Competition Between Networks: A Study in the Market for Yellow Pages
Mark Rysman

Network effects between consumers and advertisers.

- Consumers: Choose how much to use the yellow page directory j, given the advertisements contained.
- Advertisers:Choose how much ads to place in directory j given the usage.
- Publishers try to internalize the network externality by choosing the optimal price.

Nested Logit

utility function of consumer i for product j in category g.

$$
u_{i j}=\delta_{j}+\zeta_{i g}+(1-\sigma) \epsilon_{i j}
$$

- δ_{j} : deterministic component of utility.
- $\zeta_{i g}$:group g specific preference shock. Common shock of all products within group g.
- $\epsilon_{i j}$: individual idiosyncratic taste shock for product j, i.i.d. extreme value distributed.
- $\zeta_{i g}+(1-\sigma) \epsilon_{i j}$: i.i.d. extreme value distributed as well.

Nested Logit formula:

Within group conditional share of product j :

$$
\begin{gathered}
s_{j \mid g}=\frac{e^{\left(\delta_{j} /(1-\sigma)\right)}}{D_{g}} \\
D_{g} \equiv \sum_{j \in G} e^{\left(\delta_{j} /(1-\sigma)\right)}
\end{gathered}
$$

Group share among all products:

$$
s_{g}=\frac{D_{g}^{1-\sigma}}{\sum_{h \in G} D_{h}^{1-\sigma}}
$$

Together:

$$
s_{j}=s_{j \mid g} s_{g}=\frac{e^{\left(\delta_{j} /(1-\sigma)\right)}}{D_{g}^{\sigma}\left[\sum_{h \in G} D_{h}^{1-\sigma}\right]}
$$

and outside option of not buying anything is:

$$
s_{0}=\frac{1}{\sum_{h \in G} D_{h}^{1-\sigma}}
$$

Hence,

$$
\log \left(s_{j}\right)-\log \left(s_{0}\right)=\delta_{j} /(1-\sigma)-\sigma \log \left(D_{g}\right)
$$

Then, use

$$
\log \left(s_{j \mid g}\right)=\delta_{j} /(1-\sigma)-\log D_{g}
$$

to get

$$
\log \left(s_{j}\right)-\log \left(s_{0}\right)=\delta_{j}+\sigma \log \left(s_{j \mid g}\right)
$$

The Model

Consumer Choice Problem: Utility Function of consumer i for yellow page directory j.

$$
U_{i j}=\alpha_{2} \ln \left(A_{j}\right)+X_{j}^{U} \beta^{U}+\xi_{j}+\zeta_{i, Y P}(\sigma)+(1-\sigma) \epsilon_{i j}
$$

- A_{j} : advertisement
- x_{j} : demographic characteristics.
- ξ_{j} : unobserved directory characteristics.
- $\zeta_{i, Y P}$:individual preference shock for yellow pages.
- $\epsilon_{i j}$: individual idiosyncratic taste shock for yellow page directory j.
- $\epsilon_{i j}$: i.i.d. extreme value distributed.
- $\zeta_{i, Y P}(\sigma)+(1-\sigma) \epsilon_{i j}$: i.i.d. extreme value distributed. $\zeta_{i, Y P}$ is the common shock among all the yellow page directories.

Then, the shares of yellow page j is

$$
\ln \left(s_{j}\right)-\ln \left(s_{0}\right)=\alpha_{2} \ln \left(A_{j}\right)+X_{j}^{U} \beta^{U}+\sigma \ln \left(s_{j \mid Y P}\right)+\zeta_{j}
$$

Share of directory j among yellow pages $s_{j \mid Y P}$ is know, but not the unconditional share of yellow page s_{j}, or outside option s_{0}

Directory usage:

$$
U_{j}=M s_{j}
$$

where M is constant.

