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Competition Versus Cooperation on the
MISO Interference Channel

Erik G. Larsson and Eduard A. Jorswieck

Abstract—We consider the problem of coordinating two com-
peting multiple-antenna wireless systems (operators) that operate
in the same spectral band. We formulate a rate region which
is achievable by scalar coding followed by power allocation
and beamforming. We show that all interesting points on the
Pareto boundary correspond to transmit strategies where both
systems use the maximum available power. We then argue that
there is a fundamental need for base station cooperation when
performing spectrum sharing with multiple transmit antennas.
More precisely, we show that if the systems do not cooperate,
there is a unique Nash equilibriumwhich is inefficient in the sense
that the achievable rate is bounded by a constant, regardless of
the available transmit power. An extension of this result to the
case where the receivers use successive interference cancellation
(SIC) is also provided.
Next we model the problem of agreeing on beamforming

vectors as a non-transferable utility (NTU) cooperative game-
theoretic problem, with the two operators as players. Specifically
we compute numerically the Nash bargaining solution, which is
a likely resolution of the resource conflict assuming that the
players are rational. Numerical experiments indicate that selfish
but cooperating operators may achieve a performance which is
close to the maximum-sum-rate bound.

Index Terms—multiple-input single-output channel, interfer-
ence channel, non-cooperative game theory, cooperative game
theory

I. INTRODUCTION

A. Background

WE ARE CONCERNED with the following scenario:
Two independent wireless systems operate in the same

spectral band. The first system consists of a base station BS1

that wants to convey information to a mobile MS1. The second
system consists of another base station BS2 that wants to
transmit information to a mobile MS2. The systems share the
same spectrum, so the communication between BS1 →MS1

and BS2 →MS2 is going to take place simultaneously on
the same channel. Thus MS1 will hear a superposition of
the signals transmitted from BS1 and BS2, and conversely
MS2 will also receive the sum of the signals transmitted by
both base stations. This setup is recognized as an interference
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Fig. 1. The two-user MISO interference channel under study (illustrated for
n = 2 transmit antennas).

channel (IFC) [1]–[3]. In the setup we consider, BS1 and
BS2 have n transmit antennas each, that can be used with
full phase coherency. MS1 and MS2, however, have a single
receive antenna each. Hence our problem setup constitutes a
multiple-input single-output (MISO) IFC. See Figure 1.

We shall assume that transmission consists of scalar coding
followed by beamforming,1 and that all propagation channels
are frequency-flat. This leads to the following basic model for
the matched-filtered, symbol-sampled complex baseband data
received at MS1 and MS2:

y1 = hT
11w1s1 + hT

21w2s2 + e1

y2 = hT
22w2s2 + hT

12w1s1 + e2

where s1 and s2 are transmitted symbols, hij is the (complex-
valued) n× 1 channel-vector between BSi and MSj , and wi

is the beamforming vector used by BSi. The variables e1, e2
are noise terms which we model as i.i.d. Gaussian with zero
mean and variance σ2. We assume that each base station can
use the transmit power P , but that power cannot be traded
between the base stations. Without loss of generality, we shall
take P = 1. This gives the power constraint

‖wi‖2 ≤ 1, i = 1, 2 (1)

Throughout, we define the signal-to-noise ratio (SNR) as
1/σ2. Various schemes that we will discuss require that the
transmitters (BS1 and BS2) have different forms of channel

1Single-stream transmission (scalar coding followed by beamforming) is
optimal under certain circumstances, for example provided that BSi knows
hii and MS1, MS2 treat the interference as Gaussian noise [4].

0733-8716/08/$25.00 c© 2008 IEEE
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state information (CSI). However, at no point we will require
phase coherency between the base stations.

The fundamental question we want to address is the follow-
ing. If BS1 and BS2 operate in an uncoordinated manner, how
should they choose their beamforming vectors w1,w2? There
is an obvious conflict situation associated with this choice
since a vector w1 which is good for the link BS1 →MS1

may generate substantial interference for MS2 and vice versa.
The main contribution of this work is to discuss this conflict
situation in a game-theoretic framework. In the course of doing
so, we will also present an achievable rate region for the MISO
IFC and a characterization of this region.

We stress that in our setup there is no central controller that
can dictate what beamforming vectors the two systems (BS1

and BS2) should use. That is, we assume that the two systems
belong to different infrastructure (for example, are owned by
different operators) and hence that they have fundamentally
conflicting interests. This stands in sharp contrast to the case
(not considered in this paper) when the systems belong to the
same infrastructure and are connected via a central controller
that has the authority to determine how resources are shared.
In the case with a central controller, there would be no
conflict between the systems (in a game-theoretic sense), as
the controller can decide on any arbitrary operating point at
its choice. Notwithstanding this, even if there is no central
controller with authority to dictate the resource use, BS1

and BS2 may still communicate with each other in order to
negotiate how resources should be split. Such communication
may take place directly by using a carefully crafted, possibly
standardized protocol for this, or indirectly (by using iterative
punishment schemes as discussed in [12]). To summarize, the
two basic points are: (i) the absence of a central controller
does not mean that the systems cannot talk (negotiate) with
one another; and (ii) having a central controller or not is not
an issue of performance, rather, the cases with and without a
central controller are two fundamentally different problems.

B. Related work

Information-theoretic studies of the IFC have a long history
[1]–[3], [5]. These references have provided various achievable
rate regions, which are generally larger in the more recent
papers than in the earlier ones. However, the capacity region
of the general IFC channel is still an open problem. For certain
limiting cases, for example when the interference is weak
or very strong, respectively, the sum capacity is known [6].
For weak interference the interference can simply be treated
as additional noise. For very strong interference, successive
interference cancellation (SIC) can be applied at one or more
of the receivers. Multiple-input multiple-output (MIMO) IFCs
have also recently been studied in [7], from the perspective of
spatial multiplexing gains.

