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Abstract. The paper describes the implementation of competitive neural structures based on a
spiking neural model that includes multiplicative or shunting synapses enabling non-saturated
stable states in response to different stationary inputs as well as controllable transient responses.
A VLSI-viable implementation of this model has been previously proposed and tested [1]. It
has the possibilityofmodulating the output spike frequencybyan additional input without affect-
ing other neuron variables such as the membrane potential.This feature is exploited in the simu-
lation of a Selective Temporal Inhibition network that is suitable for implementing attentional
control systems.
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1. Introduction

In the approach presented here, the main motivation for using spiking neurons arises
from the implementation issues. An inter-neuron communication scheme based on
instantaneous events that can be multiplexed in shared connection channels enables
to take advantage of inter-chip communication schemes [2^6] that make
multiple-chip architectures viable. Furthermore, the incoming pulses can be directly
integrated at the target synapses, thus enabling single synapses to process spikes
from several source neurons, therefore reducing the number of synapse modules
required to implement convergent synaptic trees, like the many-to-many connections
required in on-centre^off-surround topologies.

A competitive structure based on the cell model described in Section 2 is simulated.
In some perception processing schemes like saliency maps [7], competition between
the different features extracted makes it possible to perform selective attentional
control that can drastically reduce the reaction times in complex environments.
An attentional shifting mechanism, based on Selective Temporal Inhibition (STI)
structures, is also simulated in Section 3. This attentional mechanism takes advan-
tage of the representation provided by a competitive structure in which different
intermediate states of active nodes are preserved and taken into account. A com-
petitive layer made up of the proposed STI elements selectively inhibits the ¢ring
nodes in response to a global reset signal giving a chance to other less active nodes.
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Section 2 of the paper brie£y presents the neuron model; Section 3 describes simu-
lation results of a competitive structure and a Selective Temporal Inhibition node
based on the presented neuron model. Section 4 summarises some concluding
remarks.

2. Neuron Model

2.1. GLOBAL NEURON DESCRIPTION

The schematic diagram of the neuron model is shown in Figure 1, where Fj
�=ÿ and

Fi
�=ÿ denote the spike frequencies at the respective frequency-controlled

current-sources and conductances. FR is a frequency input to set the leakage or pass-
ive decay term of the neuron. The output circuit can be seen as a Voltage to Fre-
quency Converter (VFC); it converts the membrane potential into short voltage
pulses to interact with other cells.

The membrane potential Vx at the capacitance Cx represents the state of the cell.
Inputs and contributions from other neurons are integrated through several synapses
that can be modelled as frequency controlled current sources (FCI) or as frequency
controlled conductances (FCG). A cmOS circuit implementation of this neuron
model has been previously proposed and tested in [1], illustrating its controllable
transient responses to well-de¢ned neuron states.

Figure 1.The cell model includes frequency controlled current sources (FCI) and frequency controlled con-
ductances (FCG); these two modules are used as additive and shunting synapses respectively, integrating
the input contributions into a membrane capacitance (Cx). An output circuit converts the membrane poten-
tial (Vx) into short voltage pulses that are transmitted to other neurons. Two shunting synapses (g�R and
gÿR) receiving a constant input frequency (FR) can be used to implement the passive decay term that leads
the membrane potential to a well de¢ned resting state (VR) in the absence of other input stimuli.
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2.2. SYNAPTIC MODULES

An excitatory FCI synaptic module changes the membrane potential by a constant
factor, according to Equation (1), each time it receives a spike. Therefore a neuron
receiving only a constant input frequency of spikes through one of these modules
responds with a linear excitation transition up to the high saturation level.

DVx � B � �V� ÿ Vref � �1�

B is a constant factor de¢ned by the particular implementation of the module, V� is a
reference voltage that works as the upper limit of the membrane potential and Vref is
a reference input that can be used, in the case of FCI modules, to modulate the
synaptic weight.

The way an excitatory FCG synaptic module changes the membrane potential for
each received spike is described by Equation (2).

DVx � D � �V� ÿ VX0� �2�
VX0 is the initial membrane potential when the input spike reaches the synapse. There-
fore the contributionof eachpulse depends not only on the synapticweight (in this case
controllable only by the factor D) but also on the current neuron state (Vx).

Assuming small contributions of single spikes in the different synapses, the
dynamics of the different modules of Figure 1, i.e. Frequency Controlled Con-
ductances (FCG) and Frequency Controlled Current Sources (FCI), can be
approximated by the differential Equations (3).

