
Competitive Algorithms for Distributed Data Management

Yair Bartal Amos Fiat

Department of Computer Science

School of Mathematics

Tel-Aviv University

Tel-Aviv 69978, Israel.

Yuval Rabani

Abstract

We deal with the competitive analysis of algorithms for managing data in a distributed environment. We deal

with the file allocation problem ([DF], [ML]), where copies of a file may be be stored in the local storage of some

subset of processors. Copies may be replicated and discarded over time so as to optimize communication costs,

but multiple copies must be kept consistent and at least one copy must be stored somewhere in the network at

all times. We deal with competitive algorithms for minimizing communication costs, over arbitrary sequences

of reads and writes, and arbitrary network topologies. We define the constrained file allocation problem to

be the solution of many individual file allocation problems simultaneously, subject to the constraints of local

memory size. We give competitive algorithms for this problem on the uniform network topology. We then

introduce distributed competitive algorithms for on-line data tracking (a generalization of mobile user tracking

[AP1, AP3]) to transform our competitive data management algorithms into distributed algorithms themselves.

1 Introduction

The management of data in a multiprocessing environment has been extensively studied. The 1981 survey paper by
Dowdy and Foster [DF], dealing with the file allocation (or assignment) problem, cites close to a hundred references.

The file allocation problem has a plethora of models, with differing design goals and assumptions. [DF] compares
studies on fourteen different models, and mentions several others. We deal with dynamic self-adjusting algorithms,
in the context of two basic file allocation problems, and primarily address issues of communications efficiency. We
define the file allocation problem and the more complex constrained file allocation problem, but these names may
conflict with other usage.

We consider the competitive performance [ST, KMRS, MMS, BLS, BBKTW] of algorithms for these problems,
and present algorithms with an optimal or nearly optimal competitive ratio. Black and Sleator [BS] consider
competitive algorithms for two partial components of the file allocation family of problems. Our file allocation
problem may be viewed as the combined solution to the two subproblems defined in [BS].

Another issue is that of global versus distributed management. The question of file allocation is quite different
in the context of disk management in a small network of large mainframes versus local cache management in a
large scale multiprocessing computer. We show that our competitive data management algorithms can be run in a
distributed environment, at the cost of a small increase of the competitive ratio.

1

1.1 Competitive Basics

Informally, an on-line game consists of a sequence of interleaved events and responses. Events are produced by one
player, the adversary, whereas responses are produced by the other player, the on-line algorithm. Each response is
produced without knowing what future events will be. A sequence of events and responses has a fixed cost.

The competitive ratio [ST, KMRS] is defined as the ratio between the cost associated with an on-line algorithm
to deal with a sequence of events versus the cost expended by an optimal (off-line) algorithm. The competitive
ratio is c if for all event sequences, (online cost) ≤ c × (offline cost) + some additive constant. A competitive
algorithm with a competitive ratio of c is called strictly competitive if the additive constant is zero. Models for
on-line problems are presented in [BLS], [MMS], [BBKTW]. Competitive analysis of distributed data management
algorithms begins with Karlin et. al. in [KMRS] who analyze competitive algorithms for snoopy caching on a bus
connected PRAM.

If the on-line algorithm may use randomization to process events then the competitive ratio is defined as
an expectation and one must make precise the power given to the adversary. Ben-David et. al. [BBKTW] define
oblivious and adaptive adversaries and show various relationships between the competitive ratios achievable against
different adversaries. An oblivious adversary must commit to the sequence of events while knowing neither the coin
tosses nor the actions taken by the on-line algorithm. An adaptive adversary may decide upon the next event after
seeing all previous on-line responses. An adaptive on-line adversary must respond to events when it decides upon
them and may not later change previous actions. An adaptive off-line adversary may decide upon all its responses
after seeing the entire sequence, [BBKTW] show that randomization does not help against such an adversary.

The distinction between adaptive and oblivious adversaries is not relevant for deterministic algorithms. We
distinguish between the adversary types by adding the qualification “(oblivious)” or “(adaptive)” when referring
to a competitive ratio.

[BBKTW] also show how to transform a randomized c-competitive algorithm against an adaptive on-line ad-
versary into a c2-competitive deterministic algorithm if a certain augmented potential function they define is
computable.

1.2 The File Allocation Problem

A network is a weighted graph where processors are represented by vertices P , and edges weights represent the
length or cost of the link between the two adjacent processors. The weighted graph need not obey the triangle
inequality, but a natural metric space can be defined where the points are processors and the distance between two
points is equal to the length of the shortest path between the processors in the weighted graph. We use the terms
network, weighted graph, and metric space as called for by the discussion, but they refer to the same underlying
interconnection network.

The file allocation problem assumes that data is organized in indivisible blocks such as files (or pages). Data can
be accessed via communication links by paying a charge equal to the data transfer size times the distance traversed.
Words or records can be accessed or updated over communication links, but a file cannot be split among processors.
Files may be replicated in various processors throughout the network, but consistency must be maintained. Copies
may also be discarded but at least one copy of every file must be stored somewhere in the network. This problem
can be formalized as follows:

Initially, a subset Q ⊆ P of processors is each assigned a copy of the file. The algorithm receives a sequence of
requests initiated by processors in P . Each request is either a read request or a write request. A read request at

2

processor r is served by the closest processor p holding a copy of the file. The cost associated with this transmission
is the distance between p and r. In response to a write request initiated at processor w, the algorithm must
transmit an update to all currently held copies of the file – the subset Q ⊆ P . It pays a cost equal to the minimum
Steiner tree spanning Q ∪ {w}. In between requests, the algorithm may re-arrange the copies of the database. A
processor may delete the copy it is holding, unless it is the last copy in the network, at no cost. The file may also
be replicated from a processor p, which holds a copy, to a subset Q′ ⊂ P . The cost of replicating is equal to D

times the minimum Steiner tree spanning Q′ ∪ {p}. D represents the ratio between the size of the entire file and
the size of the minimal data unit being read or updated. A new current subset Q of processors holding copies of
the file is determined as a result of delete and replicate steps. A combination of a replicate step from a processor
p to a processor q, followed by a delete at p, is sometimes called a migration step. The subset Q is called the
configuration of the algorithm.

While the costs above are certainly a lower bound on the communication costs for any algorithm in a given
configuration, it is an upper bound for on-line algorithms only if they have global knowledge of the current config-
uration and can solve hard minimum Steiner tree problems. In fact, we can charge the on-line algorithm the real
communication costs and obtain competitive algorithms without either assumption.

If many read requests to a specific file are issued by some processor, it may be advisable to copy the relevant file
to, or near, that processor. However, this should be balanced by the relatively greater cost of moving an entire file
versus the smaller cost of transferring only the data being read. If a processor issues a write request, it now seems
advisable to move all copies of the file to, or near, the issuing processor. I.e., move some copy near the processor
and discard others. These conflicting heuristics must somehow be balanced.

One way to limit the concerns of data consistency is to assume that only one processor may store a copy of a
file at any given time. Thus, read and write requests issued by other processors in the network must all access the
processor that holds the copy. [BS] call this problem the file migration problem. [BS] give an optimal 3-competitive
ratio for this problem on the uniform network topology and for trees. Westbrook ([W]) gives a randomized 3-
competitive algorithm against an adaptive on-line adversary for any network, and a 1 + φ-competitive randomized
algorithm against an oblivious adversary. The data migration problem can also be considered as a special case of
the 1-server with excursion problem defined in [MMS].

Black and Sleator also consider the file replication problem, which is the file allocation problem with writes
disallowed. Here, copies need never be discarded. They give an optimal 2-competitive algorithm for the replication
problem when the network is a tree, or a uniform graph.

We give a randomized O(log n)-competitive algorithm against an adaptive on-line adversary for the file allocation
problem on any network with n processors. We also prove that Ω(log n) is the best competitive ratio one can
obtain for general networks, even for randomized algorithms against an oblivious adversary. Our algorithm is also
memoryless [RS] (I.e., its decisions depend only on its current configuration and the current request). We give an
optimal deterministic 3-competitive algorithm for the uniform architecture (e.g., bus based). Westbrook and Yan
[WY] have obtained an optimal deterministic 3-competitive algorithm for tree networks.

The proof of our O(log n)-competitive algorithm uses a construct we call the “natural potential function.” This
is a modification of the [BBKTW] “augmented potential function.” We prove general theorems relating a large
class of configuration problems and the natural potential function. This is useful in proving the correctness of
competitive algorithms for complex problems by concatenating competitive algorithms for simpler subproblems.
Our analysis of the competitive file allocation algorithm is based upon the natural potential function for on-line
Steiner tree algorithms.

3

1.3 The Constrained File Allocation Problem

If it is not true that every processor can accommodate all files, then copying a file into a processor’s local memory
may be impossible as that memory is full. Possibly, some other file in local memory should be dropped. However,
if this candidate is the last copy in the network, it must be stored somewhere else. Thus, it may be dumped to
some other processor that has space for it, or that will have space for it after it too drops a file currently in its
memory. Clearly, this game of hot potato may continue.

The constrained file allocation problem trys to solve many individual file allocation problems simultaneously,
while considering the actual memory capacity of the processors. The point is that the different file allocation
problems may interfere with each other if there is insufficient memory. Similarly, we could define the constrained

file migration problem if holding multiple copies of the same file is disallowed.

For the file allocation problem, different files may have different sizes as every file allocation problem is solved
independently. For the constrained file allocation problem, we only deal with files equal in size (D). One case
where this makes perfect sense is in the context of distributed virtual memory, where the entire network is viewed
as one large address space, and pages (of various multiplicities) are stored throughout the network so as to minimize
communication costs.

Given that processor i can accommodate ki files, all files equal in size, let m =
∑n

i=1 ki. We give an O(m)
competitive deterministic algorithm for the constrained file allocation problem on uniform networks. We also give
a lower bound of Ω(m) on the competitive ratio for any network.

1.4 Distributed Execution

Our algorithms above assume that some centralized power keeps track of the migrating, replicating, and dying
populations of files in the network, and tells processors how to go about finding the closest current copy of every
file. To justify this assumption in the distributed setting for arbitrary architectures, we present a generalization of
the Awerbuch and Peleg [AP1, AP3] mobile user algorithm called distributed data tracking.

