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Competition between subdiffusion and Lévy flights: A Monte Carlo approach
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In this paper we answer positively a question raised by Metzler and Klafter [Phys. Rep. 339, 1 (2000)]: can
one see a competition between subdiffusion and Lévy flights in the framework of the fractional Fokker-Planck
dynamics? Our method of Monte Carlo simulations demonstrates the competition on the level of realizations as
well as on the level of probability density functions of the anomalous diffusion process. The simulation
algorithm is based on a stochastic representation of the above dynamics.
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I. INTRODUCTION

In the past few years, anomalous diffusion has attracted
growing attention, being observed in various fields of phys-
ics and related sciences [1]. Anomalous diffusion is charac-
terized through the power law form ((Ax)?)«Kt® of the
mean-square displacement deviating from the well-known
property ((Ax)?)=Kt of Brownian diffusion. According to
the value of the anomalous diffusion index «, one distin-
guishes subdiffusion (0<a<1) and superdiffusion (a>1)
[1]. Brownian diffusion (a=1) under the influence of an ex-
ternal force field is typically described by the Fokker-Planck
equation [2].

Lévy flights do not possess a finite mean-square displace-
ment. Their physical significance therefore has been ques-
tioned, as particles with a finite mass should not execute long
jumps instantaneously. However, in recent years, description
of physical models in terms of Lévy flights becomes more
and more popular. They are used to model a variety of pro-
cesses, such as bulk-mediated surface diffusion with applica-
tion to porous glasses and eye lenses, transport in micelle
systems or heterogeneous rocks, special problems in reaction
dynamics, in single-molecule spectroscopy, and wait-and-
switch relaxation (see [1,3,4] and references therein).

The general form of the celebrated fractional Fokker-
Planck equation (FFPE), describing the competition between
subdiffusion and Lévy flights under the influence of an ex-
ternal potential V(x), is given in [1]:
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0<a<1, stands for the fractional derivative of the
Riemann-Liouville type and V#, 0<u <2, is the Riesz frac-
tional derivative with the Fourier transform F{V#f(x)}

=—|k|“f(k) [5]. The occurrence of the operator ;D! ™ in Eq.
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(1) is induced by the heavy-tailed waiting times between
successive jumps of the particle, whereas V# is related to the
heavy-tailed distributions of the jumps in the underlying
continuous-time random walk (CTRW) scheme. Equation (1)
was first derived in [6] from a generalized master equation.
The constant K is the anomalous diffusion coefficient,
whereas 7 denotes the generalized friction constant. For u
=2, we obtain the FFPE describing subdiffusion in accor-
dance with the mean-squared displacement [1,7], while for
a=1, Eq. (1) reduces to the Markovian Lévy flight [3]. The
case u=2, a=1 corresponds to the standard Fokker-Planck
equation.

Many physical transport problems occur under the influ-
ence of an external field. A framework for the treatment of
anomalous diffusion problems under the influence of an ex-
ternal force field is developed in terms of the FFPE. It pro-
vides a useful approach for the description of transport dy-
namics in complex systems which are governed by
anomalous diffusion [1] and nonexponential relaxation pat-
terns [8]. The FFPE can be rigorously derived from the gen-
eralized master equation or the continuous-time random walk
models as shown in [6,9]. The numerical simulation of the
anomalous transport in a tilted periodic potential within the
framework of the FFPE through the underlying CTRW was
presented recently in [10]. A related problem for the frac-
tional Fokker-Planck dynamics for Lévy flights in the con-
text of resonant activation was numerically studied in
[11,12].

