Competition Between Networks: A Study in the Market for Yellow Pages Mark Rysman

Network effects between consumers and advertisers.

- Consumers: Choose how much to use the yellow page directory j, given the advertisements contained.
- Advertisers: Choose how much ads to place in directory j given the usage.
- Publishers try to internalize the network externality by choosing the optimal price.

Nested Logit

utility function of consumer i for product j in category g.

$$u_{ij} = \delta_j + \zeta_{ig} + (1 - \sigma)\epsilon_{ij}$$

- δ_j : deterministic component of utility.
- ζ_{ig} : group g specific preference shock. Common shock of all products within group g.
- ϵ_{ij} : individual idiosyncratic taste shock for product j, i.i.d. extreme value distributed.
- $\zeta_{ig} + (1 \sigma)\epsilon_{ij}$: i.i.d. extreme value distributed as well.

Nested Logit formula:

Within group conditional share of product j:

$$s_{j|g} = \frac{e^{(\delta_j/(1-\sigma))}}{D_g}$$
$$D_g \equiv \sum_{j \in G} e^{(\delta_j/(1-\sigma))}$$

Group share among all products:

$$s_g = \frac{D_g^{1-\sigma}}{\sum_{h \in G} D_h^{1-\sigma}}$$

Together:

$$s_j = s_{j|g} s_g = \frac{e^{(\delta_j/(1-\sigma))}}{D_g^{\sigma}[\sum_{h \in G} D_h^{1-\sigma}]}$$

4

and outside option of not buying anything is:

$$s_0 = \frac{1}{\sum_{h \in G} D_h^{1-\sigma}}$$

Hence,

$$log(s_j) - log(s_0) = \delta_j / (1 - \sigma) - \sigma log(D_g)$$

Then, use

$$log(s_{j|g}) = \delta_j/(1-\sigma) - logD_g$$

to get

$$log(s_j) - log(s_0) = \delta_j + \sigma log(s_{j|g})$$

The Model Consumer Choice Problem: Utility Function of consumer i for yellow page directory j.

$$U_{ij} = \alpha_2 ln(A_j) + X_j^U \beta^U + \xi_j + \zeta_{i,YP}(\sigma) + (1 - \sigma)\epsilon_{ij}$$

- A_j : advertisement
- x_j : demographic characteristics.
- ξ_i : unobserved directory characteristics.
- $\zeta_{i,YP}$: individual preference shock for yellow pages.

- ϵ_{ij} : individual idiosyncratic taste shock for yellow page directory j.
- ϵ_{ij} : i.i.d. extreme value distributed.
- $\zeta_{i,YP}(\sigma) + (1 \sigma)\epsilon_{ij}$: i.i.d. extreme value distributed. $\zeta_{i,YP}$ is the common shock among all the yellow page directories.

Then, the shares of yellow page j is

$$ln(s_j) - ln(s_0) = \alpha_2 ln(A_j) + X_j^U \beta^U + \sigma ln(s_{j|YP}) + \zeta_j$$

Share of directory j among yellow pages $s_{j|YP}$ is know, but not the unconditional share of yellow page s_j , or outside option s_0

Directory usage:

$$U_j = M s_j$$

where M is constant.

Demand for Advertising

Advertiser places a_j ads in j = 1, ..., J yellow page directories given the total ads being A_j , j = 1, ..., J. Its profit:

$$\Pi = \sum_{j=1}^{J} \left[\hat{\pi}_j a_j^{\gamma_1} A_j^{\gamma_2} U_j^{\alpha_1} - P_j a_j \right]$$

Optimal advertising:

$$a_j = \left(\frac{P_j}{\gamma_1 \hat{\pi}_j A_j^{\gamma_2} U_j^{\alpha_1}}\right)^{\frac{1}{\gamma_1 - 1}}$$

Aggregating $ma_j = A_j$

$$A_j = \left(\frac{P_j}{\gamma_1 \pi_j A_j^{\gamma_2} U_j^{\alpha_1}}\right)^{\frac{1}{\gamma_1 - 1}}$$

where $\pi_j = \hat{\pi}_j / m^{\gamma_1 - 1}$

9

Inverse demand curve:

$$P_j = \gamma_1 A_j^{\gamma_1 + \gamma_2 - 1} U_j^{\alpha_1} \pi_j$$

with the error term ν_j added for estimation

$$ln(P_j) = \gamma ln(A_j) + \alpha_1 ln(U_j) + X_j^P \beta^P + \nu_j$$

Publisher of the Phone Directory

Profit maximization: K(j): set of yellow page directories owned by the publisher.

$$Max_{A_j} \sum_{k \in K(j)} P_k(A_k, U_k(A_1, \dots, A_J))A_k - MC_jA_j$$

$$MC_j = X_j^C \beta^C + \omega_j$$

Derive MC by using the F.O.C.

$$MR_j = MC_j$$

Notice that parameters of inverse demand function $P_k()$ is recovered from the advertiser's equation, and parameters of usage function U_k is recovered from the consumers' problem.

