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Analyses of functional interactions between large-scale brain net-

works have identified two broad systems that operate in apparent

competition or antagonism with each other. One system, termed

the default mode network (DMN), is thought to support internally

oriented processing. The other system acts as a generic external

attention system (EAS) and mediates attention to exogenous

stimuli. Reports that the DMN and EAS show anticorrelated activity

across a range of experimental paradigms suggest that competition

between these systems supports adaptive behavior. Here, we used

functional MRI to characterize functional interactions between the

DMN and different EAS components during performance of

a recollection task known to coactivate regions of both networks.

Using methods to isolate task-related, context-dependent changes in

functional connectivity between these systems, we show that in-

creased cooperation between the DMN and a specific right-lateral-

ized frontoparietal component of the EAS is associated with more

rapid memory recollection. We also show that these cooperative dy-

namics are facilitated by a dynamic reconfiguration of the functional

architecture of the DMN into core and transitional modules, with

the latter serving to enhance integration with frontoparietal

regions. In particular, the right posterior cingulate cortex may

act as a critical information-processing hub that provokes these

context-dependent reconfigurations from an intrinsic or default

state of antagonism. Our findings highlight the dynamic, context-

dependent nature of large-scale brain dynamics and shed light on

their contribution to individual differences in behavior.
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Increasing evidence points to a fundamental distinction between
two large-scale functional systems in the brain (1–4). One sys-

tem, comprising regions of lateral prefrontal and parietal cortex,
dorsal anterior cingulate, and anterior insula/frontoopercular
regions, typically shows increased activation during performance
of challenging cognitive tasks and has been implicated in atten-
tional and cognitive control functions (5, 6). It may thus be gen-
erally referred to as an external attention system (EAS), but it
has also been labeled the task-positive and extrinsic network (3,
4). The other system, often called the default mode network
(DMN), is localized primarily to midline posterior and anterior
cortical regions, the angular gyri, and medial and lateral temporal
cortices (7, 8). It often shows decreased activity during tasks re-
quiring attention to external stimuli (9, 10) and increased activity
during unconstrained thought, introspection, and self-related
processing (7, 11). The apparent antagonism between these two
systems is mirrored in their spontaneous dynamics, which are
often strongly anticorrelated (2). These competitive interactions
are thought to promote adaptive and efficient alternation between
DMN-dominated introspective thought and EAS-mediated pro-
cessing of external stimuli (1–4).
Several lines of evidence support this bipartite model of brain

function. First, DMN activity reductions during cognitively de-
manding tasks, termed deactivations, often scale in accordance
with attentional demands (12). Second, reduced deactivation in

such contexts has been associated with poorer task performance,
putatively reflecting an interference of endogenous processes
(e.g., mind wandering) with attention to the outside world (13,
14). Third, during memory task performance, greater DMN ac-
tivity is associated with poor encoding (which requires attention
to external stimuli) but successful memory retrieval (which
requires attention to internal mental processes), whereas EAS
regions show the opposite pattern (15). Fourth, activity in DMN
and EAS regions is often anticorrelated (2), and individuals
showing stronger anticorrelations display faster and less variable
reaction times (RTs) during performance of cognitive control
tasks (16, 17). Fifth, patients with psychiatric disorders associ-
ated with attentional disturbances show reduced anticorrelation
between the DMN and EAS (18, 19). Finally, anticorrelated
interactions emerge spontaneously in computational models of
neural dynamics simulated on realistic anatomical architectures,
suggesting that they reflect an intrinsic property of the brain’s
dynamical behavior (20).
Recent work, however, indicates that this bipartite model may

be somewhat simplistic. First, the DMN and EAS do not always
operate as functionally homogeneous entities, often splitting into
distinct subnetworks depending on task demands (5, 7, 21, 22).
This finding is particularly true for the EAS, which has been
functionally dissociated into a number of distinct subsystems (5, 6,
22–26), although similar observations have been noted for the
DMN (7, 10, 21). Second, local field potentials recorded from
putative DMN and EAS regions in felines are more often posi-
tively than negatively correlated with each other, suggesting that
these regions often interact cooperatively (27). Third, there are
multiple human functional MRI (fMRI) reports of coactivation or
cooperation (positively correlated activity) between DMN and
EAS regions during recollection (28), perception of near-threshold
acoustic stimuli (29), working memory and attention (30, 31), goal-
directed introspective processing (23, 32), and unattended mind
wandering (11). The emergence of these cooperative interactions
seems critically dependent on the task being performed by par-
ticipants at the time of scanning; i.e., they are context-specific
(17, 22, 23, 33).
The above findings suggest that certain task conditions may

provoke a departure from an intrinsic or default state of com-
petition between the DMN and EAS to enable cooperative
interactions between the two systems. It is unclear, however,
whether greater cooperation between the DMN and EAS actu-
ally facilitates better performance in such contexts and how these
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large-scale systems dynamically reconfigure themselves to sup-
port these context-dependent collaborative interactions.
In this study, we used fMRI to distinguish task-related, con-

text-dependent functional interactions between the DMN and
EAS from task-unrelated, spontaneous network dynamics in
individuals performing a recollection task previously shown to
coactivate regions of both networks (28). Our aims were three-
fold. First, we aimed to test the hypothesis that greater context-
dependent cooperation between DMN and EAS regions would
facilitate better recollection performance. Second, we aimed to
map how changing task conditions provoke a dynamic reconfi-
guration of brain functional organization from a default state of
antagonism to one of greater functional integration of DMN and
EAS processes. Third, we aimed to characterize the role that
each individual brain region plays in facilitating these shifts in
functional network architecture.

Results

Group-Level Interactions Between the DMN and EAS Are Competitive.

Sixteen adult participants performed a task requiring them to
recollect the context in which well-learned word pairs (e.g., ba-
con and eggs) were previously encountered (the second word was
perceived or imagined by the participant or read aloud by either
the participant or the experimenter). Blocks of recollection trials
alternated with blocks of nonrecollection trials requiring simple
semantic judgments about probe stimuli matched for basic per-
ceptual features (SI Text, sections S.1 and S.2 and Fig. S1).
Task-related functional networks corresponding to the DMN

and EAS were identified in an unbiased, data-driven manner
using spatial independent component analysis (ICA) (34) (SI
Text, section S.3). The method is well-suited for characterizing
the spatial anatomy and temporal dynamics of each network,
while accounting for possible functional heterogeneity within
either the DMN and/or EAS (5, 7, 21, 22, 24) (SI Text, section
S.3). The DMN was identified as a single component with a
characteristic functional anatomy consistent with prior work (7,
10). The EAS was split into four distinct components: (i) a dorsal
attention network (DAN) commonly associated with focusing
attention on external stimuli (2, 6); (ii) a cinguloopercular net-
work (CON) implicated in interoceptive awareness (35), salience
processing of external stimuli (25), and maintenance of response
set during cognitive task performance (5); and (iii and iv) left and
(4) right frontoparietal networks (LFPN and RFPN, respec-
tively) often implicated in top-down executive control processes
(5, 24). ICA commonly identifies these left and right components
as separate networks, and prior work supports functional dis-
sociations between the two components (26). Our findings below
support this functional distinction. The spatial anatomy and re-
presentative time courses of each of these five networks is pre-
sented in Fig. 1 (Table S1).
Across participants, DMN activity was higher during the se-

mantic baseline condition than recollection trials (t = −6.074,
P < 0.001), whereas the opposite was true for the CON (t =
9.387, P < 0.001), DAN (t = 7.59, P < 0.001), LFPN (t = 11.618,
P < 0.001), and RFPN (t = 9.661, P < 0.001) (Fig. 1). Accord-
ingly, cross-correlation analysis of component time courses av-
eraged across participants indicated that DMN activity was
strongly anticorrelated with the CON (r = −0.78, P < 0.001),
DAN (r = −0.79, P < 0.001), LFPN (r = −0.73, P < 0.001), and
RFPN (r = −0.59, P < 0.001), whereas the activity of each of
the four EAS networks was strongly positively correlated (0.70 <

r < 0.88, all P < 0.001).