Recently an increasing body of literature has looked at
resource conflict problems in wireless communications using
tools from game theory (see, for example [8]). Most of this
work deals with networking aspects of communications. There
is some available work, however, that studies the IFC from a
game-theoretic perspective. In what follows, we summarize the
relevant literature that we are aware of. Distributed algorithms

for spectrum sharing in a competitive setup (using noncoopera-
tive game theory [9]) were developed in [10] and [11]. A more
general analysis of the spectrum sharing problem was per-
formed in [12]. All three [10]–[12] dealt with single-antenna
transmitters and receivers, and looked at the problem from a
noncooperative game-theoretic point of view. The MIMO IFC
has also been studied from a noncooperative game-theoretic
perspective in [13] and [14], which presented results on
equilibrium rates and proposed distributed algorithms. These
noncooperative approaches [10]–[13] generally lead to decen-
tralized schemes for computing stable operating points, so-
called Nash equilibria. Unfortunately, these equilibria are often
rather inefficient outcomes, as measured by the achievable
sum-rate, for example. Less work is available on cooperative
game theory for IFCs, especially for multiple-antenna IFCs.
Some results can be found in [15] which treated the spectrum
sharing problem using cooperative (bargaining) game theory
and [16] which proposed a decentralized algorithm for finding
the bargaining solution. Both [15], [16] considered the case
of single antennas at the transmitter and at the receiver. Apart
from this, the area of cooperative strategies for the IFC appears
largely open. (We shall note [17] that deals with the multiple-
access channel (MAC) using coalitional game theory. However
the MAC differs fundamentally from the IFC.)
Contributions: We study the MISO IFC both from a

noncooperative (competitive) game theoretic perspective, and
from a cooperative (bargaining) point of view. We show
that the outcome of the noncooperative game is a unique
Nash equilibrium but that this is rather bad from an overall
system perspective (see Section III-A). We then consider the
same problem using cooperative (Nash axiomatic bargaining)
theory and show that this can significantly improve the out-
look of the problem (see Section III-B). Before we embark
on this, we present in Section II some preliminaries, and
various other interesting results related to the MISO IFC.
This paper is reproducible research [18] and the software
needed to generate the numerical results can be obtained from
www.commsys.isy.liu.se/˜egl/rr.

II. ACHIEVABLE RATES AND OPERATING POINTS

A. An Achievable Rate Region

In what follows we will assume that all receivers treat
co-channel interference as noise, i.e., they make no attempt
to decode and subtract the interference. (This assumption
will be relaxed in Section V.) The main justification for
this assumption is that in most envisioned applications, MSi

would use receivers with a simple structure. Additionally,
one can argue that interference cancellation is difficult in an
environment where the receivers do not know the coding and
modulation schemes used by the interfering transmitters. For
a given pair of beamforming vectors {w1,w2}, the following
rates are then achievable, by using codebooks approaching
Gaussian ones:2

2Strictly speaking, only rates Ri − ε are achievable, for some ε. Since
the main purpose of this paper is to explain fundamental limitations and
possibilities associated with spectrum conflicts, rather than to develop coding
theorems for IFCs, we shall say (with some sacrifice of rigor) that the rates
Ri are “achievable”.
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Fig. 2. Rate region, example 1. The channels were chosen at random but
such that R is convex. Here the signal-to-noise-ratio is 0 dB.

R1 = log2

(
1 +

|wT
1 h11|2

|wT
2 h21|2 + σ2

)
(2)

for the link BS1 →MS1, and

R2 = log2

(
1 +

|wT
2 h22|2

|wT
1 h12|2 + σ2

)
(3)

for BS2 →MS2. For fixed channels {hij}, we define the
achievable rate region as

R =
⋃

w1,w2,‖wi‖2≤1

(R1, R2).

We stress that this is not the capacity region, because it does
not take into account the possibility of performing interference
cancellation at the receivers, and it does not take into account
the possibility of going beyond Gaussian signaling. However
the rates in R are achievable with simple receiver signal
processing, that treats interference as noise. (Extensions to
interference cancellation are discussed in Section V.) The
outer boundary of R is called the Pareto boundary, because it
consists of Pareto optimal operating points. A Pareto optimal
point is a point at which one cannot improve the rate of one
link without simultaneously decreasing the rate of the other.
We denote the Pareto boundary by R∗. Note that for fixed
hij , the region R is compact, since the set {w1,w2} subject
to the power constraint (1) is compact and the mapping from
{w1,w2} to {R1, R2} is continuous. However, the region R
is in general not convex.

We define the convex hull of R as follows:

R̄ =
⋃

0≤τ≤1
(R1,R2)∈R
(R′

1,R′
2)∈R

(τR1 + (1− τ)R′1, τR2 + (1− τ)R′2)).

Also we denote the Pareto boundary of R̄ with R̄∗. The region
R̄ can be interpreted as the set of achievable outcomes if
the two systems BS1 →MS1 and BS2 →MS2 are allowed
to split the available degrees of freedom (time or bandwidth
in practice) offered by the channel in two parts, and use the
beamforming vectors {w1,w2} (corresponding to a rate point
(R1, R2)) during a fraction τ of the time, and another set of
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Fig. 3. Rate region, example 2. The channels were chosen randomly, but
such that R was non-convex. Here the signal-to-noise-ratio is 20 dB.

beamforming vectors {w′
1,w

′
2} (corresponding to a different

rate point (R′1, R
′
2)) during the rest of the time (i.e., during a

fraction 1− τ of the total time). Implicit in this interpretation
is the assumption that the power constraint (1) is unchanged,
i.e., the constraint is on the peak power rather than on the
long-term average of power. Another interpretation of R̄ is in
terms of correlated mixed strategies: R̄ is the set of average
rates that can be achieved if the two systems decide on two
arbitrary rate points in R and then flip a synchronized coin
to decide which one of these two points to operate at. The
importance of working with R̄ instead of R will become clear
when we formulate the beamforming problem as a bargaining
problem (Section III-B).

Figures 2 and 3 show two examples of the rate region R. In
the first example the channels are chosen so that R is convex;
in the second example R is nonconvex. The figures also show
the convex hull R̄. (The other rate points in the figures will
be explained in what follows.) These figures were generated
by computing (R1, R2) over a grid of beamforming vectors,
as explained in more detail in Section IV.