Disallowing ESP, if two processors have a copy of the same file then it must have a common source and must
have reached these processors through communications links. We seek to access a copy of a file, while passing
through a path of length not much larger than the shortest path to a copy of the file. We manage a distributed
data structure that allows fast access to the closest copy of a file, while the cost of managing the data structure is
amortized against the cost of the data movement itself.

[AP1] solve a similar problem, they allow a move operator to be applied to a mobile user, but do not efficiently
support birth and death. We allow insert and delete operations. The competitive ratio is polylogarithmic in n, the
number of processors, and the diameter of the network when the shortest link is normalized to 1. If the diameter
is bounded by a polynomial in n, then the total cost for a sequence of inserts and deletes is O(log2 n/ log2 D)
times the inherent cost for these operations, where D represents the file size. The path length traversed per find is
O(log2 n/ log2 D) times the length of the shortest path to a copy of the file, and the copy of the data found is at
distance at most O(log n/ log D) times the length of the shortest path to a copy.

We use distributed data tracking to we present a randomized distributed algorithm for the file allocation problem,
with a competitive ratio of O(log4 n/log3D) against adaptive on-line adversaries.

Our major omission in this paper is that we do not consider problems of concurrency and effectively assume
that all read and write commands are serialized. We note that some aspects of our algorithms do not require this
assumption, but do not claim a complete solution at present.

4

2 Preliminaries

2.1 Configuration Problems and Potential Functions

We define on-line configuration problems. As a class of problems it is equivalent to the request-answer games of
[BBKTW]. Most of the previously studied on-line problems (including server problems and metrical task systems,
and including the problems dealt with in this paper) are naturally described in the context of this model.

Definition. An on-line configuration problem consists of a set of configurations Con, a set of requests Req, and
cost function cost : Con× Con×Req 7→ IR ∪ {∞}.

An algorithm for an on-line configuration problem gets a sequence of requests drawn from Req and an initial
configuration drawn from Con. For each request r in the input sequence, the algorithm selects a configuration from
Con. If C1 is the configuration selected for the previous request (or the initial configuration, if r is the first request
in the sequence) and C2 is the configuration selected for r, then the algorithm’s cost for serving r is cost(C1, C2, r).
The cost of the algorithm over the entire sequence is the sum of costs for serving the individual requests.

A randomized algorithm tosses coins to select configurations. Its cost is the expectation taken over its own coin
tosses. An on-line algorithm selects the configuration for a request r independent of the suffix of the sequence after
r.

The index of a request in an input sequence is called the stage or the time.

A task system (see [BLS]) is a on-line configuration problem where the cost function has the following structure.
Define the cost of a move between configurations in Con, denoted dist(C1, C2) (where C1, C2 ∈ Con) (this is
the move cost). Associate with every request r and every configuration C the cost of serving r in configuration
C, denoted task(C, r) (this is the task cost). The cost function of a task system is defined by: cost(C1, C2, r) =
dist(C1, C2) + task(C2, r). For a task system, input requests are usually called tasks. If the move cost function dist
forms a metric space over Con, then the task system is called metrical.

The history of an algorithm at a given stage is defined by the corresponding prefix of the sequence of requests
and the algorithm’s coin tosses so far.

The memory of an algorithm is a subset of its history such that the way the algorithm serves future requests is
a function of its memory.

For the competitive analysis of on-line algorithms, request sequences are assumed to be generated by an adver-
sary that has to serve them as well. The competitive ratio of an on-line algorithm is the ratio of costs maximized
over all adversaries of a certain type. In this paper, we are specifically interested in analysis against the adaptive
on-line adversary. This type of adversary can generate the sequence of requests on-line as the algorithm serves
them, and can adapt to the on-line algorithm’s coin tosses after each request is served, as long as the adversary
serves each request before the on-line algorithm does so. So, if the on-line algorithm is randomized, the sequence
generated by this type of adversary is randomized as well. Ben-David et al. [BBKTW] elaborate on this and other
types of adversaries.

Notation.Fix a time n. The request sequence at time n, is denoted σn = r1r2 · · · rn. Let Alg be an on-line
algorithm, and let Adv be an adversary. Alg’s history at stage n is denoted hn, its memory is denoted mn, and
the adversary’s configuration is denoted An. A0 and h0 are Adv’s initial configuration, and Alg’s initial history
respectively. CostAlg(σn), and CostAdv(σn) denote Alg’s cost and the adversary’s cost for serving σn respectively.
For a randomized algorithm E(CostAlg(σn)) denotes its expected cost over the request sequence. Let τ be a sequence
of requests, then Eτ (CostAlg(hn, τ)) denotes Alg’s expected cost for serving τ after serving σn, conditioned upon

5

that Alg’s history after serving σn is hn (i.e., toss coins as to reach this history). The notation Eτ (·) where τ

is a sequence of requests means that expectation is taken over the algorithm’s coin tosses while serving τ . (The
subscript τ in the notation is often omitted when the meaning is clear.) Since an on-line algorithm’s future behavior
depends on its memory alone, the algorithm’s memory is often used instead of its history. Similarly CostAdv(An, τ)
denotes the adversary’s cost for serving τ starting with configuration An. Finally let the history space H of the
problem be the set of all possible pairs of request sequences and coin tosses.

We define potential functions for on-line algorithms:

Definition. A potential function Φ for a (possibly randomized) algorithm Alg and some constant c, is a function
Φ : H× Con 7→ IR, having the following properties:

1. For every history hn and configuration An, Φ(hn, An) ≥ 0.

2. For every n ≥ 1, let Alg’s history at time n be hn, and let Adv’s final configuration be An. Then,

E(Φ(hn, An))− Φ(h0, A0) ≤ E(c · CostAdv(σn)− CostAlg(σn)),

A potential function Φ is called strict iff Φ0 = Φ(h0, A0) = 0.

Potential functions are useful in the competitive analysis of on-line algorithms, as shown in the following theorem
(see [ST]):

Theorem 1 If there exists a potential function for Alg (and c), then Alg is c-competitive (against adversaries for
which property 2 above holds).

The following types of potential functions are commonly used for competitive analysis against an adaptive on-
line adversary. We name these types of potential functions according to the number of steps in the game on which
the analysis proceeds.

Definition. A two-step potential function has property 1 of a potential function, and, instead of property 2, the
following stronger property: Let σn+1 = σnr, hn+1 and An+1 be Alg’s history and Adv’s configuration after σn+1,
respectively. Then,

E(Φ(hn+1, An+1))− Φ(hn, An) ≤ c · CostAdv(An, r)− E(CostAlg(hn, r)).

A one-step potential function for a task system algorithm has property 1 of a potential function and the following
properties:

Φ(hn, An+1)− Φ(hn, An) ≤ c · dist(An, An+1) (1)

E(Φ(hn+1, An+1))− Φ(hn, An+1) ≤ c · task(An+1, r)− E(CostAlg(hn, r)) (2)

We will use the term global potential function to refer to any potential function that satisfies the first definition
in oder to distinguish between the first definition of a potential function and the last two definitions. Obviously,
one or two-step potential functions are also global potential functions.

Remark.We use here the usual definition of a task system in which the task cost depends on the new configuration.
All results stated in the next section regarding task systems also hold if the task cost depends on the configuration
before receiving the request. The data management problems are formalized in the latter manner.

6

2.2 The Natural Potential Function

Fix some on-line configuration problem P, let Alg be an on-line algorithm for P, and let c > 0. Let the adversary
be Adv0. Let σn be the previous request sequence it has produced, and let mn be the current on-line memory
configuration. We define the natural potential function for Alg as follows:

Υ(mn, A) = sup
Adv

{E(CostAlg(mn, τ)− c · CostAdv(A, τ))}

Where Adv ranges over all possible adaptive on-line adversaries that reach configuration A, and τ is a random
variable that represents the request sequence generated by Adv.

Theorem 2 An algorithm Alg is c-competitive for P against an adaptive adversary iff Alg has a two-step potential
function (for c). Alg is strictly competitive iff the potential function is strict.

Proof. The if direction follows immediately from the fact that any two-step potential function is also global.

We will prove that Υ is indeed a two-step potential function for Alg and c.

We first show that Υ is well-defined, that is finite, for all memory values mn and all configurations A. Assume
Alg is c-competitive against adaptive on-line adversaries, then there exist a constant a0 s.t. for every on-line
adversary Adv

E(CostAlg(ρ)) ≤ c · E(CostAdv(ρ)) + a0

(where ρ is a random variable representing the request sequence generated by Adv). Now, let Adv be the adaptive
on-line adversary that produces the random sequence τ . Define adversary Adv1 as follows: Adv1 produces the
request sequence σn, and serves it the same as Adv0. He then continues to generate a random sequence τ only if
the Alg’s memory is mn, and serves it the same as Adv would (otherwise, Adv1 terminates the sequence). Let p be
the probability that Alg’s memory after serving σn is mn. Since mn is a valid memory configuration for Alg after
serving σn, p > 0. The expected cost for Alg against Adv1 satisfies

E(CostAlg(σnτ)) ≥ pE(CostAlg(mn, τ))

The cost of the adversary is

E(CostAdv1
(σnτ)) = CostAdv0

(σn) + pE(CostAdv(A, τ))

From the competitiveness of Alg we have

pE(CostAlg(mn, τ))

≤ E(CostAlg(σnτ)) ≤ c · E(CostAdv1
(σnτ)) + a0

= c · {pE(CostAdv(A, τ)) + CostAdv0
(σn)}+ a0

Set a1 = 1
p (CostAdv0

(σn) + a0). Then for any adaptive on-line adversary Adv

E(CostAlg(mn, τ)) ≤ c · E(CostAdv(A, τ)) + a1

We therefore conclude that the natural potential function it is finite.

We now show it is a two-step potential function for Alg.