Context-Dependent Cooperation Between the DMN and RFPN Facilitates

Rapid Recollection. The group-level results indicate that, on av-
erage, the different EAS components showed strong cooperation
with each other, while interacting competitively with the DMN.
Analysis of individual differences suggested that there was

considerable variability around this group-averaged behavior. To
analyze these differences, we extracted activity time courses for
each network and each participant and computed subject-specific
estimates of both task-related and task-unrelated functional
interactions between the DMN and each EAS component. This
distinction was critical, because it allowed us to separate context-
dependent (task-related) network interactions from putative
spontaneous or intrinsic (task-unrelated) functional dynamics.
Spontaneous or task-unrelated network interactions, nis, were

estimated by band-pass filtering of each network time course
(0.008 < f < 0.08 Hz) and orthogonalizing it with respect to
covariates modeling various noise sources and task-related var-
iance in the data (36). Task-related network interactions (nit)
were estimated using a correlational psychophysiological inter-
action (cPPI) approach that used partial correlations to isolate
covariations in task-related modulations of network activity as
distinct from task-unrelated connectivity, noise, and coactivation
effects. For both types of analysis, interactions between the
DMN and each of the four EAS components were estimated
after partialing covariance with the remaining EAS components
to ensure that only temporal correlations specific to each net-
work pair were being analyzed (SI Text, section S.4 has additional
details of these methods).
For both task-unrelated and task-related interactions, the

degree to which cooperative or competitive functional inter-
actions were expressed varied across individuals and network
pairs (SI Text, section S.7 and Figs. S2 and S3). To determine
whether these differences were associated with task perfor-
mance, we correlated the subject-specific nis and nit estimates for
each of the four DMN–EAS network pairs with measures of
recollection accuracy and RT. We found a specific and signifi-
cant negative correlation between recollection RT and task-re-
lated DMN–RFPN nit values (ρ = −0.671, P = 0.005) (Fig. S4B)
but not task-unrelated nis values (ρ = −0.353, P = 0.176) (Fig. S4A).
The former result survived Bonferroni correction for multiple
comparisons. Moreover, the difference between the two correla-
tions was significant (ZI* = −1.718, P = 0.043) (SI Text, section S.6).
No other associations with behavior approached significance.
The results were replicated when the analysis was repeated

after partialing covariance with all other 19 components identi-
fied by the ICA as representing distinct sources of signal and
noise in the data. The correlation between RT and DMN–RFPN
nit remained significant (ρ = −0.621, P = 0.008) (Fig. S4D); the
association between RT and nis values was not significant (ρ =

−0.056, P = 0.821) (Fig. S4C); and the difference between the
two correlations was also significant (ZI* = −1.729, P = 0.042).
This analysis provides a stringent test of the specificity of the
association between RT and DMN–RFPN nit values and sug-
gests that greater task-related cooperation between these two
networks was associated with more rapid recollection.

Context-Dependent Reconfiguration of the DMN Supports Cooperative

Interactions with the RFPN. The specific association between higher
DMN–RFPN nit values and faster RT suggests that greater
functional integration between the DMN and RFPN supports
rapid recollection performance. This network-level integration must
be facilitated by a dynamic reconfiguration of pairwise functional
connectivity between the constituent regions of the DMN and
RFPN. We mapped this reconfiguration using graph analysis.
Specifically, we extracted activity time courses from each of 34
regions comprising the DMN and RFPN (20 DMN and 14 RFPN
regions) (Fig. 2A and Table S2) and separately computed task-
related and task-unrelated functional connectivity between each
pair of regions to yield two 34 × 34 functional connectivity matrices
(one task-related and one task-unrelated) for each individual.
These matrices were then decomposed into nonoverlapping sets
of brain regions, termed modules, showing higher functional con-
nectivity with each other than with other areas using a modularity

Fornito et al. PNAS | July 31, 2012 | vol. 109 | no. 31 | 12789

N
E
U
R
O
S
C
IE
N
C
E

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204185109/-/DCSupplemental/pnas.201204185SI.pdf?targetid=nameddest=ST2


decomposition algorithm suitable for unthresholded, weighted,
and signed networks (37) (SI Text, section S.5).
To account for individual variability in the number and com-

position of modules identified across participants, we adapted
previously described methods (38) to identify the optimal modular
architecture for the entire sample for both task-related and
task-unrelated networks. Briefly, a coclassification matrix rep-
resenting the frequency with which each pair of nodes was
assigned to the same module across participants was constructed
separately for the task-related (Fig. 2B) and task-unrelated data
(Fig. 2F). These matrices were then subjected to a second-level
modular decomposition (Fig. 2 C and G). By this procedure, two
regions consistently coclassified in the same module across par-
ticipants were assigned to the same module in the second-level
partition (additional details in SI Text, section S.5).
For task-unrelated networks, the optimal decomposition iden-

tified two modules that almost perfectly replicated the ICA-based
classification; i.e., all nodes derived from the RFPN component
mapped onto a common module, whereas all DMN regions, ex-
cept for the right angular gyrus, were also grouped together (Fig.
2 A–C, RFPN is shown in green, and DMN is shown in magenta).
Thus, the initial ICA-based separation of DMN and RFPN
regions was recapitulated by a modular decomposition of their
pairwise spontaneous interactions. This consistency is noteworthy
given the different processing and analysis techniques used to
derive these partitions, and it supports the hypothesis that the
default or intrinsic state of these two systems is one of functional
segregation or antagonism.
In contrast, the optimal modular decomposition for task-re-

lated interactions identified three modules. All but one of the
regions in the RFPN module were consistent with the analysis of
task-unrelated data, but the DMN split into two smaller sub-
groups: a larger module comprising 12 nodes (DMNa module;
magenta in Fig. 2 E and G) and a smaller group comprising
seven regions (DMNb module; cyan in Fig. 2 E and G).
To understand the functional roles played by each module and

their constituent nodes, we examined the consistency and diver-
sity with which different regions were coclassified into the same
module across participants. Classification consistency was esti-
mated by computing the within-module strength, z, of each node
separately in the task-related and task-unrelated group coclassi-
fication matrices. Classification diversity was computed using the
diversity coefficient h (37, 39) (formal definitions are provided in
SI Text, section S.5). Applied in this context, z quantified the
degree to which each region was classified in the same module
across participants relative to other nodes in the same module.
Brain regions with high z values represent core components of

their module and thus act as local connectivity hubs. The diversity
coefficient, h, quantified the variability of each region’s modular
assignment across participants. Regions with high h have a rela-
tively equal probability of being classified into different modules
across participants, because their connectivity is dispersed between
modules from individual to individual. These regions, therefore,
represent transitional nodes that facilitate functional integration
between modules (37, 39) (additional details in SI Text, section S.5).
For task-unrelated networks, regional z and h were negatively

correlated such that network nodes were characterized by either
high classification consistency or high classification diversity (Fig.
2D). DMN regions with high z, representing core module ele-
ments, included known hubs such as posterior cingulate and
dorsal and ventromedial prefrontal regions (7). Core RFPN
elements included superior parietal and lateral prefrontal areas,
consistent with prior work (24). Transitional nodes, character-
ized by high h, included areas that have previously been shown to
promote functional integration between DMN and EAS regions
in certain task contexts, such as dorsal posterior cingulate and
right frontoopercular cortices (22, 30, 40).
A similar negative association between z and h values was

evident for nodes in the DMNa and RFPN modules of task-re-
lated networks (magenta and green, respectively, in Fig. 2 E and
G). In contrast, nodes in the DMNb module (cyan in Fig. 2 E and
G) were primarily characterized by high h. This property suggests
that these DMNb regions collectively formed a transitional
module with connectivity dispersed across DMNa and RFPN
regions. In other words, the DMNb module acted as a bridge
facilitating functional integration within and between the DMN
and RFPN. ANOVA confirmed that the mean diversity co-
efficient of DMNb regions (M = 0.90, SD = 0.062) was higher
than for DMNa (M = 0.734, SD = 0.12) and RFPN (M = 0.569,
SD = 0.160) regions [F(2, 31) = 15.512, P < 0.001]. Against this
background, the right posterior cingulate cortex (PCC) stood out
as a region showing both high h and high z, indicating that it was a
core element of the transitional DMNb module that also retained
diverse connectivity with DMNa and RFPN regions. This result
suggests that the right PCC represents a putative information-
processing bottleneck that acted as a connectivity hub within the
transitional DMNb module, while concomitantly facilitating func-
tional integration between DMNa and RFPN regions. Notably,
however, individual differences in nodal connectivity measures did
not correlate with recollection RT (SI Text, section S.6).

