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Compétition in ramped Turing structures 

p. Borckmans\ A. De Wit" and G. Dewel' 
^Service de Chimie-Physique and ^Centre for Nonhnear Phenomena and Complex Systems, 
C.P. 231. Université Libre de Bruxelles, 1050 Brussels, Belgium 

Stationary pattern sélection and compétition in the uniform Brusselator in two ( 2 D ) and 
three ( 3 D ) dimensions are reviewed, including reentrant hexagonal and striped zig-zag 
phases. Influences of linear or chain-like profiles of the pool chemicals on this sélection are 
presented in the form of numerical experiments. The relation with the récent expérimental 
patterns obtained with the CIMA reaction is discussed. 

1. Introduction 

Turing structures [1] are stationary periodical concentration pat terns result-
ing f rom a diffusive instability originating from the sole coupling of reaction 
and diffusion processes [2]. It bas been claimed that such a mechanism may 
bave deep biological implications [1-4]. Was the original paper of Turing not 
entitled "Chemical basis for morphogenesis"? They however remain to be fully 
vindicated. From another fundamenta l point of view they may also prove to be 
important . Indeed they are characterized by an intrinsic wavelength tbat 
dépends only on the diffusion coefficients, kinetic constants and concentrat ion 
of some control species and not on some geometrical parameter of tbe 
expérimental set-up. Tbe expérimental 3D chemical patterns may tberefore 
prove to be the first structures far f rom equilibrium resulting f rom a true 
symmetry-breaking process [5,6]. 

A s was foreseeable, the observation [7-12] of genuine Turing structures in 
solution chemistry, nearly forty years af ter their prédiction, triggered a wave of 
renewed expérimental and theoretical interest. HopefuUy the t remendous 
corpus of theoretical knowledge that had accumulated may now be put to tbe 
test. 

T o the eye, tbe similarities between the symmetries of the experimentally 
observed structures and those predicted from the nonlinear theory for uniform 
conditions [13-17], are undeniable. In the expérimental conditions tbe system 
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is however kept under control by feeds through tlie boundaries that create 

spécifie nonuniformities. This led us to try to understand the effects of 

parameters ramps on the pattern sélection problem - the aim of which is 

summarized in section 2 - in a 2D and 3D chemical System with the aid of 

intensive numerical simulations. In the third section we first summarize the 

bifurcat ion behaviour under uniform conditions for the Brusselator model in 

large Systems, on which our studies are performed. Indeed this bifurcation 

structure may then be used, in the fourth section, to help us organize the doser 

to experiments ramped situations. 

The propert ies of the patterns obtained for uniform constraints may however 

also be of interest in regard of the expérimental results in the new C S T R -

membrane reactor [11] and also when the applied expérimental ramps of 

concentrat ions are such that the structure is localized in a thin slab, the width 

of which is at most one wavelength, perpendicular to the feeding direction 

[10,19]. Such structures may then be considered as quasi-2D. 

2. The pattern sélection problem 

Because react ion-diffusion Systems undergoing auto- or cross-catalytic pro-

cesses are inherently nonlinear one expects the occurrence of some multiplicity 

in the number of solutions as a resuit of bifurcation phenomena. 

Pat tern sélection is then, in some sensé, the study of the relative stability of, 

or compéti t ion among, thèse solutions when they are the resuit of symmetry-

breaking bifurcations. More precisely, its aim lies in the détermination, for 

given parametr ic conditions, of the possible structures - geometrical aspect, 

or ientat ion, wavelength - and their stability properties. This problem was 

already on Turing's mind when he stated in the final sections of his paper [1]: 

"Mos t of an organism, most of the t ime, is developing from one pattern into 

ano ther , ra ther than from homogeneity into a pattern. One would like to be 

able to follow this more gênerai process mathematically also". 

The basic équation for the study of Turing structures are react ion-diffusion 

équat ions: 

dC 
— =f{C) + DV'C, 

where C is a vector of concent ra t ions , / (C) represents the reaction kinetics and 

D is the diffusion matrix. 

Linear stability analysis of the référence uniform state C,, leads in gênerai to 

a complex dispersion relation for the growth rate (T{k, B) and frequency 
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o}{k, fî) as a function of the wavevector k of the perturbation and control 

parameter B. From this dispersion relation one détermines the critical 

wavevector corresponding to the lowest value, B^, oi B at which the growth 

rate a first becomes positive. Turing's instability corresponds to the class of 

space-symmetry-breaking instabilities that are characterized by the fact that , at 

B^, (T = 0 occurs with co = 0 and # 0 . To tackle the problem above B^, one 

must first détermine which set of modes are active in the leading approximation 

to the solution of the nonlinear problem. 

