
Competition between Antiferromagnetic and Superconducting States, Electron-Hole Doping
Asymmetry, and Fermi-Surface Topology in High Temperature Superconductors

Sandeep Pathak,1 Vijay B. Shenoy,2,1 Mohit Randeria,3 and Nandini Trivedi3

1Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
2Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560 012, India

3Physics Department, Ohio State University, 191 W Woodruff Avenue, Columbus, Ohio 43210, USA
(Received 19 June 2008; published 13 January 2009)

We investigate the asymmetry between electron and hole doping in a 2D Mott insulator and the

resulting competition between antiferromagnetism (AFM) and d-wave superconductivity (SC), using

variational Monte Carlo calculations for projected wave functions. We find that key features of the T ¼ 0

phase diagram, such as critical doping for SC-AFM coexistence and the maximum value of the SC order

parameter, are determined by a single parameter � which characterizes the topology of the ‘‘Fermi

surface’’ at half filling defined by the bare tight-binding parameters. Our results give insight into why

AFM wins for electron doping, while SC is dominant on the hole-doped side. We also suggest using band

structure engineering to control the � parameter for enhancing SC.
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Ever since their discovery, cuprates have continued to
pose some of the most challenging puzzles [1–3] in con-
densed matter physics. Cuprate phase diagrams exhibit an
antiferromagnetic ground state for undoped or low doped
compounds giving way to a superconducting ground state
at higher doping. A notable aspect of the experimental
phase diagram is the ‘‘electron-hole’’ asymmetry [4]; i.e.,
antiferromagnetism (AFM) survives to a much higher dop-
ing on the electron-doped side, while superconductivity
(SC) is ‘‘stronger’’ on the hole-doped side. In this Letter
we address the following outstanding questions about the
phase diagram:What controls the electron-hole asymmetry
in cuprates? How can we understand the material depen-
dence, e.g., empirical correlation between electronic struc-
ture parameters—the range of the in-plane hopping—and
SC, pointed out by Pavarini et al. [5]? In particular, can we
get some insight into the all important question of what
material parameters control the optimal SC transition tem-
perature Tmax

c ?
The essential strong correlation physics of high Tc

superconductivity is well described by the t-J model and
its variants [4,6–9]. Ground state studies, based on the
variational Monte Carlo method which treats the ‘‘no-
double occupancy’’ constraint exactly, have been inspired
by Anderson’s idea of resonating valance bond (RVB) state
[6]. Previous studies [10–12] investigated the competition
between AFM and SC. However, a unified understanding
of the questions raised above has yet to emerge.

Here we show that, rather surprisingly, a single parame-
ter �, which characterizes the topology of the ‘‘Fermi
surface’’ at half filling, determines the key features of the
phase diagram, thereby providing a resolution to the ques-
tions raised above. Furthermore, our results directly indi-
cate a route to enhancing the optimal superconducting
transition temperature by band structure engineering.

Model.—The minimal model that allows for an
understanding of the material dependencies of the cuprate
phenomenology is the t-J model with extended hop-

ping: H ¼�P
P

i;j;�ti;jðcyi�cj�þH:c:ÞPþJ
P

hi;jiðSi �Sj�
ninj=4Þ, where ci� is the electron operator at site i with

spin �, ni� ¼ cyi�ci� is the density with ni ¼
P

�ni�, Si ¼
1
2 c

y
i� ~���ci� is the spin at site i (�’s are the Pauli ma-

trices), and J is the antiferromagnetic exchange between
nearest neighbors hi; ji. The projection operator P ¼Q

ið1� ni"ni#Þ implements the no-double occupancy

constraint.
The bare dispersion has the form �ðkÞ ¼ �2tðcoskx þ

coskyÞ þ 4t0 coskx cosky � 2t00ðcos2kx þ cos2kyÞ, where t,
t0, and t00 are the nearest-, second-, and third-neighbor hop-
pings, respectively. The importance of t0 and t00 is sug-
gested both by angle-resolved photoemission spectroscopy
experiments [13] and electronic structure calculations [14].
With the sign convention above, t, t0, and t00 are all positive
for the hole-doped case. To model the electron-doped case,
we make a standard particle-hole transformation ~ci�¼
ð�1Þici� inH . Thus for the electron-doped case, we again

obtain H with ~t ¼ t, ~t0 ¼ �t0, and ~t00 ¼ �t00.
Variational wave function.—We choose a variational

ground state wave function for an N-particle system that
includes both AFM and SC order:

j�0i ¼ P

�X

ij

’ðri � rjÞcyi"cyj#
�
N=2j0i: (1)