Discussion

Replicated reports of competitive or anticorrelated dynamics be-
tween large-scale functional brain systems have been interpreted

Fig. 1. Connectivity Z maps and sample mean network time courses of each of the five networks of interest. Dotted lines represent SD. Time courses are

overlaid on a task regressor modeling activity associated with recollection blocks and indicating the onset of these trials relative to the baseline condition

(gray line, arbitrary units). The spatial maps display voxels showing significant functional connectivity at P < 0.05, familywise error corrected (cluster extent >

10 voxels). Left hemisphere presented on the right hand side of each panel.
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as evidence for a fundamental distinction and antagonism be-
tween neural systems supporting introspective and extrospective
processing (1, 2, 16). Our results suggest a revision of this view in
light of (i) the diversity of interactions between the DMN and
different components of the EAS; (ii) the context dependence of
these interactions; and (iii) the substantial variability in the degree
to which competitive or cooperative interactions between the
DMN and different EAS components were expressed across
individuals. In particular, our findings show that, under certain
task conditions (such as the recollection paradigm studied here),
greater cooperation between these systems is actually associated
with better performance. This enhanced cooperation is facilitated
by dynamic, context-dependent reconfiguration of the DMN into
core and transitional modules, with the latter supporting greater
functional integration between the DMN core and frontoparietal
areas. In facilitating these dynamic shifts of functional network
architecture, the right PCC seems to act as a critical information-
processing bottleneck, representing a major hub of the transi-
tional DMN module while also retaining high functional inte-
gration with other regions.
The association between faster recollection RT and stronger

DMN–RFPN cooperation counters the hypothesis that greater
antagonism between DMN and EAS regions invariably supports
optimal task performance (1, 16). According to this view, the
introspective processes mediated by the DMN can interfere with
EAS-related processes that support attention to external stimuli.
Consequently, greater separation of these functions, which are
reflected in a stronger anticorrelation between their activation
dynamics, should support adaptive and efficient behavior. This
hypothesis has been supported by work using attentional or
cognitive control tasks (14, 16, 17). Recent work using alternative
experimental paradigms has, however, identified task contexts
during which DMN and EAS regions coactivate or enhance

functional connectivity (11, 22, 23, 29, 31–33, 41). Such findings
indicate that competitive large-scale brain network dynamics are
not an invariant property of brain function.
In our analyses, the need to isolate context-dependent net-

work interactions was highlighted by the different findings that
we obtained when considering task-unrelated dynamics. Indeed,
our results indicate that cooperative interactions between DMN
and EAS regions emerge as a context-dependent shift from an
intrinsic or default state of antagonism as functional segregation
between the DMN and different EAS components was generally
more pronounced in task-unrelated functional connectivity
measures (the major exception was the DMN–LFPN pair) (Fig. 1
and Fig. S2). Thus, methods that isolate task-related, context-
dependent network interactions will provide a more sensitive
characterization of circumstances under which cooperation be-
tween the DMN and EAS arises. Accordingly, many of the studies
reporting evidence for cooperation between these systems have
used such techniques (23, 31, 32, 41). In our analyses, the im-
portance of isolating these interactions was underscored by the
33–38% greater covariance observed between recollection RT
and DMN–RFPN nit values compared with nis measures.
Functional diversity within the EAS may also contribute to

inconsistent reports of competitive or cooperative interactions
with the DMN across studies. The EAS is loosely defined as a
collection of brain regions often showing increased activation
during cognitively demanding tasks, and it has been labeled with a
variety of names, including the task positive network (3, 15), ex-
trinsic network (4), external awareness network (42), and cog-
nitive control network (30). Part of this confusion stems from
differences in the methods used to define the system, which have
included activation patterns (5), seed-based correlation analyses
(24), anticorrelation with the DMN (2), and ICA (3, 16, 30).
Each of these methods can result in different network definitions.

Fig. 2. Illustration of node-specific functional roles mediating task-related and task-unrelated functional interactions between the DMN and RFPN. (A)

Anatomical location of spherical regions of interest that comprise the DMN (magenta) and RFPN (green) modules, as identified by the modular decomposition

of the task-unrelated functional connectivity data (maps colored according to the original assignments implied by the ICA can be seen in Fig. S5). (B) Task-

unrelated group consistency coclassification matrices (SI Text, section S.5) reordered to emphasize the optimal modular structure for the sample. Solid black

lines indicate boundaries between modules. Arrows highlight regions with module assignment that differed from the assignment implied by the initial ICA.

(C) Fruchterman–Reingold force-directed projections showing intra- and intermodular connectivity in the task-unrelated network. Strongly connected nodes

are placed in closer proximity to each other. Intramodule connections are colored according to the module identity of the nodes that they interconnect.

Intermodular connections are colored black. Yellow arrows highlight regions with module assignments that differ from the assignments implied by the initial

ICA (Fig. S5). (D) Scatterplots of classification consistency, z, and classification diversity, h, of each region in the task-unrelated data. Colors indicate the

module to which each region belongs. (E) Location of regions belonging to the RFPN (green), DMNa (magenta), and DMNb (cyan) modules identified in the

task-related functional connectivity analysis. (F–H) Group coclassification matrix, force-directed projection, and consistency-diversity scatterplot, respectively,

for the task-related data. Table S2 explains the abbreviated node labels. R, right hemisphere; L, left hemisphere.
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For example, the work by Vincent et al. (24) used seed-based
correlation analysis of resting-state fMRI data to identify a broad
frontoparietal control system, comprising regions of the CON,
LFPN, and RFPN as defined in our study. They argued that this
control system was anatomically interposed between the DMN
and anticorrelated DAN, and was thus well-positioned to facili-
tate functional integration between the two. Support for this view
comes from evidence that regions of the frontoparietal control
system flexibly couple with either the DMN or DAN, depending
on the task at hand (23, 33). However, this view does not account
for metaanalytic evidence supporting functional dissociations
between cinguloopercular and frontoparietal components of the
broader control system described by Vincent et al. (5, 24, 26) as
well as evidence that the CON may initiate switches between
competitive processing modes dominated by the DMN and
frontoparietal regions (22).
Our results support a functional distinction between the CON

and frontoparietal systems as well as between left- and right-
lateralized components of the frontoparietal network. Specifi-
cally, we found that the CON, LFPN, and RFPN each showed
diverse modes of interaction with the DMN (Fig. S2); that rec-
ollection RT correlated specifically RFPN–DMN interactions;
and that it was the context-dependent interactions between these
networks that most strongly dissociated the RFPN from other
components of the EAS. The last conclusion is supported by our
analyses of group-averaged and task-related data, which pointed
to strong functional segregation between the DMN and all EAS
components (Figs. 1 and 2). This result again highlights the
importance of considering the context-dependent character of
large-scale brain dynamics.
The identification of DMN–RFPN interactions as being spe-

cifically associated with recollection RT is notable given the
proposed roles of these networks in recollection. The DMN is
commonly activated during successful memory retrieval and less
active during recollection errors (15). Accordingly, it is thought
to play a critical role in the storage and/or recollection of con-
textual associations (43). In contrast, activation specifically of
right-lateralized frontal and parietal regions has been associated
with controlled memory retrieval (44) and heuristic evaluation
processes (45), the monitoring of retrieved memoranda (46), and
more general retrieval-related decision-making (47). Together,
these findings indicate that the DMN supports rapid, effortless
retrieval of contextual associations, whereas the RFPN may
support more strategic searches through memory and/or the
monitoring of retrieved information. Our findings indicate that
cooperative interactions between these two networks, as reflec-
ted in greater positive functional connectivity, are associated
with more rapid recollection performance. Thus, one hypothesis
to emerge from these data is that enhanced functional coupling
of DMN and right-lateralized frontoparietal regions reflects
greater access of RFPN-related search and monitoring processes
to well-learned contextual associations mediated by the DMN,
resulting in relatively effortless and rapid retrieval. This view
predicts that memory recalled with greater confidence should be
associated with greater DMN–RFPN cooperation. To test this
hypothesis, we ran secondary analyses testing for associations
between DMN–RFPN nit values and behavioral measures of
recollection confidence acquired during our task (SI Text, section
S.1). We found that strong positive functional connectivity be-
tween the DMN and RFPN was indeed associated with greater
memory confidence (ρ = 0.544, P = 0.027). This result supports
the hypothesis that enhanced RFPN–DMN coupling is associ-
ated with rapid, effortless recollection.
Greater cooperation between the DMN and RFPN was facil-

itated by a context-dependent reconfiguration of the DMN into
two distinct components: a core DMNa module and a smaller
DMNb transitional module. The high mean classification di-
versity of nodes in the transitional module indicated that it acted

as a bridge supporting functional integration between the DMNa
and RFPN modules. In particular, the right PCC stood out as a
putative information-processing bottleneck, representing a core
hub of the transitional module while also retaining high con-
nectivity with the other two modules. It may thus act as a catalyst
that provokes context-dependent departures from a default state
of DMN–RFPN antagonism to support greater functional in-
tegration during recollection. In this regard, although there was
no significant correlation between recollection RT and individual
differences in PCC function (or between RT and functional
measures computed for any other area) (SI Text, section S.6), the
region played a critical role in facilitating the context-dependent
shifts of large-scale network organization that did support rapid
recollection (i.e., greater task-related collaboration between DMN
and RFPN regions). The centrality of the PCC to these network
interactions is also supported by recent evidence that the region
plays an important role in recollection (43), that it is a major
connectivity hub in the brain (48) with functional properties that
are under strong genetic influence (49, 50), and that it represents
a core region that flexibly interacts with different DMN components
depending on the task being performed at any given time (30).
In summary, our findings highlight the context dependence of

large-scale functional network interactions in the brain. In par-
ticular, they indicate that competitive interactions between DMN
and EAS regions are not an invariant property of adaptive be-
havior and that these systems can interact cooperatively in certain
circumstances to support optimal task performance. A greater
appreciation of the diversity of functional interactions in the
brain, their context sensitivity, and the roles that individual brain
regions play in facilitating these interactions will yield a more
accurate characterization of the behavioral significance of large-
scale brain network dynamics.