In small Systems, the size of which is of the order of the wavelength (ITT/k^) 

of t h e emerg ing pattern, t h e spectrum of t he l inearized operator is d iscrète , 

and at most finitely degenerate . Thus only a finite number of modes become 

excited and the concentration field C(r, t) may be approximated by a linear 

superposition of thèse modes , which interact nonhnearly. In this case, the 

center manifold theorem [20] assures that the original react ion-diffusion 

équations are well approximated by the reduced dynamics represented by a 

finite set of nonlinear ordinary differential équations - the amplitude équa-

tions - that may be derived by standard techniques [2]. 

No such theorem exists, however, for large Systems where the boundaries 

are at infinity or too far away to constrain the spectrum of spatial modes. It is 

nevertheless the case we have to consider to address the expérimental Turing 

pat terns as they exhibit the characteristics of extended Systems. In the présent 

State of the trade, the tackling of a large degeneracy of the linear spectrum is 

organized along two axes that bear directly on the problem of pat tern sélection 

[21,22]. 

The first is related to the geometrical aspect of the pattern and its orientation. 

Often indeed k^ will not be unique, reflecting some symmetry in the équations 

or boundary conditions. In the isotropic reaction-diffusion équations, which 

are the rule in liquid phase, we have a rotational degeneracy because the linear 

growth rate dépends only on the modulus oi k, a = a{k', B), and therefore ail 

modes lying on the sphère (circle in 2D) of radius \k\ = k^ may equally become 

excited and must therefore be included in the analysis. There is at présent no 

completely satisfactory way to treat this problem. To proceed, one allows ail 

the sets (M = 1, . . .) of pairs of discrète modes A:, (|A:,| = k^), i = l, . . M, to 

compete with each other and one détermines which combination 

M 

C(r, t) = C„ + S ( / l , e '* ' - + A* c "'-), |^,| = k^ , 
1 = 1 

will be favored by the nonlinear coupling. It is the combinations of k- modes 

that détermine the physical aspect of the patterns. They are related to the 

tessellations of space [23], e.g. in 2D we may have stripes (M = 1), rhombi 
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(M = 2), triangles (M = 3), hexagons (M = 3). The présence of anisotropies 

tends to partially lift the orientational degeneracy, thereby modifying the 

pattern sélection. For instance, the void lattices in metals subjected to irradia-

tion (a System that may sometimes be cast in the form of a reaction-diffusion 

problem) are influenced by the symmetry of the underlying host atomic lattice 

[24,25]. Similar effects may also come into play in the spatio-temporal 

structures [26, 27] obtained recently for the catalytic oxidation of C O on Pt 

The other effect touches on the wavelength of the pattern and can be dealt 

with in a much more satisfactory way. It is related to the quasi-degeneracy 

linked with the existence of the finite continuons band of modes, which, as 

soon as B > B^, become simultaneously unstable with the critical modes k-

(\kj\ = k^), i = l, . . . M. For a given B, one must thus take into account ail the 

modes that lie inside the neutral stability curves a{k', B) = 0. In large, finite 

geometries, although thèse modes are quantified they are so close together that 

we may best think of them as a quasi-continuum. The effects of thèse 

sidebands of modes is best captured by considering the excitation of wave 

packets of modes centered on the critical modes. 

The full problem naturally takes both aspects into account. Using the 

s tandard techniques of bifurcation analysis, one détermines the nonlinear 

complex ampli tude équations that arise through asymptotic solvability condi-

tions and that , for a pattern characterized by M pairs of wavevectors (i = 

1 , . . . , M), are of the form 

where x- and y - lie respectively in the directions parallel and orthogonal to A:,. 

The last term represents the contributions of noncoplanar quadrangles of A:, 

that may arise in 3D. In thèse partial differential équations the spatial 

operators take the effect of the sidebands into account and therefore permit 

the t rea tment of modulational effects related for instance to the présence of 

boundaries , defects, . . . 

It is worthwhile noting that many of the typical nonlinear équations of 

mathematical physics - Kor teweg-de Vries, nonlinear Schrôdinger, . . . - arise 

precisely through a similar procédure. They therefore possess universal fea-

[110] [28]. 

