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 Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short 

half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), 

but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due 

to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a 

single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine 

found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn 

at neutral pH, it decreases binding at acidic pH, affecting the rescue effi ciency — but only in 

the presence of H435 – IgG. Importantly, we show that in humans the half-life of the H435-

containing IgG3 allotype is comparable to IgG1. H435 – IgG3 also gave enhanced protection 

against a pneumococcal challenge in mice, demonstrating H435 – IgG3 to be a candidate for 

monoclonal antibody therapies.         
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 H
uman IgG3 activates complement and Fc γ R-mediated 
functions more e� ectively than any other subclass, followed 
by IgG1, IgG2 and IgG4, respectively, making it an ideal 

candidate for immunotherapy 1 – 4 . However the short half-life of one 
week for IgG3, compared with three weeks for the other subclasses, 
currently makes IgG1 the therapeutic subclass of choice 4,5 . 

 � e exceptionally long half-life of IgG is mediated by a single 
receptor, the neonatal Fc receptor for IgG (FcRn) 6,7 . FcRn is a het-
erodimer consisting of a unique MHC class-I like  α -chain, associated 
with  β 2M. Because its a�  nity for IgG is negligible at physiological pH 
( ~ 7.4), FcRn binds to IgG only a� er pinocytosis within early endo-
somes (pH  ≤ 6.5) 8,9 . FcRn – IgG complexes are then routed away from 
the lysosomal pathway 10 – 13 , and either cycled back to the cell surface 
or transported to the opposite side of the cell. � e vesicles fuse with the 
plasma membrane, returning the pH to  ~ 7.4, and releasing IgG 14 – 16 . 
Besides IgG transport, FcRn enhances IgG-mediated phagocytosis as 
well as antigen presentation by both MHC class I and II 16 – 19 , and has 
a key role in rescuing albumin from lysosomal degradation 20  .  

 Two theoretical explanations for the reduced half-life of IgG3 
have been suggested. First, the long hinge region of IgG3 might 
make it more prone to proteolytic degradation 4 . Second, the 
recycling of IgG3 by FcRn may be less e�  cient because of an amino 
acid di� erence at position 435 — a key contact residue with FcRn and, 
in IgG1, IgG2 and IgG4, important for the pH-dependent forma-
tion of IgG – FcRn complexes through histidine protonation around 
pH  ≤ 6.5 (refs   8, 9, 21, 22). IgG3 contains an arginine in this position 
(R435), and although both residues classify as positively charged, 
arginines, unlike histidines, do not deprotonate at neutral pH, 
theoretically resulting in IgG3 binding to FcRn being less pH-
dependent, leading to shortened half-life as described for various 
mutated IgG variants with increased a�  nity to FcRn at neutral 
pH (refs   8, 23). Previous experimental work indeed pointed to the 
involvement of R435, as human IgG1 – Fc and scFv – IgG1 – Fc frag-
ments bearing R435 showed reduced half-life in wild-type mice 24,25 . 
Human H435R – IgG4 variant was also reported to display an altered 
binding to rat FcRn 8 . However, species-incompatible FcRn were 
used in these studies; the exceptional long hinge of IgG3 was not 
present; and the underlying mechanisms were not explored 4,8,24 – 27 . 

 Here we investigate the di� erence in FcRn-mediated transport 
and rescue of IgG1 and IgG3. Using human  in vitro  and  in vivo  
models, we observed — unexpectedly — that both IgG1 and IgG3 
show pH-dependent binding to FcRn, and that FcRn can transport 
IgG3 as e�  ciently as IgG1. However, when both IgG1 and IgG3 
are present, IgG1 inhibits FcRn-mediated IgG3 transport, lead-
ing to degradation of IgG3. Our data provide strong evidence that 
the presence of an arginine at position 435 in IgG3 is su�  cient to 
explain its high rate of catabolism observed  in vivo . Importantly, 
we show that the half-life of the H435-containing IgG3 allotype is 
comparable to IgG1 in humans. Using a mouse model for pneumo-
coccal pneumonia, we provide a proof of concept that IgG3 – R435H 
can be utilized for IgG-based immunotherapies aiming at maximiz-
ing e� ector functions.  

 Results  
  IgG1 interferes with IgG3 transport   .   To study FcRn-mediated 
functions, we developed an  in vitro  transport model by transducing 
the FcRn-negative human cell line A375 with the human FcRn 
 α -chain (A375 – FcRn). � e wild-type A375 did not transport IgG 
using intravenous immunoglobulin (IVIg), a polyclonal mixture of 
all human IgG subclasses ( Fig. 1a ). However, active transport was 
observed in A375 – FcRn cells in medium bu� ered at pH 7.4. We 
found IgG transport in A375 – FcRn to be similar to that observed 
across placental syncytiotrophoblast derived JAR cells expressing 
endogenous FcRn ( Fig. 1b ). From IVIg, A375 – FcRn cells transported 
IgG3 less e� ectively than IgG1, but JAR transported relatively equal 
amounts of both IgG1 and IgG3 ( Fig. 1a,b ). 
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         Figure 1    |         IgG3 transport is inhibited by IgG1 at non-saturating 

conditions. All experiments were performed at pH 7.4. ( a ) FcRn-negative 

human A375-WT cells did not transcytose IgG1 (white) and IgG3 

(hatched) from IVIg as transport was comparable to passive leakage (HRP, 

black). After transfection with the FcRn  α -chain, A375 – FcRn effi ciently 

transported IgG from the apical to the basolateral compartment. When 

IVIg was mixed with Z-domain before transport at a 2:1 molar ratio 

(Z-domain:IgG) the IgG1 transport by A375 – FcRn cells was signifi cantly 

reduced, while IgG3 transport was enhanced. ( b ) JAR cells naturally 

expressing FcRn transported IgG1 and IgG3 from IVIg equally well. 