FCGExc : dVx
dt � D�i � �V� ÿ Vx� � F�i

FCGInh : dVx
dt � ÿDÿi � �Vx ÿ Vÿ� � Fÿi

FCIExc : dVx
dt � B�j � �V� ÿ Vr;j� � F�j

FCIInh : dVx
dt � ÿBÿj � �Vr;j ÿ Vÿ� � Fÿj

�3�

Thus, for a neuron such as the one shown in Figure 1, with excitatory and inhibitory
synapses, including FCI and FCG ones, and a pair of FCG synaptic modules (with
factors D�R and DÿR) implementing the leakage or passive decay term, the cell
dynamics can be approximated by the differential Equation (4),

Cx � dVx

dt
� ÿgR�FR� � �Vx ÿ VR� �

X
j;exc

B�j � �V� ÿ Vr;j� � F�j
ÿ
X
j;inh

Bÿj � �Vr; j ÿ Vÿ� � Fÿj �
X
j;exc

D�i � �V� ÿ Vx� � F�i ÿ
X
i;inh

Dÿi � �Vx ÿ Vÿ� � Fÿi

where

gR�FR� � D�R � FR �DÿR � FR ; VR � D�R � FR � V� �DÿR � FR � Vÿ
D�R � FR �DÿR � FR

�4�
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Vr;l are the speci¢c reference voltages of FCI synaptic mocules, and the resting state
(VR) and conductance (gR) are set by means of two FCG synapses receiving a con-
stant pulse frequency (FR). Equation (4) describes a general model that can be
simpli¢ed if the neuron includes only FCI or only FCG synapses. In fact, the
equation can be rewritten in terms of only linear contributions by rearranging
the multiplicative terms to include the factors D�i � V� and Dÿi � Vÿ in the
passive-decay term. However, in its present form, the model allows an independent
control of the passive-decay and the synaptic time constants, making short-term
memory states (i.e. high passive-decay time constant) compatible with fast responses
to input stimuli [8]. This feature is exploited in the STI structure of Section 3.

2.3. OUTPUT MODULE

The output spikes of the neuron are produced by a module [1] that behaves as a
Voltage to Frequency Converter (VFC) with a pseudo-linear characteristic function
described by Equation (5),

VCFNeuronOutput : Fy�Vx� � A � �Vx ÿ Vth� � F0 �5�

where Vth is a reference voltage that acts as the ¢ring threshold and F0 is a reference
frequency which can be used to control, in a multiplicative way, the neuron output
without affecting the membrane potential (Vx). This reference frequency can be
either experimentally set or driven by the outputs of other neurons.

3. Simulation of Functional Blocks

3.1. CONTRAST-ENHANCEMENT COMPETITIVE LAYER

In a competitive topology (see Figure 2) the neuron (or group of neurons) that
receives the highest excitation becomes active, inhibiting the other cells of the same
layer. Each cell of the competitive layer receives excitatory connections from itself
and from its corresponding input element, and inhibitory connections from all
the other neurons in the same layer. If only FCI synapses were used, the input pattern
would lead the neurons of the competitive layer either to the low or the high satu-
ration level. The winning node (or neural group) would reach the high saturation
state at the same time as it inhibited the other nodes to the low saturation level.

A competitive layer of 20 neurons with the topology of Figure 2 has been
simulated. The simulation results in Figures 3 and 4 show the ¢nal state, i.e. the
¢nal membrane potential level (continuous line), after an input pattern (dashed line)
is presented. In these experiments the weights used are Wexc � 1, Winh � ÿ1 and
Winp � 4 (these weights are referred as D terms in Equations (3) and (4)), to enable
the input pattern to override the previous layer state. Each cell includes a
pseudo-linear output module (VCF) with a ¢ring threshold Vth � 2 V.
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In Figure 3(a), the competition process leads the structure to a stable state in which
the 13th neuron exhibits the greatest membrane potential, corresponding to its
highest input component. Another four neurons are not completely inhibited
because their input cells ¢re spikes continuously, as long as their cell states remain
over the VCF threshold (Vth). If the input pattern is changed (see Figure 3(b))
the structure evolves to a new state where the 3rd neuron dominates the competition
due to its greater input component, although other cells remain active. In this way
Figure 3 shows a direct transition (without extinguishing the input signals) between
two stable states set by two different patterns in a contrast-enhancement process.

In some applications it is of interest to keep several relevant features active in a
saliency map [7] after a competition process, and therefore to have some active cells
with different membrane potential levels. In other cases it may be convenient to
have a stronger competitive process where a single neuron wins and completely
inhibits all the other cells of the layer. This can be achieved either by stronger
feedback weights (Wexc and Winh) or by temporarily extinguishing the input pattern
to complete the evolution of the nodes in the absence of input signals, as shown
in Figure 4. In the ¢rst stage the 13th neuron wins the competition in the presence
of the ¢rst input pattern, but other cells remain active due to their signi¢cant input
components (see Figure 4(a)). In the second stage, the input pattern is extinguished
and the competitive process goes on, leading the 13th neuron to the highest activity
level and completely inhibiting the rest of the nodes in the layer (Figure 4(b)).
In the third stage another input pattern is presented, making the 3rd node dominate
the competition (Figure 4(c)). Again, when the inputs are extinguished the network
evolves to a state with a single active node (Figure 4(d)).