B. Characterization of the Pareto Boundary

A first question to ask is whether any point on the Pareto
boundary of R (or R̄) can be reached unless both BS1

and BS2 spend the maximum allowable power, i.e., whether
(R1, R2) ∈ {R∗, R̄∗} always requires ‖w1‖2 = ‖w2‖2 = 1.
We will show that the only points on the Pareto boundary
which can be achieved without having ‖w1‖2 = ‖w2‖2 = 1
are points where the tangent to the Pareto boundary is ei-
ther strictly vertical or strictly horizontal. The importance
of this observation is that apart from pieces of the Pareto
boundary that are strictly vertical or horizontal, it is enough
to consider parameterizations of the boundary for which
‖w1‖2 = ‖w2‖2 = 1. More precisely we have the following
proposition.
Proposition 1: a) Consider a point (R1, R2) in the rate

region R which corresponds to a set of beamforming vectors
(w1,w2) for which ‖w1‖2 < 1 and ‖w2‖2 ≤ 1. Then
there exists a beamforming vector ŵ1, such that the rate
operating point (R̂1, R̂2) associated with (ŵ1,w2) satisfies
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1 ≥ ‖ŵ1‖2 > ‖w1‖2, R̂1 > R1 and R̂2 = R2. In other words,
it is possible to improve the rate of system 1 by changing w1

in a way so that BS1 uses more power, and simultaneously
keep w2 unchanged.

b) The result in (a) holds also if R is replaced by R̄.
Proof: See the Appendix. �
Note that the converse is not true. Many points in the

interior of R and R̄ correspond to beamforming vectors for
which both base stations use full power.

C. Some Special Operating Points

Some points in the rate region are especially interesting,
and we discuss them as follows (in no particular order).

1) The single-user (SU) points (RSU
1 , 0) and (0, RSU

2 )
are the rate points that result if only one user transmits,
assuming the base station has full channel knowledge and per-
forms maximum-ratio transmission beamforming (i.e., w1 =
h∗11/‖h11‖ and w2 = h∗22/‖h22‖, respectively, as in single-
user MISO transmission [4], [19]). The associated rates are

RSU
1 = log2

(
1 +

‖h11‖2

σ2

)
, RSU

2 = log2

(
1 +

‖h22‖2
σ2

)
.

Note that all convex combinations of the points (RSU
1 , 0) and

(0, RSU
2 ) lie on a straight line (see Figures 2–3). The points on

this line correspond to orthogonal multiple access via time-
sharing.

We can characterize the average rates associated with the
single-user points as follows. Define

G(σ2, n) � log2(e) exp(σ2)
n−1∑
k=0

σ2kΓ(−k, σ2) (4)

where

Γ(a, x) �
∫ ∞

x

ta−1 exp(−t)dt

is the incomplete Gamma function. Then, if {hii} have
independent zero-mean Gaussian elements with unit variance
(i.e., the fading is i.i.d. Rayleigh) we have

E[RSU
i ] = G(σ2, n) (5)

This follows by applying the results presented in [20, Sec-
tion IV.B].

Equation (4) shows that the average single-user rate grows
logarithmically with the SNR. Unfortunately, this is not of
much interest since the single-user points are unstable out-
comes of the resource conflict in the sense that if the systems
operate at one of these points, then any of the systems can
improve its rate by unilaterally changing its beamforming
vector. This goes also for convex combinations of the single-
user points: they are not stable operating points unless the
systems have pre-agreed to use orthogonal time-sharing.

2) The best-user (BU) point (RBU
1 , R

BU
2 ) is the rate point

which is achieved if the system with the best channel (in the
sense of largest channel norm) uses all resources and the other

system stays quiet. More precisely we have

RBU
1 =

{
RSU

1 , RSU
1 ≥ RSU

2

0, otherwise
and (6)

RBU
2 =

{
RSU

2 , RSU
2 ≥ RSU

1

0, otherwise
. (7)

It is clear that the average rate associated with the best-
user point is at least as good as any of the single-user rates.
However, like the single-user points, the best-user operating
point is unstable as well.

3) The sum-rate (SR) point (RSR
1 , R

SR
2 ) is the point at which

R1 + R2 is maximized. Geometrically, this the point where
the Pareto boundary of R osculates a straight line with slope
−1. (This point is also shown in Figures 2–3.)

The expected sum-rate grows logarithmically with the SNR.
This is clear by considering the following chain of inequalities:

E[RSR
i ] ≥ E[max(RSU

1 , R
SU
2 )] ≥ 1

2
(E[RSU

1 ] + E[RSU
2 ]) (8)

and using (5). In (8), the first inequality follows because the
line with slope -1 which touchesR∗ must lie to the upper right
of both the points (RSU

1 , 0) and (0, RSU
2 ). The second inequality

in (8) is immediate. However, a more precise analytical charac-
terization of the sum-rate point appears nontrivial. Fortunately,
this is not of much interest anyway, because like the two other
rate points discussed above, the sum-rate operating point is
also unstable.

4) The zero-forcing (ZF) point (RZF
1 , R

ZF
2 ) is the rate pair

which is achieved if BS1 chooses a transmit strategy that
creates no interference at all for MS2, and vice versa. If we
assume that both base stations use the maximum permitted
power, then BS1 should use a unit-norm beamforming vector
w1 which is orthogonal to h12 and which at the same time
maximizes |wT

1 h11|. This beamformer is uniquely defined and
is given by

wZF
1 =

Π⊥h∗
12

h∗11∥∥∥Π⊥h∗
12

h∗11
∥∥∥ (9)

where Π⊥X = I − X(XHX)−1XH denotes projection
onto the orthogonal complement of the column space of
X . (Among all unit-norm vectors z for which XHz = 0,
z = Π⊥Xy maximizes |zHy|. To see why this is so, let
Π⊥X = UUH where UHU = I and let z = Up for
some p. Then |zHy| = |yHUp| and ‖z‖ = ‖p‖. Clearly,
|yHUp| is maximized, subject to the constraint ‖p‖ = 1, for

p = UHy/
∥∥∥UHy

∥∥∥. That is, z = Up = Π⊥Xy/
∥∥Π⊥Xy

∥∥.)
Similarly, BS2 uses

wZF
2 =

Π⊥h∗
21

h∗22∥∥∥Π⊥h∗
21

h∗22
∥∥∥

The corresponding rates are

RZF
1 = log2

(
1 +

|wZFT
1 h11|2
σ2

)
and (10)

RZF
2 = log2

(
1 +

|wZFT
2 h22|2
σ2

)
. (11)

We can characterize the performance with ZF as follows.
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Proposition 2: Suppose the fading is i.i.d. Rayleigh and
that all channels are independent. Then the average achievable
rates if both users perform ZF are given by

E[RZF
i ] = E

[
log2

(
1 +

|wZFT
i hii|2
σ2

)]
= G(σ2, n− 1) (12)

where G(·, ·) is defined in (4).
Proof: See the Appendix. �
Comparing Proposition 2 with the single-user rates (see (5)),

we see that the transmitter interference cancellation offered by
ZF costs precisely one degree of freedom (since n is reduced
to n − 1 in the argument of G(·, ·)). For a small number
of antennas, e.g., n = 2, this will have a major impact on
performance. For a large number of antennas, however, the
reduction in the number of degrees of freedom associated with
ZF is negligible, and the ZF rates will be close to the single-
user rates on the average.

