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Chitosan is obtained from alkaline deacetylation of chitin, and acetamide groups are transformed into primary amino groups
during the deacetylation. The diverse biological activities of chitosan and its derivatives are extensively studied that allows to
widening the application fields in various sectors especially in biomedical science. The biological properties of chitosan are
strongly depending on the solubility in water and other solvents. Deacetylation degree (DDA) and molecular weight (MW) are
the most decisive parameters on the bioactivities since the primary amino groups are the key functional groups of chitosan
where permits to interact with other molecules. Higher DDA and lower MW of chitosan and chitosan derivatives demonstrated
higher antimicrobial, antioxidant, and anticancer capacities. Therefore, the chitosan oligosaccharides (COS) with a low
polymerization degree are receiving a great attention in medical and pharmaceutical applications as they have higher water
solubility and lower viscosity than chitosan. In this review articles, the antimicrobial, antioxidant, anticancer, anti-inflammatory
activities of chitosan and its derivatives are highlighted. The influences of physicochemical parameters of chitosan like DDA and
MW on bioactivities are also described.

1. Introduction

Natural polymers are considered environmentally friendly
alternatives widely used in medical, agricultural, food, and
environmental industries and so on due to their especially
renewable, sustainable, and nontoxic properties [1]. Espe-
cially in biomedical filed, the natural polymers play very
important role. Polysaccharide polymers are the most effi-
cient applicants for the preparation of biomedical products.
There are mainly two types of polysaccharides: (i) homopoly-
saccharides, one type of monomer unit; (ii) heteropolysac-
charides, two or more types of monomer unit [2]. They
possess a wide range of molecular weights and a significant
number of functional groups that give a rise to chemical
modification availability [3]. Among the many different sorts
of polysaccharides, cellulose (bacterial cellulose and nanocel-
lulose) [4–9], starch [10–14], seaweed (alginate, carrageenan,
fucoidan, and ulvan) [15–18], chitin, and chitosan are mainly

studied. Due to their attractive abilities to improve the phar-
macokinetics and pharmacodynamics of small drug, protein,
and enzyme molecules, macromolecular polysaccharides
have been receiving significant attention [2, 3]. Polysaccha-
ride polymers demonstrated very efficient attachments of
bioactive therapeutic agents, which leads to an increase in
the duration of activity [2]. The bioactive agents can bind
covalently to polysaccharide backbone structures.

Chitosan is a biopolysaccharide obtained by a de-N-
deacetylation process of chitin which is the primary struc-
tural polymer in arthropod exoskeletons [19–22]. Chitosan
contains three types of reactive groups which are the primary
amine group and the primary and secondary hydroxyl
groups at C-2, C-3, and C-6 positions, respectively [15].
Among the three reactive groups, the primary amine at the

C-2″ position of the glucosamine residues is the most consid-
erable functional groups for biological activities of chitosan
[23]. Chitosan has received a significant attention for several
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decades due to their unique biological activities. This
review aims to supply the recent information about the
competitive biological activities of chitosan and its deriva-
tives for medical and pharmaceutical applications. Among
many biological activities of chitosan and its derivatives
discovered so far, antimicrobial, antioxidant, anticancer,
and anti-inflammatory activities were described with
recently published outcomes.

2. Chitosan

After cellulose, chitin is the most abundant natural muco-
polysaccharide and commonly found as constituent of the
exoskeleton in animals, particularly in crustaceans, mollusks,
and insects [19–22]. Chitosan is derived from alkaline deace-
tylation of chitin composing of 2-amino-2-dedoxyd-glucose
and 2-acetamino-dedoxy-d-glucose units linked with b-
(1→ 4) bonds (Figure 1) [19, 20]. In the process of deacetyla-
tion of chitin, the acetamide groups are transformed to the
primary amino groups, which are the principal functional
groups of chitosan. Chitosan possesses 5–8% nitrogen in
the molecules in form of the primary aliphatic amine groups,
which makes chitosan proper for typical reactions of amines
[19, 23]. The degree of deacetylation of chitosan is referred
to the molar fraction of N-acetylated units (DA) or per-
centage of acetylation (DA%). The high viscosity and low
solubility of chitosan limit its biological applications since
the attractive biological properties of chitosan are strongly
depending on the solubility in water and other commonly
used solvents [24]. The degree of deacetylation (DDA)
makes an important role to decide its bioactivities as they
are directly related to the cationic behavior of chitosan,
and the protonation of the amino groups occurs in aqueous
acidic solutions [21, 22, 25–28].

