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Competition assays and physiological
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identify Candida subhashii as a novel
antagonist of filamentous fungi
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Abstract

Background: While recent advances in next generation sequencing technologies have enabled researchers to

readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological

functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order

to characterize the plethora of microorganisms that are being identified and to point out species that may be used

for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise

yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens,

antagonists, and saprophytes.

Results: Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes,

ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual

species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts

and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus

a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima,

Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among

these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and

tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M.

pulcherrima were able to grow with N-acetyl-glucosamine as carbon source.

Conclusions: The competition assays and physiological experiments described here identified known antagonists

that have been implicated in the biological control of plant pathogenic fungi in the past, but also little

characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile

than yeasts from the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii,

which had so far only been described from a clinical sample and not been studied with respect to biocontrol.

Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root

exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel

biocontrol agent against plant pathogenic fungi.
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Background
The fungal kingdom includes important plant pathogens

that cause a plethora of diseases in all crops worldwide. Of

particular concern are rot and wilt diseases caused by

soilborne fungi, fungal spots, blights and blotches, rusts,

mildews, cankers and anthracnoses, as well as postharvest

decay of fruits and vegetables [1, 2]. Infestations by aggres-

sive, fungal pathogens can severely constrain agricultural

production and often the only resort is crop rotation,

fallow, or even an abandonment of the cropland [3, 4].

Soil, roots, and the phyllosphere harbour complex

microbiomes consisting of thousands of bacterial and

fungal species that may suppress diseases, act as patho-

gens, or affect plant health and growth by various other

mechanisms [5–8]. Yet, microbiomes are still a largely

untapped resource for protecting crop plants against

pathogens and for increasing agricultural productivity [9,

10]. Considerable efforts are therefore undertaken to

harness and use microbiota for novel applications in

agriculture [11–14]. Microbiomes of plants, rhizosphere,

or soil have been elucidated by large-scale, DNA

sequencing-based metagenomics approaches [7, 15, 16],

but the contributions and functions of the large majority

of the species are still mostly unknown. Microbiota thus

consist predominantly of yet uncharacterized bacteria

and fungi, tritagonists, that regulate microbial interac-

tions [17].

Yeast-like fungi inhabit all aerobic environments; from

the arctic and glaciers to the tropics or even the desert

and from dry to saline and high-sugar habitats [18–24].

Many yeast species are particularly well known for their

biotechnological applications or medical relevance. In

agriculture, yeasts have been identified as powerful an-

tagonists of fungal pathogens causing postharvest and

storage diseases and of microorganisms attacking flowers

and leaves [25–31]. Few yeast species have reached the

market as commercial products for the postharvest con-

trol of pathogens (e.g., Aureobasidium pullulans as

BoniProtect, Candida oleophila strain 1-182 as Aspir-

eTM, Candida sake as Candifruit, Metschnikowia fructi-

cola as Shemer, or Cryptococcus albidus as YieldPlus) or

against fireblight (e.g., A. pullulans as BlossomProtect);

some of which are not marketed anymore or only regis-

tered locally [32–37]. Yeasts suppressing soilborne path-

ogens have been described rarely and a commercial

application has not been considered yet. Candida valida,

Rhodotorula glutinis and Trichosporon asahii protected

sugar beet against the soil pathogen Rhizoctonia solani

[38]. In another study, Saccharomyces unispora and

Candida steatolytica antagonised Fusarium oxysporum

causing wilt disease in kidney beans [39] and Saccharo-

myces cerevisiae controlled a Fusarium infection of sugar

beet [40]. In a successful example of postharvest biocon-

trol, M. fructicola has been employed as part of a

combined strategy to control the soilborne pathogen

Thielaviopsis basicola on carrots [41]. These examples

clearly document the potential of yeasts to suppress and

antagonise soilborne pathogens, but also highlight the

limited knowledge on their biological functions in soil.

The genus Candida comprises several species that

have been studied extensively with respect to biotechno-

logical applications, biocontrol, but also as human path-

ogens. Candida guilliermondii is a ubiquitously present,

saprophytic yeast that has received particularly broad at-

tention because of its presence in clinical samples, the

biotechnological production of metabolites and enzymes,

applications in bioremediation, or the control of plant

pathogenic fungi [42]. The antagonistic potential of C.

guilliermondii against diverse fungal pathogens (e.g., Bo-

trytis cinerea, Colletotrichum capsici, Penicillium expan-

sum, Penicillium digitatum, Rhizopus stolonifer) has

been demonstrated in various cultures such as apple, cit-

rus, nectarine, peach, or tomato ([42], and references

therein). Other Candida species have also been studied

for their biocontrol potential and as commercial plant

protection agents against postharvest decay of fruits,

based on Candida species, have been developed (see

above) [29, 43, 44].

In the course of the work described here, we used

binary competition assays to determine the antagonis-

tic activity of soil and phyllosphere yeasts from

Switzerland against a range of pathogenic and sapro-

phytic filamentous fungi. Among the six most antag-

onistic yeasts out of a collection of 40 different

isolates (A. pullulans, Candida subhashii, Cyberlind-

nera sargentensis, Hanseniaspora sp., Metschnikowia

pulcherrima, and Pichia kluyveri), C. subhashii was

the only one that has so far not been studied with re-

spect to biocontrol. This species has only been re-

ported from a patient suffering from peritonitis

during a long-term peritoneal dialysis treatment and

an isolate highly similar to this type strain (99.8%

identity in the 26S rDNA D1/D2 domain, 1.3% se-

quence difference for the 5.8S-ITS region) was ob-

tained from a soil sample from East Japan [45, 46].