7

Clearly for all n and A, Υ is nonnegative since for τ = ε the empty sequence, CostAlg = CostOPT = 0.
Consider a new request r generated by Adv0. Adversary Adv0 serves the request by moving from configuration An

to configuration An+1. Then mn+1 is chosen by the on-line algorithm according to its coin tosses on r.

Consider the expected change in the potential function after serving a new request r. If an adversary Adv starts
on configuration An+1 then we can bound the previous potential function from below, by using an adversary which
first moves from configuration An to An+1, and then continues the same as Adv.

E(∆Υ) = Er(Υ(mn+1, An+1))−Υ(mn, An)

≤ Er[sup
Adv

{E(CostAlg(mn+1, τ)− c · CostAdv(An+1, τ))}]−

sup
Adv

{E(CostAlg(mn, rτ)− c · CostAdv(An, rτ))}

≤ sup
Adv

{Er[E(CostAlg(mn+1, τ)− c · CostAdv(An+1, τ))]−

{E(CostAlg(mn, rτ))− c · CostAdv0
(An, r)− c · Er[E(CostAdv(An+1, τ))]}}

= sup
Adv

{Er[Eτ (CostAlg(mn+1, τ))]− Erτ (CostAlg(mn, rτ))}+ c · CostAdv0
(An, r)

= c · CostAdv0
(An, r)− E(CostAlg(mn, r))

If Alg is strictly competitive then for every on-line adversary Adv, there holds E(CostAlg(ρ)) ≤ c·E(CostAdv(ρ)),
by the definition of Υ, it follows that Υ0 = 0 , and hence Υ is a strict potential function.

Theorem 3 An algorithm Alg for a task system is c-competitive against adaptive on-line adversaries iff it has a
one-step potential function (for c).

Proof. The if direction follows from the fact that any one-step potential function is also global.

We shall show Υ is a one-step potential function for task systems.

Consider an adversary move from configuration An to configuration An+1 to serve the request r. By the triangle
inequality the cost of an adversary to serve a request sequence starting at configuration An, is at most the cost of
first moving to An+1 an then serving the request sequence there. Therefore:

∆Υ = Υ(mn, An+1)−Υ(mn, An)

≤ sup
Adv

{{E(CostAlg(mn, τ)− c · CostAdv(An+1, τ))} −

{E(CostAlg(mn, τ)− c · CostAdv(An, τ))}}

= sup
Adv

{c · CostAdv(An, τ)− c · CostAdv(An+1, τ)}

≤ c · dist(An, An+1)

We now consider the change in the potential due to Alg’s move. The cost for an adversary to serve the request
sequence rτ in some configuration, differs by at most the cost of the task r in that configuration from the cost of
serving just τ . Therefore:

E(∆Υ) = Er(Υ(mn+1, An+1))−Υ(mn, An+1)

≤ sup
Adv

{Er[E(CostAlg(mn+1, τ)− c · CostAdv(An+1, τ))]−

E(CostAlg(mn, rτ)− c · CostAdv(An+1, rτ))}

8

= sup
Adv

{Er[Eτ (CostAlg(mn+1, τ))]− Erτ (CostAlg(mn, rτ))}+ c · task(An+1, r)

= c · task(An+1, r)− E(CostAlg(mn, r))

2.3 The On-line Steiner Tree Problem

An on-line Steiner tree algorithm A gets a sequence of vertices σ = v1, v2, . . . , vn of a weighted graph G. In
response, A selects subtrees of G: T1 spanning v1; T2 spanning v1, v2; . . .; Tn spanning v1, v2, . . . , vn. A selects Ti

independently of vertices vj , j > i. Ti includes Ti−1 as a subgraph. dist(Ti, Ti+1) is the weight of edges added to
Ti to get Ti+1. A’s cost on input σ, denoted costA(σ), is the weight of Tn; i.e.,

∑
i dist(Ti, Ti+1). The cost of an

optimal adversary is the weight of a minimum Steiner tree spanning all vertices in σ. Since we are interested in
strictly competitive on-line Steiner tree algorithms the word “strictly” is often omitted when discussing the on-line
Steiner tree problem. When required, the superscript St is used to distinguish between Steiner tree dist and cost
functions and other dist and cost functions.

Notation.For a weighted graph G, d(p, q) denotes the weight of the minimum weighted path between vertices p

and q of G . Where Q is a subset of vertices and p is a vertex of G, d(Q, p) = minq∈Q{d(p, q)}.

T (Q) denotes the weight of a minimum Steiner tree spanning the vertices in Q. T (Q) is also used to denote
the Steiner tree itself, and the meaning should be clear from the context. Where S is a tree, T (S) simply denotes
the weight of the tree. Where S is a tree and Q is a subset of vertices in G, T (S, Q) denotes the minimum Steiner
expansion of S spanning Q; i.e., the minimum-weighted tree T , such that S is a subtree of T , and T spans Q.

3 A File Allocation Algorithm

In this section we present a randomized algorithm for the file allocation problem on all networks, which is competitive
against an adaptive on-line adversary.

Let N be an arbitrary network. Let Alg be a strictly c-competitive Steiner tree algorithm on N . We show
that Alg can be used to give a competitive randomized file allocation algorithm on N . We assume that the initial
configuration consists of one copy of the file at a processor p of N . If that is not the case we start by deleting all
copies of the file except one, incurring no cost.

Algorithm Steiner Based. (SB)
Algorithm SB simulates a version of the Steiner tree algorithm Alg starting with p as the initial configuration. At
all times, the set of processors in which SB keeps copies of the file is equal to the set of processors covered by Alg’s
Steiner tree.

Upon receiving a read request initiated at node r, the algorithm serves it, and then with probability 1/D feeds
Alg with a new request at vertex r . In response Alg computes a new Steiner tree T ′ in place of its previous tree
T . SB replicates new copies of the file at the processors corresponding to the vertices that Alg added to its tree.

Upon receiving a write request initiated at node w, the algorithm serves it, and with probability 1/αD deletes
all copies of the file, leaving only one copy at the processor closest to w, and then migrates the file to w, initializing
a new version of Alg starting at vertex w as its initial configuration.
SB

9

achieves best performance for α =
√

3.

Theorem 4 If Alg is a strictly c-competitive Steiner tree algorithm against adaptive on-line adversaries on a
network N , then SB is a (2 +

√
3)c-competitive algorithm for the file allocation problem on N against adaptive

on-line adversaries.

Proof. Let Υ be the natural potential function for Alg. From Theorem 3, we have that Υ is a strict one-step
potential function. We use it to define a new one-step potential function Φ for the Steiner Based algorithm as
follows: Let hn be the history of SB. This history explicitly defines the history of the current version of Alg that
SB simulates, denoted ĥn. Let σn be the sequence of requested vertices already fed to Alg since last initialization.
(we use σn to denote the set of these vertices as well.) Finally let A denote the adversary’s current configuration,
let B denote the on-line algorithm’s current configuration, and let B̂ denote the on-line Steiner tree algorithm’s
configuration. The potential function for SB is:

Φ(hn, A) = {(α + 2) ·Υ(ĥn, A) + α ·Θ(B̂)} ·D

where Θ(B̂) = T (B̂), and

Υ(ĥn, A) = inf
T
{Υ(ĥn, T)}

where T ranges over all subtrees of N such that σn ∪A ⊆ T . (Notice that Υ(ĥn, T) is defined for all trees T .)

Clearly Φ is nonnegative as Υ is a potential function, and the weight of a Steiner tree is always nonnegative.

Our proof proceeds by analyzing separately the change in Υ due to an adversary change of configuration (an
adversary move), and the change in Υ due to service of a request by both the adversary and SB , assuming that the
adversary (but not SB) does not change its configuration, thus accounting both the on-line and adversary work
upon a request.

Throughout, Let T0 denote the subtree that minimizes Υ(ĥn, T) before an analyzed event takes place. We think
of Alg as playing against a Steiner tree adversary Adv1, that maintains T0 as its configuration. We shall bound
the change in the potential by extracting a new configuration T1 for the Steiner tree adversary, in the range over
which the infimum in Υ is taken. The new value of Υ will only be less than or equal to the value of Υ on that new
configuration.

The following fact, an application of Theorem 3 to the on-line Steiner tree problem, is useful:

Fact 5 Let T0, T1 be trees, such that T0 is a subtree of T1. Then, for every history ĥn of Alg

Υ(ĥn, T1)−Υ(ĥn, T0) ≤ c · distSt(T0, T1)

Adversary Move.

The adversary replicates or deletes copies of the file changing its configuration from A to A′. The change in
potential is:

∆Φ = (α + 2)D ·∆Υ

since there is no change in the on-line algorithm’s configuration, and thus ∆Θ = 0.

We proceed with the analysis according to the management operation initiated by the adversary:

Replication. Consider a replication initiated by the adversary from processor p ∈ A to a subset of processors Q

(i.e., A′ = A∪Q). The cost incurred is dist(A,A′) = D ·T (Q∪{p}). The Steiner tree adversary,having configuration

10

T0 ⊇ σn∪A, can also add to its tree the vertices in Q, ending with a Steiner tree of σn∪A′, by letting T1 = T (T0, Q).
Since p ∈ T0, distSt(T0, T1) ≤ T (Q ∪ {p}). Therefore we can bound the change in potential by:

∆Φ = (α + 2)D ·∆Υ

≤ (α + 2)D · {Υ(ĥn, T1)−Υ(ĥn, T0)} ≤ (α + 2)D · c · distSt(T0, T1)

≤ (α + 2)c ·D · T (Q ∪ {p}) = (α + 2)c · dist(A,A′)

Deletion. If the adversary deletes copies of the file, incurring no cost, then A′ ⊂ A. Thus we may choose T1 = T0,
so that T1 ⊇ σn ∪A ⊇ σn ∪A′. Therefore:

∆Φ = (α + 2)D ·∆Υ ≤ (α + 2)D · {Υ(ĥn, T1)−Υ(ĥn, T0)} = 0

Request Analysis.We analyze different request types separately. For any request the change in the potential is
bounded above by a constant times the cost of the adversary to serve the request (not including its move cost)
minus the work done by SB for serving the request and for changing configuration.