The rate in (12) grows with increasing SNR without bound.
It is also clear that at high SNR, the ZF point will not lie
far away from the Pareto boundary. (This can also be seen
in Figure 3.) The reason for this is that the rates associated
with ZF and the sum-rate point (which is located at the
Pareto boundary, by definition) both grow logarithmically with
SNR; hence the normalized difference between these rates
does not increase. The operational implication of this is not
very important, however, because unless the systems have
established a binding agreement to use ZF, then ZF is not
going to be a stable outcome of the spectrum resource conflict.
(This is so for the same reasons as the sum-rate point was not
stable.)

Note that ZF transmission can be implemented without
requiring the base stations to cooperate on channel estimation.
Namely, ZF only requires that BS1 knows the channels h11

and h12 (and that BS2 knows h22 and h21). In a time-division
multiplexing system, BS1 could directly measure the channels
of interest without the help of BS2, and vice versa.

III. BEAMFORMING AS A GAME THEORETIC PROBLEM

In this section we will treat the beamforming problem in
a game-theoretic framework. We will separately discuss the
two cases that the systems can cooperate, respectively not
cooperate, in choosing their beamforming vectors. Whenever
we refer to “cooperation” in this paper, we mean cooperation
in the sense of the theory for non-zero-sum games [21].

A. Competitive (Non-cooperative) Solution

If BS1, BS2 do not cooperate then the only reasonable out-
come of the spectrum conflict will be an operating point which
constitutes a Nash equilibrium. This is a point where none
of the base stations can improve its situation by unilaterally
changing wi, subject to the power constraint [21]. It is clear
(and more generally shown in [12]) that at a Nash Equilibrium
both users must use the entire available bandwidth and time,
so we make that assumption for the rest of this subsection. A
Nash equilibrium is then a pair of vectors wNE

1 ,w
NE
2 such that

log2

(
1 +

|wNET
1 h11|2

|wNET
2 h21|2 + σ2

)
≥ log2

(
1 +

|wT
1 h11|2

|wNET
2 h21|2 + σ2

)

for all w1 with ‖w1‖2 ≤ 1 and

log2

(
1 +

|wNET
2 h22|2

|wNET
1 h12|2 + σ2

)
≥ log2

(
1 +

|wT
2 h22|2

|wNET
1 h12|2 + σ2

)
for all w2 with ‖w2‖2 ≤ 1. We have the following result.
Proposition 3: There is a unique, pure Nash equilibrium

corresponding to the maximum-ratio transmission beamform-
ing vectors

wNE
1 =

h∗11
‖h11‖ and wNE

2 =
h∗22
‖h22‖ .

Proof: The proof is immediate: if BSi uses wNE
i then there

is no other wi that satisfies the power constraint and which
could yield a larger Ri; hence wNE

i must be a Nash equilibrium
and it must be unique. �

The corresponding rates at the equilibrium are

RNE
1 = log2

⎛⎝1 +
‖h11‖2

|hH
22h21|2
‖h22‖2 + σ2

⎞⎠ and

RNE
2 = log2

⎛⎝1 +
‖h22‖2

|hH
11h12|2
‖h11‖2 + σ2

⎞⎠. (13)

Note that by using wNE
1 , BS1 can guarantee the rate RNE

1

regardless of what beamforming vector BS2 is using, and vice
versa. (A discussion of Nash equilibria for the more general
case of a MIMO IFC is given in [13, Proposition 3.1].)

The Nash equilibrium is contained in R, but in general
it does not lie on the Pareto boundary. At low SNR, the
Nash equilibrium is not a bad outcome since σ2 will dominate
over the interference terms in (13). Hence using wNE

i (which
amounts to maximum-ratio beamforming) will maximize the
rate of each user. However, at high SNR, the equilibrium
outcome of the game is generally poor for both systems. This
observation is made precise in the following result.
Proposition 4: Suppose the systems operate in

i.i.d. Rayleigh fading (the entries of hij independent
and complex Gaussian with zero mean and unit variance).
Then the average Nash equilibrium rates are bounded by

E[RNE
i ] = E

⎡⎣log2

⎛⎝1 +
‖h11‖2

|hH
22h21|2
‖h22‖2 + σ2

⎞⎠⎤⎦
≤ Ψ(n) + γ + 1/n

log(2)
. (14)

for i = 1, 2, where Ψ(x) is the Psi (DiGamma) function and γ
is Euler’s constant. The upper bound in (14) is tight for high
SNR (σ2 → 0).
Proof: See the Appendix. �
The basic implication of Proposition 4 is that to achieve

high rates in unlicensed bands, the systems need somehow to
cooperate. For two transmit antennas (n = 2), the upper bound
in (14) is given by

Ψ(n) + γ + 1/n
log(2)

≈ 2.16 bpcu

This result corresponds well with the numerical result that we
will present in Section IV (Figure 4). Another consequence of
Proposition 4 is that since Ψ(x) = O(log(x)), the equilibrium
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rate can grow at most logarithmically with the number of
transmit antennas per base station, n. This means that adding
more antennas help only marginally, if the systems compete
with each other. (By using SIC, a higher average sum rate
could be achieved. We discuss this briefly in Section V.)

Note that generally a Nash equilibrium is not an optimal, or
even desirable, solution in any sense (although misconceptions
around this appear to exist). Rather, the equilibrium is a point
where one is likely to end up operating if BS1 and BS2

compete with each other. All we can say of this outcome
is that the result can become no worse, if the base stations
choose beamformers by unilateral action. In fact, in many
games (including the one studied here) the Nash equilibrium
is unique but it corresponds to an outcome which is bad for all
players. See, the famous exampe of prisoner’s dilemma, for
example [21]. The inefficiency of Nash equilibria in a general
system-wide context is further discussed in [22].