Incubation of IVIg with the Z-domain at a 2:1 molar ratio before transport 

inhibited transport of IgG1 but increased transport of IgG3. ( c ) Purifi ed 

IgG3 and IgG1 were transcytosed equally well in A375 – FcRn cells when 

transported separately, and neither inhibited its own transport when the 

input was doubled. Yet in 1:1 mixtures, IgG3 transport was reduced in 

the presence of IgG1. ( d ) In JAR cells, IgG3 was effi ciently transported 

when offered alone. The amount of either IgG1 or IgG3 transported was 

also unaffected by doubling the apical concentration, but IgG3 transport 

was inhibited by the presence of equal amounts of IgG1. ( e ) When only 

one subclass was present, A375 – FcRn transported a fi xed percentage of 

IgG (left axis), while the absolute amount transported was diminished 

(IgG1 open squares, IgG3 triangles, right axis). Throughout, IgG1 is 

represented by open bars, IgG3 by hatched bars. 100    µ g   ml     −    1  IVIg was 

used in both ( a , b ). Apical to basolateral transport of myeloma IgG1 and 

IMIg-derived IgG3 in the concentration indicated in ( c  –  e ). The  Y -axis 

represents the percentage of IgG transported from the apical compartment 

to the basolateral compartment. The data represent mean and standard 

deviation from three independent experiments. Statistical comparison was 

performed by one-way ANOVA followed by Tukey ’ s multiple comparison 

test in ( a , b ), and transport of IgG3, in the presence of IgG1, was compared 

with transport of IgG3 alone by two-tailed  t -test in ( c , d ).  *  P  ≤ 0.05;  *  *  P  ≤ 0.01; 

 *  *  *  P  ≤ 0.001.  
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 When IVIg was pre-incubated with Z-domains of protein A, a 
selective competitive inhibitor of FcRn binding to IgG1, IgG2 and 
IgG4 (refs   28, 29), transport of IgG1 by JAR and A375 – FcRn cells 
was reduced to levels approaching those found in parental A375-WT 
and for non-speci� c horseradish peroxidase (HRP) transport and 
( Fig. 1 ), indicating IgG1 transport to be FcRn-dependent in both 
cell types. Remarkably, IgG3 transport was signi� cantly increased 
in both JAR and A375 – FcRn cells by the addition of Z-domains 
( Fig. 1a,b ), suggesting that active transport of the other IgG 
subclasses interfered with IgG3 transport. 

 We therefore studied the e� ect of IgG1 on the FcRn-mediated 
transport of IgG3 using puri� ed antibodies. Indeed, IgG3 alone 
was transported equally well as IgG1, and the transport of IgG3 
was inhibited by adding IgG1 to A375 – FcRn ( Fig. 1c ) or JAR 

cells ( Fig. 1d ). As the percentage of IgG1 or IgG3 transport was 
una� ected by the initial IgG concentration (measured over a range 
from 1 to 350    µ g   ml     −    1 ;  Fig. 1e ) the observed inhibition of IgG3 
transport by IgG1 (at concentrations of 50 – 100    µ g   ml     −    1 ) cannot be 
owing to FcRn saturation. � e pH in the extracelluar medium was 
set at pH 7.4, suggesting the inhibition to takes place in intracellular 
compartments.   

  IgG1 and IgG3 compete for binding to FcRn and transport   .   Ober 
 et al.  demonstrated that, during sorting, the unbound FcRn mol-
ecules are routed away from the sorting endosomes 15 . � is might 
explain the observed competition between IgG1 and IgG3 for FcRn 
binding and transport, because the number of FcRn molecules in 
intracellular compartments can also become limited under non-
saturating conditions. Indeed, we show that when the IgG3 con-
centration was kept constant at 10    µ g   ml     −    1 , IgG1 concentrations 
as low as 1   ng   ml     −    1  signi� cantly reduced IgG3 transport ( Fig. 2a ). 
When IgG1 and IgG3 were mixed in equal amounts, the relative 
IgG3 transport was signi� cantly reduced, compared with transport 
of IgG3 alone at high concentrations, but was una� ected at IgG 
concentrations of 10   ng   ml     −    1  / subclass, when  ~ 4 %  of 1.25    µ m sort-
ing endosomes 15  would be expected to contain IgG ( Fig. 2b ). Remark-
ably, this concentration of IgG1 (10   ng   ml     −    1 ) signi� cantly inhibited a 
1,000-fold excess of IgG3 (10    µ g   ml     −    1 ,  Fig. 2a ). Similarly, soluble IgG1 
was more e�  cient than IgG3 in inhibiting binding of soluble human 
FcRn (shFcRn) to IgG3-immobilized biosensor chips ( Fig. 2c,d ).   

  R435 in IgG interferes with binding to FcRn   .   When the di� erences 
in position 435 between IgG1 (Histidine) and IgG3 (Arginine) were 
modelled into the existing crystal structure 21 , it was clear that the 
longer side chain of arginine may potentially disrupt the tight � t of 
IgG in the FcRn-binding pocket ( Fig. 3a,b ). However, theoretically 
it may also convey a more favourable charge at pH 7.4, at which 
the net charge of histidine is neutral but arginine is positive 22 . IgG3 
did indeed bind to shFcRn signi� cantly better at pH 7.4, but IgG1 
bound better at pH 6.0 as measured by ELISA ( Supplementary Fig. 
S1 ) and by surface plasmon resonance (SPR) ( Fig. 3c,d ). We subse-
quently mutated IgG1 to include the IgG3-derived arginine residue 
and vice versa (IgG1 – H435R and IgG3 – R435H, respectively). � ese 
mutations resulted in the loss (IgG1 – H435R) or gain (IgG3 – R435H) 
of protein A binding ( Supplementary Fig. S1 ). 