Read Request. The cost of algorithm SB on a read request ρ initiated at a processor r is d(B, r). In case it
replicates its replication cost is exactly D times the cost of Alg on the request at vertex r. Thus its expected cost
for ρ is:

E(CostSB(hn, ρ)) = d(B, r) + 1
D ·D · E(CostSt

Alg(ĥn, r)) ≤ 2E(CostSt
Alg(ĥn, r))

The last inequality follows because the cost of any Steiner tree algorithm, whose current configuration, B̂, is a tree
spanning the vertex set B, to serve a request at r, is at least the cost of adding some path from a vertex in B to
r, bounded below by d(B, r). (notice that expectation is of Alg’s cost is taken only over its own coin tosses).

The probability that SB ’s configuration is changed is 1
D . Therefore, with probability 1 − 1

D the potential
function does not change. Therefore,

E(∆Φ) = (1− 1
D) · 0 + 1

D ·D · E((α + 2) ·∆Υ + α ·∆Θ) = (α + 2) · E(∆Υ) + α · E(∆Θ)

where the expected change in Υ and Θ is the conditional expected change, in case that SB decides to replicate,
taken only over the coin tosses of Alg.

We proceed with analyzing each of the potential terms. Suppose the Steiner tree algorithm Alg with the current
subtree B̂, changes to a (possibly random) configuration B̂′, following the new request at r. The change in Θ is:

E(∆Θ) = E(T (B̂′))− T (B̂) = distSt(B̂, B̂′) = E(CostSt
Alg(ĥn, r))

We now analyze the change in Υ when SB decides to replicate. SB feeds Alg with a new request at vertex r, and
therefore the new history ĥn+1 of Alg consists of the request sequence σn+1 = σnr. Let the Steiner tree adversary,
having current configuration T0 ⊇ σn ∪ A add to its tree the minimal path from the closest vertex to r in A,
incurring cost d(A, r) and ending with a Steiner tree T1 = T (T0, {r}) ⊇ σn+1 ∪A. Using that Υ is a one-step (and
therefore also a two-step) potential function for Alg, we obtain that

E(∆Υ) ≤ E[Υ(ĥn+1, T1)]−Υ(ĥn, T0) ≤ c · CostSt
Adv(T0, r)− E(CostSt

Alg(ĥn, r))

= c · d(A, r)− E(CostSt
Alg(ĥn, r))

As CostAdv(A, ρ) = d(A, r), we conclude that the expected change in Φ is:

E(∆Φ) = (α + 2) · E(∆Υ) + α · E(∆Θ)

≤ (α + 2) · {c · CostAdv(A, ρ)− E(CostSt
Alg(ĥn, r)}+ α · E(CostSt

Alg(ĥn, r))

= (α + 2)c · CostAdv(A, ρ)− 2E(CostSt
Alg(ĥn, r)) ≤ (α + 2)c · CostAdv(A, ρ)− E(CostSB(hn, ρ))

11

Write Request. We follow the same steps as in the analysis of the read request. The cost of SB on a write request
ω initiated at processor w consists of the cost of the write T (B ∪ {w}), and in case SB decides to delete, it also
pays the cost of the migration. Therefore SB’s expected cost is:

E(CostSB(hn, ω)) = T (B ∪ {w}) + 1
αD ·D · d(B,w) ≤ T (B) + α+1

α · d(B,w)

As B̂ spans B, T (B) is a lower bound on T (B̂), it now follows:

E(CostSB(hn, ω)) ≤ T (B̂) + α+1
α · d(B,w)

Since SB changes its configuration only with probability 1
αD , we have that the potential function does not change

with probability 1− 1
αD . Therefore,

E(∆Φ) = (1− 1
αD) · 0 + 1

αD ·D · {(α + 2) ·∆Υ + α ·∆Θ} = α+2
α ·∆Υ + ∆Θ

As before, the change in Υ and Θ is the conditional change, in case that SB deletes.

Since with probability 1/αD the new configuration of Alg is {w}, and its new history, denoted ĥw, consists of
a single request at w, we have:

∆Θ = T ({w})− T (B̂) = −T (B̂)

∆Υ ≤ Υ(ĥw, T (A ∪ {w}))−Υ(ĥn, T0)

This follows because a new version of Alg is initialized, and the new Steiner tree adversary can obviously choose
T1 = T (A ∪ {w}) as its configuration in order to cover the vertices in A and w.

Suppose that instead of initializing a new version of Alg with initial configuration w, Alg were to receive a
new request at w, resulting with the fictitious history ĥn+1. Following the read request analysis, the Steiner tree
adversary can choose the configuration T ′1 = T (T0, {w}), so that:

E[Υ(ĥn+1, T
′
1)]−Υ(ĥn, T0) ≤ c · CostSt

Adv(T0, w)− E(CostSt
Alg(ĥn, w))

≤ c · d(A,w)− d(B,w)

Alg is strictly competitive and hence, by Theorem 3, Υ(ĥw, {w}) = Υ0 = 0. Therefore,

Υ(ĥw, T (A ∪ {w})) = Υ(ĥw, T (A ∪ {w}))−Υ(ĥw, {w})

≤ c · distSt({w}, T (A ∪ {w})) = c · T (A ∪ {w})

Since Υ is nonnegative we obtain:

∆Υ ≤ Υ(ĥw, T (A ∪ {w})) + α+1
α+2 · {E[Υ(ĥn+1, T

′
0)]−Υ(ĥn, T0)}

≤ c · T (A ∪ {w}) + α+1
α+2 · {c · d(A,w)− d(B,w)}

Clearly, d(A,w) ≤ T (A ∪ {w}) since a Steiner tree spanning A ∪ {w} includes some path from a vertex in A to w.
Hence,

∆Υ ≤ 2α+3
α+2 c · T (A ∪ {w})− α+1

α+2 · d(B,w)

The cost of the write request to the adversary is CostAdv(A,ω) = T (A∪ {w}). We conclude that the total change
in the potential function is:

E(∆Φ) = α+2
α ·∆Υ + ∆Θ ≤ 2α+3

α c · T (A ∪ {w})− α+1
α · d(B,w)− T (B̂)

≤ 2α+3
α c · CostAdv(A,ω)− E(CostSB(hn, ω)).

12

Summarizing the above case analysis, SB is max{ 2α+3
α , α + 2} · c-competitive against the adaptive on-line

adversary. max{ 2α+3
α , α + 2} has its minimum at α =

√
3.

The competitive ratio in Theorem 4 is best possible up to a constant factor for any network as follows from the
lower bound given in Theorem 13.

Note that although the cost incurred by the Steiner-Based algorithm for serving a write request initiated at w is
assumed to be the optimal inherent cost; i.e., the weight of a minimum Steiner tree spanning w and all processors
holding a copy of the file (I.e., T (B∪{w})), the proof holds even if we assume that the on-line cost is the minimum
path length from w to the current configuration plus the weight of the on-line Steiner tree that Alg maintains (i.e.,
T (B̂)+d(B,w)). This variation is required for the analysis of the distributed version of the algorithm in Section 6.

In order to explicitly characterize the competitive ratio for the file allocation problem on a variety of networks,
we present the following results on the competitive ratio of the on-line Steiner tree problem.

Define the Greedy on-line Steiner tree algorithm as follows. Given a request at vertex v, Greedy adds to its
current subtree the shortest path in G from a vertex in its subtree to v.

The following result was proven by Imase and Waxman [IW].

Theorem 6 For any weighted graph G on n nodes, the Greedy Steiner tree algorithm is log n-competitive.

We also have the following easy to verify facts.

Fact 7 The Greedy Steiner tree algorithm is 1-competitive for trees, and for uniform complete graphs.

Fact 8 The Greedy Steiner tree algorithm is 2-competitive for the ring.

Applying Theorem 4 we conclude

Theorem 9 For every network on n processors, SB using Greedy as a Steiner tree algorithm is an O(log n)-
competitive file allocation algorithm against adaptive on-line adversaries. It is O(1)-competitive for processors on
a ring, for trees, and for uniform networks.

Finally, the result of [BBKTW] implies the following corollary.

Corollary 10 For every network on n processors, There exists a computable deterministic O(log2 n)-competitive
algorithm for the file allocation problem. There exists a computable deterministic O(1)-competitive algorithm for
processors on a ring.

Proof. The corollary follows from the fact that for any finite network N , the natural potential function for any
Steiner tree algorithm for N is computable.

We note that the natural potential function is computable even for the continuous ring.

4 Uniform Networks

In this section we present a 3-competitive, deterministic file allocation algorithm for uniform networks. Let P

denote the set of processors in the network.

Algorithm Count.
Count is defined for each processor p ∈ P separately. It maintains a counter c, and performs the following algorithm.
We say that Count is waiting, if there is a single copy of the file, and the processor holding the file is performing
step 4 of the algorithm. Initially, set c := 0. If p holds a copy of the file, begin at step 4.

13

1. While c < D, if a read is initiated by p, or if a write is initiated by p, and Count is waiting, increase c by 1.

Replicate

2. a copy of the file to p.

3. While c > 0, if a write is initiated by any other processor, decrease c by 1.

4. If p holds the last copy of the file, wait until it is replicated by some other processor.

Delete

5. the copy held by p.

6. Repeat from step 1.

Theorem 11 Algorithm Count is 3-competitive for uniform networks.

Proof. Fix a processor p. One iteration of steps 1–6 at p is named a phase. Note that if Count is waiting then
it is executing step 4 in the single processor holding a copy of the file, and it is executing step 1 in all the other
processors. Count’s cost is charged on individual processors as follows.

1. A processor initiating a read is charged the cost of the read .

2. If Count is waiting, a processor initiating a write is charged the cost of the write .

3. If Count is not waiting, and a write is initiated, the cost of 1 is charged at each processor holding a copy,
except for the initiating processor. Note that the sum of costs charged here is exactly the cost of that write .