Methods
Experimental Design. Sixteen healthy, right-handed participants (seven male;

mean age= 24.3 y, range = 19–36 y) underwent five study and five test phases

of a contextual recollection task in the scanner, although only test phases

were scanned (additional details in SI Text, section S.1 and details on image

acquisition, processing, and general linear model in SI Text, section S.2). All

participants gave written, informed consent. The study was approved by the

Cambridge Local Research Ethics Committee.

Network Analyses. We identified spatially independent, temporally coherent

networks of voxels using spatial ICA, which was implemented in the Group

ICA for fMRI Toolbox (GIFT; http://mialab.mrn.org/software/gift/) (SI Text,

section S.3). Task-related and task-unrelated functional interactions between

these large-scale networks were computed using partial correlation of rep-

resentative component time courses. Task-related network interactions were

estimated using a correlational psychophysiological interaction (cPPI) anal-

ysis developed specifically for this purpose using freely available code (http://

www.psychiatry.unimelb.edu.au/centres-units/mnc/research/connectivity_

software.html) (SI Text, section S.4). Task-unrelated functional interactions

were estimated after task-related variance was removed from each net-

work’s time course using a Gramm–Schmidt orthogonalization procedure,

consistent with previous studies (36) (SI Text, section S.4). We chose this

method over a pure resting-state design, because we wanted to examine

putative spontaneous processes during performance of the actual task and

not during a completely different experimental context, which can influence

estimates of spontaneous functional interactions (51–53) (SI Text, section S.4).

Modularity analyses were performed using freely available software (https://

sites.google.com/a/brain-connectivity-toolbox.net/bct/) (SI Text, section S.5).

Associations with behavior were tested using Spearman’s rank correlation

coefficient combined with permutation testing and Bonferroni correction

for multiple comparisons (SI Text, section S.6).
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SI Text

S.1. Experimental Paradigm. The task comprised five study and five
test phases. Only test phases were scanned. Each study phase
comprised 32 trials, where participants were presented with a cue
saying either SUBJECT or EXPERIMENTER. After 500 ms,
either a word pair (e.g., bacon and eggs; perceive condition) or the
first word of a pair and a question mark (bacon and ?; imagine
condition) appeared. If the cue read SUBJECT, the participant
had to either read the presented word pair aloud (perceive
condition) or imagine the second word pair and say the word pair
out loud (imagine condition). If the cue read EXPERIMENTER,
the experimenter performed the task and read the word pair aloud
over the scanner intercom. The subject/experimenter and per-
ceive/imagine conditions were crossed in a 2 × 2 factorial design.
Test phases, which were scanned, consisted of five sessions,

comprising eight blocks of four trials each. Each block was pre-
ceded by an instruction presented for 2–8 s indicating the type of
judgment required (Fig. S1). A single, centrally presented word
was then shown, and participants were required to recollect the
context in which the second word in the pair had been presented
based on the instruction cue (i.e., did you perceive or imagine it
or did you or the experimenter read it?). Participants had 4.5 s
to make their response. The semantic baseline asked participants
to judge whether a nonstudied word referred to a manmade or
naturally occurring object. Blocks alternated between contextual
memory and semantic baseline in an A1A2BBA1A2BB format,
where A1 and A2 refer to the different types of recollection judg-
ments (i.e., perceived/imagined or self/experimenter). The pre-
sentation order of the recollection blocks was counterbalanced
across subjects. The intertrial interval was jittered between 500
and 1,400 ms according to an exponential distribution. Responses
were made using a button box. When making a response, partic-
ipants held down the button to indicate their confidence in the
response. A confidence bar at the bottom of the screen increased
in size to indicate their confidence level. Additional details can be
found in ref. 1.

S.2. Image Acquisition, Preprocessing, and General Linear Modeling.

Echo planar functional images were acquired using a 3T Siemens
TIMTrio system (36 sequential 2-mm-thick axial slices with 1 mm
interslice gap oriented ∼10–20° to the anterior commissure–
posterior commissure (AC-PC) transverse plane and with a time-
to-repetition (TR) = 2.25 s and time-to-echo (TE) = 30 ms)
across five sessions (200 volumes per session). The first five
volumes were discarded to allow for T1 equilibration.
Images were preprocessed and analyzed using SPM5 (http://

www.fil.ion.ucl.ac.uk/spm/software/). Functional images were first
corrected for head motion and slice-timing differences. The mean
of these functional images was coregistered to each participant’s
T1-weighted image. These T1 images were also segmented into gray,
white, and cerebrospinal fluid tissue compartments and spatially
normalized to Montreal Neurological Institute stereotaxic space.
The realigned, slice time-corrected functional volumes were then
spatially realigned using the T1-weighted normalization param-
eters and resampled in 3-mm3 voxels. The functional data were
spatially smoothed with an 8-mm full-width, half-maximum iso-
tropic Gaussian kernel, temporally filtered (high-pass cutoff of
1/128 Hz) and corrected for temporal autocorrelation using an
autoregressive AR (1) model. All image processing and sub-
sequent analyses were performed using Matlab 7.8 (Mathworks).
Task-evoked activity was characterized using a general linear

model (GLM) in which the onsets of each event were modeled

with zero-duration δ-functions convolved with a canonical he-
modynamic response function. Unique covariates modeled the
onsets of each correctly responded recollection trial (i.e., per-
ceive/imagine and self/experiment) and their corresponding
baseline conditions and instruction periods. A separate regressor
modeling incorrectly responded trials was included along with
the time and dispersion derivatives of each covariate. Model
parameter values were computed by restricted maximum likeli-
hood estimation (additional details in ref. 1). Contrasts between
these parameter estimates were used to isolate task-related in-
teractions between networks and brain regions. Although self/
experimenter and perceive/imagine recollection trials were
modeled separately, the major task-related influence on network
activity involved the distinction between semantic baseline and
recollection (irrespective of the type of recollection) (Fig. 1).
Thus, for simplicity, we focused our analysis on this contrast and
collapsed across self/experimenter and perceive/imagine recol-
lection judgments.

S.3. Independent Component Analysis. Component identification. We
used spatial independent component analysis (ICA) to identify
spatially independent, temporally coherent networks of voxels in
the functional data. Spatial ICA is a widely used method for
decomposing high-dimensional functional MRI (fMRI) data into
distinct signal and noise components (2–4), and it has been ap-
plied to consistently identify the default mode network (DMN)
and different external attention system (EAS) components across
diverse experimental paradigms (5–8). A particular advantage of
this method is that it makes no a priori assumptions concerning
the nature of blood oxygenation level-dependent (BOLD) re-
sponses evoked by the task (i.e., it is completely data-driven).
This property was desirable for present purposes given variability
and contradictions concerning how the EAS should be best de-
fined. For example, ICA consistently identifies the cingulooper-
cular network (CON) as distinct from the dorsal attention
network (DAN) and frontoparietal systems (6, 9), whereas seed-
based correlation approaches typically include these networks in
one unitary system (10). The differences between the two tech-
niques arise because seed-based techniques identify regions
showing strong functional connectivity with the seed region
alone, whereas ICA identifies regions making a strong contribu-
tion to the network as a whole, while also maximizing spatial
independence between components. This property of ICA en-
sured that our network definitions were not biased by a priori
selection of specific seed regions and allowed a finer-grained
analysis of the specificity of interactions between the DMN and
different EAS components. Examining this specificity is critical
given metaanalytic evidence for functional dissociations between
EAS components (6, 11). Functional dissociations between EAS
components were also evident in our findings.
Spatial ICA was implemented using the Group ICA for fMRI