The form of ’ in the unprojected wave function is
motivated by a saddle point analysis of H . For a nonzero
Néel amplitude mN, we get two spin density wave bands

(� ¼ 1, 2): Eð1;2ÞðkÞ ¼ ½�ðkÞ þ �ðkþQÞ�=2� ð1=2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�ðkÞ � �ðkþQÞ�2 þ 16J2m2

N

q
, where Q ¼ ð�;�Þ
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and �ðkÞ ¼ �2tðcoskx þ coskyÞ þ 4t0var coskx cosky �
2t00varðcos2kx þ cos2kyÞ ��var, with k in the reduced

Brillouin zone. The d-wave pairing field �ðkÞ ¼
J�ðcoskx � coskyÞ gives rise to SC in the two spin density

wave bands, with BCS coherence factors

vk�

uk�
¼ ð�1Þ��1 �ðkÞ

E�ðkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
�ðkÞ þ �2ðkÞp : (2)

The internal pair wave function ’ðri � rjÞ is given by the

Fourier transforming vk�=uk� and by summing over the
two spin density wave bands �. At half filling the tt0t00J
model is simply the nearest-neighbor Heisenberg model
(independent of t0, t00), whose Néel order motivates the
choice of Q ¼ ð�;�Þ, quite unrelated to nesting physics.
For simplicity we choose Q to be doping independent
following Refs. [10–12]. Our wave function generalizes
that of Ref. [11] to include the variational Fock shifts t0var
and t00var.

The five variational parameters in j�0i are the Néel
amplitude mN , the d-wave gap �, the (Hartree-shifted)
chemical potential �var, and t0var and t00var renormalized
by Fock shifts. Their optimum values are determined by
minimizing the ground state energy E ¼ h�0jH j�0i=
h�0j�0i calculated using variational Monte Carlo
(VMC) calculations, which exactly implements the projec-
tion P. We have developed a fast conjugate gradient algo-
rithm (details will be published elsewhere) that evaluates
derivatives of the energy and efficiently determines the
optimized variational parameters.

Results.—The T ¼ 0 phase diagram is determined by
computing the SC and AFM order parameters for the
optimized ground state as a function of doping [15]. The
SC order parameter [7] � ¼ limjr�r0j���!1F�;�ðr� r0Þ is
obtained from the long range behavior of the correlation

function F�;�ðr� r0Þ ¼ hBy
r�Br0�i, where By

r� ¼ 1
2 �

ðcyr"cyrþ�̂# � cyr#c
y
rþ�̂"Þ creates a singlet on the bond ðr; rþ

�̂Þ, � ¼ x, y. The AFM order parameter M ¼ ð2=NÞ�
hPi�AS

z
i �

P
i�BS

z
i i is the difference of the magnetization

on the A and B sublattices.
In Fig. 1 we see the following phases: an AFM Mott

insulator at half filling; coexistence of SC and AFM for
small (electron-hole) doping; a d-wave SC at higher dop-
ing; and a Fermi liquid for sufficiently large doping. The
phase diagram shows marked electron-hole asymmetry for

t0 � 0. As the next-neighbor hopping jt0j increases, SC is
enhanced on the hole-doped side, while AFM is stabilized
on the electron-doped side. These results are consistent
with earlier VMC calculations [7,8,10–12,16] and dynami-
cal mean-field studies [17,18].
Our new findings are that, on the hole-doped side, jt0j

does not affect AFM, and, in particular, the critical doping
xAFM, beyond which AFM vanishes, is insensitive to the
value of jt0j. On the electron-doped side, SC is slightly
weakened and the peak value of the SC order parameter
�max falls with increasing jt0j.
Upon adding a second-neighbor hopping t00, we find the