4. The cost D of replicating is charged at the processor receiving the copy.

The adversary’s cost is charged the same, except that a replication is not charged. Rather, it registers a debit of
D at the processor receiving the copy. That debit is paid (and a cost of D is charged) when the copy is deleted.
Debits are initially set to 0 for processors not holding copies, and to D for processors that initially do hold a copy.
Note that the charging of the adversary’s cost minus the sum of initial debits is a lower bound on its actual cost,
because at the end of the sequence some processors may have positive debit.

At the begining Count is waiting after all bu one copy are deleted, so that no cost is incurred. Now, during a
phase of a processor p, Count’s cost charged to p is at most 3D. Steps 1 and 2 cause a charge of D each. Step 3
causes a charge of D. The total cost of Count is the sum of costs over all phases of all processors. There can be at
most n partaial phases (which are not over).

The adversary’s cost during a full phase (note that the duration of a phase is determined by Count) is at least
D. If the adversary ever deletes a copy from the processor during a phase, it is charged D. Otherwise, it either
holds a copy at that processor when Count begins step 3 (and therefore not waiting), so it pays D during that step;
or, it does not hold a copy at the end of step 1, and since it could not delete during that step, it must have been
charged at least D for the requests of step 1. The reason is that during step 1 the processor initiated a total of D

requests, counting read requests and write requests initiated while Count was waiting.

5 Lower Bounds for File Allocation

Black and Sleator [BS] used a result of Karlin et al. [KMRS] to get a lower bound of 3 for data migration algorithms.
If requests are limited to write requests only, the file allocation problem collapses to the data migration problem,

14

and therefore the result in [BS] implies a lower bound for deterministic lower bound for file allocation. A simple
variation of their proof gives the following theorem.

Theorem 12 Let N be any network over a set of at least two processors. The competitive ratio of any randomized
on-line file allocation algorithm for N against adaptive adversaries is at least 3.

We now proceed to show, that in certain networks, the lower bound can be as bad as Ω(log n), where n is the
number of processors in the network. The following theorem relates file allocation lower bounds to Steiner tree
lower bounds.

Theorem 13 For every network N , if there exists a c-competitive on-line file allocation algorithm for N , then
there exists a strictly c-competitive on-line Steiner tree algorithm for N .

The theorem holds for any type of adversary. However the proof of Theorem 13 is stated in terms of competitive
randomized algorithms against oblivious adversaries. The proof for adaptive adversaries is similar.

In the proof of Theorem 13 we use the following definition and lemma.

Definition. Let A be a c-competitive randomized on-line file allocation algorithm in a network N . Let the initial
configuration be a single copy at a vertex v1 of N . Let σ be a sequence of requests to A. A (σ, v, ε)-replicate forcing
sequence τ is a sequence of read requests at v, such that an optimal algorithm serving στ must have a copy at v at
the end, and A has a copy at v at the end with probability 1− ε. A (σ, ε)-delete forcing sequence τ is a sequence
of write requests at v1, such that an optimal algorithm serving στ must end in the configuration {v1}, and A ends
in that configuration with probability 1− ε.

Notice that if A is c-competitive then for every σ, v, ε there must be a (σ, v, ε)-replicate forcing sequence. This
is because each read request at v incurs an expected cost of at least the minimum distance in the network times ε,
unless A replicates to v with probability greater than 1 − ε, whereas the adversary’s cost is at most D times the
maximum distance in the network (for replicating to v). A similar argument shows that for every σ, ε, there is a
(σ, ε)-delete forcing sequence.

Lemma 14 Let N be a network over a set P of processors. Let A be a randomized c-competitive on-line file
allocation algorithm in N . Let σ be an arbitrary request sequence for A. Then, there exists a randomized on-line
Steiner tree algorithm B for N with the following property: Let ν = v1, v2 . . . , vn be a sequence of vertices input
to B. Let the initial configuration for A be {v1}. Let 1 > ε > 0. Let τ be a (σ, ε)-delete forcing sequence for A.
Let % = %2%3 · · · %n be the following sequence. %2 is a (στ, v2, ε)-replicate forcing sequence. %3 is a (στ%2, v3, ε)-
replicate forcing sequence. In general, %i, 2 ≤ i ≤ n, is a (στ%2 · · · %i−1, vi, ε)-replicate forcing sequence. Then,
B’s expected cost to serve ν is at most 1

D times the expected cost incurred by A to serve % after serving στ , plus δ,
where δ = ε|P |W , W being the sum of weights of all edges in N .

Proof. We construct an on-line Steiner tree algorithm B for N as follows. Given input ν, we define the trees
T1, T2, . . . , Tn chosen by B in response to ν as follows. we simulate A on στ . If A’s configuration is {v1} (this
happens with probability 1− ε), then T1 = ({v1}, ∅). Otherwise T1 = T2 = T3 = · · · = Tn is an arbitrary spanning
tree of N . Now, in the first case, we give A %2, and execute the following procedure, with j = 2.

Tj := Tj−1

for r := 1st req. in %j to last req. in %j do
input the rth request of %j to A

for each processor p that A replicated from do
let Q := the set of processors that replicated from p

Tj := T (Tj , Q)

15

end
end

If A does not have a copy at v2 after it serves %2, then extend T2 to an arbitrary spanning tree of N , and
set T3 = · · · = Tn := T2. In general, if the first j − 1 requests of ν are served, and B’s tree does not span N ,
then execute the above procedure, and if A does not have a copy at vj in the end, then extend Tj to an arbitrary
spanning tree of N , and set Tj+1 = · · · = Tn := Tj .

It is obvious from the construction, that the edges added to the Steiner tree in the above procedure are
exactly the edges along which A replicates. Therefore, in all executions of A in which A replicates to the vertices
v1, v2, v3, . . . , vn, B’s cost is at most 1/D times the cost A incurs on %. The probability that this does not happen
is at most nε ≤ |P |ε. In this case, B pays the size of an arbitrary spanning tree of N , which is at most W .

Proof of Theorem 13
Assume the opposite. So, let A be an on-line file allocation algorithm such that E(costA(σ)) ≤ c ·CostOPT(σ) + a

for every request sequence σ, while no on-line Steiner tree algorithm in N can achieve a ratio better than b > c.
Let b > b′ > c. Let B0 be the on-line Steiner tree algorithm constructed from A by Lemma 14, taking some ε = ε0,
σ = σ0 = ∅. There exists a sequence ν0, such that B0’s expected cost on ν0 is at least b′ · T (ν0). By Lemma 14,
the expected cost incurred by A on the sequence % = %0 is at least D times B0’s cost on ν0 minus Dδ0, where
δ0 = ε0|P |W . Since before serving %0 the optimal algorithm is forced to the configuration v1, the cost incurred by
the optimal algorithm to serve %0 is at most D · T (ν0), as it can replicate immediately to all vertices of ν0. Note,
that the cost incurred by the optimal algorithm to serve %0 is at least the minimum distance ` in N . Let τ0 be the
(∅, ε0)-delete forcing sequence used by Lemma 14.

Now, use Lemma 14 again with ε1, σ = σ1 = τ0%0. We can define sequences ν1, τ1 and %1, and a Steiner tree
algorithm B1, such that B1’s cost on ν1 is at least b′ · T (ν1), and A’s cost on %1 is at least D times B1’s cost on ν1

minus Dδ1, where δ1 = ε1|P |W , and the optimal cost on %1 is at most D ·T (ν1). Now, repeat this process infinitely
many times. Let σi = τ0%0τ1%1 · · · τi−1%i−1 be the sequence given to A after i repetitions of this process. We get:

costA(σi)− a

CostOPT(σi)
≥ b′ − a

i`
−

∑i−1
j=0 δj

i`
.

Choose εj such that
∑∞

j=0 δj converges, and get that the right-hand side of the inequality converges to b′ as i goes
to infinity, a contradiction.

Imase and Waxman [IW] prove the following theorem.

Theorem 15 For all n, there exist graphs Gn over n nodes, such that the competitive ratio for on-line Steiner tree
for those graphs is in Ω(log n).

We note that this result applies to randomized algorithms against the oblivious adversary.

Theorems 13 and 15 give

Theorem 16 For all n, there exist networks over n processors Nn, such that the competitive ratio of any random-
ized algorithm against the oblivious adversary on those networks is in Ω(log n).

6 Distributed Algorithms

In this section we demonstrate the implementation of our general topology file allocation algorithm SB as a dis-
tributed algorithm in a network of processors. SB is defined with respect to some on-line Steiner tree algorithm.

16

We use a version of SB, that runs a variant of the greedy on-line Steiner tree algorithm of [IW]. Given a new input
vertex p, this greedy algorithm attaches it to the closest vertex in the existing tree. No other vertices are added.
In a network over n processors, the greedy algorithm is strictly O(log n)-competitive. The proof is identical to the
one given in [IW].

In Section 3, we have assumed some “global intelligence,” that knows the configuration of the entire network,
and makes decisions for the single processors. In this section, we make the following assumptions. We assume that
in a network over n processors, sending a message of size log n over a communication link of weight w costs w.
We assume, that the size of data, which a read or write request use, is a single word of size log n bits. We assume
that the size of the file is D words, each of size log n bits. δ denotes the logarithm (base 2) of the diameter of the
network N , when the shortest link is normalized to 1.

Definition. A distributed on-line file allocation algorithm has to serve sequences of read and write requests that
processors in the network initiate. The cost of a distributed on-line file allocation algorithm to serve a sequence of
requests is the total cost of messages it sends to serve the sequence.

Definition. A distributed on-line algorithm is c-competitive iff there exists a constant a, such that for any
global-control adversary Adv,

E(CostAlg(σ)) ≤ c · E(CostAdv(σ)) + a

where σ is the request sequence generated by Adv.

We give a distributed on-line file allocation algorithm, named distributed-SB, for any network. We measure
distributed-SB’s messages cost for any sequence of reads and writes, and show the following result:

Theorem 17 For every n-processor network N , distributed-SB is O(max{δ log3 n/ log3 D, log3 n/ log2 D}) com-
petitive.

Note, that distributed-SB’s cost is measured against the cost of an optimal non-distributed algorithm.

Distributed-SB uses a distributed algorithm for the following problem.

The Distributed On-line Data Tracking Problem.