 Using shFcRn-coupled biosensor chips in SPR experiments, we 
noted that IgG1 – H435R showed improved binding to FcRn at pH 
7.4 compared with WT IgG1, but reduced binding a�  nity at acidic 
pH. Likewise, binding of IgG3 – R435H was reduced at pH 7.4, but 
improved at acidic pH compared with WT IgG3 ( Fig. 3c,d ). � e 
relative binding of both IgG subclasses and variants was however 
very weak at pH 7.4, but increased steadily as the pH decreased, 
showing that shFcRn binding remained pH-dependent for all variants. 

 � e H435-containing IgG variants bound shFcRn with similar 
calculated a�  nities at pH 6.0 according to the bivalent ligand-bind-
ing model. However, IgG3 and IgG1 – H435R had calculated kinetic 
dissociation constant (K     D

 s) that were, respectively, two times and 
 ~ 50 %  higher than WT IgG1 ( Supplementary Fig. S2 ;  Supplemen-
tary Table S1 ). Similar results were found using the heterogeneous 
ligand-binding model and by repeating the experiments with a 
reversed set-up, using IgG-coupled biosensor chips and the steady-
state a�  nity model 30 : shFcRn bound the strongest to IgG1-coupled 
chips at pH 6.0 whereas IgG1 – H435R showed reduced binding. � e 
a�  nity of shFcRn was improved for IgG3 – R435H compared with 
IgG3 that showed the weakest a�  nity of all variants ( Fig. 4 ).   

  � e inhibition of IgG3 transport by IgG1 is due to R435   .   In agree-
ment with the retained pH-dependent FcRn-binding, the presence 
of histidine or arginine at position 435 did not in� uence the trans-
port e�  ciency of either subclass when transported individually in 
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     Figure 2    |         Concentration-dependent inhibition of IgG3 transport by IgG1 

owing to competitive binding to FcRn. Apical to basolateral transport 

of V-gene matched recombinant IgG3 and IgG1. ( a ) IgG3 concentration 

was kept constant (10    µ g   ml     −    1 ) in the absence or presence of increasing 

amounts of IgG1. IgG3 transport was inhibited up to a plateau when more 

than 1   ng   ml     −    1  IgG1 was present. All data points were compared with 

the samples without IgG1 by one-way ANOVA and Dunnett ’ s multiple 

comparison test. ( b ) Recombinant IgG3 alone (dotted line) or mixed with 

IgG1 (solid line) at a 1:1 ratio in increasing concentrations were added 

to the apical compartment and IgG3 was measured in the basolateral 

compartment. At concentrations lower than 1    µ g   ml     −    1 , transport of IgG3 

increased up to levels similar to those observed when IgG3 is transported 

alone. All data points from mixed IgG1 and IgG3 transport in ( b ) were 

compared by  t -test to the corresponding IgG3 transport without IgG1 

present. The theoretical number of IgG molecules present in 1.25-

 µ m-wide sorting endosomes described in ref.   15, assuming an equal 

concentration within these vesicles as present in the medium, is indicated 

on the secondary upper  x -axis in ( a , b ). This arbitrary value is given as an 

indication only as these calculated values cannot take miscellaneously 

elongated or tubule-tethered vesicles into account 13,15  ( c , d ). Surface 

plasma resonance analysis showing binding of 100-nM recombinant 

shFcRn to IgG3-immobilized CM5 biosensor chips (1,300   RU) at pH 6.0 in 

the presence of increasing concentrations of 25, 50, 100, 200 or 400-nM 

recombinant soluble IgG1 ( c ) or IgG3 ( d ). The data in ( a , b ) represent the 

mean and standard deviation. All experiments were repeated at least three 

times with similar results.  *  P  ≤ 0.05;  *  *  P  ≤ 0.01;  *  *  *  P  ≤ 0.001.  
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A375 – FcRn cells ( Fig. 5a ). When the amino acid at position 435 was 
mutated to an alanine, binding to protein A and shFcRn ( Supple-
mentary Fig. S1 ) as well as FcRn-dependent transport ( Fig. 5a ), was 
almost entirely abrogated both for IgG1 and IgG3. When mixed, 
IgG1 – H435A did not inhibit transport of IgG3 ( Fig. 5b ), indicating 
that binding of IgG1 to FcRn was required for the observed inhibi-
tion of IgG3 transport. Importantly, IgG1 – H435R ( Fig. 5a ) was also 
unable to inhibit IgG3 transport ( Fig. 5b ), indicating the arginine /
 histidine di� erence between IgG3 and IgG1 to be important for IgG1-
mediated inhibition of IgG3 transport. In line with this, transport of 
IgG3 – R435H was una� ected by the presence of any IgG1 variant 
( Fig. 5c ). Remarkably, IgG3 – R435H inhibited transport of IgG1 –
 H435R ( Fig. 5c ) to a similar extent as IgG1-WT inhibited transport of 
IgG3-WT ( Fig. 5b ). � ese results demonstrate that IgG – R435 can be 

transported by FcRn through cells, but that binding to, and transport 
by, FcRn is inhibited in the presence of H435-containing IgG.   