M M 

+ viB)'ZJ,A*Atôik, + k. + k,) 
i k 

M M M M 

- 2 y,\Ai\'^: - s s s li^,^*AlA*ô{k, + + fc, + k,) , 
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tures as their structure is determined solely by the symmetries of the given 

problem and oniy the values of the coefficients in the amplitude équation take 

care of the idiosyncrasies of the spécifie problem considered. However , this 

universality is lost as soon as secondary, tertiary, . . . bifurcations corne into 

play [29,30]. One is then led to consider scénarios eventualiy leading to the 

spatio-temporal complex phenomena that arise in thèse large aspect ratio 

Systems with loss of various kinds of corrélations and prolifération of defects as 

was donc earlier for the roads to chaos in small Systems [22]. 

In principle, once the ampHtude équations, and their coefficients, are known 

it is possible to study the stability of the various structures with différent 

geometrical form and wavelength. When the amplitude équations are relaxa-

tional and can thus be derived from a Lyapunov functional L[A, A*] such that 

the globally stable pat tern corresponds, for given B, to the absolute minimum 

of L[A, A*], whereas the relative minima represent metastable structures. 

This simple picture, at best valid near B^, is soon lost when B increases as most 

nonlinear problems, and certainly the chemical Systems we are interested in, do 

not exhibit this so-called variational property. 

This relative stability problem for variational Systems may also be resolved 

by considering the velocity of a domain wall ( f ront) joining two (stable) 

solutions of the amplitude équation: If thèse two structures (say a and 3) are 

bistable between values B, and of the control parameter , there exists one 

value for which the wall is stationary (zéro velocity), and the phases a and 

(3 coexist spatially. For ail other values in the interval { f i , , B,} one phase will 

dominate the o ther and will invade the whole System as in classical nucleation 

theory. This method was recently used [31,32] to study the coexistence of 

M = 3 and M = 1 structures in a 2D model. One has then to test for ail the 

relative orientations of the Ar, defining both structures with respect to the 

direction of the domain wall. This problem already complex in itself is even 

trickier when it puts spatial structures, which possess their own characteristic 

length {l'nlk^), on the stage. In that case so-called nonadiabatic effects 

describing the pinning of the domain boundaries by the small-scale structure 

(for instance the concentration cells) seem to play an important rôle. Thèse 

exponentially weak effects cannot be accounted for by the amplitude équations 

that only govern the large-scale modulation of the pattern. Other techniques 

must then be introduced. 

This dynamical method to test the relative stability of two phases is, 

however , also valid when the System does not présent variational properties. It 

dt 
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has so been shown recently that under particular conditions the coexistence 

point B^ç, may be shifted by thèse nonvariational effects leading, in a finite 

région, to the possibiUty of stable localized structures [33,34] (under uniform 

conditions), the building blocks of which are provided by such domain walls 

[35-37]. The chemical "flip-flop" [9] recently discovered may fall in this 

category [38]. 

In large Systems, the particular orientations of the patterns has to be chosen 

by some external or initial bias, because of the orientational degeneracy. 

Of ten , in real experiments, différent biases are présent in différent parts of the 

domain and a structure with diverse orientations starts growing in varions parts 

of the System. The way in which thèse orientationally competing patches form 

compatible pat terns is a subject of much présent interest. It is not unusual for 

thèse pat terns to remain t ime dépendent over very long times and indeed never 

settle down at ail. The resulting mismatch leads to the formation of defects 

(dislocations, disclinations) that play an important rôle in pat tern rearrange-

ment. Many aspects of their behaviour may then be described in the f rame-

work of phase équations [21, 22]. 

3. Pattern sélection for the Brusselator under uniform conditions 

In a distributed System, when written in terms of scaled variables, the 

Brusselator model [2] is defined by its reaction-diffusion équations 

ô A' d 1̂  
— = A-(B +l)X+ X-Y + DyV'X , — = BX- X'Y + DyV-y , 

where the concentrations of species A and B serve to control the system, B 

being specificially chosen as the bifurcation parameter . In this form, A and B 

are thus taken as pool species that are kept at a constant value in time. In this 

section that value is also chosen to be uniform over the system. Although 

rather unrealistic, this so-called pool-chemical approximation lies at the basis 

of most theoretical developments for the sake of mathematical tractableness. 

Récent expérimental set-ups may however fit into this approximation. The first 

is that implemented in the already cited new C S T R - m e m b r a n e reactor [11]. 

Another situation where this approximation may apply concerns the hetero-

geneous catalytic reactions [39] over well defined crystalline planes where the 

feed comes f rom the gas phase and where spatio-temporal symmetry breaking 

phenomena on the surface have been reported recently [26-28]. 

