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La0.67Ca0.33Mn12xCuxO3 (x50 and 0.15! epitaxial thin films were grown on the~100! LaAlO3

substrates, and the temperature dependence of their resistivity was measured in magnetic fields up
to 12 T by a four-probe technique. We found that the competition between the ferromagnetic
metallic ~FM! and paramagnetic insulating~PI! phases plays an important role in the observed
colossal magnetoresistance~CMR! effect. Based on a scenario that the doped manganites
approximately consist of phase-separated FM and PI regions, a simple phenomenological model was
proposed to describe the CMR effect. Using this model, we calculated the resistivity as functions of
temperature and magnetic field. The model not only qualitatively accounts for some main features
related to the CMR effect, but also quantitatively agrees with the experimental observations.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1490153#

I. INTRODUCTION

The perovskite manganites La12x(Ca,Sr,Ba)xMnO3, in
the doping regionx;0.2– 0.4, exhibit a transition from a
paramagnetic insulator~PI! to a ferromagnetic metal~FM!
on cooling. This transition can be modified by an external
magnetic field producing negative ‘‘colossal magnetoresis-
tance’’ ~CMR!.1 Ferromagnetism and the PI–FM transition
in these materials are usually attributed to the double ex-
change mechanism.2 However, recent calculation shows that
the double exchange mechanism alone cannot explain the
CMR effect.3 More and more studies have indicated that a
microscopic phase separation plays an essential role in the
physics of the manganites.4–7 In particular, it results in the
apparent percolative character of the insulator–metal transi-
tion when the transition is from the charge-ordered insulating
to the ferromagnetic metallic state.8

Although much work was devoted to the physical prop-
erties of manganites, the microscopic nature of the phase-
separated states has been far from well understood. For ex-
ample, how the electronic properties of the constituent
phases as well as their volume fractions and spatial distribu-
tions are dependent on the temperature and external mag-
netic fields remains to be characterized.

There was a two-component phenomenological model,
describing polaron formation in CMR compounds, devised
by Jaimeet al.9 and used by Rubinstein to quantitatively
analyze the transport properties and Hall coefficient of
La2/3Ca1/3MnO3.

10 Recently, Yuanet al.11 supposed that the
conducting path of the CMR materials consists of a series of

paramagnetic and ferromagnetic regions but the physical im-
age is yet to be clarified.

In this article, we focused on the study of resistivity as
functions of temperature and magnetic field, and intended to
elucidate the role of competition between the FM and PI
phases. It was approximated that the two main separated
phases coexist in the doped perovskite manganese oxides:
one is the paramagnetic insulating phase, and the other is the
ferromagnetic metallic phase, with the energy difference to
form the two phases. Under this approximation, the tempera-
ture dependence of the volume fraction distribution is sup-
posed to follow the Boltzmann distribution of a two energy-
level system then we presented a simple model to describe
the PI–FM transition and CMR. In order to test the feasibil-
ity of our model, we fabricated high quality
La0.67Ca0.33Mn12xCuxO3 (x50 and 0.15! epitaxial thin films
which exhibit CMR effect. Detailed analysis shows that the
model is quantitatively consistent with our experimental ob-
servations.

II. EXPERIMENT

The sputtering targets, with a nominal composition of
La0.67Ca0.33Mn12xCuxO3 (x50 and 0.15!, were prepared us-
ing a sol-gel technique. X-ray diffraction~XRD! patterns re-
corded by MacScience MAXP18AHF diffractometer using
CuKa radiation show that they have a crystal structure close
to cubic perovskite with a lattice constanta'0.388 nm,
as shown in Fig. 1~a!. We grew epitaxial
La0.67Ca0.33Mn12xCuxO3 @x50 ~LCMO! and 0.15 ~LC-
MCO!# thin films on the~100! LaAlO3 single-crystal sub-
strate with a magnetron sputtering technique. The thickness
of the annealed films is about 300 nm. X-ray diffraction

a!Author to whom correspondence should be addressed; electronic mail:
lixg@ustc.edu.cn
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analysis shows that the films have a single phase orientated
alongc axis with lattice parameterc'0.391 and 0.3885 nm
for LCMO and LCMCO, respectively, as depicted in Fig.
1~b!.

Figure 2~a! shows the ac susceptibility for the polycrys-
talline samples. It can be seen that the paramagnetic to fer-
romagnetic transition temperatures (Tc) for x50 and 0.15
samples are 268 and 234 K, respectively. The dc magnetiza-
tion measured by a BHV-55 Vibrating Sample Magnetometer
~VSM, Richen Denshi! with 1000 Oe applied magnetic field
parallel to theab plane of LCMCO film reveals that it also
has aTc equal to that of thex50.15 target, as can be seen in
Fig. 2~b!.