  Competition for FcRn leads to degradation of IgG3  in vitro    .   We 
next tested whether the reduced IgG3 transport in the presence of 
IgG1 was re� ected in enhanced degradation during apical to basola-
teral transport. We therefore measured the recovery of di� erent IgG 
variants from the apical and basolateral compartments ( Fig. 6a ). Up 
to 95 %  of IgG1 or IgG3 could be accounted for when transported 
alone. When mixed with IgG3, IgG1 recovery was una� ected, but 
only 60 %  of the initial amount of IgG3 was detected. However, when 
WT IgG1 and IgG3 – R435H were mixed, recovery of both was  ~ 95 %  
( Fig. 6a ), indicating that the decreased transport and enhanced loss 
of IgG3 in the presence of IgG1 was solely due to the arginine at 
position 435.   

  IgG3 with H435 has an enhanced half-life in humans   .   � e IgG3 
G3m( s , t ) allotype ( Supplementary Fig. S3 ) contains a histidine at 
position 435, and can therefore be used to investigate the  in vivo  
e� ect of the mutation. Although not commonly found in native 
Europeans, we found detectable levels in IVIg ( Supplementary 
Fig. S4 ). 31 – 34  We therefore investigated whether R435 can also cause 
the fast clearance of IgG3  in vivo , by analysing the serum persist-
ence of this IgG3 allotype in sera of IVIg-treated X-linked agam-
maglobulinemic patients. Compared with the amounts found in 
the IVIg preparation itself, the amount of IgG1 and IgG2 relative to 
total IgG was unchanged in these patients four weeks a� er the last 
infusion of IVIg ( Fig. 6b ). As expected, the total serum IgG3 level, 
consisting mostly of R435 containing G3m(b) and G3m(g) allotypes 
in Europe 31,32  ( Supplementary Fig. S3 ), was signi� cantly lowered, 
but signi� cantly increased for the H435-containing IgG3 allo-
type G3m( s , t ) ( Fig. 6b ). � us, also in natural variants of IgG3, the 
presence of a histidine or an arginine at position 435 determines the 
catabolic rate  in vivo .   

  Enhanced e� ector functions of H435 containing IgG3  in vivo    .   IgG3 
binds C1q and activates Fc γ R more potently than any of the other IgG 
subclasses, but its therapeutic application has not yet been consid-
ered a viable option because of its short half-life 4,35,36 . We therefore 
compared the potential of the recombinant V-gene-matched IgG1, 
IgG3, IgG1 – H435R and IgG3 – R435H (directed against  Streptococ-
cus pneumoniae  serotype 6) 17,37  to stimulate Fc γ R-mediated phago-
cytosis and mediate protection against pneumococcal pneumonia 
and bacteremia. IgG3 mediated more phagocytosis than IgG1, and 
neither isoallotypic alteration (IgG1 H435R / IgG3 R435H) signi� -
cantly changed the capacity of the antibodies to mediate phagocy-
tosis of pneumococci ( Supplementary Fig. S5 ). We then passively 
immunized outbred NMRI mice 48   h before measuring the level of 
the human antibodies and intranasal challenge with virulent pneu-
mococci. � e serum persistence of all four IgG were measured before 
challenge that were found to be lower for IgG3 and IgG1 – H435R 
than for IgG1 and IgG3 – R435H ( Fig. 7a ). Bacteremia and pneumo-
nia were determined 24   h later 37 . IgG1 and IgG3 – R435H completely 
protected against bacteremia, whereas IgG3- and IgG1 – H435R- 
treated mice were partly protected ( Fig. 7b ). IgG3 – R435H dem-
onstrated a signi� cantly better protection against pneumonia than 
IgG1 and IgG3, whereas IgG1 – H435R was not protective ( Fig. 7c ). A 
complete clearance for a large fraction of the mice was only observed 
in the IgG3 – R435H-treated group ( Fig. 7b,c ). � e statistical analysis 
of the data in  Figure 7b  is displayed in  Table 1 . 

 Collectively, these data reveal that the short half-life described 
for human IgG3 is due to the arginine in position 435, that can be 
overcome by introducing an histidine present in this position in the 
G3m( s , t ) allotypes and other IgG subclasses. � e  in vivo  application 
of H435 – IgG3 combines the properties of long half-life and strong 
e� ector functions that surpasses that of human IgG1.    
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    Figure 3    |         The infl uence of the Histidine versus Arginine at position 435 

on FcRn binding at different pH. ( a ) The crystal structure of FcRn with 

IgG – Fc part, showing the orientation of the amino acid 435 of IgG in yellow. 

 N -linked glycans are labelled according to their occurrence in FcRn and Fc. 

( b ) A close-up showing the side chain of amino acid 435 of IgG (histidine, 

in green) in the binding pocket of FcRn. When arginine (present at this 

position in IgG3) was modelled into this position (yellow), it protrudes 

into the FcRn surface area (non-polar residues in white, positively charged 

amino acids in blue, negatively charged residues in red and polar residues 

in green), suggesting steric hindrance. Histidine at this position alters its 

charge at pH 6.5 and lower (positive charge, resulting in FcRn binding) 

versus neutral pH (no charge, resulting in release of IgG from FcRn) 22 . 

Arginine in this position, however, is positively charged at both low and 

neutral pH, possibly resulting in better binding of IgG3 at neutral pH. 