In thèse conditions, the Brusselator possesses a uniform référence state 

( thermodynamic branch) A',, = Y ^ ^ = BIA that undergoes a space (Turing) 
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symmetry breaking bifurcation for B = B^ = {\ + AyJD^lDy)' with kl = A/ 

\lD^Dy when Dy > D^À^I^sl 1 + - 1)". This inequaHty sinmply impiies that 

the Turing instabihty takes place before the Hopf bifurcation, which is also 

supported by the Brusselator. It may be relaxed if one ailows, as proposed 

recently [40], for a fast, réversible reaction involving species X and a slowly 

diffusing or immobile complexing agent in excess in the system (see fîg. 1). 

This attractive idea may then lie at the basis of a systematic strategy to uncover 

new Turing structures in chemical Systems not related to the CIMA reaction 

[12]. 

Because the experimentally obtained structures présent the characteristics of 

large aspect ratio Systems, we will not consider Turing pattcrns in small 

Systems. Their properties are considered for instance in refs. [2,4]. 

We now want to summarize our numerical simulations on the Brusselator 

and put them in relation with the results derived from the noniinear theory and 

also the experiments. We essentially used two sets of parameters values: 

Set I: v^v{BJ<0, A =4.5, Dy/D^, = 8, S ,̂ = 6.71 , 

Set II: v = v(BJ>0, A =2, Dy/Dy = 5, fi, = 3 .58 , 

and the actual values of and Dy used may be found in the figure captions. 

The intégrations were carried out on a RISC workstation in order to be able 

to foUow the transient behaviour as well as the asymptotic states. Use was 

made of an explicit Euler scheme complemented by finite différence methods. 

[a] [b] [c] 

Fig. I. The three basic 2D patterns for species X in a Brusselator modified to take the 

< Lengyel-Epste in procédure |40, 12] into account. They are simiiar to the structures obtained for 

the standard Brusselator for set 1 of parameters [55]. The intégrations were carried out on a square 

grid of sizc 64 x 64 with periodic boundary conditions. The gray scalc corresponds to the 

concentrations lying between the absolute minimum (black) and maximum (white). They thus 

measure relative concentration variations, (a) Near critical Hir (û < 0 ) for >1 = 1.5, D,. = D , = 4, 

<T = 3. B = 6.5. (b) Stripes for the same set of parameters as in (a) but B = 7.5. (c) Near critical HO 

(tJ > 0) for A = 0.5. D, . = = 4, o- = 6, fl = 3. Here a is the complexification factor [40, 12]. 
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3.1. The 3D Brusselator 

Using set I, we corroborated [41] the theoretical bifurcation diagram that has 

been obtained in the weakiy nonlinear Hmit (near B^) [13, 14,16]. The 

following séquence of pat terns émerges as B is increased. When the référence 

State becomes unstable, a body-centered cubic structure (M = 6) is the first to 

appear subcritically. It is foilowed, also subcritically, by hexagonal prisms 

(M = 3) and then supercritically by lamellae (M = 1). As discussed in réf. [9] 

thèse patterns may be consistent with the experimentally observed 3D struc-

tures. However , more expérimental and theoretical work is necessary to make 

a definite assessment. 

3.2. The 2D Brusselator 

Because we wanted to test the effects of ramps that extend to values of B 

beyond the range of validity of the weakiy nonlinear theory, we analyzed the 

2D pattern sélection more thoroughly. This part of our work is complementary 

to that undertaken by Dufiet and Boissonade [42, 43] for the Schnackenberg 

model [44]. 

3.2.1. Near B^ 

When i J < 0 , a structure of hexagonal symmetry is first obtained, on increas-

ing B quasistatically, where the maxima of concentration of X are arranged on 

a honeycomb lattice (HTT structure - M = 3) (fig. la). Further , thèse HTT 

become unstable with respect to stripes (M = l ) (fig. Ib). Reversing the 

variation of B allows to recover the HTT but by undergoing an hystérésis loop 

(insert of fig. 2). 

In this range we thus recover the séquence of events predicted by the weakiy 

nonlinear theory [13-18], i.e. the standard hexagons-"rolls" compétition 

known from the Rayle igh-Bénard [23, 45-48] and the Bénard-Marangoni [49] 

problems. It is therefore not totally surprising that stripes and hexagons have 

also been observed [10-12] in some of the expérimental work to date of Turing 

structures. 

When iJ > 0, the first structure of hexagonal symmetry now gives rise to 

maxima of X concentration forming a triangular lattice (HO structure - A/ = 3) 

(fig. le). 