Toolbox (http://mialab.mrn.org/software/gift/). Briefly, the anal-
ysis proceeded in three broad stages. The dimensionality of the
data was reduced from 195 (the number of time points per session)
to 21 components through a two-step principle components
analysis and subjectwise data concatenation procedure. The
dimensionality of the data (number of components) was deter-
mined by information theoretic criteria (12). A group spatial
ICA was then performed on the concatenated and reduced data
using the Infomax algorithm. Spatial maps and representative
time courses of each component were subsequently estimated for
each subject through back-reconstruction, allowing representation
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of interindividual variation in component anatomy and temporal
dynamics. The resulting output was a series of spatial maps and
representative time courses for each subject, each session, and
each of the 21 estimated components. Both spatial maps and time
courses were calibrated using z scores. As such, voxel intensities in
the spatial maps encoded the degree to which that voxel’s activity
time course was coherent with the overall component time course;
the units in the time course reflected moment-to-moment fluctu-
ations in component activity relative to the session mean. Detailed
descriptions of the methods have been provided elsewhere (2).
Spatial mapping. The spatial anatomy of each component was
characterized by entering the participant-specific spatial maps into
a second-level, one-sample t test to identify voxels with group-
averaged z scores that were significantly different from zero. The
threshold for significance was set using a familywise error rate
correction procedure as implemented in SPM5 (P < 0.05, cluster
extent = 10 voxels). These spatial maps were in combination with
the unthresholded component maps and time courses to identify
the DMN, CON, DAN, left frontoparietal network (LFPN), and
right frontoparietal network (RFPN) based on their known
functional anatomy and comparisons with prior literature (10, 11,
13–15). These five networks could be clearly differentiated from
other components reflecting signal and noise in the data.
Task-related modulation of component time courses. To understand
how activity in the DMN, CON, DAN, LFPN, and RFPN was
modulated by the task, each network’s time course was regressed
against covariates modeling condition-specific activity defined in
the GLM activation analysis (SI Text, section S.2). The result was
a series of β-coefficients quantifying the degree to which each
network’s activity covaried with each task condition. To isolate
task-related modulations of network activity specific to contextual
recollection, we compared themagnitude of these β-coefficients for
recollection trials (collapsed across perceive/imagine and self/ex-
perimenter conditions) with the corresponding coefficients for se-
mantic baseline trials using one-way ANOVA. As reported in the
text, this analysis revealed that activity was significantly greater
in recollection than baseline trials in the four EAS components,
whereas DMN activity was greater for baseline compared with
recollection trials.

S.4. Network Interaction Analysis. Functional interactions between
the DMN, DAN, CON, LFPN, and RFPN were characterized
using functional connectivity analysis. Functional connectivity
refers to a statistical dependence between spatially distinct
neurophysiological signals (16). In our analyses, this dependence
was computed using partial correlations between network time
courses, as described below. These analyses were performed
separately to estimate task-unrelated and task-related functional
interactions between networks. This distinction is critical, because
correlations between raw time courses measured during task-based
fMRI can arise for a number of reasons. Primary among these
reasons are task-unrelated, spontaneous, or intrinsic functional
dynamics; task-related, context-dependent modulations of func-
tional coupling; physiological and/or scanner noise; and in-
terregional coactivation induced by the task, which can arise from
independent task-related regional activation in the absence of
direct functional interaction. Our analyses aimed to separate
task-related and task-unrelated components of functional in-
teractions between networks, while controlling for noise-related
effects and coactivation.
Measuring task-unrelated network interactions. Spontaneous fluctua-
tions of the BOLD signal recorded in the absence of an explicit
task are highly organized, showing temporal coherence across
spatially distributed and well-characterized functional networks
of brain regions (17). These correlations persist during task
performance (18), account for a major source of variance in task-
evoked activity (19–21), and are under strong genetic influence

(22, 23). Thus, these task-unrelated processes putatively reflect
intrinsic interregional synchronization dynamics (17).
We used previously described and validated methods to isolate

task-unrelated interactions between the DMN and the four EAS
networks. Specifically, for each participant, each of the five net-
work time courses of interest was band pass-filtered (0.008 < f <
0.08) to remove very low-frequency confounds, high-frequency
physiological noise and isolate the low-frequency fluctuations
known to dominate spontaneous BOLD signals (24). These tem-
porally filtered time courses were then orthogonalized with re-
spect to the following variables: (i) six head motion parameters
(three translation and three rotation parameters) estimated dur-
ing motion correction of the functional volumes; (ii) signal time
courses extracted from spherical seed regions placed in the ce-
rebrospinal fluid (CSF) and white matter; (iii) a mean signal ex-
tracted from a mask of the entire cerebrum; and (iv) all task
regressors (including time and dispersion derivatives) included in
the GLM as well as additional regressors modeling sustained
activity across each task block.
The temporal filtering and correction for head motion, white

matter, CSF, and global signals emulate preprocessing strategies
traditionally used in analyses of spontaneous BOLD signal cor-
relations (25). These methods are routinely used to investigate
anticorrelated interactions between large-scale brain networks
(5, 26, 27). Orthogonalization with respect to the task design
matrix removed as much task-related variance from the network
time courses as possible. Functional connectivity measures de-
rived from the residuals of this correction process have been
shown to yield results comparable with those findings obtained
using task-free, resting-state fMRI data (28), and the method has
been used to link individual differences in task performance to
putative anticorrelated spontaneous dynamics recorded during
the task (5).
Network interactions were estimated as the partial correlation

between each subject’s noise- and task-corrected DMN time
course, tDMN, and each of the four noise- and task-corrected
EAS network time courses, tEASi , while controlling for the
effects of the remaining three networks [i.e., rtDMN ;tEASi ·tEASnftEASi g

,
where tEAS = {tCON, tDAN, tLFPN, tRFPN}]. This procedure allowed
us to isolate functional interactions that were specific to each
DMN and EAS component pair.
Orthogonalizing fMRI time series with respect to task design

matrices has often been used to approximate task-unrelated
functional processes that putatively reflect intrinsic neural dy-
namics during task performance (5, 28). We preferred this method
to using a pure resting-state design because we wanted to examine
these processes during performance of the actual task and not
during a completely different psychological context and experi-
mental preparation. This choice is justified by recent evidence
indicating that psychological context can indeed influence func-
tional connectivity measures obtained during resting-state record-
ings (29–31). It is important to note that although the correction
procedure described above is able to reproduce functional
networks observed during resting-state designs with high fidelity,
some differences can be apparent and possibly reflect residual,
unmodeled task-related variance in the data (28). In our analy-
ses, a failure to adequately remove task-related activity would
increase the similarity between task-unrelated and task-related
network interaction measures and reduce our power to detect
differences between the two. As such, our findings may represent
a conservative estimate of the true variation between task-
related and task-unrelated functional dynamics.
Measuring task-related, context-dependent network interactions. Task-
related functional connectivity describes interregional inter-
actions that vary in accordance with changing task conditions (i.e.,
interactions that change from one task condition to the next). As
such, they reflect interregional synchronization dynamics spe-
cifically associated with the cognitive operation(s) being probed
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by the experimental task. It is important, however, to distinguish
these context-dependent effects from task-unrelated, spontane-
ous processes and coactivation effects. The latter may arise
simply because task stimulation drives activity in two different
regions in a similar way, causing their time courses to be
correlated even if the regions do not directly interact with each
other (i.e., the two regions activate independently to the task).
To isolate task-related network interactions while controlling

for such effects, we implemented a correlational technique based
on the logic of psychophysiological interactions (PPI) (32). In a
traditional PPI analysis, a representative activity time course of a
seed region, t, is extracted and multiplied by a task regressor of
interest, ψ , to generate a term reflecting the psychophysiological
interaction between the seed region’s activity and the specified
experimental manipulation. Voxels showing significant co-
variations with the seed region’s task-related activity are then
identified using a GLM of the form (Eq. S1)

yi ¼ Ij · βi þ
�

tjψG
�

· βG þ ei; [S1]

where yi denotes the activity in voxel i, Ij = tj × ψ (the PPI term
for seed time course tj), G denotes a matrix with columns that
contain covariates of no interest, and ei represents experimental
error. The coefficient βi is the parameter estimate for the PPI term
Ij, and βG represents the parameter estimates for the main effects
tj, ψ , and G. Including the main effect of tj in the model controls
for task-unrelated covariance between tj and yi and/or any noise-
related processes correlated with tj. Including the main effect of ψ
in the model controls for possible coactivation effects induced by
the task waveform. Thus, the model isolates context-sensitive al-
terations in functional coupling, while controlling for task-un-
related functional connectivity, noise, and coactivation effects.
The model defined in Eq. S1 is inherently directional; i.e.,

for any given pair of time series, one must be designated as the
predictor and the other must be designated the response vari-
able. The analysis therefore provides a rudimentary model of
effective connectivity (32) and works well when there are clear
hypotheses about which region might be driving activity in other
areas. However, in cases where no such predictions can be made,
the assignment of one or the other time course to the left- or
right-hand side of Eq. S1 can be arbitrary.
To avoid arbitrary directional assumptions and retain a focus

on analysis of functional rather than effective connectivity be-
tween networks, we used a partial correlation framework to es-
timate task-related, pairwise interactions between the DMN and
the four EAS networks. Specifically, for each pair of networks, we
generated two PPI terms, IDMN and IEASi , by separately multi-
plying the task regressor ψ with the two network time courses
tDMN and tEASi , respectively. We then computed the partial cor-
relation rIDMN ;IEASi ·z