Except for these two reports, only one additional pub-

lication reporting the mitochondrial genome of C.

subhashii has appeared [47]. Here, we describe C.

subhashii as a common and frequent soil fungus that

has broad metabolic capabilities, grows in root exu-

dates, and that strongly antagonizes a wide range of

filamentous fungi (all species tested in this study, in-

cluding notorious plant pathogens, saprophytes, but

also other antagonists of the genus Trichoderma).

Since it has not been experimentally confirmed that

C. subhashii is indeed a pathogen, and based on its

broad distribution in different soils and the apparent

adaptations to the soil environment, it is concluded
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that C. subhashii is a competitive soil fungus and po-

tential candidate for the biological control of soil-

borne fungal pathogens.

Methods

Isolation and cultivation of fungi

Soil or plant material (e.g., apple leaves, flowers, bark,

skin) was diluted 10-fold (w/v) with peptone water (1 g/

L Bacto Peptone) [48], vigorously mixed, and shaken

(20 min, 25 °C, 250 rpm, on an orbital shaker). The

resulting suspensions were diluted and different dilu-

tions (usually 1:50 and 1:100) were plated on DifcoTM

potato dextrose agar (PDA; Becton, Dickinson and Com-

pany, Le Pont de Claix, France) supplemented with 5 ml

chloramphenicol and tetracycline HCl (5 mg/ml in etha-

nol or water, respectively), and incubated at 22 °C for 2–

4 days. Single fungal colonies were transferred to PDA

agar plates without antibiotics and repeatedly streaked

out until pure cultures were obtained. Isolates were

maintained on PDA agar plates and stored in 15% (v/v)

glycerol at −80 °C.

Identification of fungal isolates

Species identification was first attempted by MALDI-

TOF as previously described [49]. In cases where

MALDI-TOF did not allow species identification, the

fungal ITS region was amplified with primers ITS1f [50]

and ITS4 [51], PCR products were directly used for se-

quencing, and all isolates were assigned a species hy-

pothesis according to the UNITE database [52, 53] (see

also Table 1). Crude protein extracts of isolates that were

identified based on their ITS sequence were used to gen-

erate reference MALDI-TOF spectra for future identifi-

cations of the same species [49]. All isolates generated in

the course of this study have been deposited and are

available at the Culture Collection of Switzerland (CCoS;

https://www.ccos.ch; Table 1).

Quantification of yeast antagonism against filamentous

fungi in vitro

Yeasts were collected from a PDA plate (less than 2

weeks old), diluted in water, and adjusted to an OD600 of

0.1. Fifteen microlitre of this suspension was plated on

PDA plates (5.5 cm in diameter) in quadruples. Conidia

of filamentous fungi were collected in water, diluted

(OD600 = 0.1), and 5 μl were inoculated in the centre of

the plates (previously overlaid with yeasts or fresh PDA

plates as a control). Plates were incubated at 22 °C for 3

to 15 days depending on the fungal species. Growth of

the filamentous fungus was quantified before it reached

the edge of the control plate (plate without yeasts) with

the help of a planimeter (Planix 5, Tamaya Technics Inc.,

Tokyo, Japan). The average of the relative growth

(growth in presence of yeast/growth on control plate) of

four replicates for each of the 640 combinations was cal-

culated, log2-transformed, and all data were clustered

using EPCLUST (http://www.bioinf.ebc.ee/EP/EP/

EPCLUST/) for visualisation (correlation measure based

distance (uncentered), complete linkage).

Growth analysis of yeasts at different temperatures

Yeasts were collected from a PDA plate, resuspended in

sterile water, adjusted to an OD600 of 1, and 10-fold dilu-

tions were prepared in a microtiter plate. The dilutions

were spotted onto PDA plates with a multi-blot replica-

tor (delivered volume approx. 3 μl) (V & P Scientific,

Inc., San Diego, USA). The plates were incubated at

temperatures ranging from 15 to 37 °C and the maximal

dilution to which the yeast grew was recorded. Each ex-

periment was performed at least twice for each isolate

and the average fold-dilution is indicated as reflective of

the growth.

Microarray phenotype analysis

Overnight liquid cultures were grown in DifcoTM potato

dextrose broth (PDB; Becton, Dickinson and Company,

Le Pont de Claix, France). Cells were pelleted by centri-

fugation (4 °C, 10 min, 650 g), the supernatant was dis-

carded, and the cells were washed twice with sterile

water. For each yeast isolate, a suspension with an

OD600 of 1 was prepared and 100 μl of this solution

were inoculated in each well of a Biolog YT MicroPla-

teTM (Endotell AG, Allschwil, Switzerland) [54]. The ab-

sorption at 590 nm was determined in a plate reader

(Infinite® 200 Pro; Tecan Group Ltd., Switzerland) daily

for 3 days. All data were normalized with the corre-

sponding water control and growth was expressed rela-

tive to the initial measurement at day 0. The maximal

relative growth at any of the three time-points was re-

corded (rounded to the first integer). For each yeast, the

experiment was performed twice and the average of the

two measurements is shown. Substrates that did not lead

to detectable growth for any of the yeasts are not shown.

For four carbon sources (glucose, maltose, N-acetyl-

glucosamine, melezitose), the microarray phenotype re-

sults were confirmed by performing growth analyses in

defined medium. Yeast nitrogen base (with amino acids

and ammonium sulphate) was supplemented with glu-

cose, maltose, N-acetylglucosamine or melezitose (stock

solutions were filter sterilized, final concentration 10 g/

L) and growth was followed by measuring the OD600 in

a plate reader (Infinite® 200 Pro; Tecan Group Ltd.,

Switzerland). The final measurement (mean of five repli-

cates and standard error) after 42 h is shown.