In an unbounded System the stripes are determined up to a phase factor that 

corresponds to the fact that an arbitrary translation leaves the pattern in-

variant. However , the patterns with hexagonal symmetry are composed of 

three sets of stripes and two phases are sufficient to describe ail the translations 

in the plane. The third phase or equivalently the sum of the three phases must 

thus be determined by the dynamics. The HTT and HO patterns therefore differ 
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Fig. 2. Bifurcation diagram compiled from the numerical simulations using set I of parameters. 

['^mi,, ~ ''''(i] 'S drawn as a function of the bifurcation parameter B. The inset zooms in the région 

near B, . 

only by tiie value of the sum of the phases that is recalled in the notation used. 

It is remarkable that for différent kinetics, or smaller size Systems and even 

for other boundary forms or conditions the same 2D (and probably 3D) 

pat terns should émerge [42 ,43 ,50-53] . This may bring some light to the 

understanding of the pat terns obtained in a capillary [54]. 

3.2.2. Reentrant hexagons 

When jJ < 0, starting on the previously described stripe branch and increas-

ing B again quasistatically, the stripes eventually become unstable with respect 

to an HO type pattern (fig. 2). Thèse remain stable for still higher values of B 

(this was tested up to 5 = 32). At this point, decreasing B again leads back to 

the stripes with the appearance of another hystérésis loop. The previous loop 

and this one were never seen to overlap for the parameters values that we 

screened. Such a reentrant hexagonal phase was also discovered by Dufiet and 

Boissonade [42, 43]. 

When J > 0, the situation is différent . Indeed the HO, obtained in this case 

near B^, never destabilized to stripes (that may however appear as an isolated 

branch) or another HTT structure when increasing B quasistatically. The 

secondary bifurcations therefore really lead to the breakdown of the simple 

universality that prevails near B^. 

Thèse scénarios, for the Brusselator and the Schnackenberg models, can be 

explained simply in terms of a renormalization, due to higher-order nonlinear 

contributions, of the quadratic coupling coefficient v [55, 56]. The two kinds of 
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hexagons have been observed (see fig. 3a,b of réf. [57]), one of them being 

only transitorily. However , a stationary succession HTT/stripes/HO may have 

been seen experimentai iy in the présence of gradients [19]. Indeed as will be 

seen in section 4 the présence of a ramp permits the unfolding in space of the 

bifurcat ion diagram (spatial coexistence). 

3.2.3. Zig-zag patterns 

A branch of zig-zag stripes (fig. 3) simultaneously stable with the straight 

stripes was also uncovered when starting f rom random initial conditions instead 

of proceeding quasistatically f rom the HTT. Such pat terns arise also in the 

e lec t rohydrodynamic instabihties of a nematic hquid crystal [58]. When B 

increases, the knee angle in the structure also grows steadily (fig. 4) until it hits 

Tr/6 where the zig-zag pat tern becomes unstable to the HO structure. 

S tandard stability analysis [22] implies that in the k < sideband stripes 

undergo a zig-zag instability inducing a periodic modulat ion of the concen-

tration fîeld in the direction of the axis of the stripes. It was shown recently 

[59, 60] that this instability may saturate for k « k^ giving rise to zig-zag stripes 

whereas for deepe r quenches in the sideband no saturat ion of the zig-zag mode 

occurs and the zigs and zags of successive stripes reconnect to yield a new set of 

straight stripes. Both thèse processes have also been observed by Dufiet and 

Boissonade [42]. Such wavy stripes were also obta ined for the hyperchirality 

model [52]. For o ther conditions the zig-zag instability may also give rise to the 

créat ion of defects and chaos [60]. 

t.- � 

Fig. ?i. Zig-zag stripes on a 64 x 64 grid with periodic boundary conditions with set 1 of parameters 

for D, = 7 and B = 10. 
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Fig. 4. Bifurcation diagram representing the size of the knee angle of the zig-zig stripes as a 

function of B for set I of parameters. 

Such undulated stripes have not been seen experimentally but then in the 

large aspect ratios of the experiments they may be hard to untangle from a 

straight stripes domain invaded by disclinations and dislocations [10-12]. 

Indeed as mentioned in section 2 in large Systems defects come into play and 

are not necessarily eliminated by the dynamics. A large aspect ratio HTT 

structure (fig. 5) contains numerous defects, in this case pentagonal-heptagon-

al pairs, which separate well ordered domains. Once the amplitude has 

saturated, the remaining dynamics consists only of the slow drift of thèse 

defects. It is reminiscent of some expérimental observations [10,57]. 