Demand for Advertising

Advertiser places a_{j} ads in $j=1, \ldots, J$ yellow page directories given the total ads being $A_{j}, j=1, \ldots, J$. Its profit:

$$
\Pi=\sum_{j=1}^{J}\left[\widehat{\pi}_{j} a_{j}^{\gamma_{1}} A_{j}^{\gamma_{2}} U_{j}^{\alpha_{1}}-P_{j} a_{j}\right]
$$

Optimal advertising:

$$
a_{j}=\left(\frac{P_{j}}{\gamma_{1} \hat{\pi}_{j} A_{j}^{\gamma_{2}} U_{j}^{\alpha_{1}}}\right)^{\frac{1}{\gamma_{1}-1}}
$$

Aggregating $m a_{j}=A_{j}$

$$
A_{j}=\left(\frac{P_{j}}{\gamma_{1} \pi_{j} A_{j}^{\gamma_{2}} U_{j}^{\alpha_{1}}}\right)^{\frac{1}{\gamma_{1}-1}}
$$

where $\pi_{j}=\widehat{\pi}_{j} / m^{\gamma_{1}-1}$

Inverse demand curve:

$$
P_{j}=\gamma_{1} A_{j}^{\gamma_{1}+\gamma_{2}-1} U_{j}^{\alpha_{1}} \pi_{j}
$$

with the error term ν_{j} added for estimation

$$
\ln \left(P_{j}\right)=\gamma \ln \left(A_{j}\right)+\alpha_{1} \ln \left(U_{j}\right)+X_{j}^{P} \beta^{P}+\nu_{j}
$$

Publisher of the Phone Directory

Profit maximization: $K(j)$: set of yellow page directories owned by the publisher.

$$
\begin{gathered}
\operatorname{Max}_{A_{j}} \sum_{k \in K(j)} P_{k}\left(A_{k}, U_{k}\left(A_{1}, \ldots, A_{J}\right)\right) A_{k}-M C_{j} A_{j} \\
M C_{j}=X_{j}^{C} \beta^{C}+\omega_{j}
\end{gathered}
$$

Derive $M C$ by using the F.O.C.

$$
M R_{j}=M C_{j}
$$

Notice that parameters of inverse demand function $P_{k}()$ is recovered from the advertiser's equation, and parameters of usage function U_{k} is recovered from the consumers' problem.

Estimation:

Consumer Choice:

$$
\ln \left(s_{j}\right)-\ln \left(s_{0}\right)=\alpha_{2} \ln \left(A_{j}\right)+X_{j}^{U} \beta^{U}+\sigma \ln \left(s_{j \mid Y P}\right)+\zeta_{j}
$$

- Data: Usage rate for each yellow page directory: get $s_{j \mid Y P}$, and usage $U_{j}=M s_{j}$. Get s_{j} by setting M. Demographic controls
- Endogeneity of A_{j} : IV: number of people covered by a directory. Does not enter in X_{j}^{U}.
Endogeneity of $\ln \left(s_{j \mid Y P}\right)$: square mileage of the distribution area of a directory. Larger area means less competition from neighboring directory

Inverse Demand for Advertising

$$
\ln \left(P_{j}\right)=\gamma \ln \left(A_{j}\right)+\alpha_{1} \ln \left(U_{j}\right)+X_{j}^{P} \beta^{P}+\nu_{j}
$$

- Endogeneity of U_{j} : Instrument: number of people who recently moved. \% Switched county, \% switched state, \% in same house.
- Endogeneity of A_{j} : Instrument: local wages, dummy for printing facilities used.

Publisher First Order Condition:

$$
M R_{j}=M C_{j}=X_{j}^{C} \beta^{C}+\omega_{j}
$$

Estimation Results:

Usage Equation

Advertising α_{2}	0.154	(0.131)
σ	0.803	(0.079)

Advertising Price Equation

Advertising γ	-0.729	(0.193)
Usage α_{1}	0.564	(0.131)

Marginal Cost Equation

Population Coverage	0.437	(0.116)
Earnings Per Worker	0.003	(0.014)
Bell South	-0.631	(0.529)
GTE	0.612	(0.129)

- Network Effects: $\alpha_{1}>0, \alpha_{2}>0$
- σ close to 1. Not much product differentiation in yellow pages.

Model Analysis

Pages

Equilibrium 418 (110) Classical Social Optimum 1,784 (506) Social Optimum 3,039 $(1,511)$ Surplus (\$000) Equilibrium 25,525 $(23,054)$ Classical Social Optimum 30,515 $(25,439)$ Social Optimum 36,788 $(32,535)$ Dead Weight Loss $(\$ 000)$ Classical Social Optimum 4,920 $(2,541)$ Social Optimum 6,273 $(7,725)$

Classical Social Optimum: Social planner chooses optimal advertisement but takes usage as given.