Growth in root exudates

Mung bean (Vigna radiata) root exudates were collected

according to Barbour et al. [55] and used at a final
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Table 1 Yeasts and filamentous fungi used in this study. All strains that were isolated in the course of this study are deposited and

available at the Culture Collection of Switzerland (CCoS; https://www.ccos.ch)

Culture
Collection

Isolate SH-number Name Source Origin/Reference

40 yeast isolates
tested in this study

CCOS995 BC 1.01 SH216366.07FU Rhodosporidium
sphaerocarpum

Agricultural soil This study, Switzerland

CCOS996 BC 1.03 SH218818.07FU Candida subhashii Agricultural soil This study, Switzerland

CCOS997 BC 1.06 SH196641.07FU Trichosporon dehoogii Agricultural soil This study, Switzerland

CCOS998 BW 2.02 SH195538.07FU Trichosporon ovoides Agricultural soil This study, Switzerland

CCOS999 BW 5.01 SH196643.07FU Trichosporon moniliiforme Agricultural soil This study, Switzerland

CCOS1000 BW 7.01 A SH190095.07FU Schwanniomyces yamadae Agricultural soil This study, Switzerland

CCOS1001 BW 7.02 SH182010.07FU Trichosporon gracile Agricultural soil This study, Switzerland

CCOS1009 SHA 10.3 SH175136.07FU Candida sp Agricultural soil This study, Switzerland

CCOS1010 SHA 15.4 SH205045.07FU Cryptococcus laurentii Agricultural soil This study, Switzerland

CCOS1011 SHA 17.2 SH195578.07FU Cyberlindnera saturnus Agricultural soil This study, Switzerland

CCOS1012 SHA 25.3 SH031361.07FU Barnettozyma vustinii Agricultural soil This study, Switzerland

CCOS1013 SHA 43.1 SH216362.07FU Rhodotorula graminis Agricultural soil This study, Switzerland

CCOS1014 SHA 51.1 SH212824.07FU Guehomyces pullulans Agricultural soil This study, Switzerland

CCOS1015 SHA 7.1 SH175136.07FU Candida sp Agricultural soil This study, Switzerland

CCOS1008 NBB 7.2.1 SH195774.07FU Aureobasidium pullulans Orchard soil This study, Switzerland

CCOS1004 FGA 2.2 SH218818.07FU Candida subhashii Potting soil This study, Switzerland

CCOS1005 FGA 3.3 SH196641.07FU Trichosporon dehoogii Potting soil This study, Switzerland

CCOS1006 KS 1/d7.18 SH192275.07FU Candida boidinii Old compost This study, Germany

CCOS1003 F 2.6 SH198057.06FU Cryptococcus heimaeyensis Irrigation water This study, Switzerland

CCOS1002 Dip141103.2 SH199823.07FU Pichia membranifaciens Insect (Drosophila) This study, Switzerland

CCOS976 APC 1.1 SH194776.07FU Rhodotorula slooffiae Apple flowers This study, Switzerland

CCOS977 APC 1.10 SH005240.07FU Dioszegia sp Apple flowers This study, Switzerland

CCOS978 APC 1.2 SH180747.07FU Metschnikowia pulcherrima Apple flowers This study, Switzerland

CCOS979 APC 1.5 SH221435.07FU Cryptococcus wieringae Apple flowers This study, Switzerland

CCOS980 APC 1.7 SH192046.07FU Basidiomycota sp Apple flowers This study, Switzerland

CCOS981 APC 10.2 SH207120.07FU Basidiomycota sp Apple leaves This study, Switzerland

CCOS982 APC 11.10 B SH204094.07FU Pichia kluyveri Apple bark This study, Switzerland

CCOS983 APC 11.3 SH019470.07FU Tremella moriformis Apple bark This study, Switzerland

CCOS984 APC 12.1 SH177122.07FU Hanseniaspora sp. Apple bark This study, Switzerland

CCOS985 APC 13.2 SH194503.07FU Sporidiobolales sp Apple bark This study, Switzerland

CCOS986 APC 18.3 SH194739.07FU Erythrobasidium
hasegawianum

Apple leaves This study, Switzerland

CCOS987 APC 19.2 SH194775.07FU Rhodotorula pinicola Apple leaves This study, Switzerland

CCOS988 APC 2.3 SH204123.07FU Starmerella bombicola Apple flowers This study, Switzerland

CCOS989 APC 27.4 SH206552.07FU Cryptococcus cerealis Apple bark This study, Switzerland

CCOS990 APC 3.4 SH205935.07FU Sporobolomyces oryzicola Apple flowers This study, Switzerland

CCOS991 APC 6.7 SH193763.07FU Leucosporidiella creatinivora Apple leaves This study, Switzerland

CCOS992 APC 9.2 SH181628.07FU Cryptococcus victoriae Apple leaves This study, Switzerland

CCOS993 AS 1.02 SH181630.07FU Cryptococcus sp Apple fruit This study, Germany

CCOS994 AS 1.06 SH190089.07FU Debaryomyces prosopidis Apple fruit This study, Germany

EUROSCARF BY4741 - Saccharomyces cerevisiae - [59]
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concentration of 0.1 mg/ml. Yeasts were inoculated to

an initial OD600 of 0.1 and growth was measured in a

plate reader (Infinite® 200 Pro; Tecan Group Ltd.,

Switzerland) for 3 days. The mean of six replicates and

the standard error are shown.