following general trends: (a) On the hole-doped side, an
increase in t00 leads to an increase of superconducting
correlations. Interestingly, AFM is relatively unaffected,
and xAFM is quite insensitive to t00. (b) On the electron-
doped side, AFM is enhanced with increasing jt00j, and
superconductivity is essentially unaffected. We have also
performed calculations using a simple renormalized mean-
field theory [8,19], and the qualitative phase diagram is in
agreement with the VMC results.
At very low doping, our results differ from experiments

due to the neglect of long range Coulomb and disorder
effects. Once the local superfluid density becomes suffi-
ciently small near half filling due to projection [7], the
long-wavelength, quantum phase fluctuations that were ne-
glected in our approach drive SC to zero at a finite doping
[20]. We also do not consider the effects of other compet-
ing orders (stripes or charge ordering). For large doping,
where the pairing � ! 0, finite size effects become large
because of a growing correlation length. This leads to an
overestimate of the range over which SC survives, but it
does not qualitatively affect our conclusions [21].
Fermi-surface topology.—Is there a simple way to

understand our results? First, we emphasize that the de-
pendence of the phase diagram on the bare dispersion is not
controlled by the van Hove singularity in the bare density
of states. Even in the particle-hole symmetric case t0 ¼
t00 ¼ 0, where the van Hove singularity is precisely at the
center of the band, the calculated SC order parameter�ðxÞ
does not peak at x ¼ 0 but rather at an ‘‘optimal’’ doping
away from zero. This optimal doping is determined by
the interplay between the growth of the pairing amplitude
� with underdoping and the suppression of phase coher-
ence by strong correlations as x ! 0. Irrespective of the
values of t0 and t00, the renormalized bandwidth is of order
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FIG. 1 (color online). (a) Phase diagram of extended t-J model with t00 ¼ 0 and t0 indicated in the inset, showing Néel magnetization
M and the SC order parameter� as a function of both hole and electron doping. (b),(c) Shapes of the bare Fermi surface at half filling.
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ðxtþ JÞ, while the scale of the pairing is also of order J.
Thus we are not in a weak coupling BCS regime where all
the action is in the immediate vicinity of the chemical
potential. In fact, the entire band participates in pairing,
and the proximity of the van Hove singularity to the
chemical potential is not the dominant factor in determin-
ing the phase diagram.

We next define a quantity � that characterizes the to-
pology of the Fermi surface at half filling, defined by the
bare tight-binding parameters. We show that this single
parameter � controls the dependence of the phase diagram
on t0 and t00. In particular, key features such as the critical
doping xAFM, the maximum value of the SC order parame-
ter �max, and optimal doping are all determined by �.

For the cases we study, the Fermi surface at half filling
can be described as a curve in the first Brillouin zone kFð	Þ
(in polar coordinates) with 	 measured from the kx axis.
We define

�ðt0=t; t00=tÞ ¼ 2½kFð�=4Þ=kFð	minÞ�2; (3)

where 	min is the minimum angle at which a Fermi crossing
exists. In the electron-doped case [Fig. 1(b)], 	min ¼ 0 and
�> 1, corresponding to a convex Fermi surface. In the
hole-doped case [Fig. 1(c)], 	min corresponds to the Fermi
crossing on the zone boundary leading to a concave Fermi
surface with �< 1. For t0 ¼ t00 ¼ 0, the particle-hole sym-
metric case, � ¼ 1. In Fig. 2 we show the dependence of �
on t0 and t00. The right panel focuses on the t0 dependence of
� on the special line t00 ¼ t0=2, which corresponds to the
parameters obtained by Pavarini et al. [5] from electronic
structure calculations of single layer cuprates.