B. Cooperative (Nash Bargaining) Solution

If BS1 and BS2 were able to cooperate, they could achieve
rates higher than (RNE

1 , R
NE
2 ), say (RNB

1 , R
NB
2 ) (NB as in Nash

Bargaining, to be defined). By reaching an appropriate agree-
ment they could achieve any point in R̄ or on the Pareto
boundary. It is clear that if an agreement could be reached then
RNB

i ≥ RNE
i , since otherwise at least one of the base stations

would resort to the competitive (noncooperative) solution,
which we know guarantees each link a rate of at least RNE

i .
Thus we may restrict the search for cooperative solutions to
the subregion R̄+ that consists of all points of R̄ for which
Ri ≥ RNE

i , i.e. the set of points located to the upper right of
the Nash equilibrium.

For example, the base stations could agree to operate at
the sum-rate or ZF point. However, such an outcome is not
likely to occur in practice, unless it is imposed by regulation.
Additionally, if such a regulation is imposed it would be very
hard to check whether the base stations comply with it. The
reason is that generally one of the base stations would have to
“give in” more than the other in order to agree on a specific
operating point (such as the ZF or the sum-rate point). The
basic issue is that if the players try to agree on a point on the
Pareto boundary, then any incremental improvement for one
leads to a reduction for the other.

We will examine this problem by using the axiomatic
bargaining theory developed by economist John Nash in the
1950’s (and who was subsequently awarded the Nobel prize in
economics) [21], [23]. Nash considered the general problem
of establishing an agreement between players with conflicting
objectives, under the assumption that there exists no utility
(in our case “rate”, but in general, money for example) that
one player could pay to the other in order to compensate the
other for a non-favorable outcome.3 Thus, the players must
agree on an outcome (RNB

1 , R
NB
2 ). If they fail, they will resort

to playing non-cooperatively which generally results in an

3If we could transfer rate between the systems, then any point (r1+δ, r2−
δ), where (r1, r2) is an arbitrary point in R̄ would be achievable. This
however would require that there is a mechanism so that the two systems
can borrow capacity from each other, and a way of paying for that. This is an
assumption that we shall not make, since the systems operate in unlicensed
spectrum and do not belong to the same set of infrastructure.

operating point no better than (RNE
1 , R

NE
2 ). This fallback point is

generally called a “threat point” in bargaining theory, because
it represents the outcome in the event the players would realize
their threat not to cooperate.

Nash showed that under certain conditions there is a unique
mapping between the convex hull of the achievable region (R̄),
the threat point (which we take to be (RNE

1 , R
NE
2 )), and the

cooperative (bargaining) outcome (RNB
1 , R

NB
2 ). The conditions

stated by Nash are a set of axioms. Apart from technicalities,
these essentially say that the cooperative outcome must lie
on the Pareto boundary, and that the solution should be
independent of irrelevant bargaining alternatives in the sense
that if the solution is contained in a subset of R̄, say R̄′, then
the same bargaining solution would have been obtained if the
feasible set had been R̄′ at the outset. Additionally, invariance
to linear transformations is required (see [21] for details).

The Nash solution for the two player game at hand can be
explicitly computed as follows:

(RNB
1 , R

NB
2 ) = max

(R1,R2)∈R̄+
(R1 −RNE

1 )(R2 −RNE
2 ).

In other words, the outcome of the bargaining is going to
be the point where the Pareto boundary R̄∗ has exactly one
intersection point with a curve of the form (R1 −RNE

1 )(R2 −
RNE

2 ) = c where c is a constant (chosen such that there is
precisely one intersection point). Thus, given R̄ and (RNE

1 , R
NE
2 )

the Nash solution can in principle be found graphically. This is
illustrated in Figures 2–3. In these figures we can also see that
the competitive solution (RNE

1 , R
NE
2 ) is generally much inferior

to the Nash bargaining solution (RNB
1 , R

NB
2 ).

Achieving the Nash bargaining solution will require the
two systems to communicate in one way or another. (See
also the paragraph of discussion at the end of Section I-A.)
In this work we assume that there is a vehicle that facil-
itates such communication, for example via a standardized
protocol specifically developed for resource bargaining. Note
also that the Nash bargaining solution is only defined for
convex outcome regions. Thus, it requires that the systems are
willing to perform time-sharing using a pair of two different
beamforming vectors as explained in Section II-A (see the
discussion where R̄ was defined). However, a negotiation
about time-sharing does not appear to be substantially more
difficult than bargaining about beamforming vectors.

We finally remark on the notion of fairness versus Nash
bargaining. If the Nash bargaining theory is applied with
a threat point at the origin (corresponding to zero rates if
no cooperation is reached, rather than using the equilibrium
rates), then the NB solution will coincide with the outcome
of the following maximization problem

max
(R1,R2)∈R̄+

log2(R1) + log2(R2). (15)

The solution to (15) is sometimes called a “proportional fair”
allocation. (See [24] for an extensive discussion of the relation
between Nash bargaining and proportional fair allocation.)
However, it is important to stress that the Nash bargaining
solution has nothing to do with “fairness” in general. Rather
it is an attempt to predict what will happen if the players act
strict rationally, i.e., they want to cooperate but nevertheless
act with self-interest. Generally, a player who is already in a
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TABLE I
BIMATRIX OF A TWO-PERSON MISO IFC GAME WITH A BINARY

STRATEGY SPACE CONSISTING OF THE NE AND ZF.

Player 2 vs 1 NE1 ZF1

NE2 (RNE
1 , RNE

2 ) (R1, R2)
ZF2 (R1, R2) (RZF

1 , RZF
2 )

TABLE II
REALIZATION OF MISO INTERFERENCE GAME IN NE OPTIMAL

CONFIGURATION.

(4, 5) (1, 6)
(5, 2) (3, 4)

good position will gain more because he can be stronger in a
negotiation (his threat is more effective). There are numerous
examples in economics where the Nash bargaining solution
would be considered unfair for most human observers [25].

C. A Reduced Game

To obtain some additional insight we consider the following
two-person general-sum game in which the two systems can
choose between playing the NE solution and the ZF solution.

In Table I, the rate Ri corresponds to the outcome in which
one system plays its minimax-optimal single-user strategy
(NE) and the other system performs ZF:

Ri = log2

(
1 +

||hii||2
σ2

)
. (16)

Similarly, the rate Ri corresponds to the case in which system
i performs ZF but the other system performs NE:

R1 = log2

⎛⎝1 +
hH

11Π
⊥
h12

h11

σ2 + |hH
22h21|2
||h22||2

⎞⎠ . (17)

and similarly for R2. Hence, we have the following inequality
chain:

Ri ≥ {RNE
i , R

ZF
i } ≥ Ri for i = 1, 2.