The temperature dependencies of resistivity for the films
were measured in magnetic fields up to 12 T upon warming
from 4.2 K to room temperature by a four-probe technique,
as the symbols shown in Fig. 3. It can be seen that the films
experience a semiconductor–metal transition atTP ~'247
and 215.7 K for LCMO and LCMCO, respectively!, above
or below which a semiconductor-like transport or a metallic
behavior is clearly seen in the absence of magnetic field.
Applied magnetic fields drive the semiconductor–metal tran-
sition to high temperatures and the CMR effect appears. Note
that becauseTP of LCMO moves to high temperature range
~.300 K! when the magnetic fields exceed 4 T, we only
presentr vs T curves in magnetic fields of 0 and 4 T for the

film. The residual resistivity (r0) both for LCMO and LC-
MCO changes slightly even when the magnetic field is 4 and
12 T, as listed in Table I. XRD, dc magnetization, and trans-
port properties in magnetic fields demonstrate that the films
are of high quality.

III. MODEL AND DISCUSSION

Magnetization measurements have shown that the man-
ganese oxides having CMR effect often experience a para-
magnetic to ferromagnetic transition accompanied by an
insulator–metal transition during the cooling procedure.
Electron resonance experiments have further confirmed that
just above Curie temperature12 the system shows a heteroge-
neous magnetism~paramagnetic and ferromagnetic phases
coexist!, and it will reach a completely homogeneous para-
magnetic phase when temperature is much higher than Curie
temperatureTc . Ueharaet al.13 reported that there is a phase
separation including paramagnetic and ferromagnetic or in-
sulator and metallic phases even when the system is cooled
to temperature lower than its Curie temperature.
Goodenough14 indicated that in CMR materials, a metallic
conductivity exists in the ferromagnetic regions~due to the
double exchange mechanism! and a semiconductor-like con-
ductivity in the paramagnetic regions at temperature higher
than Curie temperature. These features enable us to suppose
the materials to be composed of paramagnetic and ferromag-
netic regions, and semiconductor-like transport properties are
exhibited in the paramagnetic regions while metallic trans-
ports always show up in ferromagnetic regions. Neverthe-

FIG. 1. X-ray patterns for La0.67Ca0.33Mn12xCuxO3 (x50 and 0.15! system:
~a! polycrystalline and~b! epitaxial films mounted on~100! LaAlO3 sub-
strates.

FIG. 2. ac and dc magnetization curves as a function of temperature for~a!
La0.67Ca0.33Mn12xCuxO3 (x50 and 0.15! polycrystalline, and ~b!
La0.67Ca0.33Mn0.85Cu0.15O3 epitaxial thin film. The arrows point to the Curie
temperature.
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less, how the volume fractions of the PI and FM regions as
well as the total resistivity change with the temperature and
magnetic field needs to be clarified.

Supposef and f 8 represent the volume fractions of PI
and FM regions in the system, respectively, one apparently
has the relationf 1 f 851. Physically, it is acceptable and
reasonable to assume that there is an energy difference~per
unit cell! DU between the FM state and PI state. As a result,
the volume fractions obey a simple two energy-level Boltz-
mann distribution:

f 5
1

11exp~DU/kBT!
, ~1a!

and

f 8512 f 5
exp~DU/kBT!

11exp~DU/kBT!
. ~1b!

Moreover, the total resistance of the system can be consid-
ered to be the sum of the resistances of the phase-separated
FM and PI parts, and thus the whole resistivityr of the
system can be written as

r5rFM• f 1rPL•~12 f !, ~2!

where rFM and rPI are the resistivities for the FM and PI
regions, respectively.

At T50 K, the FM state is the ground state of the sys-
tem and the PI state energy is higher, and the energy differ-
ence (2DU) reaches to the maximumU0 . As the FM state
is a spin-ordered state, it is sensitive to the temperature.
When temperature increases, some PI regions will appear,
but the long-range FM order will be kept to a characteristic
temperatureTC

mod ~hereTC
mod is a PI–FM transition tempera-

ture used in the model and near/equal toTc). Without loss of
generality, we may expandDU(T) aroundTC

mod to the first
order of (T2TC

mod) and require thatDU'0 at T5TC
mod.