In this paper, we derive the stochastic representation of
the solution w(x,7) of the FFPE (1)—i.e., we show that
w(x, 1) is equal to the probability distribution function (PDF)
p(x,1) of the subordinated process

Y(t) = X(S,). (3)

Here the parent process X(7) is defined as the solution of the
stochastic differential equation (SDE)

dX(7)==V'(X(0) 5 'd7+ K"*dL,(7) (4)

driven by symmetric u-stable Lévy motion L,(7) with the
Fourier transform (e’Lx(7)=¢~%" [13]. Observe that L,(7)is
indexed by the internal time 7, which is not physical time.
However, the subordination X(S,) changes the time scale
from the internal time 7 to physical time 7. The subordinator
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S,» which is assumed to be independent of L, (7), is defined
as

S,=inf{rU(7) > t}. (5)

Here, U(7) denotes a strictly increasing a-stable Lévy mo-
tion [13]—i.e., an a-stable process with Laplace transform

(V) =, (©)

where 0 <a<<1. Some interesting physical properties of the
inverse-time a-stable subordinator S, have been discussed in
the papers [14—18]. Note that the role of the subordinator S,
in the stochastic representation (3) is analogous to the role of
the fractional Riemann-Liouville derivative (2) in the FFPE
(1), since S, appears in a natural way as the limit process of
the CTRW scheme with heavy-tailed waiting-time distribu-
tions between successive jumps of a particle. The process S,
is strictly increasing and it tends to infinity for r— oc. More-
over, S, is «a self-similar [19], which implies that in the case
of constant potential, V(x)=const, the subordinated process
X(S,) is @/ u self-similar.

II. STOCHASTIC REPRESENTATION

In a recent paper [20], the authors have derived the sto-
chastic representation of the FFPE (1) only for the subdiffu-
sive case, uw=2. In what follows, we extend these consider-
ations to the general case 0 <<u =<2 and provide computer
tools to study the competition between subdiffusion and
Lévy flights.

Now, we show that the PDF p(x,7) of the subordinated
process X(S,) defined in (3) and the solution of Eq. (1) coin-
cide. First, let us note that, from the total probability for-
mula, we get

p(X,t)=J fx,Dg(r0dr.
0

Here, by f(x,7) and g(7,7) we denote the PDFs of X(7) and
S,, respectively. The above formula in the Laplace space
yields

plx,k) = f e Mp(x,r)dt = f flx,ng(rk)dr. (7)
0 0
Next, since the process X(7) is given by the SDE (4), its PDF
f(x,7) obeys the Lévy-flight-type FFPE [3]

wmﬂ%gwm
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+ KV'“)f(x, 7). (8)

By taking the Laplace transform of both sides of the last
equation, we obtain

V'(x)
7

Now, let us find the relationship between the PDFs f(x,7)
and g(7,1). Since U(7) from definition (5) is 1/« self-similar,
its PDF obeys the scaling relation

kf(x,k) — f(x,O):(?—i Fxk) + KVAf(x k). (9)
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Using the property Pr(S,<7)=Pr(U(7)=1), we obtain after
some standard calculations

a (" t
gnty=——1| uly,ndy=—ul(t,7).
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Consequently, by taking advantage of (6), we calculate the
Laplace transform

o0

* t 1 d
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Using the above result in combination with (7), we get
plx,k) = f Fo, Dk e ™ dr =k f(x,k%).  (10)
0

The last formula, applied to (9), after the change of variables
k— Kk, gives

kp(x,K) - p(x,0) = k"“(ai LA PYNP Kw,s(x,k)> .
X 7

(11

Note that, since S,=0, the initial conditions of X(7) and X(S,)
coincide; thus f(x,0)=p(x,0). Finally, inverting the Laplace
transform in the last equation, we obtain

DD _ o 2V

=D +KWQmma

Thus, we have proved that the PDF p(x,7) of X(S,) is the
solution of the FFPE (1).

The obtained stochastic representation of the FFPE shows
that the temporal fractional derivative ,D;™* in Eq. (1)
causes the change of the operational time of the system rep-
resented by the occurrence of the inverse-time a-stable sub-
ordinator S,. The process S, is responsible for the subdiffu-
sive behavior of the system (long rests of the particle),
whereas the parent process X(7) introduces the Lévy-flight-
type behavior (long jumps of the particle). The subordinated
process X(S,) combines both these characteristics, resulting
in competition between subdiffusion and Lévy flights (Fig.
1).