In a network over a set P of n processors, maintain a subset Q of processors holding copies of the file with the
following operations on Q:

Insert(u,v), initiated at u ∈ Q, inserts v to the set Q.

Delete(v), initiated at v, removes v from the set Q.

Find(u), initiated at u, returns the address of a processor v ∈ Q.

Definition. A distributed on-line data tracking algorithm serves sequences of Insert, Delete and Find operations
initiated at processors of the network. The cost of a distributed on-line data tracking algorithm for a sequence of
operations is the total cost of messages it sends to conduct those operations.

Definition. The approximation factor of a Find(u) operation that returns v ∈ Q is the ratio d(u, v)/d(u, Q).

Definition. The optimal cost of Insert(u,v) is the cost of transmitting the file from u to v alone; i.e., D · d(u, v).
The optimal cost of Delete(v) is 0. The optimal cost of Find(u) is the cost of sending a message from u to the
closest processor in Q; i.e., d(u, Q)

17

We give a distributed on-line data tracking algorithm, named TRACK, dealing with arbitrary sequences of
Insert, Delete and Find operations, such that the following theorem holds.

Theorem 18 For every n-processor network N , for every sequence of operations σ,

1. TRACK’s total cost for conducting Insert and Delete in σ is O(δ log n/ log2 D) times the total optimal cost
of those operations.

2. TRACK’s cost on each Find in σ is O(log2 n/ log2 D) times the optimal cost of that Find.

3. TRACK’s approximation factor on each Find in σ is O(log n/ log D).

(Where the value of D is truncated to [2, n]).

Distributed-SB.

Distributed-SB works as follows. It maintains the set of processors holding copies of the file in a tree structure
T , by using an adjacency list at each processor in T . Vertices of T are also maintained by the distributed on-line
data tracking algorithm. If a processor r initiates a read request, invoke Find(r), which returns the address of a
processor q holding a copy. Get the required data. With probability 1/D do the following. Simulate the greedy
Steiner tree algorithm by adding r to T (connected to q). Replicate to r using Insert(q,r).

If a processor w initiates a write request, invoke Find(w), which returns the address of a processor q holding
a copy. Send the required data from w to q, then from q to the rest of the processors holding copies via the tree
structure T . With probability 1/

√
3D do the following. Add w to T , and replicate to w using Insert(q,w). Then,

scan T post-order, starting at q, and at each visited processor p 6= w, Delete(p). Then, collapse T to the single
vertex w.

Our analysis of distributed-SB proceeds as follows. We compare its cost with the cost of SB on the same
sequence and with the same outcome of coin tosses. We divide SB’s cost and distributed-SB’s cost into three
categories:

1. Find cost, which is the cost of reads, excluding the replication cost.

2. Scan cost, which is the cost of writes, excluding the migration cost.

3. Update cost, which is the cost of replications and deletions.

In the following claims, we assume that SB and distributed-SB use the same sequence of random bits.

Fact 19 At all times, the set of processors holding copies of the file that distributed-SB maintains (vertices of T)
equals the set of processors in which SB holds copies of the file.

Lemma 20 At all times, the total length of edges of the tree T maintained by distributed-SB is O(log n/ log D)
times the total length of of edges of the greedy Steiner tree maintained by SB.

Proof. Follows from Fact 19 and statement 3 of Theorem 18.

Lemma 21 For every sequence of requests σ, for every read request in σ, the find cost of distributed-SB for that
read is O(log2 n/ log2 D) times the find cost of SB for the same read .

Proof. Follows from Fact 19 and statement 2 of Theorem 18.

Lemma 22 For every sequence of requests σ, for every write request in σ, the scan cost of distributed-SB for that
write is O(log2 n/ log2 D) times the scan cost of SB for the same write .

18

Proof. The scan cost includes the cost of finding a processor holding a copy of the file and the cost of scanning
the tree of processors holding copies. By Fact 19 and statement 2 of Theorem 18, the first task costs distributed-
SB O(log2 n/ log2 D) times SB’s cost for the same task. By Lemma 20, the second task costs distributed-SB
O(log n/ log D) times SB’s cost for the same task.

Lemma 23 For every sequence of requests σ, the update cost of distributed-SB for σ is O(δ log2 n/ log3 D) times
the update cost of SB for σ.

Proof. The update cost of distributed-SB includes the data tracking cost and the cost for maintaining T . SB
and distributed-SB replicate and delete the same copies, but distributed-SB replicates along distances, which are
O(log n/ log D) times the distances SB replicates along. Fact 19 and statement 1 of Theorem 18 give, that the data
tracking cost of distributed-SB over σ is O(δ log n/ log2 D) times the update cost of a non-distributed algorithm,
that replicates and deletes exactly the same way that distributed-SB does. This is O(δ log2 n/ log3 D) the update
cost of SB, which is simply the cost of replications. Now, consider a subsequence of σ, where T grows monotonically
(i.e., processors are added to T) excluding the last request, where T might collapse. The maintenance cost of T over
this subsequence is O(1) times the maximal size of T , which by Lemma 20 is O(log n/ log D) times the maximal
size of the tree maintained by SB. SB’s update cost to create that tree is D times its size. Therefore, we get that
distributed-SB’s cost for maintaining T is O(log n/D log D) times SB’s update cost.

Proof of Theorem 17. Follows from Lemmas 21, 22, 23, and the fact that SB is O(log n)-competitive.

TRACK internals.

In the solution to the data tracking problem, we use two tools. One is a graph-theoretic structure of regional
matchings, given by [AP1]. An m-regional matching is an assignment of 2 sets of processors to each processor, a
read-set and a write-set, such that for every two processors p and q that satisfy d(p, q) ≤ m, the read-set of p and the
write-set of q have a non-empty intersection. The radius of a read-set or a write-set of p is the maximum distance
between p and a processor in the set, divided by m. The degree of a read-set or a write-set of p is the number
of processors in the set. The read-radius, read-degree, write-radius and write-degree of an m-regional matching are
defined as the maximum over all processors p of the corresponding parameter for p.

[AP1] show how to construct for every m and `, 2 ≤ ` ≤ 2 log n, an m-regional matching with the following
parameters: read-radius at most `, read-degree at most 2` + 1, write-radius at most 2` + 1, and write-degree at
most n2/`. For our purposes we take ` = 2 log n/(log D − log log D). Therefore, the read-radius, read-degree, and
write-radius are all O(log n/ log D), and the write-degree is D/ log D.

The other tool, which we need for the solution to the data tracking problem, is a solution to the following
problem, which we name the on-line cover problem. Let Q be a subset of processors. For integers r, s > 0, a
set C = {C1, C2, . . . , Cs} of mutually exclusive subsets of processors, and a choice of processors p1, p2, . . . , ps,
pi ∈ Ci, is called an (r, s)-cover of Q iff for every i, i = 1, 2, . . . , s, Q ∩ Ci 6= ∅, and Q ⊂ ∪s

i=1Ci, and for every Ci,
i = 1, 2, . . . , s, the distance between any processor in Ci and pi is at most r. Each of the sets Ci is called a cover
set. The chosen processors, p1, p2, . . . , ps, are called covering processors.

The on-line cover problem is the problem of maintenance of covering processors for a dynamic set Q, where
insertions into Q and deletions from Q are allowed (but Q is never allowed to be empty). For every integer k > 0,
we need a distributed algorithm that maintains a (2k−2, s)-cover of a set Q, allowing insertions, which are initiated
at processors in Q, and deletions, which are initiated at the deleted processor, (s changes with Q) with the following
properties. Suppose that the optimal cost of an insertion is the distance between the initiating processor and the
inserted processor, and the optimal cost for a deletion is 0. Then,

19

1. The algorithm is O(1)-competitive.

2. For every sequence of insertions and deletions, the final value of s is at most 1
k the optimal cost.

3. The algorithm maintains a distributed data structure of the cover sets, so reaching a processor in Q from a
covering processor costs O(k).

Given solutions to the regional matching problem and the cover problem, we solve the data tracking problem as
follows. Compute m-regional matchings for m = 2i, i = 3, 4, 5, . . . , δ. This is done once. Also, run cover algorithms
for k = 2i, i = 1, 2, . . . , δ − 2. All cover algorithms cover the same dynamic set Q of processors holding a copy of
the database.

Insert(u,v) is performed by inserting v into Q by all cover algorithms. If the 2i cover algorithm creates a
new cover set with a new covering processor p, then p’s write-set of the 2i+2-regional matching is informed of p.
Informing the write-set costs O(2iD log n/ log2 D).

Delete(u) is performed by deleting u from Q by all cover algorithms. Each time an entire cover set of the 2i

cover algorithm is removed, the corresponding covering processor informs its write-set of the 2i+2-regional matching.
Again, informing the write-set costs O(2iD log n/ log2 D).

Find(u) is performed by searching u’s read-sets, starting with the 8-regional matching read-set, then the 16-
regional matching read-set, etc. For the 2i-regional matching read-set, u checks if there is a processor in the
read-set, which is in the write-set of a covering processor (in the same regional matching). If such a processor q is
found, u stops the search. Now, u can reach a processor holding a copy through q, the covering processor p that
contains q in its write-set, and the data structure of the 2i−2 cover algorithm that enables p to find a processor in
Q.

The following claims are useful for the analysis:

Claim 24 Let u be a processor. If there exists a processor v holding a copy, such that the distance between u

and v is at most 2i, then the read-set search in the Find(u) implementation does not go beyond the 2i+1 regional
matching.

Proof. Let w be v’s covering processor in the 2i−1 cover algorithm. The distance between v and w is at most
2 · 2i−1 − 1 ≤ 2i. By the triangle inequality, the distance between u and w is at most 2i + 2i = 2i+1. Therefore, in
the 2i+1-regional matching, the read-set of u and the write-set of w intersect.

Claim 25 Let v be the processor returned by a Find(u) call whose read-set search terminated at the 2i-regional
matching. Then, the distance between u and v is in O(2i log n/ log D).