, where Z = {tDMN, tEAS, ψ}. This correlational
PPI (cPPI) approach thus quantifies covariations in task-related
activity modulations of the DMN and each EAS network (the
PPI terms IDMN and IEASi), while controlling for background
fluctuations (and correlated noise processes) in the activity of the
DMN and all four EAS networks (tDMN and tEAS), as well as any
coactivation effects induced by the task stimulation (ψ). In our
analyses, our task regressor modeled activity modulations that
were greater during recollection than semantic baseline trials,
consistent with our interest in this particular task manipulation.
When computing the interaction term I for each time series,

we used the deconvolution approach advocated in ref. 33. Spe-
cifically, we used an empirical Bayesian method for hemodynamic
deconvolution of the original BOLD time series, t, to estimate
underlying neuronal activity. This estimated neural signal was then
multiplied by the unconvolved task regressor and reconvolved to
generate a BOLD-level measurement of the neural PPI term.
Computing the PPI interaction term with signals already con-

volved with a hemodynamic response function is not equivalent
to the hemodynamic convolution of an interaction computed at
the neural level [i.e., (Hψ)(Ht) ≠ H(ψ t), where H is the hemo-
dynamic response function in Toeplitz matrix form]. The de-
convolution step therefore provides a more direct estimate of
interactions between neural activity and the task, because such
interactions occur at the neural rather than hemodynamic level
(additional details in ref. 30). Software for implementing cPPI
analysis is freely downloadable at http://www.psychiatry.unimelb.
edu.au/centres-units/mnc/research/connectivity_software.html.
Addressing motion and other confounds. In our analyses, we accounted
for the potential effects of head motion and other confounds
by analyzing the residuals obtained after regressing our signals of
interest against time courses representing these noise effects,
consistent with widely used protocols (17). Recent work has sug-
gested that such an approach may not be sufficient to remove all
noise-related effects from the data (34, 35). Residual noise effects
are unlikely to impact our findings for several reasons.
First, our main finding, that recollection reaction time (RT) is

correlated with DMN–RFPN nit and not nis values, persisted after
we corrected for time courses extracted from all other compo-
nents identified in the ICA. These components represent a variety
of sources of both neural signal and noise, including complex
head motion and physiological artifacts (36). Thus, these effects
cannot explain the observed brain–behavior associations.
Second, our analyses were focused on examining differences

between task-related and task-unrelated components of network
interactions within the same individual and dataset. Thus, any
contributions of head motion or physiological noise to these data
will be equivalent and subtract out in any comparisons.
Third, we reanalyzed the data after controlling for several

additional parameters describing various head motion properties.
Specifically, we computed the number of significant movements
(defined as >0.10 mm relative displacement between adjacent
volumes), mean head displacement, maximum head displacement,
and mean head rotation, as described in ref. 34. The association
between DMN–RFPN nit and RT values actually strengthened
(ρ= −0.771, P= 0.005), whereas the association between RT and
nis was virtually unchanged (ρ = −0.353, P = 0.26).

S.5. Modularity Analysis. We used graph theoretic techniques (37,
38) and modularity analysis (39–41) to characterize, in more
detail, the roles that individual brain regions played in facilitat-
ing functional interactions between the DMN and RFPN. For
each participant, we modeled interactions between regions com-
prising the DMN and RFPN as a weighted, unthresholded graph
of 34 nodes connected by all possible (342 − 34)/2 = 561 edges. In
all graphs, the nodes represented the different brain regions
constituting each network (20 DMN and 14 RFPN regions), and
they were defined by generating 4-mm-radius spheres centered on
the stereotactic coordinates of each significant cluster maximum
and submaxima in the statistically thresholded component spatial
maps (Fig. 2 A and E and Table S2). Two separate graphs were
constructed for each participant, representing task-unrelated and
task-related interactions between regions, as estimated using the
methods described above.
Participant-specific modular decomposition. Modularity detection
algorithms enable a data-driven partition of a graph-based rep-
resentation of network connectivity into subgroups of nodes,
termed modules, which show higher connectivity with each other
than with other areas. Identifying the optimal modular decom-
position of a graph is a rich field of inquiry within complex
network science, and many alternative algorithms are available
(reviewed in ref. 42). Typically, these algorithms attempt to
maximize some quality function reflecting the goodness of the
partition. Most commonly, this function reflects the difference
between the degree of observed intramodular connectivity and
the degree expected by chance (40). In our analysis, we used a
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generalization of this definition applicable to unthresholded,
weighted, and signed graphs (39), where the goodness of the
partition was given by (Eq. S2)

Q∗ ¼
1

vþ

X

ij

�

wþ
ij − eþij

�

δMiMj
−

1

vþ þ v−

X

ij

�

w−
ij − e−ij

�

δMiMj
:

[S2]

In this formulation, wþ
ij and w−

ij reflect the positive and negative
connection strengths between nodes i and j, respectively, and
δMiMj

= 1 if nodes i and j belong to the same module, M (δMiMj
=

0 otherwise). The chance-expected positive connectivity between

nodes i and j is given by eþij ¼
sþ
i
sþ
j

vþ
, where s+ reflects the sum of

each node’s positive weights and v+ reflects the sum total of
positive weights in the graph. Similarly, the chance-expected

negative connectivity between nodes i and j is given by e−ij ¼
s−
i
s−
j

v−
.

The factor 1
vþ

rescales the contribution of positive within-module
connectivity to the range [0, 1]. The factor 1

vþþv−
rescales the

contribution of negative within-module connectivity in the same
range, while also down-weighting the contribution of negative
relative to positive weights in the final estimation of network
modularity, Q*. This asymmetric weighting is applied, because
positively weighted connectivity directly associates nodes with a
given module (i.e., high positive connectivity between nodes
implies that they serve similar functions and should be assigned
to the same module), whereas negative connection weights in-
directly associate nodes with modules by dissociating them from
other nodes (i.e., high negative connectivity between nodes im-
plies that they serve opposing functions and should be placed in
distinct modules, although a specific modular identity is not nec-
essarily assigned; additional details in ref. 39). By this formulation,
a graph partition maximizing Q* will be one with high positive and
low negative intramodular connectivity between nodes. We used
the Louvain method (43) to find partitions optimizing Q*, as im-
plemented in freely available software (https://sites.google.com/a/
brain-connectivity-toolbox.net/bct/).
Determining the optimal modular decomposition of a graph

is a nontrivial (nondeterministic, polynomial-time hard) problem,
and heuristics are often used to estimate the optimum solution
(42). As a result, severe degeneracies in the final solution can
arise; i.e., the final decomposition may represent one example of
a range of alternative partitions with comparable goodness-of-fit
estimates (44). To account for any potential degeneracies in
our data, we iterated the algorithm 10,000 times for each dataset.
Across these iterations, the number of unique partitions found
was generally very low. For the task-related connectivity networks,
the mode percentage of degenerate partitions found across par-
ticipants was <0.01%, and the maximum was 1.4%; for the task-
unrelated connectivity networks, the mode was <0.01%, and the
maximum was 1.5%. For all datasets, the most frequently found
partition was the partition with the maximal Q* value. These
data strongly suggest that this partition represented the optimum
modular decomposition for each dataset.
Group-level representation of modular architecture. Due to intersubject
variability in brain network organization, the brain’s modular
structure will vary from person to person. Identifying which nodes
are consistently coclassified into the samemodule and which nodes
show a more variable pattern of module membership, therefore,
represents a critical step in understanding conservation and vari-
ability of brain functional organization across subjects. To this end,
we adapted previously described methods (45) to derive a group-
level characterization of modular architecture. Specifically, we
took the optimal modular decomposition for each subject iden-
tified in the degeneracy analysis described above and constructed
a 34 × 34 coclassification matrix, such that Cij = 1 if nodes i and j