We can distinguish between the following fundamentally
different cases:

1) The ZF rates in Table I are lower than the NE rates for
both systems. This is illustrated in Table II. Here the first
row dominates over the second row, and the first column
dominates over the second column. This means that the
NE strategy is the optimal strategy, regardless of whether
the systems want to cooperate.

2) The ZF rates of both systems are larger than the NE rates
(see Table III for an example). This corresponds to the
classical “prisoner’s dilemma” situation [21]. Here the
NE strategy is the only stable outcome, but the ZF rates
are better.

3) The ZF rate is larger than the NE rate for one of the
systems, but not for the other one. This configuration is
a mix of the two scenarios above. The NE is better for
one player whereas the ZF is better for the other.

We can quantitatively characterize the high-SNR perfor-
mance of the rate points in the reduced game, using the high-
SNR offset concept from [26]. Denote the average throughput

TABLE III
REALIZATION OF MISO INTERFERENCE GAME IN “PRISONER’S

DILEMMA” CONFIGURATION.

(2, 4) (1, 6)
(5, 2) (4, 5)

(as a function of the SNR, ρ � 1
σ2 ) by C(ρ). Following [26],

introduce the following two high SNR measures:

S∞ = lim
ρ→∞

C(ρ)
log2(ρ)

and

L∞ = lim
ρ→∞

(
log2(ρ)−

C(ρ)
S∞

)
. (18)

The measure S∞ is called the high-SNR slope and L∞ is
called the high-SNR power offset. At high SNR, the average
throughput behaves like

C(ρ) = S∞
(
ρ|dB

3 dB
− L∞

)
+ o(1)

We have the following results.
Corollary 1: The average achievable rate if both systems

perform ZF has the following high-SNR characteristics:

S∞ZF = 1 and L∞ZF =
γ

log(2)
.

Proof: Follows directly from Proposition 2 and the defini-
tion in (18) or from [26, Proposition 1] with n = 1. �
Corollary 2: An upper bound on the average achievable

rate if one system performs NE and the other performs ZF,
i.e. Ri, has the following high-SNR characteristics:

S∞ = 1 and L∞ =
log(n)−Ψ(n)

log(2)
.

Proof: The corollary is another application of [26, Propo-
sition 1]. �
Corollary 3: A lower bound on the average achievable rate

in the “worst” case, when the user performs ZF but the other
user performs NE satisfies

lim
σ2→0

E[Ri] =
1

log(2)
.

Proof: This follows from Proposition 4 and the observation
that exponentially distributed random variables occur in the
numerator as well as in the denominator of (17). �

The high-SNR analysis in this section is summarized in Ta-
ble IV. The analysis, together with the result in Proposition 4,
indicate that the reduced two-person MISO IFC game with
a binary strategy space ends up in the Prisoner’s dilemma
configuration. This observation is interesting since it shows
that efficient resource allocation on the MISO IFC will require
cooperative strategies, even if the problem is simplified to
comprise only the two (highly practical) beamforming modes
ZF and NE.

IV. NUMERICAL RESULTS

We performed numerical experiments to gain insight into
the phenomena analyzed in Sections II–III and the correspond-
ing scaling laws. For a fixed channel realization, the rate region
R was approximated by setting wi = [αi,

√
1− α2

i e
jφi ]T and

then varying {α1, α2, φ1, φ2} over the grid [0, 1] × [0, 1] ×
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TABLE IV
SUMMARY OF HIGH-SNR SLOPES S∞ , AND HIGH-SNR POWER OFFSETS

L∞ (IF S∞ > 0), OR HIGH-SNR UPPER BOUNDS (IF S∞ = 0) FOR THE
REDUCED MISO IFC GAME.

NE

NE
Sys. 1 Sys. 2
S∞ = 0 S∞ = 0

E[R1] ≤ Ψ(n)+γ+1/n
log(2)

E[R2] ≤ Ψ(n)+γ+1/n
log(2)

ZF
Sys. 1 Sys. 2
S∞ = 1 S∞ = 0

L∞ = log(n)−Ψ(n)
log(2)

E[R2] ≤ 1
log(2)

ZF

NE
Sys. 1 Sys. 2
S∞ = 0 S∞ = 1

E[R1] ≤ 1
log(2)

L∞ =
log(n)−Ψ(n)

log(2)

ZF
Sys. 1 Sys. 2
S∞ = 1 S∞ = 1

L∞ = γ
log(2)

L∞ = γ
log(2)

[−π, π]× [−π, π] (in total 404 points were searched for each
channel realization).4 The Nash equilibrium and the rate points
discussed in Section II-C are easy to compute. We found the
Nash bargaining solution numerically by an interval-halving
type search.

Illustrations of typical regions were given in Figures 2–3.
We also computed the average rates in i.i.d. Rayleigh fading.
The computation was accomplished by numerical averaging
over 2000 channel realizations. The result is shown in Fig-
ure 4. This figure confirms the conclusion of Proposition 4,
regarding the high-SNR behavior of the Nash equilibrium. We
can also see that all other rates grow with the SNR. Most
interestingly, the Nash bargaining solution is about as good as
zero-forcing, and it is not far from the sum-rate point. (Neither
of the two latter points would be achievable by voluntary
bargaining, unless enforced by regulations.) This observation
forms one of our major empirical conclusions.