As a by-product of our considerations, from Eq. (10), we
obtain the following scaling relation in the Laplace space
between the two PDFs—w(x,#) and f(x,¢) being solutions of
Eq. (1) and Eq. (8), respectively:

W, k) = k* F(x, k9).

Let us note that the same functional relation has been derived
in [7,14] and used in [20] in the proof of the stochastic rep-
resentation for the pure subdiffusive case. Since such a rela-
tion has not been known for the case considered here of
subdiffusion with Lévy flights, our proof of the stochastic
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FIG. 1. (Color online) Sample realizations of (a) the anomalous
diffusion X(S,), (b) the u-stable parent process X(7), and (c) the
inverse-time a-stable subordinator S,, in the presence of a constant
potential V(x)=const. The parameters are a=0.7, u=1.3, K=1, and
n=1. The constant intervals of X(S,) indicate the heavy-tailed wait-
ing times, while the long jumps of the process confirm the heavy-
tailed distributions of transfers. The interplay between long rests
and long jumps is distinct.

representation of Eq. (1) is considerably different from the
one given in [20].

II1. SIMULATION ALGORITHM

In this section, we construct a method of approximating
sample paths of the process whose dynamics is described by
the FFPE (1). Our method is based on the derived stochastic
representation (3): every trajectory is obtained as a subordi-
nation of two independent trajectories of the processes X(7)
and S,.

Suppose, we want to approximate the process X(S,) on the
lattice {r;=iAt:i=0,1,...,N}, where At=T/N and T is the
time horizon. The proposed algorithm consists of two steps.

(I) Our first aim 1is to approximate the values
Sty>Stys 281, of the subordinator S,. Therefore, we begin by
approximating a realization of the strictly increasing a-stable
Lévy motion U(7) on the mesh 7;=jA7, j=0,1,...,M (it is
recommended to choose A7<Ar). Using the standard
method of summing increments of the process U(7) we get

U(To) =0,

U() = U(72) + Ar'eg,, (12)
where §; are the i.i.d. totally skewed positive a-stable ran-
dom variables. The procedure of generating realizations of §;
is the following [21-23]:

sinfa(V +c,)] ( cos[V—a(V+ cz)])(l’“)/“
L =C >
777 [eos(v)] e W

where ¢, =[cos(ma/2)]7V%, c,=m/2, the random variable V
is uniformly distributed on (—7/2,7/2), and W has expo-
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nential distribution with mean 1. The iteration (12) ends
when U(7) crosses the level 7, i.e., when for some j,=M we
get U(ry_)) <T<U(7y). Since U(7) is strictly increasing,
such M always exists.

Now, for every element #; of the lattice {r;=iAr:i
=0,1,...,N}, we find the element T such that U(7'j_])<li
< U(7;), and finally, from definition (5), we get that in such a

case

S,i =T
Since U(7) is strictly increasing, the above method of finding
the values Sf,-’ i=0,1,...,N, can be implemented efficiently
[20].

(IT) In the second step, we find the approximated values
X(S,O),X(S,l), ,X(S,N) of the subordinated process X(S,).
Recall that from (I) we have at our disposal the approxima-
tions S, .S, ,....S, . First, we approximate the solution X(7)
of the SDE (4) on the lattice {7,=kA7:k=0,1,...,L} (it is
recommended to choose A7<<Ar). Here, the number L is
equal to the first integer that exceeds the value Si! AT. Em-
ploying the Euler scheme for stable processes [13,22] we
obtain

X(7) =0,

V' (X (7))

X(7) = X(F_y) - AT+ KA VRE, (13)

for k=1,2,...,L. Here Ek are i.i.d. random variables with
standard symmetric u-stable distribution. The method of

computer simulating realizations of the random variables &,
is the following [21-23]:

= sin(uV) (cos(‘_/—,u‘_/))(l_mm
‘ [cos(V)]~ w ’

k=1,2,...,L. Here, the random variable Vis uniformly dis-
tributed on (—=m/2,7/2) and W has exponential distribution

with mean 1. V and W are assumed to be independent of each
other and independent of the random variables V and W from
the first step of the algorithm. Finally, we obtain the approxi-
mate values X(S,).X(S;),....X(S, ) by finding for every #;
from the lattice {;=iAr:i=0,1,...,N} such an index k that
the condition TS S T holds true. Then we get

X(S,) = X(7), (14)

i=0,1,...,N. It is not recommended to use linear interpola-
tion at this point, since the realizations of X(7) are not con-
tinuous for 0<u<<2. By choosing the approximation of
X(S,i) as in Eq. (14), we assure that the processes X(7) and
X(S,) have jumps of the same length (Fig. 1).

The algorithm introduced allows us to simulate sample
paths of the anomalous diffusion X(S,) for an arbitrary po-
tential and for the whole range of parameters 0 <a<<1 and
0<u=2. Figures 1-3 visualize the interplay between sub-
diffusion and Lévy flights in the system under consideration.
The constant parts of the sample path indicate the heavy-
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FIG. 2. (Color online) Comparison of three sample realizations
of anomalous diffusion X(S,) for different parameters ©=0.8, u
=1.3, and p=2, respectively. The parameters a=0.7, K=1, =1,
V(x)=const, and the realization of the inverse-time a-stable subor-
dinator S, are the same as in Fig. 1. Observe that the constant
intervals of X(S,) are repeated, while the long jumps of the process
characterized by w are different. The smaller u, the longer the
jumps. Only for u=2 are there no jumps. This demonstrates a com-
petition between the subdiffusive parameter « and the Lévy flight
parameter .

tailed waiting times, while the long jumps of the particle
confirm the heavy-tailed distributions of transfers in the un-
derlying CTRW scheme. The subdiffusive behavior of the
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FIG. 3. (Color online) Comparison of sample realizations of
anomalous diffusion X(S,) for three different subordinators S, with
indices @=0.5, @=0.7, and «=0.9, respectively, and the same real-
ization of X(7). The other parameters are u=1.3, K=1, =1, and
V(x)=const. The height of jumps of X(S,) is repeated, while the
waiting times (constant intervals) depend on «. The smaller «, the
longer the waiting times. This demonstrates a competition between
the subdiffusive parameter a and the Lévy flight parameter wu.
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FIG. 4. (Color online) Comparison of the PDFs of the process
X(S,) for two different parameters « with fixed parameter u=1.4. In
the case a=0.6 we observe the cusp shape of the PDF, whereas for
a=1 (pure Lévy flight) the PDF is smooth at x=0. The log-log scale
window confirms that in both cases the tails decay as a power law.
The parameters are V(x)=const, K=1, and 7=1.

system is caused by the inverse-time a-stable subordinator,
whereas the Lévy-flight-type behavior is inherited from the
parent process X(7) described by the SDE (4).

IV. MONTE CARLO APPROACH

Since the solution of the FFPE (1) in a numerically treat-
able form is not known, one can use Monte Carlo methods
basing on our algorithm to approximate this solution. In Figs.
4 and 5 we present exemplary PDFs p(x,7) obtained with the
help of the Rozenblatt-Parzen kernel density estimator. The
estimator was constructed on the basis of 10* simulated re-
alizations. The cusp shape of the PDFs, caused by the influ-
ence of the subordinator §,, can be observed for a<<1. For
a=1 the operator ,D!~® in Eq. (1) disappears and we obtain
standard Lévy flight with the corresponding PDF smooth at
x=0. The log-log scale windows in Figs. 4 and 5 indicate
that the tails of the PDFs for u <2 decay as a power law,

0.7 n=0.8
0.6
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0.5’ u:z
0.4r
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p(x,t=1)

