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Suppose now we are at optimum geometric design. Then, if our vector could suffer
arbitrary variations, we could lower all the undesirable quantities by simply de-
creasing the first two components, keeping the second two components fixed. Such
a possibility is in contradiction to our assumption of being at a minimum. We
conclude that in the vicinity of the optimum design the vector (LFe, Lcu, AFe, Ace)
cannot be varied in an arbitrary manner. In mathematical language, the appro-
priate Jacobian must vanish:

a (LFe, Lcu, AFe, Acu) = 0. (4)
aO(a, b, a', b')

Substitution of relations (3) into (4), and making use of the definitions (1), leads
directly to our result (2).

Note added in proof: The authors are indebted to the engineers of our Power Transformer Divi-
sion for constructive comments. Mr. J. H. McWhirter has pointed out that the rectangularity
law may be generalized to the case of fixed clearances between the copper conductors within the
iron window. Dr. Stein has pointed out that Reed has obtained (eq. (2)) for that particular design
which minimizes the total transformer losses [Reed, E. G., Essentials of Transformer Practice
(New York: D. Van Nostrand Co., 1927), pp. 94-96.]
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It is well known that related species often differ in either habitat' or size, and
thereby avoid competitive elimination. The way in which they differ is related to
the specialized ways they have of using resources, which ways in turn control num-
bers of coexisting species and other aspects of the evolution of the community.
The detailed reasons for these assertions are given in the following paragraphs.2
Briefly, the argument is as follows. Among species which specialize on a single uni-
form resource, only the most effective one will survive and that species will be found
wherever the resource occurs, in abundance determined by the density of the
resource. Other such pure specialist species will be found, one to a uniform re-
source; these will normally differ in morphology, but will not in general be affected
by one another's distributions. On the other hand, species which specialize on a
particular proportion of mixture of two or more particular resources will be found
only where their favored proportion is found, and will be replaced by other species
in other habitats where the proportion of the mixture changes to one on which
the new species are more effective. Of this mixed-resource type of species there
can be as many3 as there are proportions of the resources which can be counted on
from season to season-i.e., very many in stable climates and fewer in unpredictable
climates.
To make these ideas more precise, we first consider an imaginary habitat in

which there is a scattering of uniform units or grains of resource 1 and another



1208 ZOOLOGY: MACARTHUR AND LEVINS PROC. N. A. S.

scattering of uniform grains of resource 2. In such an environment we can distin-
guish as "fine-grained" an individual or a species which utilizes both resources in
the proportion in which they occur. (If the actual grain size of the resources were
so fine that the species could not discriminate and select, then the species would
have to be "fine-grained," hence the terminology.) An individual or a species will
be called "coarse-grained" if it discriminates and selects only grains of one of the
resources. These are the pure specialists of the first paragraph. Notice that if
individuals are sedentary, as trees are, it is possible for individuals to be coarse-
grained, spending their lives on soil of a single type, while the species is fine-grained,
with individuals not selecting soil types. Normally, coarse-grained utilization will
be expected only where the time and energy lost due to neglecting the other possible
resource is slight compared with the benefits of specialization.4 Pursuing species
with relatively large foods are usually of this sort.

If now we plot the quantity of resource 1 along the abscissa of a graph and the
quantity of resource 2 along the ordinate, then each habitat, with a certain quantity
of each resource, determines a point in the graph. We assume here that the re-
sources are consumable and renewing, like prey species. (Other kinds of resources,
like nest sites, can be analyzed similarly.5) Then the process of competitive elim-
ination consists in one species reducing the resources to such a low level that the
other cannot harvest sufficiently to maintain its population. As a first approxi-
mation, each species will increase when and only when its joint resource supply is
sufficiently dense. Thus, for fine-grained species x and y, and resource populations
RI and R2, we might have

dx_dRidt = [ii(R - cl) + i2(R2 - C2)X]x =f(x,yRiR2)
dy dRt
dy = [ji(RI - di) +j2(R2-d2)]Y d = g(x,yR1,R2).

(We have included the equations for dR1/dt and dR2/dt for completeness; actually,
they are not needed in the following analysis.) Here the c's and d's are the threshold
densities of resources below which the species have a net loss of energy and the i's
and j's measure the effectiveness with which the species utilize their resources to
reproduce. For coarse-grained species V (specializing on R1) and W (specializing
on R2), these equations would be of the form

dt = [a(R1 -m)]V dt = [b(R2- n)]W.
dt dt

In either case we can plot the lines dx/dt = 0 and dy/dt = 0 or dV/dt = 0 and
dW/dt = 0 on the graph, and they might6 look as in Figure 1 or Figure 2. Notice
x and y can increase in environments lying beyond these lines, not within them as in
the familiar7 competition graphs. Thus, if there were a species z with isocline
dz/dt = 0 as in Figure 1, it could come to equilibrium with species x at resource
level P, but such an equilibrium would be subject to invasion by species y which
can still increase with resources at this level. Then a new equilibrium, Q, will be
reached in which y has replaced z. Notice that since two lines determine a point,
two species at most8 will normally be able to coexist; similarly, with three resources
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and three dimensions it will take three planes
to determine a point, so that at most three

-oh c.Xx:species can coexist, and so on.9 Finally,
notice that if, as in Figure 2, species z has
isocline dz/dt =0 crossing the x and y isoclines
inside 0, then there will be two alterna-

' tive equilibria S and T, each resistant to
I, colonization by any of the other species
IX,^0 whose isoclines are drawn. Such alternative

communities, each resistant to invasion, may
+°\ be found among islands, but where a large

C,4tCa species pool exists, normally one combination
is optimal. Thus, when z' and z" are