Proof. Let q denote the processor in the 2i-regional matching at which the search ended successfully. Let p

denote the covering processor that contains q in its write-set. d(u, v) is at most the length of the path u–q–p–v,
which is d(u, q) + d(q, p) + d(p, v). d(u, q) is bounded by the diameter of u’s 2i-regional matching read-set, which
is in O(2i log n/ log D). Similarly, d(q, p) is bounded by the diameter of p’s 2i-regional matching write-set, which is
in O(2i log n/ log D). A bound on d(p, v) is given by Property 3 of the 2i−2 cover algorithm; i.e., O(2i−2).

Proof of Theorem 18. Let σ be an arbitrary sequence of Insert, Delete and Find operations. We analyze the
cost of the algorithm on σ. Let the sum of optimal costs for Inserts and Deletes in σ be denoted UPD. The optimal
cost of the sequence of insertions and deletions given to each cover algorithm during the handling of σ is UPD/D.
So, the total cost of all cover algorithms to handle the sequence they are given during the handling of σ is

O(UPD · δ/D). (3)

20

In each of the δ− 2 cover algorithms, the number of cover sets removed is bounded by the number of cover sets
created. A cover set is created at most once every time the optimal insertions cost increases by 2i. Therefore, the
total cost of informing the write-sets of Inserts and Deletes is at most:

δ−2∑
i=1

UPD
2iD

·O(2iD log n/ log2 D) = O(UPD · δ log n/ log2 D). (4)

The first statement of the theorem follows from Equations 3 and 4.

Now, examine the cost of a Find. Let the last read-set searched be that of the 2j-regional matching. The
communication cost of the last search is bounded by O(2j · log2 n/ log2 D). This also bounds the total search
cost. Tracing the pointers to a processor holding a copy costs O(2j · log n/ log D) + O(2j · log n/ log D) + O(2j) =
O(2j · log n/ log D). The optimal cost of this Find operation is given by Claim 24. Therefore, we conclude that the
cost of the on-line data tracking algorithm per Find is O(log2 n/ log2 D) times the optimal cost per the same Find.
This shows the correctness of the second statement of the theorem.

The third statement of the theorem follows directly from Claim 25.

We complete our discussion by showing a solution to the cover problem.

The Cover Problem.

Assume at first, that the network of processors is defined by a weighted graph G in which all weights are 1, and
that all insertions are to processors adjacent in this graph to processors already in Q. Therefore, the cost charged
for an insertion is 1. Also, assume that Q = {q0} initially. Each cover set is represented by a directed tree. The
root is the corresponding covering processor, and all edges point towards the root. A processor contained in a cover
set is marked as such. A processor in Q is marked as such. The cover algorithm works as follows. Every processor
p holds a counter cp. Initially q0’s counter is 0. For all other processors the value is undefined. The initial cover is a
single set {q0} with the covering processor being, naturally, q0. Let the current cover sets be C = {C1, C2, . . . , Cs},
let C = ∪s

i=1Ci, and let the covering processors be p1, p2, . . . , ps. The algorithm maintains the following invariants:

1. For every p ∈ C, 0 ≤ cp ≤ 2k − 2.

2. For every i, 1 ≤ i ≤ s, for every p ∈ Ci, cp is an upper bound on d(p, pi).

3. For every i, 1 ≤ i ≤ s, all processors in Ci form a directed tree rooted at pi. This tree is a subtree of G.

4. For every i, 1 ≤ i ≤ s, every path from pi to a leaf in the tree representing Ci contains at least one processor
of Q.

5. If s is increased then the weight of the newly created tree is at least k − 1.

These invariants ensure the correctness of the algorithm. Invariants 1,2 and 4 imply that the cost of reaching a
processor in Q from a covering processor is at most 2k − 2. Invariants 3 and 5 imply that at every stage s is at
most 1

k times the optimal cost, since the optimal cost increases by the same amount the some of weights of all trees
increases.

We now describe the cover algorithm, by defining how it handles insertions and deletions. Let p be an inserted
processor. Let q ∈ Q be the processor adjacent to p, that initiates the insertion. If p is already in C, it simply
marks itself as being in Q. Otherwise, the following update procedure is performed. First, cp is set to cq + 1, and
p is added to q’s tree by an edge pointing from p to q. Now, if cp = 2k − 1, a scan-back procedure is conducted,
starting at p. Each processor scanned decreases its counter by k, and then the scan moves to its parent in the tree.

21

The scan-back stops once a processor b with cb < k is encountered (the root has a counter 0, so the process must
stop). This preserves invariant 1. Let t be the processor scanned just before b. If the new value of ct is 0, then a
new cover set is created with t as the covering processor. This is done by detaching t from b’s tree.

This procedure preserves a somewhat stronger property than invariant 2:

2’. For every i, 1 ≤ i ≤ s, for every p ∈ Ci, cp is an upper bound on d(p, pi). If cp ≤ k then cp = d(p, pi).

The proof that the invariant holds is by induction on the insertion steps in the algorithm, using the fact that when
a processor is inserted it is firstly assigned its predecessor’s counter plus one, and the fact that if a counter is ever
decreased then it decreased from some value greater than k to some value smaller than k. It is clearly true at
the beginning where there is only one node in the tree with zero counter. Consider a new insertion of processor
p from q. For a processor x, let c′x denote the value of its counter after the insertion. If c′p ≤ 2k − 2 then since
c′p = cq + 1 the invariant follows by induction since the length of the path to the covering processor increases. If
c′p = 2k − 1 then let b and t be as in the procedure above. If c′t > 0 then since when t was inserted from b, we
had that t’s counter was greater by 1 from b’s counter. and before the insertion of p, cb < k while ct > k it follows
that cb was once decreased by k, and therefore c′t = ct − k = cb + 1. If ct = 0 then the invariant holds since before
the insertion all counters of processors in the subtree rooted at t where greater than k, and there distance to the
covering processor only decreased as a result of the creation of a new cover set. The only counters decreased are
those along the path from t to p. Obviously each counter is equal to the processors distance to the new covering
processor t. It follows that the procedure preserves invariants 2 and 5, since if the new value of ct is 0 then its
distance to p is k − 1.

Let p be a deleted processor. p marks itself as not in Q. If p ∈ C \ Q has no children (note that this can also
happen when t is detached from b’s tree in the handling of an insertion), it is detached from its tree (or, if it is the
root of the tree, the cover set is removed) and marked not in C. This procedure preserves invariant 4.

In the actual implementation of this process, between the time a processor p is inserted by q and the time p is
deleted, if ever, there is a constant number of messages passed over the edge between p and q — one message for
the insertion itself, at most once the scan-back passes over this edge, and at most once p is detached from q. This
implies the competitiveness of the algorithm.

To deal with arbitrary integer distances between processors, imagine that along an edge between two processors
there are virtual processors that divide the distance into segments of length 1. If q inserts p, the insertion is done
by inserting all virtual processor between q and p in that order (but marking them as not in Q). Any data structure
or computation required for the virtual processors can be handled at p. Basically, what p will have to handle is
the last covering processor, if any, among the virtual processors. This can only decrease the distance between a
covering processor and actual processors it covers.

Remark. The above description requires considerable memory in each processor, because each processor must keep
an array of its children in the directed tree. There could be Θ(n) children. If this array is turned into a linked list,
we get a constant amount of memory in each processor. However, an insertion might require sending a message to
a processor’s sibling in the tree, and if not all distances are 1, this might be considerably more expensive than the
inherent insertion cost. To overcome this difficulty, δ linked lists of children can be maintained, where the ith list
contains those children which are at a distance between 2i−1 + 1 and 2i from their parent.

22

7 Constrained File Allocation

In this section we study the solution of multiple file allocation problems, constrained by the local memory of the
processors. We assume all files are of the same size. Let m =

∑
p kp, the total number of files that can be stored

in the network, and k = maxp kp, the maximal number of files that can be stored in any one processor.

7.1 Lower Bound

Theorem 26 The competitive ratio of any constrained file allocation algorithm, against an adaptive on-line ad-
versary, is at least 2m− 1, in any network, when the memory capacity of all processors is equal.

Proof. The lower bound is achieved even if only read requests are issued, for k +1 different files. One of the files,
called U , is special and receives no requests at all, but both algorithm and adversary must hold it somewhere in
the network. Let the other k files be R1, R2, . . . , Rk. Define the impossible configuration C, in which all processor
p, hold files R1, R2, . . . , Rk. This is not a legal configuration since file U does not reside anywhere in the network.
Now, for all processors p, and 1 ≤ i ≤ k, we define configuration Cp,i, derived from C by replacing file Ri with file
U in processor p.

We say the algorithm is in state Cq,j if processor q holds a copy of U , and does not hold a copy of Rj . Following
[MMS], we define a set of 2m− 1 adversaries. If the on-line algorithm is in state Cq,j then the configuration Cq,j is
associated with one of the adversaries, and the other m− 1 configurations Cp,i, p 6= q or i 6= j, are each associated
with 2 adversaries. The adversary with configuration Cq,j is said to coincide with the on-line algorithm.

The next read request is issued at processor q for file Rj . Since the algorithm does not hold a copy of Rj

in q, it is charged at least the distance from q to q’s nearest neighbor. All adversary algorithms, except the one
that coincides with the on-line algorithm, have a copy of Rj in q, and thus incur no cost. The algorithm that
coincides with the on-line algorithm has a copy of Rj at q’s nearest neighbor, and therefore can read the data
requested at a cost no larger than the online cost. We can continue this procedure as long as the algorithm does
not replicate Rj to q. If the algorithm replicates the file, overwriting file Rt, (t 6= j), then the one of the two
adversaries in configuration Cq,t switches to configuration Cq,j by replicating Rt instead of Rj , paying D times the
distance to q’s nearest neighbor, which is a lower bound on the on-line algorithm’s replication cost.

If the algorithm replicates the file while overwriting U , then U must also be migrated to some other processor z

overwriting some file Rl. The new on-line configuration is Cz,l, and the on-line cost is at least D times the distance
from q to q’s nearest neighbor, called the replication cost for the algorithm, plus the distance from q to z. One
of the two adversaries in configuration Cz,l migrates its copy of U to q, and replicate Rl to take U ’s place. Thus,
preserving the invariant that only one adversary coincides with the on-line algorithm, and every other configuration
has two adversary algorithms associated with it.