0.3r
0.2r

0.1
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FIG. 5. (Color online) Comparison of the PDFs of the process
X(S,) for two different parameters u with fixed @=0.7. The cusp
shape of both PDFs is induced by the subordinator ;. However, the
tails of the PDF for ©=0.8 decay as a power law, whereas for u
=2 (subdiffusion) the decay is much faster (see the log-log scale
window). The parameters are V(x)=const, K=1, and 7=1.
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FIG. 6. (Color online) Estimated quantile lines and two sample
trajectories of the process X(S,) in the presence of the harmonic
potential V(x)=x>/2. The parameters are a=0.7, u=1.5, K=1, and
7=1. The shape of the quantile lines (asymptotically parallel lines)
confirms that the process reaches its stationary solution as t— o°.

whereas for w=2 (pure subdiffusion) the decay is much
faster.

As already pointed out, in the case of constant potential,
V(x)=const, the process X(§,) is a/ u self-similar. Therefore,
the corresponding PDF obeys the scaling relation

L
p(x’t)—ta/,up )

Since the PDF p(x, 1) decays as a power law for u<<2 (see
Figs. 4 and 5), we infer that the stretched Gaussian
asymptotic behavior of the PDF p(x,?), typical for the wide
range of solutions of the FFPE without Lévy flight compo-
nent [1,24], is violated in the case u<2.

The numerical investigations of sample path dynamics
prove that for the harmonic potential V(x)=x?/2 the process
X(S,) reaches its stationary solution also for u<2. The exis-
tence of a stationary solution for =2 was proved in [1]. As
shown in Fig. 6, nine quantile lines (10%, 20%, ..., 90%),
corresponding to X(S,), become asymptotically parallel,
which confirms that the stationary solution is reached as ¢
— o0, Recall that a p-quantile line, p € (0, 1), for a stochastic
process Y(t) is a function g,(t) given by the relationship
Pr[Y () <q,(1)]=p [13]. Since S,— % as t— =, the stationary
solution of Eq. (1) is equal to the stationary solution of the
SDE (4). In the case of a harmonic potential V(x)=x?/2, the
Fourier transform of the stationary solution w (k) is given by

w(k) = exp(— M) .

In Fig. 7 we present the theoretical and estimated cumulative
distribution functions (CDFs) of the stationary solution. The
estimated CDF was constructed with the help of Monte Carlo
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FIG. 7. (Color online) Comparison of the theoretical and esti-
mated CDFs of the stationary solution of Eq. (1) in the presence of
the harmonic potential V(x)=x?/2. The empirical CDF was con-
structed using the Monte Carlo methods. The similarity between
both CDFs confirms the correctness of our simulation algorithm.
The parameters are a=0.7, u=1.5, K=1, and n=1.

methods on the basis of 10* realizations of X(S,). We
checked that there was a very good agreement between both
CDFs, which verifies the correctness of our simulation algo-
rithm.

V. CONCLUSION

We have derived here the stochastic representation of the
FFPE describing the competition between subdiffusion and
Lévy flights. We have shown that the solution of Eq. (1) is
equal to the PDF of the subordinated process X(S,), where
X(7) is defined by the SDE (4) and S, is the inverse-time
a-stable subordinator described by Eq. (5). The interplay be-
tween long rests and long jumps of the system described by
the FFPE (1) is distinct also at the level of the derived sto-
chastic representation. The subdiffusive behavior of the sys-
tem is caused by the inverse-time a-stable subordinator S,
whereas the Lévy-flight-type behavior is inherited from the
parent process X(7) (see Figs. 1-3).

We have used the stochastic representation to construct an
efficient computer algorithm of sample path visualization of
the anomalous diffusion X(S,). The algorithm can be applied
for arbitrary external potential V(x) and with no restrictions
to the parameters 0 < a <1 and 0 < u=<2. The proposed sta-
tistical tools basing on the Monte Carlo techniques allowed
us to visualize the competition between subdiffusion and
Lévy flights on the level of sample paths (Figs. 2 and 3) as
well as on the level of PDFs (Figs. 4 and 5). We expect that
the methods presented here will contribute to a better under-
standing of physical systems displaying both subdiffusive
and Lévy-flight-type behavior.
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