Figure 2.CompetitiveTopology.The connectivity is de¢ned by excitatory (Wexc) and inhibitory (Winh) weights
in the competitive layer while the input excitatory weights (Winp) transfer the input pattern between layers.
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Figure 3. Direct transition between two di¡erent states due to consecutive patterns. The nodes whose input
components are above the ¢ring threshold (Vth) stay active because they keep on receiving spikes from
the input layer.
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Figure 4. Continued on next page.
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Figure 4 (continued). Indirect transitions between states in a competitive layer. On extinguishing the input
signals, the network evolves to a state with a single active node.
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3.2. SELECTIVE TEMPORAL INHIBITION (STI): ATTENTIONAL SHIFTING

For a given pattern, after a competition has taken place, the current winning element
may be inhibited by another subsystem, enabling a new competition process between
the remaining active nodes.

The passive decay time constant of a cell can be controlled with a reference fre-
quency (FR) that can be varied for different neurons in a network. The con¢guration
shown in Figure 5 makes use of this control possibility of the decay time constants by
implementing `Selective Temporal Inhibition' (STI), which is useful to perform
attentional shifting in visual processing tasks [7, 9] or in competitive networks
[8, 10, 11].

Each STI element is formed by three cells: a neuron (Ni) belonging to a competitive
layer such as the one shown in Figure 5 and two inter-neurons (NiR1 and NiR2) with
different passive decay time constants. A global reset signal activates the
inter-neuronsNiR1. The output module of cellNiR1 uses the output spikes of neuron
N1 as its reference frequency (F0 in expression (5)). Therefore, node NiR1 does not
¢re any pulses while neuron Ni in the competitive layer remains below the ¢ring
threshold. The cell NiR1 receives a high constant inhibition frequency (FR1),
exhibiting a short passive decay time constant. If neuronNi is active its output spikes
facilitate the output module of inter-neuronNiR1. If the nodes NiR1 receive a global
reset signal, only those that have their output modules facilitated can ¢re pulses to
excite the second inter-neuron NiR2. This node (NiR2) receives a constant low fre-
quency of inhibitory spikes (FR2) exhibiting a long passive decay time constant.
The activation of this inter-neuron leads to the inhibition of nodeNi, which is main-
tained inactive for a time that depends on the passive decay term of neuron NiR2.

Figure 5. STI Topology. Each STI element is made up of three neurons, Ni , NiR1 and NiR2.
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In this way, a global reset signal received by the whole STI structure would tem-
porarily inhibit only the ¢ring nodes (Ni) in the competitive layer, enabling other
cells to win the competition.

The simulation results in Figure 6 illustrate the behavior of three STI elements
arranged in a winner-takes-all structure. The competitive layer (N1, N2 and N3)
receives three input components E1>E2>E3. In the ¢rst stage neuron N1 wins
due to its greater input component and completely inhibits all the other cells of
the same layer. When the system receives a global reset signal it excites the
inter-neurons NiR1 but only N1R1 ¢res and excites the second inter-neuron N1R2.
Therefore cell N1 is inhibited for a time that depends on the passive decay term
of node N1R2. The inhibition of node N1 enables node N2 to win in the competitive
layer although it receives a weaker input component. A second global reset inhibits
nodeN2 enablingN3 to ¢nally dominate in the competitive layer. In this experiment,
strong lateral and self-feedback weights are used in the competitive layer in order to
get a winner-takes-all operation. The global reset signal enables different nodes to
win the competition consecutively (in an order that depends on the input strengths)
without changing the input pattern.

This mechanism may be used to implement attentional shifting processes. In a ¢rst
stage, a general vision processing layer extracts some elementary features that are
combined to create retinotopic saliency maps of broader or higher order visual fea-
tures initially considered as relevant. In a second stage, a global reset signal is used
to temporarily hold down these saliency maps, providing the system with an oppor-
tunity to process other, possibly important, features of the visual scene.

Figure 6. Simulation results of a three element STI competitive structure. Each row of plots represents the
activity evolution of the node in the competitive layer (Ni ) and its couple of resetting interneurons (NiR1

and NiR2).
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4. Concluding Remarks

The spiking neuron model described in Section 2 includes multiplicative terms that
enable non-saturated stable states in response to different stationary stimuli. This
characteristic is used in an on-centre-off-surround structure in which the steady-state
distribution of membrane potentials is a contrast-enhanced version of the input
components. The simulations of this structure show how the neurons evolve to
new states when the input patterns change, as well as its winner-takes-all operation
when the network is allowed to evolve after the input pattern is extinguished.

This kind of competition between signi¢cant features can be used in perceptive
processing schemes like saliency maps [7] with an attentional mechanism to focus
the system resources onto certain regions of the feature maps. An attentional shifting
mechanism, based on the Selective Temporal Inhibition (STI) structure, is simulated
in Section 3. A competitive layer made up of STI elements responds to a global reset
signal selectively inhibiting selectively the ¢ring nodes, giving a chance to other less
active nodes that may represent signi¢cant features. These attentional mechanisms
drastically reduce the reacting time in complex scenes by restricting the regions under
study, always considering ¢rst the most signi¢cant features obtained from primitives
implemented in the primary feature extraction layer.
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