V. EXTENSION TO SIC UNDER STRONG INTERFERENCE

If the received interference is strong at one of the receivers,
this receiver may use successive interference cancellation
(SIC). More precisely, it can decode the message intended for
the other user first and then subtract it from the received signal
before decoding the information of interest [5]. Arguably
schemes based on SIC are somewhat impractical since even
if implementation issues such as timing- and frequency syn-
chronization (at very low signal-to-interference ratios) could
be solved, they would require that the systems know the
coding and modulation formats of each other. Nevertheless, it
is interesting to investigate whether application of SIC would
fundamentally change the conclusions of Sections III–IV. To
explore this, we make the following two observations.
Proposition 5: The Nash equilibrium in Proposition 3 is

unchanged if SIC is used.
Proof: If a mobile performs SIC, then this will only affect

the noise-and-interference term of its received signal (i.e.,

4Note that wi can be rotated by an arbitrary complex phase at no change
in rate, so it is enough to use two real-valued parameters to parameterize each
beamforming vector.
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Fig. 4. Average rates for the 2-user MISO IFC with n = 2 transmit antennas
at the base stations, in the symmetric scenario (all channels i.i.d. Rayleigh
fading).

the terms in the denominator in (2) and (3)). Therefore the
arguments in the proof of Proposition 3 will directly translate.
�
Proposition 6: Consider the two-user MISO IFC in Figure 1

and define the squared effective channel gain aij from BSi

to MSj , after power allocation and beamforming, as aij =
|wT

i hij |2. (That is, a11 = |wT
1 h11|2, a22 = |wT

2 h22|2, a12 =
|wT

1 h12|2, and a21 = |wT
2 h21|2.) Then:

(a) If a21
a11+σ2 >

a22
a12+σ2 then MS1 can perform SIC, i.e., MS1

can decode the message intended for MS2 and subtract
this perfectly (but MS2 cannot do this in general). The
following rates are achievable:

R1 = log2

(
1 +

a11

σ2

)
and R2 = log2

(
1 +

a22

a12 + σ2

)
.

(b) If a12
a22+σ2 >

a11
a21+σ2 then MS2 can perform SIC (but MS1

cannot in general). The following rates are achievable:

R1 = log2

(
1 +

a11

a21 + σ2

)
and R2 = log

(
1 +

a22

σ2

)
.

(c) If a21
a11+σ2 > a22

σ2 and a12
a22+σ2 > a11

σ2 then both MS1

and MS2 can simultaneously perform SIC. The following
rates are achievable:

R1 = log2

(
1 +

a11

σ2

)
and R2 = log2

(
1 +

a22

σ2

)
,

respectively.

If none of the conditions in (a)–(c) are satisfied, then
the achievable rates are given by (2)–(3): R1 =
log2

(
1 + a11

a21+σ2

)
and R2 = log2

(
1 + a22

a12+σ2

)
.

Proof: Case (a) is clear because MS1 must be able to decode
the signal intended for MS2 in the presence of noise with
power σ2, treating the signal intended for MS1 as interference
(this has power a11). Case (b) follows similarly. Case (c) also
follows by similar reasoning, but here, the interfering signals
have much higher rate since it is assumed that both MS1 and
MS2 can do SIC. �

Note that the conditions (a) and (b) in Proposition 6 do
not generally imply the condition (c). That is, the conditions
(a) and (b) may be satisfied, but this does not mean that
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both MS1 and MS2 can do SIC simultaneously. If both (a)
and (b) are satisfied, then one must choose whether MS1 or
MS2 should be allowed to do SIC (and communicate with
the correspondingly higher rate). This leads to a new type of
conflict situation, since it is not clear whether the systems
would easily agree on who will get the benefit from the SIC.
Thus the achievable rates, in the event that both conditions
in (a) and (b) are satisfied, are not well defined. Based on
this observation, we construct the following bounds on the
achievable rate (from the perspective of MS1):

• Upper bound (from MS1’s perspective): If condition (c)
is satisfied, then both MS1 and MS2 do SIC. Otherwise,
check if (a) is satisfied, and if so let MS1 do SIC (but not
MS2). If not, then MS1 does not perform SIC. (Whether
MS2 performs SIC, i.e., whether condition (b) is satisfied,
is irrelevant here since the rate bound concerns only
MS1.)

• Lower bound (from MS1’s perspective): If condition (c)
is satisfied, then both MS1 and MS2 do SIC. Otherwise,
MS1 does not perform SIC. (If (b) is satisfied, then MS2

may perform SIC, but this does not affect the bound for
MS1.)

We illustrate the bounds on the achievable equilibrium rates
with SIC in Figure 5 (average over 105 channel realizations).
We can see that if the systems agree to let MS1 perform
SIC whenever it is possible (hence forcing MS2 to sacrifice
any possible benefit of SIC), then the achievable rate for
MS1 indeed appears to grow unbounded with the transmit
power. (This is the “upper bound” in the figure.) Conversely,
if the agreement instead is to let MS2 perform SIC whenever
possible but deprive MS1 of this possibility, then MS1 will
have the opportunity to do SIC only if condition (c) is satisfied
(i.e., when both mobiles can simultaneously do SIC). This is
not enough to bring a significant increase in the achievable
rate; in fact, the rate appears to be bounded regardless of
power. (This is the “lower bound” in the figure.)

To conclude, application of SIC can potentially provide a
significant increase in the equilibrium rates. But this requires
that the systems can agree on who (MS1 or MS2) should be
allowed to do SIC. This conflict situation might be modeled
and analyzed as a game in itself. However, even the most
positive outcome of this conflict game (corresponding to the
upper bound in Figure 5) stands short of the bargaining
solution to the original beamforming problem (see the “Nash
bargaining” curve in Figure 4). Based on this one might
conjecture that SIC will not make a fundamental difference
to the way one should view conflict games on the MISO
interference channel.

VI. CONCLUSIONS

In this paper we have considered the conflict situation that
arises when two multiple-antenna systems must share the same
(unlicensed) spectrum band. We have made two central points.
First, we showed that if the systems do not cooperate, then
the corresponding equilibrium rates are bounded regardless of
how much transmit power the base stations have available. The
important consequence of this is that there is a fundamental
need for base station (system) cooperation in spectrum sharing
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Fig. 5. Upper and lower bounds on the average rates with and without
SIC at the Nash equilibrium, for the 2-user MISO IFC with n = 2 transmit
antennas with at the base stations, in the symmetric scenario (all channels
i.i.d. Rayleigh fading). (The scale is the same as in Figure 4.)

with multiple antennas. Second, in numerical experiments, we
found that the outcome of a Nash bargaining between the
two systems can on the average be close to the sum-rate
bound. This indicates that in reality, selfish but cooperating
systems may achieve close to the max-sum-rate performance.
It remains to develop protocols that the systems can use to
communicate and actually reach the bargaining agreements
whose existence we have predicted theoretically.

The work here can be extended in several directions. One
may study the case where only partial (for example, long-term)
channel state information is available. The theory may also be
extended to multiple antennas at the receivers (i.e., MIMO).
Another direction concerns the specific choice of cooperative
game-theoretic axiomatic framework. We have chosen the
Nash bargaining theory because it is well-established, and
since it enabled us to compute the bargaining point numer-
ically, with relative ease. Other approaches to cooperative
games (e.g., λ-transfer theory) may also be possible.