Fig. 5. Hexagonal pattern (H-ir) for the concentration of species X of the standard Brusselator in a 

large System ( 2 5 6 x 256) with periodic boundary conditions and A=4.5. B = 7.1, Dy = 2.8, 

D,. = 22.4. 
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4. Pattern sélection for the ramped Brusselator 

Sélection in the présence of ramps has previously been studied to take into 

account the effects of small expérimental imperfections in hydrodynamicai 

problems even though researchers in that fïeld often appeal to reac t ion-

diffusion Systems, which are more tractable than the équations of fluid mech-

anics. One thoroughly studied problem is related to wavelength sélection inside 

the sideband degenerate states. If the control parameter varies in space, such 

that it becomes subcritical in part of the System then the stable band is reduced 

and - in the limit of infinitely slow variation - shrinks to a single wavenumber. 

The wavelength is then perfectly selected [61]. It was further shown that the 

selected solution need not be stationary, leading eventually to oscillations or 

even chaotic behaviour [62]. Some of thèse results were verified experimentally 

for the Taylor vortex flow [63]. Theoretical analyses were also undertaken for 

the Rayle igh-Bénard convection problem when the heating is weakly 

nonuniform [64-67]. Here the lack of expérimental results does however not 

permit to draw définitive conclusions. The effects of some type of ramps were 

also considered in nonlinear chemical Systems. We return to thèse below. 

Our aim in this section is to show, with the aid of a few numerical 

experiments, how the pattern sélection may be affected by the variations in 

space of the parameters , for instance the bifurcation parameter . Understand-

ingly pat tern sélection theory is much less developed under nonuniform 

conditions. The results presented here must thus be considered as first steps in 

the search for the occurrence of generic behaviours permitting to disentangle 

the various contradictory orientational effects that are at play in the présence 

of ramps. Therefore most questions we raise will go unanswered. 

The simplest principle that springs to the mind is that a pattern will develop 

in the région of space where the local value of the bifurcation parameter allows 

it to be stable in the corresponding uniform problem. We will however see that 

even such a simple idea is not always true. It also leads immediately to the 

prédiction of spatial coexistence of structures with différent symmetries and a 

possible high order multiplieity, resulting f rom multistability, among various 

différent spatial coexistences. The orientational rôle of the slope of the profile, 

domain walls and boundaries are fur thermore difficult to assess. 

Here again we appeal to the pool approximation: the concentrations of A 

and B are kept constant in time but are given spécifie profiles. We will make 

use of linear (where the direction of the gradient is denoted by G) and 

chain-like ramps. 

4.1. Linear ramps 

Linear ramps in the react ion-diffusion context were previously mainly 
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considered in relation to polarity effects in problems with a biological content 

[51,53,68] . Recently crossed linear ramps on two pool species where studied 

numerically [69] in the context of the new Turing experiments. 

4.1.1. 3D Brusselator 

In relation with the expérimental results some simulations were carried out 

for set I of parameters in parallelepipeds. 

If, as for the Bordeaux reactor type geometry, the ramp is applied along one 

of the large sides of the gel slab, we obtain numerically the spatial coexistence 

of the three kinds of pat terns we described in section 3: bec, hex prisms 

(fc, + /c, + = 0, ail A:,±G) and lamellae (A:|lG) in order of increasing value 

of B along the ramp (see fig. 5 of réf. [70]). The transition régions (domain 

walls) between the coexisting 3D patterns are however very complex and a 

systematic study of their relative orientations will require to switch to more 

powerful numerical means to be able to control size and boundary effects. 

4.1.2. 2D Brusselator 

Ail our 2D numerical experiments were made with set I parameters on a grid 

of size L. in the direction of the gradient, times L'. The ramp is applied to the 

bifurcation parameter B that varies along L: its value is Bj at L and we apply 

B = B^ at grid points ( 5 L . y) in order to define a subcritical région. No flux 

boundary conditions are imposed along the sides perpendicular to the ramp 

and periodic boundary conditions along the others. 