Sequencing and analysis of the C. subhashii FGA 2.2

mitochondrial genome

Candida subhashii strain FGA 2.2 genomic DNA was

extracted using the Qiagen DNeasy Plant Mini Kit and

sequenced on the PacBio RS II platform (performed at

the Functional Genomics Center Zurich). Subsequent de

novo genome assembly and resequencing were per-

formed using PacBio SMRT Portal 2.3.0 [56]. Assembly

was generated using protocol RS_HGAP_Assembly.3.

The contig corresponding to the mitochondrial genome

revealed a linear DNA molecule. Manual curation was

performed to extend both telomeres to their full length

of 729 bp, resulting in a mitochondrial DNA (mtDNA)

assembly of 29,930 bp. One additional resequencing step

was performed using SMRT portal protocol RS_Rese-

quencing.1, which resulted in a mean coverage depth of

567-fold. The C. subhashii strain FGA 2.2 mitochondrial

genome was annotated by reference to the C. subhashii

type strain CBS10753 [47].

To construct a phylogenetic tree, the mtDNA sequences

of 22 diverse yeast species, selected based on previous stud-

ies and the availability of complete and annotated

mitochondrial genomes [47], were obtained from NCBI

(Table 2). The amino acid sequences of the conserved pro-

teins Atp6, Atp8, Atp9, Cob, Cox1, Cox2 and Cox3 were ex-

tracted from the downloaded sequences as well as from the

C. subhashii mtDNA assembly. Multiple sequence align-

ment (MSA) using MUSCLE 3.8 [57] and trimming of over-

hanging sequences ensured that the amino acid sequences

of all genes and all 22 strains were of similar length. The

amino acid sequences of all proteins were concatenated for

every strain and a final MSA with MUSCLE was performed.

The resulting alignment of 1743 amino acids was used to

create a phylogenetic tree by RAxML 8.1 applying the JTT

+ Γ model [58]. The phylogeny was tested by performing

100 bootstrap replicates.

Results

The antagonistic activity of naturally occurring yeasts

against filamentous fungi in vitro

From a collection of yeasts naturally occurring in agricul-

tural environments, a subset of 40 species was selected

(Table 1). These isolates represented the taxonomic diver-

sity in our collection and mostly originated from soil sam-

ples (agricultural soil, orchard soil, potting soil, compost;

18 isolates), and the apple phyllosphere (flowers, leaves,

fruits, bark; 19 isolates) (Table 1). In addition, one isolate

each from irrigation water or a Drosophila species (col-

lected in Wädenswil, Switzerland) was included. Finally,

for comparison, a reference strain of Saccharomyces

Table 1 Yeasts and filamentous fungi used in this study. All strains that were isolated in the course of this study are deposited and

available at the Culture Collection of Switzerland (CCoS; https://www.ccos.ch) (Continued)

16 test strains (filamentous
fungi)

CCOS1018 BC 4.14 SH216250.07FU Mycosphaerella tassiana Agricultural soil This study, Switzerland

CCOS1019 BC 8.11 SH207825.07FU Trichoderma ghanense Agricultural soil This study, Switzerland

CCOS1020 BC 8.14 SH213620.07FU Gibberella fujikuroi Agricultural soil This study, Switzerland

CCOS1022 SHA 18.1 SH188374.07FU Mucor moelleri Agricultural soil This study, Switzerland

CCOS1023 SHA 9.1 SH185778.07FU Mucor circinelloides Agricultural soil This study, Switzerland

CCOS1007 NBB 2.4.2 SH190868.07FU Trichoderma spirale Orchard soil This study, Switzerland

CCOS1021 F 2.1 SH181342.07FU Trichoderma viride Irrigation water This study, Switzerland

CCOS1017 Asp 1.1 SH219673.07FU Fusarium proliferatum Infected asparagus This study, Switzerland

A 06.5 SH215493.07FU Alternaria eichhorniae Diseased, stored
apple

Laimburg, Italy

- FP13013 Fusarium poae Oat S. Vogelgsang,
Agroscope

- FL13014 Fusarium langsethiae Oat S. Vogelgsang,
Agroscope

CBS 121292 FG0410 Fusarium graminearum Wheat S. Vogelgsang,
Agroscope

- FCr11115 Fusarium crookwellense Wheat S. Vogelgsang,
Agroscope

- 11SD14 - Monilinia fructicola Infected apricot [49]

- 106 - Rhizoctonia solani [107]

ARSEF 1095 F52/Met52 - Metarhizium brunneum Cydia pomonella Austria
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cerevisiae (BY4741) [59] was included. The antagonistic ac-

tivity of these 40 yeasts against 16 fungal test strains (a

broad selection of commonly isolated, pathogenic, antagon-

istic, or saprophytic filamentous fungi) (Table 1) was quanti-

fied by determining the relative growth of each filamentous

fungus in the presence of each yeast (relative to the growth

in the absence of yeasts) (Fig. 1; Additional file 1).

All data were clustered based on the outcome of the

pairwise interactions of all filamentous fungi with each

yeast isolate (Fig. 2a). Overall, the majority of yeast iso-

lates reduced the growth of filamentous fungi, but in a

few interactions a small stimulatory effect of a yeast iso-

late was detected (Fig. 2a; Additional file 1). Based on

their growth profiles in the presence of all 40 yeast iso-

lates, the three Trichoderma isolates were clustered to-

gether with the two Mucor isolates, while nine plant

pathogenic species (six Fusarium isolates, Alternaria

eichhorniae, Mycosphaerella tassiana, Monilinia fructi-

cola) formed a second, broad cluster (Fig. 2a). The

growth profiles of R. solani and Metarhizium brunneum

in the presence of yeasts strongly differed from each

other and from all other filamentous fungi. Clustering of

the different yeasts based on their effect on the growth

of all 16 filamentous fungi lead to a clear separation of

isolates obtained from the apple phyllosphere and those

isolated from soil (Fig. 2a).