A number of open problems remain. For example, numerical
results indicate that the rates of the bargaining solution grow
logarithmically with SNR, although we do not have an analyt-
ical proof at this point. Also, a more precise characterization
of the ZF solution and its distance to the Pareto boundary may
be of interest. We leave these issues for future work.

APPENDIX

Proof of Proposition 1: We need to show the existence of
a nonzero perturbation vector δ such that

|wT
1 h11 + δT h11|2 > |wT

1 h11|2 (19)

‖w1 + δ‖2
> ‖w1‖2 (20)

|wT
1 h12|2 = |wT

1 h12 + δT h12|2 (21)

‖w1 + δ‖2 ≤ 1. (22)

A sufficient (but not necessary) condition to satisfy (21) is that
δ has the form

δ = αejφh⊥12 (23)
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where α is real-valued and strictly positive, φ ∈ R and h⊥12 is

an arbitrary vector that satisfies h⊥H
12 h12 = 0 and

∥∥∥h⊥12∥∥∥2

=

1. (Such a vector h⊥12 always exists although it is not unique.)
If δ has the form of (23) then condition (20) is equivalent

to ∥∥∥w1 + αejφh⊥12
∥∥∥2

> ‖w1‖2

⇔ α2 + 2αRe
{
wH

1 h⊥12e
jφ
}
> 0

⇔ Re
{
ejφwH

1 h⊥12
}
> −α

2

⇔ |wH
1 h⊥12| cos(φ+ ρ1) > −α

2

⇔ cos(φ+ ρ1) > − 1
2|wH

1 h⊥12|
α (24)

where ρ1 � arg(wH
1 h⊥12).

At the same time, if δ has the form of (23) then condition
(19) can be written

|δT h11|2 + 2Re
{
δT h11h

H
11w

∗
1

}
> 0

⇔ α2|h⊥T
12 h11|2 + 2αRe

{
ejφh⊥T

12 h11h
H
11w

∗
1

}
> 0

⇔ α

2
|h⊥T

12 h11|+ |hH
11w

∗
1| cos(φ+ ρ2) > 0

⇔ |hH
11w

∗
1| cos(φ+ ρ2) > −α

2
|h⊥T

12 h11|

⇔ cos(φ+ ρ2) > −|h
⊥T
12 h11|

2|hH
11w

∗
1|
α (25)

where ρ2 � arg(h⊥T
12 h11) + arg(hH

11w
∗
1).

We need to show that one can choose α and φ such that
(22), (24) and (25) are satisfied. Take

α =
1− ‖w‖

2
(26)

Then (22) is satisfied.5 With this choice of α, the right hand
side of (24) is negative. Thus, there exists an angular range
[θ1, θ2] for which (24) is satisfied if φ ∈ [θ1, θ2]. Also, this
range is strictly wider than π, i.e., θ2 − θ1 > π. Similarly,
there exists an angular range [ψ1, ψ2] such that (25) is satisfied
if φ ∈ [ψ1, ψ2] and this range is strictly wider than π as
well. Therefore, the intersection of these two regions must
form a new angular region [θ1, θ2] ∩ [ψ1, ψ2] which has a
nonzero size. Hence, by taking φ to lie in the angular region
[θ1, θ2] ∩ [ψ1, ψ2], and α according to (26), conditions (19)–
(22) are satisfied.

To see that the statement holds also for the convex hull,
suppose there was a point (R1, R2) on the boundary of R̄
which could be reached with less then maximal power. This
point must then be a convex combination of two rate points,
which lie on the boundary of R. But this is a contradiction
since no point on the boundary of R can be reached with less
than full power.

5To see this, note the following inequality:

‖w1 + δ‖ ≤ ‖w1‖+ ‖δ‖ = ‖w1‖+
1− ‖w1‖

2
=

1

2
+
‖w1‖

2
≤ 1

Proof of Proposition 2: We are interested in the statistics
of

|wT
1 h11|2 =

∣∣∣∣∣ (Π⊥h12
h11)H∥∥Π⊥h12
h11

∥∥ h11

∣∣∣∣∣
2

= hH
11Π

⊥
h12

h11.

Let U be an n × n − 1 semi-unitary matrix that satisfies
UUH = Π⊥h12

. Note that U is a function of h12 but
independent of h11. Since h11 has a rotationally invariant
distribution, UHh11 is a vector of length n−1 with i.i.d. zero
mean, unit-variance Gaussian elements. Hence the random
variable

x � hH
11Π

⊥
h12

h11 = ‖UHh11‖2

has a χ2
n−1 distribution. Therefore, by applying the results in

[20] we find that the average rate per user is

Ex

[
log
(
1 +

x

σ2

)]
= G(σ2, n− 1). (27)

Proof of Proposition 4: First, consider the probability
distribution of the expression in the denominator of (14).
Define the random variable

t � |hH
22h21|2
||h22||2 .

Note that

t =

∣∣∣∣∣ hH
22

||h22||UUHh21

∣∣∣∣∣
2

for any unitary matrix U . Now choose U as a function of
h22, such that

hH
22

||h22||U = [1, 0, ..., 0].

Since h21 is isotropically distributed by assumption, UHh21

has the same statistics as h21. Thus t is standard exponentially
distributed

t = |h21,1|2 ∼ exp(−t)
(Here h21,1 denotes the first entry of the channel vector h21.)
The individual user rates are then given by

Ex,y

[
log2

(
1 +

x

y + σ2

)]
where x is independent of y, x is χ2 distributed with n com-
plex degrees of freedom, i.e. p(x) = xn−1 exp(−x)Γ(n)−1

and y is standard exponentially distributed, i.e. p(y) =
exp(−y). First, we evaluate the expectation with respect to
y for σ2 → 0 to obtain

Ex,y

[
log2

(
1 +

x

y

)]
= Ex

[
1

log(2)
(log(x) + γ + exEi(1, x))

]
(28)

where γ is Euler’s constant and Ei(1, x) denotes the exponen-
tial integral. Finally, computing the expectation with respect
to x gives

E[RZF
i ] ≤ Ex

[
1

log(2)
(Ψ(n) + γ + exEi(1, x))

]
=

Ψ(n) + γ + 1/n
log(2)

. (29)
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