The crystallographic coordinates 51  (accession 1I1A) were modelled using 

DeepView 4.03 (ref.   52) and VMD 1.9 (ref.   53). ( c , d ) The importance of 

this amino acid difference between IgG1 and IgG3 was tested biochemically 

by injecting 500   nM recombinant IgG over shFcRn-coupled CM5 sensor 

chips at different pH. IgG3 ( d ) bound FcRn better than IgG1 ( c ) at neutral 

pH, but the situation was reversed at acidic pH. IgG1 – H435R mutant gained 

IgG3-like characteristics, binding better at neutral pH, but worse at low pH 

( c ). Likewise, IgG3 behaved like IgG1 after replacing the R435 with H435, 

binding relatively worse at neutral pH, but better at low pH ( d ), confi rming 

that two opposing factors (steric hindrance versus charge) may contribute 

to the observed inhibition by IgG1 on FcRn-mediated IgG3 transport. The 

data in ( c , d ) are presented as individual data points connecting the means 

from two independent injections with a line.  
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 Discussion 
 In this study, we investigated the binding of IgG3 to FcRn, which, 
although slightly lower and less pH-dependent, was surprisingly 
similar to IgG1. In agreement with this, we found FcRn-mediated 
transport of puri� ed IgG3 to be comparable to that of IgG1. � ese 
� ndings fail to explain the short half-life of IgG3 in humans. However, 
we found an unexpected inhibition of IgG3 transport in the presence 
of other IgG subclasses. � is was because of intracellular competition 
for FcRn-mediated transport owing to a single amino acid di� erence 
in position 435 between IgG3(arginine) and the other IgG subclasses 

(histidine), which explains the shorter plasma half-life of IgG3. 
Mutating this arginine in IgG3 to histidine abrogated the inhibition 
by IgG1, without a� ecting the superior e� ector functions of IgG3. 

 FcRn-mediated transport and degradation were studied in hFcRn-
transfected human A375 cells and in the naturally FcRn-expressing 
human choriocarcinoma cellline JAR. � e transport rates of puri� ed 
IgG1 and IgG3 were similar for various IgG sources. However, in both 
cell types, the transport of IgG3 was inhibited by addition of IgG1. 
� is inhibition was observed for myeloma IgG1 combined with IgG3 
puri� ed from Intramuscular Ig (IMIg), for V-gene-matched recom-
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  Figure 4    |         Binding of the IgG at pH 6.0 is infl uenced by the amino acid at position 435. The different IgG variants (IgG1, IgG1 – H435R, IgG3, or 

IgG3 – R435H) were immobilized to CM5 sensor chips and shFcRn injected at different concentrations (7 – 4,000   nM represented by different lines) at pH 

6.0. The sensorgrams are shown in the left panels ( a  –  d ), and the corresponding equilibrium-binding responses versus shFcRn concentrations in the right 

panels ( e  –  h ), for IgG1 ( a , e ), IgG1 – H435R ( b , f ), IgG3 ( c , g ), or IgG3 – R435H ( d , h ). The calculated affi nity constants are superimposed in the right panels 

as derived from steady-state binding model using the BIAevaluation software. FcRn shows a reduced affi nity to IgG1 at pH 6.0 after mutating the H at 

position 435 to R, and enhanced affi nity to IgG3 after mutating the R at position 435 to H. The data are representative from two independent injections.  
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binant IgGs, and for IVIg in which the inhibition could be alleviated 
by a protein-A-based inhibitor of FcRn – IgG-binding (Z-domain) spe-
ci� c for IgG1, IgG2 and IgG4. � e transport rate was independent of 
the IgG concentration indicating that an excess of FcRn over IgG will 
exist early a� er internalization. However, Ober  et al.  showed that there 
is a progressive depletion of FcRn a� er endo- or pinocytosis events as 
FcRn-containing vacuoles without IgG are routed away from sorting 
endosomes containing both IgG and FcRn 15 . Under these circum-

stances, competition between IgG1 and IgG3 for formation of FcRn –
 IgG complexes could favour IgG1 binding at low pH (refs   21, 38, 39). 

 Signi� cant transport inhibition of an excess of IgG3 was observed 
using very low concentrations of IgG1. Possibly this can be explained 
by recent � ndings showing that routing of IgG and FcRn does not 
take place inside discrete vesicles, but through elongated tubules 
and / or multiple recycling-endosomes tethered by tubules 13,15,39 . 
Here IgG probably binds FcRn in a stochiometry of 1:2, with two 
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         Figure 5    |         Inhibition of IgG3 transport by IgG1 is due to R435 in IgG3. 

( a ) Mutating the amino acid at position 435 in IgG1 (H435) and in IgG3 

(R435) to an alanine reduces transport, while exchanging the histidine 

native to IgG1 and the arginine native to IgG3 on each others backbone 

had no effect on their transport rate when offered separately to FcRn-

transfected A375 cells. ( b ) Whereas transport of IgG3-WT was inhibited in 

the presence of IgG1-WT, IgG1 bearing an alanine or an arginine at position 

435 had no effect on IgG3 transport. ( c ) Transport of IgG3 with a histidine 

at position 435 was not inhibited by WT IgG1. When the amino acids found 

at position 435 in IgG1 and IgG3 were swapped, IgG1 – H435R transport 

was inhibited by IgG3 – R435H. ( a  –  c )     ±     indicate the presence or absence 

of IgG (10    µ g   ml     −    1  per subclass), IgG1 is represented by open bars, IgG3 by 

hatched bars. The presence of mutated variants (435H, 435A and 435R) 

is indicated by the corresponding letter. The data represent mean and 

standard deviation from three independent experiments. Transport of WT 

IgG was compared with transport of mutant IgG by one-way ANOVA with 

Dunnett ’ s multiple comparison test and signifi cance.  *  *  P  ≤ 0.01;  *  *  *  P  ≤ 0.001.  
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     Figure 6    |         H435-containing IgG3 has extended half-life in humans. 