The overall average relative growth of filamentous

fungi (over all 16 isolates used in this study) in the pres-

ence of each yeast isolate revealed a broad spectrum of

responses (Fig. 2b). While, on average, some yeast iso-

lates (e.g., APC 18.3) exhibited no detectable effect on

filamentous fungi, others (e.g., APC 1.2) reduced their

growth by more than 80%. The variance of this measure,

for each yeast, was small and similar over the entire

range of overall relative growth, suggesting that the aver-

age antagonistic activity, against a broad range of fila-

mentous fungi, is an inherent property of a particular

yeast isolate. The same effect was documented by rank-

ing all 40 yeasts according to their effect on the relative

growth of all 16 filamentous fungi (most antagonistic

yeast ranked as “1”; least antagonistic isolated as “40”)

(not shown). Based on both measures, the overall aver-

age relative growth and the average rank for all filament-

ous fungi, the same six yeast isolates were identified as

having the highest antagonistic activity (APC 1.2:

Metschnikowia pulcherrima, APC 12.1: Hanseniaspora

sp., SHA 17.2: Cyberlindnera sargentensis, NBB 7.2.1: A.

pullulans, FGA 2.2: C. subhashii, APC 10.11 B: Pichia

Table 2 Strain designations and accession numbers of the mitochondrial genomes used for calculating the maximum likelihood

phylogeny

Species Strain Accession Comment

Candida albicans L757 JQ864233 CTG clade

Candida metapsilosis MCO448 AY962591 CTG clade

Candida neerlandica NRRL Y-27057 EU334437 CTG clade

Candida parapsilosis CBS 7157 (SR 23) X74411 CTG clade

Candida sake CBS 159 KC993194 CTG clade

Candida subhashii FR 392/CBS10753 GU126492 CTG clade

Candida subhashii FGA 2.2/CCOS1004 KX781248 CTG clade

Candida tropicalis CBS 94 KC993185 CTG clade

Debaryomyces hansenii CBS767 DQ508940 CTG clade

Meyerozyma guilliermondii CBS 2030 KC993176 CTG clade

Pichia farinosa CBS7064 FN356025 CTG clade

Candida glabrata ATCC 2001 AJ511533 WGD clade

Saccharomyces castellii NRRL Y-12630 AF437291 WGD clade

Saccharomyces cerevisiae S288c KP263414 WGD clade

Saccharomyces pastorianus Weihenstephan 34/70 EU852811 WGD clade

Saccharomyces servazzii NRRL Y-12661 AJ430679 WGD clade

Barnettozyma californica CBS 252 KC993183

Cyberlindnera jadinii CBS 1600 KC993189

Kluyveromyces lactis CBS2359 AY654900

Kluyveromyces thermotolerans CBS 6340 AJ634268

Wickerhamomyces pijperi CBS 2887 KC993192

Yarrowia lipolytica W29 AJ307410 outgroup
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kluyveri). In 10 interactions with filamentous fungi, M.

pulcherrima (APC 1.2) was the most antagonistic yeast

isolate among those tested here (average relative growth

of 0.1, average rank of 1.9). Although the two most an-

tagonistic yeast isolates were obtained from apple (APC

1.2 and APC 12.1), overall the results indicated weaker

antagonism of yeasts isolated from apple as compared to

the isolates obtained from soil samples (Fig. 2b). Com-

paring the average relative growth of each filamentous

fungus in the presence of yeasts from soil (17 isolates)

or from apple (19 isolates) documented this finding: as

compared to the apple yeasts, soil yeasts more strongly

reduced the growth of all tested filamentous fungi

(Fig. 2c). The overall relative growth of the 16 filament-

ous fungi ranged from 0.3 to 0.9 (average 0.6) and

above-ground plant pathogens (e.g., M. tassiana, F. gra-

mineaurm, F. poae, M. fructicola, F. langsethiae, F.

crookwellense, A. eichhorniae) were generally more sensi-

tive to inhibition by yeasts than soil fungi (Fig. 2c). Fast-

growing, saprophytic soil fungi such as Mucor circinel-

loides, Mucor moelleri, and the soil pathogen R. solani

were least inhibited in their growth by yeasts.

Physiological characteristics of strongly antagonistic

yeasts from soil or apple

The six overall strongest antagonists comprised three

yeasts from apple (APC 1.2: M. pulcherrima; APC 12.1:

Hanseniaspora sp.; APC 10.11 B: P. kluyveri) and soil

each (SHA 17.2: C. sargentensis; NBB 7.2.1: A. pullulans;

FGA 2.2: C. subhashii). In order to identify common and

distinguishing characteristics that may affect the poten-

tial as biocontrol agents, these six most antagonistic

yeasts were further characterized with respect to their

growth requirements.

All six yeast isolates grew well at temperatures up to

30 °C and two isolates, one isolate each from apple and

soil (APC 11.10 B: P. kluyveri; FGA 2.2: C. subhashii, re-

spectively), were able to multiply at 37 °C (Fig. 3a).