Therefore we may write

DU'2U0~12T/TC
mod!, ~3!

where U0 can be considered as the energy difference for
temperature well belowTC

mod if we extrapolate Eq.~3! to low
temperatures. From Eqs.~1! and ~3!, one can find that,~i! f
;1 for T,TC

mod; ~ii ! f 8;1 for T.TC
mod. NearTC

mod, due to
the competition between the contributions of FM and PI re-
gions, the resistivity tends to reach its maximum.15

As known, in the metallic conducting temperature region
well belowTP , the metallic resistivity can be ascribed to the
residual resistivityr0 , single-magnon’s scattering contribu-
tion AT216 and electron–phonon interactionBT5, respec-
tively, namely,rFM5r01AT21BT5. TheT5 term is the cor-
rection from an electron–phonon scattering, which is also
employed to explain the low-temperature resistivity in
La0.6Ca0.4MnO3 thin film.17 While in semiconductor-like

FIG. 3. Comparison between the calculated~solid lines! and experimental
~symbols! temperature dependencies of resistivity of~a! La0.67Ca0.33MnO3,
and ~b! La0.67Ca0.33Mn0.85Cu0.15O3 epitaxial thin films in different magnetic
fields up to 12 T. The arrows denoteTP positions.

TABLE I. Parameters used to fit the experimental data of LCMO and LCMCO films.

H~T!
r0

~mV cm!
A

(V3cm K22)
B

(V3cm K25) C(V3cm K21) Eg /kB~K! T C
mod~K! TP~K! UO /kB~K!

LCMO film

0 2.5 1.5231027 2.91310214 1.5431027 1704.2 241 245.2 4302
4 2.5 0.8331027 2.81310214 1.5431027 1465.2 270 276.8 4200

LCMCO film

0 8.85 5.0831027 4.0310213 2.4631026 1498.3 213.3 215.7 3420
4 7.78 4.6531027 1.50310213 2.4631026 1370.1 249.9 246.9 3381
6 7.37 4.4231027 1.03310213 2.4631026 1260.7 263.4 259.2 3353
8 7.00 4.2731027 0.70310213 2.4631026 1153.7 275.2 269.1 3305
10 6.88 3.9931027 0.48310213 2.4631026 1016.1 288.8 279.9 3260
12 6.57 3.7531027 0.36310213 2.4631026 698.8 300.7 289.4 3180
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conducting temperature region well aboveTP , the resistivity
can be almost described by a formula asrPI

5CT exp(Eg /kBT) in terms of a magnetic polaron picture.18

When a magnetic field is applied, the resistivity decreases
and CMR effect appears. This can be qualitatively under-
stood from Eqs.~1!, ~2!, and~3!. The coefficientsA andB of
T2 andT5 terms and the activation energyEg become small
due to the suppression of single-magnon scattering in FM
regions and the formation of polarons in PI regions in the
magnetic field, respectively.

The most important effect induced by the external mag-
netic field is that the PI–FM transition temperature moves to
a higher temperature, which has been observed or predicted
by experiments or theoretical calculation.19 It means that the
external magnetic field increases the FM fraction; part of the
PI fraction is melt and turns into FM state with the help of
the external field, liberating its portion of carriers and lead-
ing to the large enhancement of conductivity. As a result, the
CMR effect manifestly appears. This is reasonable since the
metallic component triggered by ferromagnetism is also sen-
sitive to the magnetic field, and the sizes of FM clusters
grow as magnetic field is applied, especially near the PI–FM
transition temperature. BecauseTC

mod is near the PI–FM tran-
sition temperature, it is naturally expected thatTC

mod will also
move to a higher temperature in the magnetic fields. To be
more specific, we present the calculated resistivity for 0 and
4 T magnetic fields by using Eqs.~1!, ~2!, and ~3! ~the pa-
rameters are listed in the caption of Fig. 4!. It should be
noted that, according to the above discussion, we only allow
A, B, Eg , andTC

mod to change with the magnetic field. The
temperature dependence of ferromagnetic volume fractionf
in 0 and 4 T magnetic fields is shown in Fig. 4~a!. It is clear
that f is close to 1 at temperatures well belowTC

mod, and it
approaches zero when the temperature increases well above
TC

mod. The calculated resistivity is plotted in Fig. 4~b!. Note
that the two figures refer to the LCMCO epitaxial thin film.

