the supplier establishes dedicated capacity for each customer, each contract is evaluated on

its own. Hence, there is no di¤erence between one supplier signing a f*,' %,g contract with
two …rms and two di¤erent suppliers each signing a f*,' %,g with a single …rm. The presence
of multiple suppliers could in‡uence which contract is signed in the feasible set (i.e., more

suppliers probably means contracts that are more favorable to the …rms), but it does not

in‡uence the set of feasible contracts. In addition, it is not necessary that the …rms sign

the same outsourcing contract. The …rm that is lucky enough to get better terms would

have an advantage in the competitive stage, which makes insourcing more attractive to the
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other …rm. But because outsourcing is strictly preferred for a wide range of parameters, it

is still possible that one …rm prefers to outsource even if his terms are not as good as his

competitor’s terms.

More restrictive is our assumption that demand has a particular linear form. We do so

because that demand results in closed form solutions for two of the three scenarios in the

competitive stage. We suspect that out results carry over to other demand models, but this

is di¢cult to con…rm analytically. (We have con…rmed this for logit demand numerically.)

But we do admit that the is a special feature in our demand model that makes outsourcing

particularly attractive: total demand is independent of the …rms’ full prices as long as the

full prices are identical. As a result of this feature, increasing industry prices does not

reduce industry demand and therefore does not reduce the industry’s scale. With other

demand models the mitigation of price competition could lead to lower industry demand

and therefore higher industry costs. That works against outsourcing, but outsourcing is

still viable if demand does not decline too much, which would be typical of price competitive

industries where price functions primarily to allocate share.

While we have emphasized throughout our analysis that the supplier does not have lower

costs and cannot build additional scale by pooling the …rms’ demands, it should also be

noted that the “low cost” explanation for outsourcing is not refuted by our price mitigation

explanation, nor is the price mitigation explanation refuted by the low cost explanation. In

other words, if the supplier were able to have lower costs by pooling demand across the two

…rms then both motivations for outsourcing would be in place, thereby making outsourcing

even more attractive.

Finally, although we have concentrated on outsourcing to another …rm, in a service context

it may even be possible to outsource in part to customers; i.e., co-production. For example,

in the …nancial service industry it is increasingly more common for customers to enter trade

orders rather than brokers (Schonfeld, 1998). A key issue with co-production is how it can

transform a process with scale economies to one with constant returns to scale. In the

extreme co-production allows each customer to be their own server, hence, congestion e¤ects

are eliminated and the process exhibits constant returns to scale. However, in most cases a

…rm must compensate its customers for their additional work in the form of a lower explicit
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price.12 If customers are ine¢cient at their tasks, then the needed price discount may be

unacceptable to the …rm.

As in the previous models, let $! be …rm !’s explicit price. Let %+ be a co-producing

customer’s time and e¤ort costs and let 4+ be the …rm’s additional costs per customer. As

before, #! = $! + %+ is …rm !’s full price. Assuming co-production is a constant return to

scale technology, if …rm ! uses co-production then its pro…t function is

)!(#!' #") = (#! ¡ *+)(!(#!' #")

where *+ = %+ + 4+. Thus, whether a …rm chooses to outsource to its customers or to a

supplier is functionally equivalent: with the supplier the …rm faces a constant cost per unit

of demand equal to *, whereas with co-production the …rm faces a constant cost per unit

of demand equal to *+. As a result, the analysis from section 4 continues to hold: even

if a …rm’s cost with co-production is greater than with insourcing each …rm prefers that

both …rms use co-production, and if co-production’s cost is not too excessive both …rms

outsource even though they could choose to insource. There are only two small distinctions

between outsourcing to a supplier and co-production. First, with supplier outsourcing the

…rms negotiate the terms of trade whereas with co-production *+ is set exogenously: co-

production may not be feasible if *+ happens to be too large. Second, a unilateral move

to co-production is actually more likely than a unilateral move to supplier outsourcing:

if only one …rm outsources then the supplier must charge a premium to re‡ect the lower

amount of demand served, but the cost per unit of demand is independent of demand with

co-production.

It is beyond the scope of this research to delve deeper into the issue of co-production,

but we do mention two promising directions for future research. First, a customer’s co-

production cost, *+' could depend on a number of factors under a …rm’s control: e.g., the

…rm’s design e¤ort, and the number of tasks consumers perform. Second, co-production

could still exhibit scale economies, just less so than if the …rm insources.

12 Co-production is a rich issue, of which we brie‡y discuss only one facet. See Moon and

Frei (2000) for additional discussion.
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5 Conclusion

The prevalence of outsourcing has surely grown in most industries. For example, …ve large

contract manufacturers increased their revenues from $1.7 billion in 1992 to $53.6 billion in

2001.13. PC manufacturers have begun to outsource their …nal assembly to their distributors

(Hansell, 1998). Retailers and hospitals have outsourced the inventory function to their

suppliers (Cachon and Fisher, 1997; Bonneau et al., 1995). Banks have begun to outsource

many of their back-o¢ce operations (Dalton, 1998). There may be many reasons for this

trend, and so we surely do not claim our results provide the single answer for why outsourcing

has grown in all industries. Nor do our results contradict previous theories to explain the

insource/outsource decision: e.g., asset speci…city (Williamson 1979), incomplete contracts

(Grossman and Hart 1986), relational contracts (Baker, Gibbons and Murphy, 2001) or

capacity pooling (van Mieghem 1999).

Our theory of outsourcing is novel in that we highlight how outsourcing changes the

nature of downstream competition. In particular, we …nd that scale economies make price

competition brutal, and so …rms naturally can bene…t from strategies to mitigate price

competition. We show that outsourcing is one such strategy. Much to our surprise and keen

interest, we also …nd a …rm can bene…t from a unilateral move to mitigate price competition

even if that move puts the …rm at a cost disadvantage. Hence, it is not required for an

industry to simultaneously transition from complete insourcing to complete outsourcing. An

industry may transition one …rm at a time, and once the industry’s structure has transitioned

to outsourcing, …rms do not have an incentive to revert back to insourcing. Furthermore,

…rms need not outsource to other …rms. Some …rms, in particular if they provide a service,

may be able to outsource some of the production to their customers.

In a broader sense, this works provides a bridge between two large literatures; it combines

fundamental models from the operations management literature (the 20201 model from

queuing and the EOQ model from inventory) with a cornerstone model from oligopolistic

competition in economics (di¤erentiated Bertrand competition). Clearly there are numerous

extensions worth pursuing. We await many interesting managerial insights from this melding

13 Annual report data from Solectron, Flextronics, Celestica, SCI Systems and Jabil Cir-

cuit.
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of operational detail with competitive dynamics.
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Figure 1: Queuing game reaction functions with logit 
demand: a  = -b  = m  = 1; ε = ρ = 1E-5; c i  = c j  = 0.1
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Figure 2: Queuing game reaction functions with logit 
demand: a  = -b  = m  = 1; ε = ρ = 1E-5; c i  = c j  = 0.4
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Figure 3: Queuing game reaction functions with logit 
demand: a  = -b  = m  = 1; ε = ρ = 1E-5; c i  = c j  = 3.75
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Figure 4: Queuing game reaction functions with logit 
demand: a  = -b  = m  = 1; ε = ρ = 1E-5; c i  = c j  = 4.75
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Figure 5: Queuing game reaction functions with logit 
demand: a  = -b  = m  = 1; ε = ρ = 1E-5;

c i  = 4.75; c j  = 0.4
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