Microarray phenotype analysis, using the Biolog YT

MicroPlateTM, revealed a broader metabolic versatility of

the three soil yeasts as compared to the three isolates

obtained from the apple phyllosphere (Fig. 3b). Most

noteworthy were a number of di-, tri- and tetrasacchar-

ides (e.g., maltose, melebiose, palatinose, sucrose, malto-

triose, melezitose, raffinose, stachyose) that were

assimilated and/or oxidized by at least one soil yeast,

while none of these carbon sources were utilized by any

of the three yeast isolates obtained from the apple phyl-

losphere. In particular the two yeasts A. pullulans (NBB

7.2.1) and C. subhashii (FGA 2.2) assimilated and/or oxi-

dized a large number of compounds (34 and 20, respect-

ively), including different acids (e.g., acetic, formic,

aspartic, fumaric, malic acids) (Fig. 3b). In contrast, P.

kluyveri (APC 11.10 B) only grew with glucose and M.

pulcherrima (APC 1.2) and Hanseniaspora sp. (APC

12.1) only showed detectable growth with 9 and 11 car-

bon sources, respectively. Interestingly, however, the

phyllosphere yeast M. pulcherrima, as well as C. subha-

shii and A. pullulans, were able to utilize N-acetyl-

glucosamine (GlcNac), a component of bacterial and

fungal cell walls and insect exoskeletons. The broad

metabolic versatility observed, for example for A. pullu-

lans, did not go along with the ability to grow with root

exudates as the sole source of nutrients (Fig. 3c). Aureo-

basidium pullulans (NBB 7.2.1) and Hanseniaspora sp.

(APC 12.1) did not grow solely in root exudates (0.1%).

In contrast, P. kluyveri (APC 11.10 B), which grew only

in the presence of glucose in the phenotype microarray

Fig. 1 Example of the binary competition assay that was used to quantify the interactions of 40 yeast isolates with 16 filamentous test fungi.

Competition assays were performed by quantifying the growth area of a filamentous fungus (e.g., the plant pathogen Gibberella fujikuroi BC 8.14)

on control plates (left) and in the presence of a yeast isolate (e.g., C. subhashii, right). Overall, 640 competition assays were carried out and

quantified (in quadruples)
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Fig. 2 (See legend on next page.)
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analysis, was able to multiply in 0.1% (w/w) mung bean root

exudate. Of the six yeast isolates tested here, the soil isolate

SHA 17.2 of C. sargentensis grew best in root exudates.

Candida subhashii is an abundant soil fungus

One of the overall strongest antagonists was C. subha-

shii, a species that has previously only been described in

a patient sample in Canada and was considered a human

pathogen [45]. During our collection of fungal isolates

from Swiss agricultural samples, C. subhashii was repeat-

edly isolated from agricultural soil and from commer-

cially available potting substrates. In one of the latter, C.

subhashii constituted approx. 50,000 CFU per gram of

soil and was the fourth most frequent taxon based on

ITS barcode sequencing (data not shown). To further

confirm that the C. subhashii soil isolate was indeed the

same species as the clinical isolate, the mitochondrial

genome of the Swiss C. subhashii isolate was sequenced

(available at NCBI under the accession number

KX781248) and phylogenetic analyses were performed.

The mitochondrial genome sequence of the C. sub-

hashii soil isolate FGA 2.2 was identical to the C.

subhashii type strain (FR 392/CBS 10753), except that

the former had an insertion of 135 bp in a non-

coding region between two genes (bases 15,872 to

16,006 in the assembly of FGA 2.2). Consequently,

the FGA 2.2 mitochondrial genome exhibited the

same peculiarities as the corresponding genome of

the type strain: exceptionally high GC content

(52.7%), a lack of introns in coding sequences, and

telomere-like termini of the linear molecules. A max-

imum likelihood phylogenetic tree of seven mitochon-

drial proteins (Atp6, Atp8, Atp9, Cob, Cox1, Cox2,

Cox3) revealed the C. subhashii sequences as a group

basal to the C. parapsilosis/C. albicans/C. tropicalis

cluster, within the CTG clade. The CTG clade com-

prises the majority of Candida species and forms a

monophyletic group of yeasts that exhibit a genetic

code transition, causing the codon CTG to be trans-

lated as serine instead of leucine [60–62] (Fig. 4).

Based on these results it was concluded that the two

C. subhashii isolates indeed belong to the same spe-

cies, are virtually identical despite the vastly different

sources of origin, and that soil is a natural habitat of

C. subhashii.

Discussion
Soil yeasts are generally more antagonistic and

metabolically versatile than apple phyllosphere yeasts

Our competition experiments indicated that, on aver-

age and under the in vitro conditions tested here,

yeasts isolated from soil suppress filamentous fungi

more strongly than phyllosphere yeasts. This was the

case irrespective of whether the filamentous fungus

was isolated from soil or the phyllosphere, or if it

was a pathogen or saprophyte. Furthermore, the com-

parison of three strongly antagonistic yeasts from soil

and from the apple phyllosphere suggested a higher

metabolic diversity of soil yeasts.