The functional amino groups in chitosan are easily mod-
ified by chemical reaction and that results in the changes of
the mechanical and physical properties. High molecular
weight of chitosan allows less availability for its bioactivities,
and thus, depolymerization by hydrolysis of polymer chains
is frequently performed to acquire low molecular or oligo-
mers of chitosan. In acid hydrolysis, temperature and acidic
concentrations were critical factors affecting on the results
[29]. The enzymatic degradation of chitosan is getting an
attention since it possesses many advantages like milder con-
dition, high specificity, no modification of sugar rings, and
mass production comparing to chemical hydrolysis [30].
Common nonspecific enzymes like lysosome, chitinase, pec-
tinase, and cellulose are employed [21]. Proteolytic enzymes,
such as pepsin, papain, pronase [31, 32], hepatopancreas
[33], and chitosanase [30], were also studied to obtain the
low molecular weight of chitosan. Chitosan oligosaccharide
(COS) is an oligomer of chitosan, which usually has a degree
of polymerization (DP)< 50–55 and an average molecular
weight (MW)< 10,000 kDa [34]. COS has good water solubil-
ity and low viscosity and thus has more favorable applicant
than chitosan in biomedical applications. Aranaz and his col-
leagues well reported the relations between the biological
characteristics and MW and the deacetylation degree of
chitosan [21]. When the DDA increases, the solubility of

chitosan also increases and the more possible interactions
are permitted between the available sites of chitosan and
other molecules. Thus, the mucoadhesive capacity of chito-
san polymers increases with an increase of DDA by providing
higher numbers of reactive amino groups available for
interaction with other molecules [35, 36]. The cationic
characteristic of chitosan is pH dependence (pKa 6.3)
and makes it ready to interact with negatively charged
molecules such as proteins, therapeutic DNA or RNA,
fatty acids, bile acids, phospholipids, and anionic polyelec-
trolytes [35, 37, 38]. Besides the MW and DDA of chito-
san, other physicochemical properties like polydispersity
(MW/MN) and crystallinity or the pattern of acetylation
might be also considered since they affect on mechanical
and biological activities of chitosan [24].

Chitosan and its derivatives are extensively studied in
medical and pharmaceutical fields due to their competitive
biological properties like biocompatibility, biodegradability,
nontoxicity, and analgesic, antitumor, hemostatic, hypocho-
lesterolemic, antimicrobial, and antioxidant properties and
so on [35, 39]. These properties are very advantageous in
biomedical applications of tissue engineering, wound heal-
ing, excipients for drug delivery, and gene delivery [37, 38,
40–42]. The preparations of chitosan-based biomedical
materials are varied such as finely divided powders, films,
membranes, gels, coatings, nanoparticles, suspensions, and
hydrogels, and they can influence their biomedical activity
[24]. Depending on the operation purpose, types of drug,
and healing target, the preparation manner can be varied.

3. Antimicrobial Activity

The antimicrobial activity has been considered the most
essential and influential bioactivity of chitosan and employed
not only to the preparation of biomedical materials but also
to the functionalization of other polymeric materials includ-
ing fibers and food conservation [43–51]. The most
concerned problem found in hospital and healthcare institu-
tions is infections by microorganism, and thus the
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Figure 1: Schematic presentation of chitin deacetylation with
alkaline.
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antimicrobial activity should be primarily considered in bio-
medical materials. The exposure of subcutaneous tissue
caused by wounds like cut, surgery, burn, and so on provides
a moist, warm, and nutritious environment that is very suit-
able for growing the microorganisms [52]. The wound infec-
tions are seriously considered since they can cause an
increase of trauma and a burden on financial resources to
the patients. The mechanism of antimicrobial activity of
chitosan is not yet fully understood although numerous
researches have been carried out so far. The antimicrobial
effect of chitosan is much higher comparing to chitin due
to the numbers of the amine groups that is responsible for
cationic property of chitosan. Positively charged chitosan at
acidic condition might interact with negatively charged resi-
dues of carbohydrates, lipids, and proteins located on the cell
surface of bacteria, which subsequently inhibit the growth of
bacteria [21, 22]. Thus, the electronic property of chitosan
plays a very important role in the inhibition mechanism of
microorganisms. The high density of positive charge on the
structure of chitosan or its derivatives generates strong elec-
trostatic interaction that is affiliated with DDA. With this
theory, chitosan is more promising for the inhibition of
Gram-negative than Gram-positive bacterium since the neg-
atively charged cell surfaces interact more with positively
charged chitosan [22, 43, 47, 53]. However, many researches
demonstrated that the chitosan was a more efficient inhibitor
against Gram-positive compared to Gram-negative microor-
ganism in their experimental results [44, 45, 54–58].