Let us start by presenting (fig. 6) a typical resuit. In this case the simple 

argument alluded to abovc is true and three régions are visible at a glance: 

transverse stripes at the highest B values with wavevector kJIG, HIT with 

wavevectors k^lG (k^+k^ + k^ = 0) near B^, which invade the subcritical 

région. There is also a domain wall between HTT and stripes. In the région 

straddling B^, we find the amplitude variations characteristic of imperfect 

bifurcations, here to an hexagonal phase. Such bifurcations have only been 

studied theoretically in the présent context for M = 1 structures in weak linear 

ramps [65,67]. While the unfolding of patterns (spatial succession of HTT and 

stripes) is trivial, the influence of the ramp, the boundaries (they induce a 

forcing because in gênerai the ramped référence state does not satisfy the 

imposed boundary conditions) and the existing domain wall on their orienta-

tion (for instance the relative orientation of k^ to k j lies at the heart of the 

pat tern sélection problem. To deepen the plot let us dissect two numerical 

experiments. 

Experiment A (fig. 7). The conditions are the same as those just discussed. 

We start at 6^ = 7 with random initial conditions. This leads to the pat tern 
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shown in (fig. 7a). There is nothing particular to witness. We have only the HIT 

(oriented as before) because B, is still below the lower stability limit of stripes 

in the uniform System. We then proceed by making a séries of quasistatical 

modifications of B^. When =8 (fig. 7b) we still have only HTT, even though 

near grid point L we are, for uniform Systems, in a région where the HTT are 

unstable. So our simple principle is already failing us: the ramp has broadened 

the stability domain of the HTT. Contrary to what we saw above transverse 

stripes do not occur and the HTT even have to incur some déformation to fit in 

the System for thèse conditions. Increasing again B^ to 8.2 (fig. 7c), the 

situation changes radically: the HTT snap back to their uniform équivalent 

stability région but the stripes that enter the show appear with itJ|A:, (or k^) 
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[e]BL=16.0 t i [f]BL=16.0 t 2 > t i 

Fig. 7. Experiment A for the same conditions as in the previous figure on a grid of size 90 x 64. (a) 

B, = 7; (b) B, = 8; (c) B, = 8.2; (d) B, = 10; (e) and (f) B, = 16 at two successive times. Pattcrn 

(a) is obtained from random initial conditions and ail the others by increasing B, quasistatically 

from the preceding stationary one. 
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implying an orientational effect of the domain wall. The only influence of the L 

boundary is a shght bend of the stripes to meet the no flux boundary condition. 

Fur thermore the new obhque stripes (with respect to G) are drifting perpen-

diculariy to G at constant velocity (on the way up or down depending on 

whether fcJlA:, or A:,) because of the présence of periodic boundaries in that 

direction. This is the sign that a parity-breaicing bifurcation [71] with respect to 

the direction of the gradient has occurred. The HTT are entrained in the 

process. For 6 ^ = 10 (fig. 7d), while the whole structure continues its motion, 

the HTT are in the process of being squeezed out because the gradient is now so 

large that they have less than one wavelength to fit into. As soon as the HIT 

have vanished a set of longitudinal stripes starts to invade the System sponta-

neously from the L border . Thèse new stripes eventually invade the whole 

supercritical région (fig. 7e,f) . No HO intervene yet because of the quasistatical 

nature of the procédure . 

Experiment B. The conditions are again the same but at each increase of 

we start f rom random initial conditions. For fî, = 8 we have the pattern (fig. 6) 

discussed at length bcfore. Having in mind the resuit of experiment A for the 

same values of the parameters , we here observe a clear-cut example of 

bistability between a state exhibiting only HTT and another state that unfolds 

both HTT and transverse stripes. On increasing the ramp the stripes invade 

more and more of the System until, as before , the H-rr are expelled and only 

transverse stripes remain. The sélection of stripes over HTT in thèse ramps does 

not seem to be the resuit of a simple kind of anisotropic effect favoring M = 1 

structures over M = 3 patterns [72] because at B, = 14 the HO have been 

allowed to corne into play. Fur thermore, as soon as the HO appear , necessarily 

near fi^, the transverse "bu lk" stripes seem to be screened from the 

boundary by thèse HO (remarkably a lonely transverse stripe is présent near 

fî, ). They then start to bend, probably aided by the présence of zig-zag stripes 

that are présent aiso in the région of B. Finally, af ter a long transient we obtain 

the pat tern of fig. 8 for B^ = 16, which exhibits the coexistence of longitudinal 

stripes (A:^1G), HO {k^lG, A, + + *3 = 0) and still the lonely transverse 

stripe (fcJ |G). The HO are observed to présent the same orientation with 

respect to the gradient as the former HTT. 