FIG. I .-The lines, dx/dt = 0, dy/dt available, they will replace y and x, respec-
0, and dz/dt = 0 marking the inner bound- tively, and so on.
aries of the areas in which species x, y, and To find optimal species combinations and
z can increase. R, and R2 are the quan-
tities of resource 1 and resource 2, respec- to see how natural selection operates, we
tively. Point x, with coordinates (c, construct a set rather like the fitness set de-
+ i2c2/fi, c2 + iic/ii), and points y and z
with coordinates similarly defined by the scribed by Levins.'0 We plot on the graphs
intercepts of the respective lines, then de- points whose coordinates are the isocline
termine the isoclines dx/dt = 0, dy/dt =
0, and dz/dt = 0, completely. Other pos- intercepts (e.g., cl + (i2/il)c2, c2 + (i1/i2)cl).
sible species might lie at other points in the Each species then determines a point, and
stippled region. The light curve intersect-
ing the stippled area at x and y is an equi- the set of available species-the species pool
lateral hyperbola for reference purposes. -determines a cloud of points which, for
See text for further explanation. simplicity, we assume to be fairly solid and

continuous in outline (see Fig. 2).
The isocline analysis shows that the equi-

\|X * librium species are those whose isoclines
have small intercepts. Hence, the optimal
combinations consist of some species on the

R A inner boundary of the sets in Figures 1 and
\7 2. To see which these will be, we find that

o shape of boundary which would have all its
Hi\ species isoclines passing through the same

point. All of the species on such a bound-
ary would be equally good competitors.
This shape of boundary is an equilateral

RI hyperbola. In fact, an isocline passing
FIG. 2.-The meaning of the lines and through (a,b) with slope m has the inter-

stippled area is as in Fig. 1. In Fig. 2 the cepts x = a - b/m, y = b - ma. As m
stippled area is more convex than an equi-

v s these vallateral hyperbola, and species z can effec- van e ues of x and y are the coor-
tively invade the community consisting of dinates of points in the figures describing
x and y which comes to equilibrium at
point O. species whose isoclines all intersect at (ab).

But for these points (x-a)/b = -I/m =
a/(y-b) so that (x-a)(y-b) = ab is the equation of a boundary consisting of
equally good competitors. Thus, if the boundary of the set stippled in the
figures bulges uniformly more than an equilateral hyperbola, a single, jack-of-all-
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trades will be favored (Fig. 2). If the set is flatter-less convex-than the hy-
perbola, as in Figure 1, then the specialists at either end of the boundary will
be favored. In the latter case the species will be coarse-grained; in the former
the optimal species is relatively fine-grained. As we change from one habitat
to another of slightly differing relative suitability for the two resources, the values of
il,C i2y, C2, etc., change, and so the fitness set in Figure 2 becomes transformed into a
new one. The same species will still be the best specialists, but in general the optimal
jack-of-all-trades will change. Hence this type of species will show habitat selection.

In most real habitats, grains of resource are not uniform. For these, it is still
useful to talk about fine- and coarse-grained species, but to be precise we must refer
to fine- and coarse-grained differences between species. Thus among birds, warblers
eat smaller food than temperate zone tanagers, and hence the two groups have
coarse-grained differences and suitable habitats will contain representatives of each.
However, different warblers eat the same food species, only in slightly different
proportions; hence among warblers there are fine-grained differences and habitat
selection resulting in each species consuming insects in a slightly different location
within a forest or in a slightly different forest type. With these distinctions in
mind, all the preceding analysis still holds true.

Since pursuing species with large items of food can efficiently specialize, these tend
to be separated by coarse-grained differences. Thus, weasels tend to be found in
sympatric forms of many sizes, as do accipiters among the hawks and other pursuing
predators. But species which spend most of their time searching, especially for
small items, cannot afford to overlook many. For these the fitness set, stippled
in the figures, will tend to be very convex, and fine-grained differences with marked
habitat selection will predominate. i\Iost small birds, grazing mammals, and,
among the hawks, perhaps the buteos fall into this category.

Both authors were supported by grants from the National Science Foundation. Drs. Joseph
Connell, G. E. Hutchinson, and W. John Smith made valuable suggestions.

1 Habitat here includes microhabitat (e.g., layer in a forest), and both small- and large-scale
geographic separations.

2A fuller account will appear as part of a larger publication by Levins and MacArthur on the
evolution of the niche.

3The number of such species will be proportional to a spatial diversity divided by a temporal
diversity at any point. The amount of overlap has been discussed by G. E. Hutchinson, Am.
Naturalist, 93, 145 (1959).

4 The concept of grain is treated in more detail by R. Levins and R. MacArthur, op. cit.
6 Levins, R., and R. MacArthur, op. cit. For such species will be governed by equations of the

form dx/dt = ilx[K, - PI(x,y,. . .)l + i2x[K2- P2(x,y, .. .)]; dy/dt = jly[Kl - PI(x,y, . ..)] +
j2y[K2- P2(x,y, . . .)]. K, and K2 are the quantities of two kinds of nest sites, and Pi and P2 are
the number in use. We then plot dx/dt = 0 and dy/dt = 0, etc. in a graph whose coordinates are
PI, P2.

6 If the resources are not alternatives but are both required, or if they alternate in time, then
the lines will bow in; see Levins, R., and R. MacArthur, op. cit.

7 Slobodkin, L. B., The Growth and Regulation of Animal Populations (New York: Holt, Rine-
hart and Winston, 1961).

8 At most two because it is infinitely improbable that three or more independent lines will pass
through the same point. Even if three did pass through the point, the two most closely parallel
to the coordinate axes will alone persist.

9 This theorem does not depend upon the specific form of the equations.
10 Levins, R., Am. Naturalist, 96, 361 (1962).