In order to verify our model, we employ it to analyze the
magnetic transport data of LCMO and LCMCO epitaxial
film. Indeed, it was found that the resistivity of LCMO and
LCMCO films at temperatures lower or higher thanTP can
be almost fitted tor01AT21BT5 andCT exp(Eg /kBT), with
the parametersr0 , A, B, C, andEg listed in Table I, respec-
tively. Therefore, in the fitting for the whole temperature
range, the parametersr0 , A, B, C, andEg are fixed as indi-
cated in Table I, whileTC

mod andU0 are adjustable parameters
for each curve. The solid lines in Fig. 3 show the fitting
results. It can be seen that the results calculated from Eqs.
~1!, ~2!, and~3! agree well with the experimental data. As a
result,TC

mod is very close to theTP ~the semiconductor–metal
transition point!. In addition, TC

mod as expected increases
while Eg decreases as the external magnetic field increases.
The magnetic field-dependentTP , TC

mod, Eg , and U0 are
shown in Figs. 5~a! and 5~b!, respectively. In addition, it
should be noted that if one uses the measuredTP to replace
TC

mod in Eq. ~3! and fits the measured data with only one
adjustable parameterU0 , then the fitting also appears to be
quite satisfactory~not shown here!.

One may notice that the parameters used here, except for
C and TC

mod, are becoming smaller as the applied magnetic

field increases. This can be understood as follows. Taking
LCMCO film into consideration, when the temperature is
above the zero field transition temperatureTC

mod(0), the ex-
ternal magnetic field makes the PI regions change into the
FM regions more easily, and suppresses the formation of
polarons and spin-disorder scattering, leading to the monoto-
nously decrease ofEg and the increase ofTC

mod, as shown in
Fig. 5. The monotonous decrease ofEg is due to the fact that
the ability of the polarons to trap electrons is weakened as
the spins in the polarons attempt to align along the magnetic
field, which will suppress spin-disorder scattering. Since the
magnetic field energy is linearly proportional toH2, it is
natural to estimate that the activation energy of the polarons
decreases withH2 for the LCMCO thin film. Indeed, the
field-dependentEg can be fitted by

Eg~H !/kB5Eg~0!/kB2aH2, ~4!

whereEg(0) anda are fitting parameters~see the caption of
Fig. 5!. From Fig. 5 one may also notice that the field-
dependentTC

mod for the LCMCO thin film is almost propor-
tional to H in the field range investigated, i.e.,

TC
mod~H !5TC

ex~0!1bH. ~5!

Here, TC
ex(0)~5226.8 K! is the extrapolated temperature at

zero field from the linear fitting,b ~56.05 K/T! is a coeffi-
cient denoting 6.05 K per Tesla increase ofTC

mod induced by

FIG. 4. Volume fractionf ~a!, and the calculated temperature dependencies
of resistivity ~b! at 0 and 4 T magnetic fields with parameters as:r059
mV cm, A55.131027 V cm K22, B54.0310213 V cm K25, C52.46
31026 V cm K21, Eg /kB51500 K, TC

mod5213.3 K, U0 /kB53750 K for
H50 T and r059 mV cm, A54.6531027 V cm K22, B51.5310213

V cm K25, C52.4631026 V cm K21, Eg /kB51190 K, TC
mod5250 K,

U0 /kB53750 K for H54 T. Note that these figures refer to the
La0.67Ca0.33Mn0.85Cu0.15O3 epitaxial thin film.
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magnetic fields. In the low-temperature region, the applied
magnetic field enhances the magnetism of the FM region and
the single-magnon scattering interaction on the conducting
electron is weakened, which makesA become smaller.

Moreo et al.20 found that there is a robust pseudogap
featuring low and intermediate temperatures, particularly at
or near regimes where phase separation occurs as long as
manganites have a mixed-phase characteristic. Their theoret-
ical calculation showed that the pseudogap about 0.2–0.4 eV
is very similar to that found in a bilayered compound
La1.2Sr1.8Mn2O7 system via high-energy resolution angle-
resolved photoemission measurements. InU0 we also ob-
tained about 0.3–0.4 eV~see Table I!, which may be viewed
in some sense as an energy gap of the quasiparticles in the
phase-separated FM and PI states. In our case,U0 weakly
depends on the magnetic field, as verified by the inset of Fig.
5~b! (U0 shows only 4% change forH from 0 to 12 T for the
LCMCO film!.

Finally, we indicate that our model has been found to the
applicable to those systems which exhibit a manifest PI–FM
transition, but it would be invalid when some other phase
transitions like antiferromagnetic insulator PI are mainly in-
volved in the same region.

IV. CONCLUSION

The temperature and magnetic field dependencies of re-
sistivity were measured for La0.67Ca0.33Mn12xCuxO3 (x50
and 0.15! epitaxial films. It is observed that the competition
between the FM and PI phases plays an important role in the
CMR effect. Based upon a scenario that the system consists
of the phase-separated FM and PI regions, a simple phenom-
enological model was developed. The model is well able to
fit our experimental data as well as others.
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