Let us remark that many numerical experiments with ramps lead to pat terns 

containing a lot of bend stripes and defects probably because of the ubiquitous 

use of zig-zag stripes that are stable for a wide range of values of B. This leads 

to a fur ther increase of the multiplicity of possible structures. Furthermore as 

soon as a région contains stripes oblique to G a drift of the whole structure 

cornes into play. 
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Fig. 8. Final pattern in the séquence of evenls for expcrimcnl B dcscrihed in the text. For this 

particular pattern set I is used with = 7 for a 90 x 128 grid with the same boundary conditions 

as before. S , = 16. It exhibits the coexistence in the ramp of longitudinal stripes, HO and a single 

transverse stripe. 

So one starts to understand that the pattern sélection becomes indeed very 

complicated, even in the présence of the simplest form of profile. Considering 

only the stripes, we have seen, as was already the case for the nonuniformly 

hea ted Rayle igh-Bénard problem, that the slope of the ramp and the bound-

aries (and in our case also the wall boundaries) conspire to détermine the 

selected orientation. Other experiments with linear ramps will be presented 

elsewhere [73]. 

4.2. Chain-like ramps 

Thèse were considered before both theoretically [74,2] and numerically 

[75,2] for I D chemical Systems because such ramps are the kind of spatial 
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dispersion one gets for tiie A species in the Brusselator if it is let free to diffuse 

f rom the boundaries. The effects of simiiar ramps in the nonuniformiy heated 

Rayle igh-Bénard convection problem were also assessed [64,66]. 

It was shown that such profiles give rise to localized structures (not to be 

confused with those considered in section 2, which appear under uniform 

conditions): the structure détermines the extent of its own région of existence 

and within this région, as for linear ramps, spatial coexistence of patterns of 

différent symmetries is possible. For thèse ramps, the bifurcations are however 

perfect [76] but are delayed, with respect to the uniform conditions, because 

the bifurcation parameter must be sufficiently large that one wavelength of the 

structure may fit in the supercritical région for Hir or transverse stripes. For 

longitudinal stripes, which are the first to appear because they are not sensitive 

to such a restriction on the width of the supercritical région, the curvature of 

the profile near threshold nevertheless also delays the bifurcation [77]. Some 

illustrations are given in figs. 9 and 10. It is also worthwhile noting that the HO 

(fig. 9) are oriented differently f rom the linear ramp case. 

8 0 

Fig. 9. 3D amplitude plot for the concentration of species X in the Brusselator in the présence of a 

symmetric chain-like ramp of A resulting from its diffusion from the boundaries {D^ = 12) in the 

présence of a linear consumption with constant k^= 0.01. The size of the grid is 80 x 40 and B is 

maintained at the uniform value 3.7. On the latéral sides we impose concentrations: A{0) = 3, 

A'(O) = A{Q). Y(0) = B/A(()). We use periodic boundary conditions along the other sides. = 4. 

Dy = 20. As initial condition we take X = A{x) and Y=B/A{x) and apply a small sinusoïdal 

perturbation parallelly to the ramp. 
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Fig. 10. Coexistence of HTT (near the latéral walls), stiipes and HO in the présence of a symmetric 

chain-like ramp of A and for conditions similar to fig. 9. Here = 10, A:̂  = 0 . 0 1 . A({))= 10, 

D^. = 3.5, Dy = 28 and B = 12. The grid size is 90 x 30. The initial condition is also similar but the 

perturbation consists in multiplying the concentration of X(45, y) by a factor of two. 

5. Conclusions 

It should by now be clear that the study of Turing structures présents new 

challenges to pattern sélection theory: characterization of the first genuine 3D 

periodic patterns in far f rom equilibrium conditions and of the stability of 2D 

polygonal structures, which may complément the information obtained f rom 

hydrodynamical Systems. The incorporation of the effects of profiles of the 

control parameters, which dérive naturaliy from the expérimental context, 

introduce further difficulties. 

But already new incitements, linked to the Turing patterns, are brought to us 

by the experimentalists. They are related to the reappearance of the time 

dépendance one had tried to ward off as for instance with the help of the 

Lengyel-Epstein procédure [40,12]. The first of thèse new teasers, dubbed 

"chemical turbulence" for lack of better wording, manifests [56] itself as a new 

time dépendent phase with prolifération of defects that, for some conditions, 

squeeze in between the stripes and the hexagons. The other , christened 

"chemical flip-flop" [9] is a localized asymmetric emitter, a chemical beacon, 

which, thanks to the ramps, lives in a quasi- lD world in a région of expérimen-

tal parameters where Turing and Hopf instabilities interact. Both have in 

common that they point once more to the complex wonders that remain to be 

discovered in our nonlinear chemical playground. 
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