belonged to the same module and Cij = 0 otherwise. We then
summed these matrices across subjects to generate a group con-
sistency matrix, G. The weights of this consistency matrix, Gij, re-
flected the number of participants for whom nodes i and j were
classified in the same module (Fig. 2 B and F).
The consistency matrix G was then subjected to a further

modular decomposition. Thus, nodes that were frequently co-
classified in the same module across participants were more likely
to belong to the same module in the decomposition of G. We
iterated the algorithm 10,000 times to test for degeneracies in the
data, although these degeneracies were extremely low (<0.01%
for the task-related data and 0 for the task-unrelated data), pro-
viding confidence in the robustness of the findings. The resulting
partition associated with the highest Q* value was taken as the
optimum modular architecture representative of the entire
sample (Fig. 2 B, C, F, and G).
Node roles. We characterized the roles of each individual node
using cartographic analysis of the modular decomposition of G
(39, 41, 46). In such an analysis, the role that each node plays
within the wider network can be characterized using two mea-
sures: the within-module strength, z, and the diversity coefficient,
h. The within-module strength quantifies each node’s intramodular
connectivity. Formally (Eq. S3),

z ¼
si ðmiÞ− �sðmiÞ

σsðmiÞ
; [S3]

where mi is the module containing node i, si(mi) is the intra-
module nodal strength of node i, defined as the sum of the
within-module weights of node i, and �sðmiÞ and σsðmiÞ are the
mean and SD of the intramodule strength of all nodes in module
mi, respectively.
The diversity coefficient can be used to characterize how each

node’s connectivity is distributed across different modules, and it
is computed as (Eq. S4)

hi ¼
1

log m

X

u∈M

pi ðuÞ log pi ðuÞ; [S4]

where piðuÞ ¼
siðuÞ
si
, si (u) is the strength of node i in module u,

and m is the number of modules in the partition M.
In typical applications, nodes with high z are interpreted to

represent local, intramodular information-processing hubs,
whereas nodes with high h show a relatively even distribution of
connectivity across all modules (i.e., they support functional in-
tegration between modules). In our analyses, we computed these
measures using edge weights derived from the group consistency
matrix, G. The weights in G do not reflect a direct measure of
connectivity between nodes but rather, the frequency with which
two nodes were coclassified into the same module across sub-
jects. Thus, nodes with high z in our application showed high
classification consistency (i.e., a high probability of being co-
classified with other nodes in the same module relative to the
other nodes). Regions with high z scores therefore represent a
core element of the module to which they belong, showing a
relatively conserved modular identity across subjects. Because of
their conserved nature, these modules are also likely to represent
connectivity hubs within their module. Nodes with high h showed
high classification diversity; i.e., they showed a more equal proba-
bility of being coclassified with nodes assigned to different modules
because their modular identity was variable from person to person.
Thus, these regions retained high levels of connectivity with nodes
assigned to diverse modules across participants, consistent with
a role in facilitating functional integration between modules.
We focused our analysis of node roles on the group consistency

matrix data rather than individual differences in participant-
specific values, because the number ofmodules found from subject
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to subject was variable. This variability can influence resulting
network measures. The best way of accounting for such variability
is unclear (preliminary work in this area is in ref. 47).

S.6. Analysis of Brain–Behavior Correlations. Associations between
network interaction values and behavioral performance during
recollection trials were computed using Spearman’s rank corre-
lation. The significance of each observed association was tested
against an empirical null distribution obtained by 5,000 permu-
tations of the data. To control type I error rates, correlations
were declared significant only if they survived a Bonferroni
correction of α = 0.05/4 = 0.013, because interaction values
between four network pairs were tested for association with each
behavioral measure. Differences between correlation coefficients
were tested using the Dunn and Clark statistic, ZI* (48).
To test for associations between recollection RT and node-

specific connectivity measures, we computed, for each participant,
the total nodal strength of each of the 34 nodes studied in the
modularity analysis (Fig. 2 and Table S2). This measure is a
commonly used index of the strength of each node’s connectivity
with the rest of the network, and it is formally defined as (Eq. S5)

si ¼
1

N − 1

X

j∈N

wij; [S5]

where wij represents the absolute connectivity weight between
nodes i and j, and N represents the total number of nodes.
Individual differences in the connectivity strength of each node

were correlated with recollection RT using the same procedure
described above. No significant associations were found, even
when using a relatively liberal threshold of P < 0.05, uncorrected.
Similarly, no associations were found when using strength mea-
sures computed separately for positive and negative connectivity
weights. These results suggest that task performance was specifi-
cally associated with the large-scale collective dynamics of the
DMN and RFPN rather than the contributions of any individual
brain region.

S.7. Results. Behavioral analysis.RTs were significantly slower during
recollection (M = 1,730.8 ms; SD = 209.44 ms) than semantic
baseline trials [M = 1,090.2 ms; SD = 166.89 ms; t (15) = −15.82,
P < 0.001], consistent with the greater demand placed on memory
retrieval processes during the former condition. The variance in
accuracy measures (percentage correct) during baseline trials was
not sufficient to allow statistical analysis, because all participants
were at ceiling (median = 0.99, interquartile range = 0.02), al-
though it was, on average, higher than in recollection trials (me-
dian = 0.83, interquartile range = 0.10).
Individual differences in task-related and task-unrelated network

interactions. Fig. S2 illustrates the individual variability of task-
unrelated and task-related network interaction estimates for each
DMN–EAS component pair. Estimates derived using raw net-
work time courses are presented for comparison (the only pro-
cessing applied to these data was a high-pass filter with a cutoff
at 0.008 Hz to remove low-frequency noise). As can be seen,
functional interactions between the DMN and each EAS com-
ponent varied considerably across individuals and in a network-
and context-specific manner.
In general, a range of positive and negative network inter-

actions were observed for functional connectivity between the
DMN and CON and DMN and RFPN, indicating that these
network pairs interacted competitively for some participants and
cooperatively for others. In contrast, there was a strong trend for
DMN–LPFN interactions to be cooperative and DMN–DAN
interactions to be competitive for most participants. These gen-
eral trends were, however, modulated by whether the task-un-
related or task-related component of network interactions was

being assessed. In particular, both DMN–DAN and DMN–RFPN
task-related interaction values, nit, were significantly higher than
task-unrelated interactions, nis. For the DMN–DAN pair, this
finding reflected an attenuation of the average degree of anti-
correlation apparent in task-unrelated interactions [e.g., median
nis = −0.50; median nit = −0.14; t (15) = −9.61, P < 0.001]. For
the DMN–RFPN pair, the sample average functional connectivity
shifted from negatively to positively correlated when moving from
task-unrelated to task-related estimates [median nis = −0.10;
median nit = 0.11; t (15) = −5.87, P < 0.001]. Although a range
of both positive and negative values was observed for both task-
unrelated and task-related DMN–RFPN interactions, this shift to
more positive nit values is consistent with our brain–behavior cor-
relations, suggesting that cooperative, context-dependent inter-
actions between these networks facilitate better task performance.
DMN–CON interactions were relatively constant across task-

unrelated and task-related components, suggesting relatively
little contextual modulation of functional interactions between
these networks. On average, interactions between the DMN and
LFPN were cooperative, and there was a trend for nis to be
higher than nit values [t (15) = 2.07, P = 0.06). This finding
highlights substantial differences in the way in which the left- and
right-lateralized aspects of the frontoparietal system interact
with the DMN and how these interactions are modulated by task
context. This result, combined with our finding of a specific as-
sociation between DMN–RFPN nit values and recollection RT,
supports our analysis of the LFPN and RFPN as distinct func-
tional networks.
Collectively, these results highlight three important points: (i)

there is substantial individual variability in terms of whether any
given pair of networks interacts competitively or cooperatively;
(ii) there is considerable diversity of interactions between the
DMN and different components of the EAS; and (iii) complete
characterization of this diversity requires a distinction between
task-related and task-unrelated components of the functional
interactions between networks. In particular, interactions be-
tween the DMN and DAN and DMN and RFPN showed sig-
nificant differences in task-related and task-unrelated interaction
values, suggesting that functional connectivity between these
network pairs was particularly affected by task performance.
Reanalysis of the data using nonparametric statistics (Wilcoxon’s
signed rank test) generally yielded the same results (the only
notable variation was that the difference between nis and nit
for DMN–LFPN interactions changed from trend-level to barely
significant; i.e., from P = 0.06 to P = 0.049), indicating that
outliers or violations of parametric assumptions did not drive the
findings.
One concern is that the above differences reflect the global