( a ) Approximately 95 %  of the total IgG added to apical compartments 

of confl uent A375 – FcRn monolayers was recovered after 24   h from both 

the apical (grey) and the basolateral (white) compartments when the 

IgG1 (open bars) or IgG3 (hatched) were added individually (10    µ g   ml     −    1  

per subclass). However, when the IgG1 and IgG3 were mixed in equal 

amounts,  ~ 65 %  of the initial IgG3 could be detected, suggesting IgG3 

was degraded in the presence of IgG1. IgG1 recovery was similar to that 

found when no IgG3 was present. IgG3 – R435H was not degraded in the 

presence of IgG1 as about 95 %  could be detected after 24   h, similarly 

to IgG3 alone. The data represent mean and standard deviation from 

three independent experiments. ( b ) The relative concentration of IgG 

subclasses and the histidine-435 containing IgG3 allotype G3m( s , t ) in sera 

from agammaglobulinemic patients four weeks after their last treatment 

with IVIg compared with IgG subclass and G3m( s , t ) levels found in the 

corresponding IVIg preparation. Data represent the average plus standard 

deviation calculated from at least three independent IgG subclass and 

allotype measurements performed on serum from three patients in 

( b ). Statistical comparison was performed by one-way ANOVA followed 

by Tukey ’ s multiple comparison test in ( b ).  *  P  ≤ 0.05;  *  *  *  P  ≤ 0.001. For 

simplicity, signifi cant differences are only displayed for IgG1 compared 

with all subclasses, and between IgG3 total and G3m( s , t ) levels in ( b ).  
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FcRn molecules on parallel membranes binding to one IgG mol-
ecule 21,39 . If IgG in transit goes through multiple checkpoints in 
tubule-tethered recycling-endosomes 15 , then competition between 
IgG3 and IgG1 may occur sequentially. Di� erences in on-rates were 
the most prominent � nding from the interaction kinetics studies, 
and this may at least partly explain the ability of low concentrations 
of IgG1 to inhibit IgG3-transport. Our � ndings that reduced IgG3 
transport in the presence of IgG1 coincides with enhanced IgG3 
degradation, support the hypothesis that this e� ect occurs a� er 
uptake and within developing lyso- and / or sorting endosomes. 

 We found that mutating position 435 in IgG to an alanine-reduced 
transport almost to background levels and that IgG1 – H435A 
was unable to inhibit FcRn-mediated IgG3 transport. Transport-
inhibition of IgG3 by IgG1 was completely reversed by swapping 
the amino acids normally present in IgG1 and IgG3 at position 435 

(resulting in IgG1 – H435R and IgG3 – R435H). � is strongly indi-
cated that human IgG1 is more adept at FcRn-mediated transport 
than IgG3, solely because of the R present at position 435 in IgG3. 
R435-containing IgG also bound shFcRn with a slightly lower 
a�  nity than H435-containing IgGs, and soluble IgG1 was better 
than IgG3 in inhibiting binding of shFcRn to solid-phase immo-
bilized IgG3. � is amino acid di� erence was found to a� ect IgG3 
binding to FcRn in two ways — likely through reduced sensitivity to 
deprotonation resulting in enhanced binding at pH 7.4, and through 
steric hindrance, causing decreased binding at pH 6.0, suggesting 
IgG3 to have a decreased competitiveness for pH-dependent FcRn 
binding and release, and thus for the overall transport. 

 To study whether our  in vitro  observations also apply  in vivo , we 
analysed sera from agammaglobulinemic patients who receive reg-
ular IVIg replacement therapy that contain both R435- and H435-
bearing IgG3 allotypes. We measured the relative IgG subclasses, 
and IgG3 allotype levels found in IVIg and sera, four weeks a� er the 
previous IVIg dose was given. In agreement with our  in vitro  � ndings, 
we found that these sera were enriched for the H435-containing IgG3 
allotypes compared with total IgG3, demonstrating that the R435 is 
also responsible for the lack of competitive FcRn-mediated rescue 
and short half-life of IgG3 in humans. In accordance with this, we 
found the serum persistence of IgG1 and IgG3 R435H to be higher 
than that of IgG3 and IgG1 H435R in outbred NMRI mice. Fur-
thermore, these � ndings show that the longer hinge of IgG3 does 
not lead to increased proteolytic degradation, which has been 
postulated to contribute to the lower half-life of IgG3 (ref.   4). 

 IgG3 binds Fc γ RIII and C1q with higher a�  nity than IgG1 and 
is capable of mediating considerably stronger e� ector functions, 
such as antibody-dependent cellular cytotoxicity, respiratory burst 
phagocytosis 1,36,40 – 42 , and complement-dependent cytotoxicity 
towards tumour cells 3,43 . � is suggests IgG3 containing H435 to 
be a more e� ective candidate for  in vivo  immunotherapies. In an 
 in vivo  model of IgG-mediated protection against pneumococ-
cal sepsis and bacteremia WT IgG3 gave comparable protection 
against pneumonia as IgG1. However, IgG3 – R435H protected mice 
signi� cantly better than either IgG1 or IgG3 against pneumococcal 
pneumonia, correlating both with its enhanced e� ector functions 
and half-life in mice, and con� rming its therapeutic potential 24 . 

150
***

***

**

**

100

6

4

2

0

6

4

2

0

50

Ig
G

 (
n

g
 m

l–
1
)

L
o

g
 C

F
U

 p
e

r 
m

l 
in

 b
lo

o
d

L
o

g
 C

F
U

 p
e

r 
lu

n
g

0

IgG1

IgG1

IgG1

IgG1

H435R

IgG1

H435R

IgG1

H435R

IgG3

R435H

IgG3

R435H

IgG3

R435H

IgG3

IgG3

IgG3

Saline

Saline

      Figure 7    |         H435-containing IgG3 has increased serum persistence in 

mice and protects against pneumococcal pneumonia. ( a ) Serum IgG 

levels 48   h after injecting 1    µ g the IgG variants into outbred NMRI mice. 