In Fig. 3 we show the � dependence of the critical
doping xAFM for the vanishing of the AFM order. On the
electron-doped side, xAFM increases approximately line-
arly with �, while for hole doping, xAFM is essentially
independent of �. Turning now to superconductivity, we
see from Fig. 3 that the SC order parameter �max at
optimality increases roughly linearly with decreasing �
on the hole-doped side. On the electron-doped side, there
is a slight linear decrease of �max as a function of increas-
ing �. Thus a more concave bare Fermi surface leads to a
more stable SC state. We have also studied the dependence

of the optimal doping xopt (doping at which � attains

�max) and found a similar correlation with �.
We have thus demonstrated that three characteristics of

the phase diagram, xAFM,�max, and xopt, are determined by

a single parameter � rather than by the details of the bare
dispersion. Two systems with a given t and J but with two
very different t0 and t00 have the same phase diagram
provided they correspond to the same value of �. This
is clearly illustrated by the specially marked points in
Fig. 3 (top left).
To understand how the single parameter � controls the

entire phase diagram, we consider the competition between
the kinetic and exchange energies. Upon doping the Mott
insulator, the carriers attempt to gain kinetic energy (KE).
Near half filling, the hopping t between different sublatti-
ces disrupts the antiferromagnetic order and increases the
exchange energy. On the other hand, the hoppings t0 and t00
between the same sublattice do not disturb AFM order and
entail no exchange energy penalty. Insight into how the
system gains the most KE while keeping the exchange
energy increase to a minimum may be obtained from
studying the behavior of the KE as a function of doping x.
In Fig. 4(a), we show that the variational Monte Carlo

(projected) KE for a convex (�> 1), a concave (�< 1),
and a half-filled diamond (� ¼ 1) Fermi surface. In each
case the projected KE is closely reproduced by the
Gutzwiller approximation [8] result gKbare, where Kbare is
the bare KE in the unprojected state and g ¼ 2x=ð1þ xÞ is
the renormalization factor that takes into account
projection.
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FIG. 2 (color online). Left panel: A contour plot of � as a
function of the hopping amplitude t0=t and t00=t. Right panel:
Monotonic relationship between � and the range parameter [5]
t0=t (for the special case of t00 ¼ t0=2).
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doped cuprates and � calculated using tight-binding parameters
of Pavarini et al. [5].
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The renormalization factor g is independent of the �
parameter, and thus we focus on the bare KE in Fig. 4(b) to
understand the � dependence of the competition between
KE and superexchange. For electron doping with �> 1,
the bare KE is a nonmonotonic function of doping with a
minimum at a finite xm. Thus up to a doping of xm, one can
gain KE due to t0 and t00 without sacrificing exchange
energy, thereby stabilizing the AFM state. The doping xm
increases with increasing � [see Fig. 4(b)] which underlies
the � dependence of xAFM on the electron-doped side. For
the p-h symmetric (t0 ¼ t00 ¼ 0) case, � ¼ 1 and the mini-
mum KE is at xm ¼ 0. For hole doping with �< 1, the
bare KE increases monotonically with doping. The ex-
change energy is best satisfied by means of SC with
resonating singlet pairs, while providing for the necessary
KE gain, respecting the no-double occupancy constraint.
Thus a system with a larger bare KE favors a more stable
SC state.

As noted earlier, Pavarini et al. [5] suggested an empiri-
cal correlation between their range parameter related to t0=t
(for the special case of t00 ¼ jt0j=2) and Tmax

c , the maximum
Tc within a given cuprate family. We cannot, of course,
obtain Tc from our ground state calculation, but the mag-
nitude of the SC order parameter � is taken [7,16] as a
measure of Tc. We see a strong linear correlation between
�max and � on the hole-doped side in Fig. 3 (top right),
suggesting that Tmax

c is controlled by �. We corroborate
this finding by plotting the experimental Tmax

c and the
theoretical � (calculated from the tight-binding parameters
from Ref. [5]) in the bottom panel of Fig. 3 where excellent
correlation between the two is seen. On the electron-doped
side, however, we do not predict a strong dependence of
Tmax
c on the � parameter.
In conclusion, our results provide a unified microscopic

picture for the competition between AFM and SC for
electron and hole-doped cuprates while also providing in-

sights into a key material parameter � that controls many
aspects of the phase diagram, including Tmax

c . In particular,
this work suggests a route to increase Tmax

c by creating
systems with a small �, i.e., with a highly concave bare
Fermi surface at half filling. Even if such band structure
engineering may not be easy in solid state materials, it may
be possible in optical lattice realizations of strongly corre-
lated Fermions.
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