Due to rapidly fluctuating temperatures, low humidity,

scarce nutrient availability, and UV irradiation, the phyl-

losphere is considered a harsh environment [63], but

likely features a lower niche complexity as compared to

soil. Consequently, interspecific competition between

phyllosphere microorganisms is strong and favours the

evolution of antagonistic activities to ward off competing

microbes. Soil, in contrast, is a highly heterogeneous and

rich habitat with a plethora of niches and thus hosts a

complex microbiome [64]. In addition to environmental

factors and interspecific competition, plants release root

exudates and thereby also shape the microbial commu-

nity in the rhizosphere [6, 65, 66]. The ability to

metabolize root exudates may thus indicate adaptation

of the corresponding yeast to soil. Indeed, soil yeasts

were able to grow in the presence of various sugars and

organic acids (e.g., maltose, sucrose, raffinose, acetic, for-

mic, aspartic, fumaric, malic acids) that have been de-

tected in root exudates of higher plants [67], while the

tested, strongly antagonistic phyllosphere yeasts were

unable to utilize these substrates. Nevertheless, the two

phyllosphere yeasts M. pulcherrima and P. kluyveri were

both able to multiply in root exudates, suggesting that

on one hand plants likely release factors that allow these

species to grow and that on the other hand M. pulcher-

rima and P. kluyveri may have the potential to colonize

the rhizosphere, even though they were usually isolated

from the phyllosphere. This finding is particularly rele-

vant with respect to potential biocontrol applications

against soilborne fungal pathogens, where rhizosphere

competence is a factor that can contribute to a success-

ful control [68–70].

(See figure on previous page.)

Fig. 2 Binary competition assays identify strongly antagonistic yeasts with potential for biocontrol applications. a The average relative growth

(four replicates) of 16 filamentous fungi in the presence of 40 different yeasts was log2-transformed and all data were clustered (correlation

measure based distance (uncentered), complete linkage). Colours (see legend) range from strong inhibition (−8; dark blue), via no effect (white) to

strong growth promotion (8; dark pink). Missing data are indicated by grey squares. b The overall average relative growth of filamentous fungi

(over all 16 test strains used in this study) in the presence of each yeast isolate. The strain S. cerevisiae BY4741 is included as a reference. c The

average relative growth of each filamentous fungus (average of relative growth in presence all apple or soil yeast isolates). Data obtained with

yeasts that were isolated from the apple phyllosphere or from soil are marked in red and yellow, respectively
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Binary competition assays identify strongly antagonistic

yeasts with potential for biocontrol

The dual culture assays employed here revealed the an-

tagonistic activity of 40 yeast isolates against 16 fila-

mentous fungi. The level of inhibition ranged from no

effect at all (even slight stimulatory activities were de-

tected in some interactions) to a growth reduction of

more than 80% as compared to growth on the control

plates (in the absence of yeasts). The most strongly in-

hibitory yeasts were M. pulcherrima, Hanseniaspora sp.,

C. sargentensis, A. pullulans, C. subhashii, and P.

kluyveri. Except for C. subhashii, these species, or close

relatives thereof, are known antagonists and have been

implicated in the biological control of plant pathogenic

fungi in the past. The general nature of the antagonistic

activity observed under the experimental conditions

used here suggests that yeasts inhibited filamentous

fungi based on their strong competitiveness for micro-

and/or macro-nutrients or due to indirect effects, which

is an advantageous property for a potential biocontrol

agent. Further studies will have to reveal the mode of

antagonism and to decipher the contribution of

A

C

D

B

Fig. 3 Physiological characteristics of strongly antagonistic yeasts. The six most strongly antagonistic yeasts were characterized by determining

their growth at different temperatures (a), the assimilation and oxidation of different carbon sources (b) and the growth with selected sugars (c)

or with root exudates (growth at days 0, 1, 2, 3, and 6 is depicted) (d). All experiments were repeated at least twice and the mean and standard

errors are shown
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competition, indirect effects of metabolites, or specific

antagonistic factors, in each interaction, in more detail.

In the experiments described here, M. pulcherrima

was the overall most strongly antagonistic yeast. Pul-

cherrimin, an iron-binding pigment produced by M. pul-

cherrima, is believed to mediate this antagonistic activity

against other fungi [71–74]. In the past, M. pulcherrima

has been studied as an antagonist of fruit rot diseases

(for example caused by Alternaria alternata, B. cinerea,

P. expansum) [31, 75, 76] and a related species, M. fruc-

ticola, is being used for postharvest biocontrol applica-

tions against storage diseases of sweet potatoes and

carrots [77]. A strong antagonistic activity against soil-

borne fungal pathogens and species of Fusarium has not

been reported. Hanseniaspora species are widespread

and frequent in the environment, mostly studied with

respect to their occurrence on grapes and winemaking,

and their antagonistic activity against green mould of

citrus or B. cinerea was shown [78–82]. Cyberlindnera

sargentensis (synonym Williopsis sargentensis) belongs to

a genus of yeasts that have been shown to promote plant

growth, produce volatile sulphur compounds, and kill

other fungi or bacteria via killer proteins [83–88]. The

basidiomycetous yeast A. pullulans is a cosmopolitan

species that is used in biotechnology and acts as an an-

tagonist against fungal and bacterial plant pathogens

such as postharvest diseases or fire blight [25, 89–95].

Pichia kluyveri and related species (e.g., Wickerhamo-

myces anomalus, P. fermentans, etc.) are widely studied

with respect to wine fermentation as well as biological

control, mostly of fungal postharvest diseases of fruits

[30, 96–101].