IgG1 – H435R and IgG3 show lower serum levels than IgG1 and IgG3 –

 R453H.  *  *  P  ≤ 0.01;  *  *  *  P  ≤ 0.001. ( b ) Three and ( c ) two experiments, showing 

outbred NMRI mice (8 – 10 per group per experiment) that were passively 

immunized intraperitoneally with 3    µ g (circles symbols) or 1    µ g (diamond) 

recombinant IgG anti- Streptococcus pneumoniae  6 or placebo 48   h before 

challenge with pneumococci of serotype 6A. Results from individual 

experiments are shown using the same symbol throughout (open or closed 

circles and diamonds). The number of bacteria found in ( b ) blood and ( c ) 

lungs 24   h after challenge are shown. ( b ) All but one mouse in the control 

group developed bacteremia, while all but four mice receiving WT IgG1 

and all but one mouse receiving IgG3 – R435H were completely protected. 

Approximately half of the mice receiving either IgG1 – H435R or WT IgG3 

developed bacteremia. ( c ) High numbers of bacteria were found in the 

lungs of control mice. All IgG-treated mice were signifi cantly protected 

from lung infection, with lowered level of bacterial burden, with few mice in 

each group completely protected with no detectable bacteria. IgG3 – R435H 

protected the mice signifi cantly better than all other IgG variants, with fi ve 

mice without detectable lung or blood infection. The dotted lines indicate 

the level of detection. Data in ( a ) represent the IgG levels in individual mice 

together with means and standard errors of means; data in ( b , c ) represent 

the bacterial load of individual mice together with medians (assuming 

the level of detection for individuals without detectable bacteria) and 

interquartile ranges, statistical comparison is tabulated in  Table 1 .  
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 In summary, IgG3 is known for both its superior e� ector func-
tions compared with IgG1 — the most commonly used isotype used 
for immunotherapy — but also for its short  in vivo  half-life 4,5,35,36 . 
We now show that FcRn can in fact rescue and transcytose IgG3 as 
e�  ciently as IgG1, but not in the presence of the other IgG subclasses. 
Our data support a model where IgG3 loses competition for FcRn 
binding and routing away from the lysosomal pathway, explaining 
its high catabolism  in vivo . We demonstrate that this can be resolved 
by replacing the R435 with a histidine, as is the case in a rare natu-
ral variant. � e epitope comprising the H435 in G3m( s , t ) is an iso-
allotype that is found in all other IgG subclasses, and its detectable 
presence in IVIg has not been documented to cause adverse reac-
tions in patients. � e extended half-life of the IgG3 – R435H variant 
has important implications for current and future antibody-based 
therapies aimed at achieving maximal e� ector functions.   

 Methods  
  Cell culture   .   Human choriocarcinoma cells (JAR, ATCC, VA) were grown in 
 IMDM medium  ( Cambrex ) and melanoma cells (A375, FcRn     −      β 2m     +     , ATCC) 
in  RPMI 1,640 medium  ( Invitrogen / Gibco ), both supplemented with  l-glutamin  
(300    µ g   ml     −    1 ,  Invitrogen ),  penicillin  (100   U   ml     −    1 ,  PAA Laboratories ),  streptomycin  
(100    µ g   ml     −    1 ,  PAA ) and 10 %   foetal calf serum  ( FCS ).   

  A375 – FcRn   .   Human FcRn messenger RNA was ampli� ed a� er � rst strand cDNA 
synthesis by PCR using the forward 5 ′ -GGATCCACCATGGGGGTCCCGCGGCC
TCAGC-3 ′  and reverse 5 ′ -GAATTCTCAGGCGGTGGCTGGAATCAC-3 ′  primers 
and ligated into pGEM-T (Promega, Madison, WI, USA). � e  Bam HI –  Eco RI frag-
ment was subcloned into the  pMX-puro vector  ( DNAX ) and transfected together 
with a packaging vector into 293T-cells 44 . Supernatants were used to transduce 
A375 cells 45 . Expression of FcRn was con� rmed by quantitative RT – PCR 17    .

  IgG   .    IVIg  was obtained from  Sanquin . Pooled myeloma IgG1 was puri� ed from 
three multiple myeloma patients by serum protein precipitation and depletion of 
other subclasses by sephadex-bound anti-subclass Ig. IgG3 was obtained from  IMIg  
( Sanquin ) a� er depleting other IgG with protein A. 

 Recombinant IgG1, IgG3 and IgG1 – H435A have been described before 17,37 . 
Recombinant IgG were produced in  293 Freestyle cells  ( Invitrogen ) according to 
the manufacturer ’ s instructions, and puri� ed using HiTrap protein A (for H435-
containing IgGs) or protein G using the  Acta Prime Plus system  ( GE Healthcare ). 
IgG1 – H435R, IgG3 – R435A and IgG3 – R435H were generated using the  Quick-
change Site-directed-mutagenesis kit  ( Stratagene ) with the following and reverse 
complementary oligonucleotide primers: 

 IgG1 – H435R:  GAGGCTCTGCACAACC G CTACACGCAGAAGAGCC 

 IgG3-R435A:  GAGGCTCTGCACAAC GC CTACACGCAGAAGAGCC 

 IgG3 – R435H:  GAGGCTCTGCACAACC A CTACACGCAGAAGAGCC 

 All mutations were con� rmed by sequencing before expression. � e endotoxin levels 
of the various batches was tested and con� rmed to be very low or absent by measur-
ing IL-6 production of monocyte-derived immature DC, as described in ref.   46.   