The cost for this adversary algorithm is D times the distance from z to q, which is the same as the migration cost
for the on-line algorithm, plus D times the distance from z’s nearest neighbor to z. We call this cost the
replication cost for the adversary. This concludes a phase of requests to processor q, and now a new phase of
requests to processor z begins.

Thus the replication cost for the adversary in one phase is equal to the replication cost for the on-line algorithm
in a subsequent phase. Summing the costs of all adversaries over all phases is the same as the algorithm’s cost
over all phases, up to a constant additive term for the first and last phases. Since there are 2m − 1 different
adversaries at all times, at least one of them must have been charged no more than a 1/(2m − 1) fraction of the
on-line algorithm’s cost, giving the required lower bound.

23

7.2 Uniform Networks

We present a deterministic competitive algorithm for uniform networks. The algorithm is optimal up to a constant
factor.

Our algorithm uses the following terminology. We say a processor p is free if it holds less than kp different files.
A copy of a file is called single if there are no other copies of that file currently in the network.

Our algorithm works in phases. Copies of files can be either marked or unmarked. At the beginning of a phase,
all counters are zero and all copies are unmarked. Throughout, an unmarked copy is single, a marked copy may
be not single.

Algorithm DFWF. (Distributed Flush-When-Full)

The algorithm is defined for each processor p separately. Every processor maintains a counter cF for every file
F . Initially, or as a result of a restart operation, all counters are set to zero and all markings are erased. Arbitrarily,
copies of files are deleted until there is exactly one copy of every file somewhere in the network.

Every processor p follows the following procedure simultaneously for all files F :

1. While cF < D, if a read(F) request is initiated at p, or if a write(F) request is initiated at p and F is
unmarked, increase cF by 1, if p does not contain a copy of F .

2. (a) If p is free, replicate F to p and mark it. If F was unmarked, delete the unmarked copy.

(b) Otherwise, if all file copies in p are marked then restart.

(c) Otherwise, choose S to be an arbitrary unmarked copy in p.

i. If F is unmarked, switch between S and F , and mark F in p.

ii. Otherwise, if some free processor q is available, dump S to q, and Replicate a copy of F to p, mark
this copy.

iii. Otherwise, restart.

3. While cF > 0, if a write(F) request is initiated by any other processor, decrease cF by 1.

4. Restart.

DFWF

Theorem 27 is 3m-competitive for constrained file allocation on uniform networks.

Proof. We analyze the algorithm over a phase, between consecutive restarts. We compare the algorithm to an
optimal algorithm for that phase, which may start at any initial configuration. We measure the modified optimal
cost, whereby deletes cost D, whereas replications cost 0. The sum over phases of the modified optimal cost is a
lower bound on any adversary’s cost, up to a constant additive term. Let W denote the total number of write
requests dealt with in step 3, for all processors and all files. Let R denote the total number of read/write requests
initiated by all processors while at step 1 except that every processor p excludes requests to the kp files having the
largest cF counts.
DFWF

Claim 28 ’s cost per phase is at most (3m− 2)D + R + W .

24

Claim 29 The modified optimal cost per phase is at least max{D,R, W}.

The Theorem follows from these claims.

Proof of Claim 28. We denote by Mp the set of kp files with the largest cF counters in processor p. Lp denotes
the set of files excluding those in Mp. For every p, for every file F ∈Mp, let C(p, F) be the cost of the algorithm
for requests to F in step 1, the possible replication of F in step 2, and the possible dumping of an unmarked file
as a result of replicating F in step 2c. Clearly, C(p, F) ≤ 3D. We want to show∑

p,F∈Mp

C(p, F) ≤ (3m− 2)D.

Case 1. At the end of the phase there were at most m−1 marked copies. For each such copy F in p, C(p, F) ≤ 3D.
For all other copies considered, there were at most D requests.

Case 2. At the end of the phase there were m marked copies. The last unmarked copy F was marked in p in step
2a. Therefore, there was no dump, and C(p, F) ≤ 2D. Also, marking F left the processor q holding the unmarked
copy of F free. Therefore, there exists G ∈Mq, such that C(q, G) ≤ 2D, because, again, no dump occurs on behalf
of G in q.

The only requests in step 1 not accounted for are those to files in Lp, for all p. Each such request costs 1. The
only write requests not accounted for are those in step 3. Each such request can be charged 1 in each processor
not initiating the request, which holds a copy of the requested file. Note, that each such copy is marked.

Proof of Claim 29. We denote the modified optimal cost in a phase by OPT.

1. We do a case analysis to show that OPT≥ D.

(a) The phase ended in step 2b. Then, there is a processor p in which kp +1 distinct files received at least D

requests in step 1 each. Therefore, OPT either includes the cost of D requests to some file not available
at p, or the cost of deleting a file.

(b) The phase ended in step 2c. Then, no processor is free. Either OPT includes the cost of D requests
at some processor p to some file not available at p, or OPT includes the cost of deleting a file (because
at the end of the phase the number of copies unmarked (singles) plus the number of copies marked is
exactly m, and there’s a new copy requested D times, but unavailable at the requesting processor).

(c) The phase ended in step 4 by processor p and file F . Either OPT includes the cost of D requests to F

in step 1, or the cost of deleting F , or the cost of D writes to F in step 3.

2. For each processor p, ignore the first kp (or less) files that the optimal algorithm places in p. For any other
file F requested in step 1 in p, either OPT includes the cost of the requests to F , or D for deleting some
other file. Since F was requested at most D times, OPT includes the cost of the requests to F . Therefore,
OPT≥ R.

3. Let the number of write requests in step 3 for file F in p be denoted by x. x ≤ D. Either OPT includes the
cost of D requests to F in step 1, or the cost of deleting F , or the cost of x writes to F in step 3. Therefore
OPT≥ W .

25

8 Conjectures and Open Problems

The obvious open problems are to close the gaps between upper and lower bounds, and to give deterministic and/or
randomized (oblivious) results where possible. A deterministic O(log n)-competitive file-allocation algorithm, and
a deterministic distributed algorithm are given in [ABF1], but the question of giving a deterministic counterpart
to Theorem SBA is still open.

Motivated by the famous [MMS] conjecture, we conjecture that the constrained file allocation problem has a
deterministic competitive ratio of O(m) on arbitrary topologies. [ABF2] gives an O(log m)-competitive randomized
algorithm for the constrained file allocation problem on the uniform network. We hazard the guess that similar
results can be obtained by randomized algorithms against oblivious adversaries for other network topologies as
well.

The question of what competitive algorithms can be given distributed implementations, and at what cost, seems
to extend beyond the distributed data management set of problems, and should be worth pursuing.

The models presented here can clearly be generalized in several directions and at least some of them seem to
address real-life concerns. E.g., issues regarding delay and congestion should be eventually addressed.

9 Acknowledgements

We thank Baruch Awerbuch, Howard Karloff, Dick Karp, David Peleg and Jeffery Westbrook for their very kind
aid and comments.

References

[ABF1] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive Distributed File Allocation. To Appear in Proc.
of the 25th Ann. ACM Symp. on Theory of Computing, May 1993.

[ABF2] B. Awerbuch, Y. Bartal, and A. Fiat. Randomized Competitive Distributed Paging. Manuscript.

[AP1] B. Awerbuch and D. Peleg. Online Tracking of Mobile Users. Technical Report MIT/LCS/TM-410,
Aug. 1989.

[AP2] B. Awerbuch and D. Peleg. Sparse Partitions. In Proc. of the 31st Ann. Symp. on Foundations of
Computer science, pages 503–513, October 1990.

[AP3] B. Awerbuch and D. Peleg, Concurrent Online Tracking of Mobile Users, Proc. SIGCOMM. Zurich,
Sept. 1991.

[BBKTW] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the Power of Randomiza-
tion in Online Algorithms. In Proc. of the 22nd Ann. ACM Symp. on Theory of Computing, pages
379–386, May 1990.

[BLS] A. Borodin, N. Linial, and M. Saks. An Optimal On-Line Algorithm for Metrical Task Systems. In
Proc. of the 19th Ann. ACM Symp on Theory of Computing, pages 373–382, May 1987.

[BS] D.L. Black and D.D. Sleator. Competitive Algorithms for Replication and Migration Problems.
Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie-Mellon University,
1989.

26

[C] W.W. Chu. Optimal File Allocation in a Multiple Computer System. IEEE Transactions of Com-
puters, 18(10), October 1969.

[CLRW] M. Chrobak, L. Larmore, N. Reingold, and J. Westbrook. Optimal Multiprocessor Migration Algo-
rithms Using Work Functions. Unpublished.

[DF] D. Dowdy and D. Foster. Comparative Models of The File Assignment Problem. Computing Surveys,
14(2), June 1982.

[FKLMSY] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator , and N.E. Young. Competitive Paging
Algorithms. Journal of Algorithms, 12, pages 685–699, 1991.

[HP] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Aproach. Morgan Kauf-
mann Publishers, Inc. 1990.

[IW] M. Imase and B.M. Waxman. Dynamic Steiner Tree Problem. SIAM Journal on Discrete Mathe-
matics, 4(3):369–384, August 1991.

[KMRS] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive Snoopy Caching. Algorith-
mica, 3(1):79–119, 1988.

[MMS] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive Algorithms for On-Line Problems. In
Proc. of the 20th Ann. ACM Symp. on Theory of Computing, pages 322-333, May 1988.

[ML] H.L. Morgan and K.D. Levin. Optimal Program and Data Locations in Computer Networks. CACM,
20(5):124–130

[RS] P. Raghavan and M. Snir. Memory versus Randomization in On-Line Algorithms. In Proc. 16th
ICALP, July 1989.

[ST] D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and Paging Rules. Communica-
tion of the ACM, 28(2) pages 202–208, 1985.

[W] J. Westbrook. Randomized Algorithms for Multiprocessor Page Migration. Proc. of DIMACS Work-
shop on On-Line Algorithms, to appear.

[WY] J. Westbrook. and D.K. Yan. personal communication.

27