Deadweight Loss:

$$
\int_{A_{e}}^{A_{o}} P_{j}\left(A_{j}, U\left(A_{e}\right)\right) d A_{j}-\left(A_{o}-A_{e}\right) M C
$$

Network Social Optimum: Includes change in usage rate.

$$
\int_{0}^{A^{*}} P_{j}\left(A_{j}, U\left(A^{*}\right)\right) d A_{j}
$$

Network Deadweight Loss:

$$
\int_{0}^{A^{*}} P_{j}\left(A_{j}, U\left(A^{*}\right)\right) d A_{j}-\int_{0}^{A_{o}} P_{j}\left(A_{j}, U\left(A_{e}\right)\right) d A_{j}-\left(A^{*}-A_{e}\right) M C
$$

Entry:

- Duopoly higher advertising per firm than monopoly: competitive phone book market (σ high) drives down price of advertising, and increases advertising.
- Negative network effects: usage per phone book decreases. With further entry, advertising per phone book decreases.
- Welfare increase due to competition outweighs the network effect.
- Not much utility increase due to increase in numbers of phone books.
- Large increase in social surplus with more number of firms.

TABLE 7
Equilibrium for different numbers of competitors

No. of competitors	Advertising (pages)	Refs./HH/mth.		Price (\$) (DQC ad)		Profits (\$)*		Advertiser surplus* (1 directory)		Total surplus*	
1	613 (578)	$4 \cdot 10$	(0.69)	2136	(1207)	5.16	(1.60)	21.45	(17.07)	26.61	(19.67)
2	707 (606)	2.38	(0.38)	1416	(794)	2.85	(1.00)	16.40	(13.10)	38.50	(29.45)
3	624 (533)	1.68	(0.28)	1273	(736)	1.97	(0.79)	13.03	(10.53)	45.00	(35.06)
4	549 (470)	1.30	(0.22)	1212	(712)	1.53	(0.68)	10.91	(8.94)	49.74	(39.39)
5	490 (420)	1.07	(0.19)	1178	(699)	1.26	(0.60)	9.45	(7.85)	53.55	(43.01)
6	443 (381)	0.91	(0.16)	1156	(690)	1.08	(0.55)	8.38	(7.05)	56.79	(46.18)
7	405 (349)	0.79	(0.15)	1141	(684)	0.95	(0.50)	7.57	(6.43)	59.62	(49.02)

*Profits and surplus are in millions. Profits and surplus are computed assuming there are no fixed costs of production.
Standard errors are in parenthesis.

TABLE 8
Private returns vs. social returns

c No. of competitors	Surplus increase minus profits (\%) (no fixed costs)	Profits (incl. fixed costs)		Surplus increase (\%) (incl. fixed costs)	Adjusted surplus increase (\%) (incl. fixed costs)		
2	0.76	(0.17)	1.80	(1.15)	0.42	(0.11)	0.26
3	0.70	(0.22)	0.92	(0.98)	0.15	(0.06)	0.07
4	0.68	(0.25)	0.48	(0.90)	0.09	(0.04)	0.03
5	0.67	(0.26)	0.21	(0.85)	0.06	(0.03)	0.01
6	0.67	(0.27)	0.03	(0.82)	0.05	(0.03)	0.00
7	0.66	(0.27)	-0.10	(0.80)	0.04	(0.03)	-0.01

Surplus increase minus profits (\%) is (incsurp $(k, k-1)-\operatorname{prof}(k)) / \operatorname{incsurp}(k, k-1)$.
Surplus increase $(\%)$ is $\operatorname{incsurp}(k, k-1) / \operatorname{surp}(k-1)$ where $\operatorname{surp}(k)$ equals surplus generated by k competitors. $\operatorname{incsurp}(k, k-1)=\operatorname{surp}(k)-\operatorname{surp}(k-1)$. prof (k) is profit when there are k competitors. Adjusted surplus is computed ignoring the upper tip of the demand curve. Standard errors are in parenthesis.