  Z domain   .   � e gene encoding the Z-domain was ampli� ed by PCR from the vector 
p� io-His-ZZ 47  using 5 ′ -GGATCCGTAGACAACAAATTCAAC-3 ′  (forward) 

and 5 ′ -CTGCAGTTATTTCGGCGCCTGAGCATC-3 ′  (reverse), and cloned into 
 pGEM-T  ( Promega ). � e  Bam HI –  Not I fragment was cloned into the pGEX 6.2 
expression vector and expressed in  Escherichia coli . � e GST tag was removed using 
 PreScision protease  ( GE healthcare ) and the Z-domain eluted o�  the  glutathione 
sepharose 4B column  ( GE healthcare ) by gravity � ow and dialysed against PBS.   

  IgG transcytosis   .   12   mm  polycarbonate Transwell � lters  (0.4    µ m pore size,  Costar /
 Corning ) were inoculated with 5 × 10 5  cells, grown overnight to con� uence, washed 
with PBS and medium replaced with fresh 1.5   ml medium basolaterally and 0.5   ml 
apically (IMDM at pH 7.4 with supplements as stated above). Mixtures of IgG 
contained 125 pg   ml     −    1   streptavidin-HRP  ( Sanquin ) to assess background transport. 
Apical to basolateral transport was calculated according to ([IgG] basolateral  × 1.5   ml) /
 ([IgG] input  × 0.5   ml) × 100 % . All experiments were performed in triplicate.   

  Surface plasmon resonance assays   .   All experiments were performed using a 
 Biacore   3000 instrument ,  CM5 biosensor chips and amine coupling  as described 
by the manufacturer ( GE Healthcare ). Injections were done using phosphate bu� er 
(67   mM phosphate bu� er, 0.15   M NaCl, 0.05 %  Tween20) at pH 6.0. Kinetic evalu-
ations were performed using immobilized shFcRn – GST ( ~ 1,000   RU) 48,49 , and IgG 
variants (2 – 500   nM) injected. Alternatively, IgG was immobilized ( ~ 1,500   RU) and 
shFcRn injected (7 – 4,000   nM). For the competitive SPR assay, chips were coupled 
with IgG ( ~ 1,300   RU) and shFcRn (100   nM) was injected alone or together with 
serial dilutions of IgG1 or IgG3. Binding at di� erent pH was done in a phosphate 
bu� er with 500   nM IgG injected over immobilized shFcRn ( ~ 2.000   RU). All experi-
ments took place at 20 – 60    µ l   min     −    1 , 25 ° C, and  HBS-P bu� er  ( GE Healthcare ) 
at pH 7.4 was used for regeneration. Binding analyses were performed using the 
BIAevaluation wizard so� ware 4.1.   

  Agammaglobulinemia patients   .   Serum samples from three agammaglobuline-
mia patients, taken 4 weeks a� er receiving IVIg, were assessed for IgG subclass 
levels which were expressed as relative IgG concentrations compared with that 
found in IVIg (Relative IgG levels at week 4 ( % )    =    [IgG  S  ] W4  / [IgG  T  ] W4  / ([IgG  S  ] IVIg  /
 [IgG  T  ] IVIg ) × 100 % , where W4 stands for serum at week 4 a� er IVIg injection,  S  for 
Subclass and  T  for Total). Serum samples were anonymous rest material acquired 
during routine IgG-evaluation of these patients, and, therefore, did not require a 
Medical Ethical Committee evaluation according to the institutional Committee 
of the Academic Medical Centre of the University of Amsterdam.   

  IgG quantifi cation   .   IgG subclass concentrations in sera were determined by 
Nephelometry ( Behringer Nephelometer II ,  Behringer diagnostics ). For other 
experiments, IgG concentrations were determined by sandwich ELISA using 
subclass speci� c mouse monoclonal antibodies ( IgG1:MH161-1; IgG3:MH163-1 , 
 Sanquin ) or  allotype-speci� c monoclonal anti G3m(  s , t  )  32  ( 1.5A10 ,  Sanquin ,  Sup-
plementary Fig. S4 ) for capture.  Mouse-anti-IgG-HRP  ( Southern Biotech ) was used 
for detection in all assays except the G3m( s , t ) ELISA where  mouse anti-IgG3-HRP 
 ( MH163-1 , Sanquin) was used. Concentration was read of standard curves made 
using the same IgG preparations used for transport or to treat patients.   

  Passive protection   .   � e pneumococcal infection model has been described 
before 37,50 . In brief, outbred  NMRI mice  ( Taconic ) were passively immunized 
intraperitoneally with 3    µ g of recombinant IgG (diluted in 200    µ l PBS) or saline 
only, 48   h before challenge with a virulent pneumococcal strain of serotype 6A. 
Mice were anesthetized and challenged intranasally with 2 × 10 7    CFU pneumococci 
in 50    µ l sterile 0.9 %  saline. Twenty-four hours a� er challenge, the mice were killed 
and bacterial load evaluated by colony counting as described in refs   37, 50. All 
 in vivo  studies complied with the Animal Experimental Committee of Iceland 
According to the Act on Animal Welfare no 15 / 1994.   

  Statistical analysis and data sets   .   All data represent the mean and standard 
deviation of at least three independent experiments. All transcytosis assays con-
sisted of three replicates.  GraphPad Prism version 4.00 for Windows  ( GraphPad 
So� ware ) was used for all statistical analysis. Signi� cance was set at  P  ≤ 0.05, and the 
level of signi� cance is indicated on all � gures as  *  P  ≤ 0.05;  *  *  P  ≤ 0.01;  *  *  *  P  ≤ 0.001.                     
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