Besides the identification of known antagonists (as

well as at least one new antagonist; C. subhashii), this

study also identified soilborne pathogens and several Fu-

sarium species as new, potential targets of antagonistic

yeasts. The results presented also suggest that yeast an-

tagonism is an isolate-/species-specific property and lit-

tle dependent on the target organism: a strongly

antagonistic yeast exhibits this activity against a broad

range of fungi. This finding has important implications

for using and studying such yeasts with respect to their

Fig. 4 Maximum likelihood phylogeny constructed using a concatenated alignment of conserved mitochondrial protein sequences. The

concatenated amino acid alignment of the conserved protein coding genes Atp6, Atp8, Atp9, Cob, Cox1, Cox2 and Cox3 was used to construct a

phylogenetic tree. The isolate C. subhashii FGA 2.2 is shown in bold and the CTG clade is marked in green. Yarrowia lipolytica was used as the

outgroup. As the concatenated protein sequences encoded by the seven genes of the previously published and the Swiss C. subhashii strains

were identical, the branch length on the respective node was zero (in red). Bootstrap scores for all nodes are shown (percentage of 100 bootstrap

runs). The bar represents the number of amino acid substitutions per site. Further information about the selected sequences is reported

in Table 2
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application in biocontrol. For example, it may be more

promising to optimize the activity of demonstrably

strong antagonists than isolating “new” antagonists for

each pathogenic fungus to be controlled. An intriguing

possibility for optimizing the activity of biocontrol or-

ganisms are communities of compatible strains that may

achieve better control of plant pathogens than single

strains. Initial experiments with mixtures of weakly an-

tagonistic yeasts show that such synergistic effects can

indeed be observed (data not shown). With respect to

research, these results emphasize the need to study and

reveal modes of antagonism that will enable translating

strong antagonistic activity in the laboratory to an effect-

ive and reliable control in the field. Reliable, biological

assays, but also 3rd generation DNA sequencing tech-

nologies and bioinformatics tools that have become

available as of late, are the foundations for characterizing

potential biocontrol strains and for identifying modes of

antagonism goal-oriented and rapidly.

Candida subhashii is an antagonistic soil fungus

Among the strongly antagonistic yeasts, C. subhashii

was the least studied species and not described as an an-

tagonist of saprophytic and pathogenic, filamentous

fungi. In fact, C. subhashii was considered a human

pathogen because it has been isolated from a patient

sample [45]. Nevertheless, it must be noted that only

one case report of a C. subhashii infection exists: a pa-

tient on a long-term peritoneal dialysis treatment devel-

oped a peritonitis that was ascribed to a C. subhashii

infection and successfully treated with fluconazole,

ampicillin, and amoxicillin [45]. Whether or not C. sub-

hashii can indeed colonise and cause symptoms in a

healthy mammalian host has not been tested. The ther-

motolerance (growth at 37 °C) of C. subhashii, also ob-

served for the isolates described here and for an isolate

similar to C. subhashii described from Japan [46], is a re-

quirement for human pathogenicity, but many isolates

exhibiting this property, more frequently found within

the Ascomycota than the Basidiomycota, have not yet

been described as mammalian, let alone human patho-

gens [102].

Here, C. subhashii was repeatedly isolated from soil

samples and from commercially available potting sub-

strates, where it occurred in large concentrations

(among the most frequent fungi in potting substrate:

approx. 50,000 CFU per gram of substrate, the fourth

most frequent taxon based on ITS barcode sequen-

cing (data not shown)). In addition, C. subhashii was

highly competitive against different soil fungi, metab-

olized carbohydrates commonly found in the rhizo-

sphere, and grew in root exudates as well as on roots

and in soil. The metabolic profile of the Swiss C.

subhashii isolate FGA 2.2 was comparable to the one

of Candida sp. NY7122, a pentose-fermenting soil

yeast that is similar to C. subhashii and that was iso-

lated from a Japanese soil. However, the latter isolate

was able to assimilate L-arabinose and D-xylose [46],

which was not the case for C. subhashii FGA 2.2

under the conditions tested here. Based on these re-

sults it was concluded that soil is the natural habitat

for C. subhashii, where this species is a common and

competitive organism. Specifically, the particular large

number of C. subhashii cells in potting substrate,

comprised of white and black peat (of European ori-

gin), suggests that either or both of these components

are a natural reservoir of this antagonistic soil yeast.

The extremely high similarity of the mitochondrial ge-

nomes of the Swiss and clinical (Canadian) C. subhashii

isolates is surprising and unexpected, particularly when

considering the vastly different origins of the two iso-

lates. However, identical or almost identical mitochon-

drial genomes have also been reported, for example, in

Penicillium isolates from Spain and China, respectively,

and may indicate a rapid, global spread of one particular

isolate of C. subhashii [103]. On the other hand, the

identical mitochondrial genomes are in contrast to stud-

ies reporting considerable intra-species variation in size,

intron content, and recombination in fungal mitochon-

drial genomes [104–106]. At present, it is not clear why

the C. subhashii mitochondrial genome is so conserved

and future studies will have to address the conservation

and evolution of the mitochondrial genome in more de-

tail as well as reveal the entire genome sequence of C

subhashii as a basis for identifying genes mediating an-

tagonistic functions.

Conclusions
The work presented here combines a broad screening of

the antagonistic activity of naturally occurring yeasts

against saprophytic and pathogenic filamentous fungi

with growth analyses to compare the metabolic potential

of the most antagonistic yeasts. Among the most

strongly antagonistic yeasts were M. pulcherrima, A.

pullulans, Hanseniaspora sp., C. sargentensis, P. kluyveri

and C. subhashii. Competition assays indicated that the

antagonistic activity of yeasts is an inherent property of

particular yeast isolates and species and little dependent

on the interacting filamentous fungus. Among the

strongly antagonistic yeasts, soil yeasts were generally

more antagonistic and metabolically versatile as com-

pared to yeasts isolated from the phyllosphere. The iden-

tification of C. subhashii as a strongly antagonistic soil

yeast is particularly noteworthy, because previously the

natural habitat of this species was unknown and it was

described, in one publication, as a human pathogen. The

results presented here thus define C. subhashii as a com-

mon and competitive soil yeast.
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