Estimation:

Consumer Choice:

$$ln(s_j) - ln(s_0) = \alpha_2 ln(A_j) + X_j^U \beta^U + \sigma ln(s_{j|YP}) + \zeta_j$$

- Data: Usage rate for each yellow page directory: get $s_{j|YP}$, and usage $U_j = Ms_j$. Get s_j by setting M. Demographic controls
- Endogeneity of A_j : IV: number of people covered by a directory. Does not enter in X_j^U . Endogeneity of $ln(s_{j|YP})$: square mileage of the distribution area of a directory. Larger area means less competition from neighboring directory

Inverse Demand for Advertising

$$ln(P_j) = \gamma ln(A_j) + \alpha_1 ln(U_j) + X_j^P \beta^P + \nu_j$$

- Endogeneity of U_j : Instrument: number of people who recently moved. % Switched county, % switched state, % in same house.
- Endogeneity of A_j : Instrument: local wages, dummy for printing facilities used.

Publisher First Order Condition:

$$MR_j = MC_j = X_j^C \beta^C + \omega_j$$

Estimation Results:

Usage Equation

		(0, 1, 0, 1)							
Advertising α_2		(0.131)							
σ	0.803	(0.079)							
Advertising Price Equation									
Advertising γ	-0.729	(0.193)							
Usage α_1	0.564	(0.131)							
Marginal Cost Equation									
Population Coverage	0.437	(0.116)							
Earnings Per Worker	0.003	(0.014)							
Bell South	-0.631	(0.529)							
GTE	0.612	(0.129)							

- Network Effects: $\alpha_1 > 0$, $\alpha_2 > 0$
- σ close to 1. Not much product differentiation in yellow pages.

Model Analysis

Pages									
Equilibrium	418	(110)							
Classical Social Optimum	1,784	(506)							
Social Optimum	3,039	(1,511)							
Surplus (\$000)									
Equilibrium	25,525	(23,054)							
Classical Social Optimum	30,515	(25,439)							
Social Optimum	36,788	(32,535)							
Dead Weight Loss (\$000)									
Classical Social Optimum	4,920	(2,541)							
Social Optimum	6,273	(7,725)							

Classical Social Optimum: Social planner chooses optimal advertisement but takes usage as given.

Deadweight Loss:

$$\int_{A_e}^{A_o} P_j(A_j, U(A_e)) dA_j - (A_o - A_e) MC$$

Network Social Optimum: Includes change in usage rate.

$$\int_0^{A^*} P_j(A_j, U(A^*)) dA_j$$

Network Deadweight Loss:

$$\int_0^{A^*} P_j(A_j, U(A^*)) dA_j - \int_0^{A_o} P_j(A_j, U(A_e)) dA_j - (A^* - A_e) MC$$

Entry:

- Duopoly higher advertising per firm than monopoly: competitive phone book market (σ high) drives down price of advertising, and increases advertising.
- Negative network effects: usage per phone book decreases. With further entry, advertising per phone book decreases.
- Welfare increase due to competition outweighs the network effect.

- Not much utility increase due to increase in numbers of phone books.
- Large increase in social surplus with more number of firms.

RYSMAN COMPETITION BETWEEN NETWORKS

TABLE 7

No. of competitors	Advertising (pages)		Refs./HH/mth.		Price (\$) (DQC ad)		Profits (\$)*		Advertiser surplus* (1 directory)		Total surplus*	
1	613	(578)	4.10	(0.69)	2136	(1207)	5.16	(1.60)	21.45	(17.07)	26.61	(19.67)
2	707	(606)	2.38	(0.38)	1416	(794)	2.85	(1.00)	16.40	(13.10)	38.50	(29.45)
3	624	(533)	1.68	(0.28)	1273	(736)	1.97	(0.79)	13.03	(10.53)	45.00	(35.06)
4	549	(470)	1.30	(0.22)	1212	(712)	1.53	(0.68)	10.91	(8.94)	49.74	(39.39)
5	490	(420)	1.07	(0.19)	1178	(699)	1.26	(0.60)	9.45	(7.85)	53.55	(43.01)
6	443	(381)	0.91	(0.16)	1156	(690)	1.08	(0.55)	8.38	(7.05)	56.79	(46.18)
7	405	(349)	0.79	(0.15)	1141	(684)		(0.50)	7.57	(6.43)	59.62	(49.02)

Equilibrium for different numbers of competitors

*Profits and surplus are in millions. Profits and surplus are computed assuming there are no fixed costs of production.

Standard errors are in parenthesis.

TABLE 8

No. of competitors	Surplus increase minus profits (%) (no fixed costs)			ofits ed costs)	Surplus increase (%) (incl. fixed costs)		Adjusted surplus increase (%) (incl. fixed costs)	
2	0.76	(0.17)	1.80	(1.15)	0.42	(0.11)	0.26	(0.11)
3	0.70	(0.22)	0.92	(0.98)	0.15	(0.06)	0.07	(0.08)
4	0.68	(0.25)	0.48	(0.90)	0.09	(0.04)	0.03	(0.07)
5	0.67	(0.26)	0.21	(0.85)	0.06	(0.03)	0.01	(0.06)
6	0.67	(0.27)	0.03	(0.82)	0.05	(0.03)	0.00	(0.06)
7	0.66	(0.27)	-0.10	(0.80)	0.04	(0.03)	-0.01	(0.06)

Private returns vs. social returns

Surplus increase minus profits (%) is (incsurp(k, k-1) - prof(k))/incsurp(k, k-1). Surplus increase (%) is incsurp(k, k-1)/surp(k-1) where surp(k) equals surplus generated

Surplus increase (%) is incsurp(k, k - 1)/surp(k - 1) where surp(k) equals surplus generated by k competitors. incsurp(k, k - 1) = surp(k) - surp(k - 1). prof(k) is profit when there are k competitors. Adjusted surplus is computed ignoring the upper tip of the demand curve. Standard errors are in parenthesis. 505