signal correction procedure implemented when estimating task-
unrelated network interactions. We used this step to emulate
traditional preprocessing strategies in resting-state analyses, but
the procedure is known to enhance the degree of anticorrelation
between DMN and EAS regions (27, 49). We therefore repeated
the analyses using measures of task-unrelated network inter-
actions that were not corrected for the global mean signal (Fig.
S3). The results for comparisons between task-related and task-
unrelated network interactions were similar; the major variations
were that the difference between DMN–RFPN nis and nit
reached significance (P = 0.02), whereas the differences between
raw and task-unrelated network interactions for the DMN–DAN
and DMN–RFPN pairs were no longer significant (P = 0.08 and
P = 0.12, respectively). The correlation between recollection RT
and DMN–RFPN nis was still not significant when nis was esti-
mated without global signal correction. This finding was the case
after correcting for covariance with signals from the CON,
LFPN, and DAN components (ρ = −0.42, P = 0.11) as well as
after correcting for covariance with all other components iden-
tified in the ICA (ρ = −0.06, P = 0.83).
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Fig. S1. Example of task stimuli used during the study (Left) and test (Right) phases. [Reproduced with permission from ref. 1 (Copyright 2008, MIT Press

Journals).]

Fig. S2. Box-and-whisker plots illustrating the range of network interaction values observed for each network pair computed using raw network time courses

(red), the task-unrelated, putative spontaneous component of these time courses (green), or the task-related component (blue). The central lines in each box

represent the sample median, and the boxes represent the interquartile range. Whiskers mark the 5th and 95th percentiles; colored asterisks indicate values

beyond this range. Thick horizontal lines indicate differences significant at P ≤ 0.05. *P ≤ 0.01; **P ≤ 0.001. CON, cinguloopercular network; DAN, dorsal

attention network; DMN, default mode network; LFPN, left frontoparietal network; RFPN, right frontoparietal network.
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Fig. S3. Box-and-whisker plots illustrating differences between raw, task-related, and task-unrelated (putative spontaneous) network interaction values,

where task-unrelated interaction values have been estimated without global signal correction (raw and task-related interaction values remain unchanged from

Fig. S2). The central lines in each box represent the sample median, and the boxes represent the interquartile range. Whiskers mark the 5th and 95th per-

centiles; colored asterisks indicate values beyond this range. Thick horizontal lines indicate differences significant at P ≤ 0.05. **P ≤ 0.001. CON, cinguloo-

percular network; DAN, dorsal attention network; DMN, default mode network; LFPN, left frontoparietal network; RFPN, right frontoparietal network.
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Fig. S4. Scatterplots of the association between recollection RT and DMN–RFPN interaction values. A shows the association between RT and task-unrelated

interaction values computed after correcting for covariance with signals from the CON, DAN, and LFPN components. B shows the association between RT and

task-related interaction values corrected in the same way. C and D show the associations between RT and task-unrelated and task-related interaction values,

respectively, after correcting for covariance with signals from all other components estimated in the ICA.
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Fig. S5. Anatomical location of spherical regions of interest comprising the DMN (magenta) and RFPN (green) components as identified by the ICA.
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Table S1. Regions showing significant group-averaged functional connectivity within each ICA

component

Region x y z Size (voxels) Z

CON

L anterior insula 36 12 −3 443 7.59

R dorsal anterior cingulate cortex 3 33 27 1,188 7.40

R anterior insula −45 12 −6 530 6.35

R midbrain −3 −18 3 245 6.23

R caudate 15 9 15 70 6.05

L midcingulate cortex −6 −21 33 60 5.79

R middle frontal gyrus 30 51 18 25 5.61

L precentral sulcus −39 −3 51 25 5.35

L middle frontal gyrus −30 51 24 40 5.22

R precentral sulcus 33 −3 54 10 5.15

DAN

L intraparietal sulcus −27 −69 39 1,093 7.30

R intraparietal sulcus 33 −45 48 926 6.72

R posterior superior temporal sulcus 51 −42 15 18 5.89

L frontal eye fields −48 6 30 39 5.72

L dorsal precentral sulcus −27 −6 63 30 5.50

L cuneus −12 −102 3 11 5.22

LFPN

L intraparietal lobule −45 −66 39 818 7.19

L middle temporal gyrus −60 −45 −6 264 6.90

L inferior frontal gyrus −48 18 24 871 6.58

L dorsomedial prefrontal cortex −6 36 42 267 6.45

L precuneus −3 −63 39 29 6.00

L frontal operculum −36 18 −18 10 5.48

L precuneus −9 −45 39 12 5.46

RFPN

R intraparietal lobule 54 −45 45 804 7.48

R precuneus 6 −72 48 72 6.92

R inferior frontal gyrus 36 48 −3 845 6.52

L superior parietal lobule −39 −51 48 65 6.02

R anterior insula 39 24 −6 19 5.66

R dorsal posterior cingulate cortex 6 −39 39 34 5.56

R middle temporal gyurs 63 −36 −6 21 5.52

R inferior frontal gyrus 54 21 15 10 5.50

R middle frontal gyrus 21 57 24 13 5.32

DMN

Anterior medial prefrontal cortex 0 63 15 2,378 >9

R posterior cingulate cortex 3 −51 27 234 6.75

L midcingulate cortex −3 −18 39 65 6.38

R angular gyrus 54 −57 36 79 6.17

L angular gyrus −45 −57 33 84 6

L frontal operculum −36 27 −15 35 5.54

R frontal operculum 42 27 −15 32 5.46

CON, cinguloopercular network; DAN, dorsal attention network; DMN, default mode network; L, left hemi-

sphere; LFPN, left frontoparietal network; R, right hemisphere; RFPN, right frontoparietal network.
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Table S2. Names and coordinates of regions of interest studied in the modularity analysis

Region Abbreviation* x y z

RFPN

L superior parietal lobule L SPL −39 −51 48

L inferior parietal lobule L IPL −51 −45 48

R dorsal posterior cingulate cortex R dPCC 6 −39 39

R precuneus R PCUN 6 −72 48

R anterior superior frontal gyrus R aSFG 21 57 24

R posterior middle frontal gyrus R pMFG 36 9 51

R anterior inferior frontal gyrus R aIFG 36 48 −3

R anterior insula R aINS 39 24 −6

R anterior middle frontal gyrus R aMFG 45 45 15

R superior parietal lobule R SPL 48 −42 51

R anterior angular gyrus R aANG 51 −51 36

R inferior parietal lobule R IPL 54 −45 45

R posterior inferior frontal gyrus R pIFG 54 21 15

R middle temporal gyrus R MTG 63 −36 −6

DMN

L posterior cingulate cortex† L PCC −2 −57 21

L subgenual prefrontal cortex‡ L sgPFC −2 6 −12

L medial prefrontal cortex§ L mPFC −2 63 15

L midcingulate cortex L MCC −3 −18 39

L paracentral lobule L PCL −3 −30 51

L ventral posterior cingulate cortex L vPCC −6 −57 9

L ventral insula L vINS −30 18 −15

L middle frontal operculum L mFOP −36 27 −15

L angular gyrus L ANG −45 −57 33

L frontal operculum L FOP −48 27 −12

R ventral posterior cingulate cortex† R vPCC 2 −57 21

R subgenual prefrontal cortex‡ R sgPFC 2 6 −12

R medial prefrontal cortex§ R mPFC 2 63 15

R posterior cingulate cortex R PCC 3 −51 27

R pregenual anterior cingulate cortex R pgACC 3 48 3

R dorsomedial prefrontal cortex R dmPFC 3 54 21

R orbitofrontal cortex R OFC 33 21 −21

R frontal operculum R FOP 42 27 −15

R angular gyrus R ANG 54 −57 36

R posterior middle temporal gyrus R pMTG 54 −63 21

DMN, default mode network; L, left hemisphere; R, right hemisphere; RFPN, right frontoparietal network.

*Abbreviations correspond to the region of interest (ROI) abbreviations used in Fig. 2.
†,‡,§These regional pairs were created from an original single cluster maximum located at x = 0. To avoid generating

an ROI centered on the midline, where CSF is prevalent, two ROIs were instead created and symmetrically placed

2 mm from the midline with the same y and z coordinates.
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