Takahashi and his colleagues tested the influence of
DDA of chitosan on the antimicrobial activity against
Staphylococcus aureus using two different testing methods,
that is, incubation using a mannitol salt agar medium and
a conductimetric assay [59]. In both testing methods, the
DDA of chitosan played a dominant role in the inhibition
of Staphylococcus aureus growing (the higher DDA
showed the higher rate of inhibition) (Figure 2).

Jung et al. and Younes et al. also achieved similar results
about the antimicrobial activity depending on chitosan DDA
[60, 61]. When the DDA was nearly 100% (99%), chitosan
inhibited almost all types of bacteria tested at the minimum
inhibitory concentration (MIC).

There is another theory proposed about the inhibition
mechanism of chitosan, that is, an inhibition of RNA and
protein synthesis by permeation into the cell nucleus and
eventually rupture and leakage of intracellular component.
In this theory, the MW is the most decisive factor on the
activity [20–22]. The low MW of chitosan was found that
easily penetrates into the cell wall of bacteria, combining with
DNA and inhibiting the synthesis of mRNA and DNA tran-
scription. With the increase of MW, the permeation into the
cell nucleus capacity is decreased. In the case of high MW
chitosan, it binds to the negatively charged components on
the bacterial cell wall forming an impermeable layer around
the cell and consequently changes the cell permeability and
blocks transport into the cell [38, 62].

Apart from the MW and DDA, the solubility, pH, and
temperature environment are also affecting on the antimicro-
bial activity of chitosan. At a lower pH, the positive ionic
charge increases and chitosan is more absorbed by bacterial
cells [20–22]. Benhabile et al. experimented the antimicrobial
potential of chitin, chitosan, and its N-acetyl chito- and
chito-oligomers against four Gram-positive bacteria (Staphy-
lococcus aureus ATCC 25923 and ATCC 43300, Bacillus
subtilis, and Bacillus cereus) and seven Gram-negative bacte-
ria (Escherichia coli, Pseudomonas aeruginosa, Salmonella
typhimurium, Vibrio cholerae, Shigella dysenteriae, Prevotella
melaninogenica, and Bacteroides fragilis) [63]. In this publi-
cation, both N-acetyl chito- and chito-oligomers were more
effective on the inhibition activity against all tested microor-
ganism than chitosan and chitin, and the decisive effect of
DDA and MW on antimicrobial activity was well proved.
When DDA is the same (~80%), the effect of MW on the
inhibition capacity against Escherichia coli was studied by
Liu et al. [64]. The authors tested the MW from 55 to
155 kDa, and the lower MW has the higher activity of inhibi-
tion against Escherichia coli.

Jeon and his colleagues presented the antimicrobial
potential of chitosan microparticles against Escherichia coli,
Salmonella enterica, Klebsiella pneumonia, and Streptococcus
uberis [65]. The chitosan microparticles showed a broad-
spectrum antimicrobial activity, and when high concentra-
tion of chitosan microparticles was applied, the activity
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Figure 2: Effect of the DDA of chitosan on the growth inhibition of S. aureus. Higher DDA was more effective on inhibiting the growth of S.
aureus: (a) DD 92.2%; (b) DD 90.1%; (c) DD 88.0%; (d) DD 83.9%; (e) DD 79.7%; (f) DD 75.5%; (g) PVC; (h) control (adapted from [59]).
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increased. Despite the many studies realized so far, still there
is a limitation to conclude about the clear relation between
antimicrobial capacity of chitosan and its MW and DDA. It
might be due to many other factors affecting the inhibition
rate such as sorts of bacterial strains and conditions of bio-
logical testing [66]. To expect the synergetic effect of the anti-
microbial activity, the incorporation with other promising
compounds [43, 44, 67–69] and the modification of structure
of chitosan molecules are attempted [26, 70–72]. The phyto-
chemicals like phenolic compounds are broadly attempted to
improve antimicrobial activity of chitosan by grafting into
the structure [44, 73]. Kim et al. reported the antibacterial
effect of chitosan-phytochemical (caffeic acid, ferulic acid,
and sinapic acid) conjugates on acne-related bacteria P.
acnes, S. epidermidis, S. aureus, and P. aeruginosa, and the
results exhibited higher (synergetic) antimicrobial effects
than that of unconjugated chitosan [73]. Eom et al. prepared
the conjugates of chitosan and ferulic acid in the presence of
β-lactam antibiotics, and their synergetic antibacterial effect
against methicillin-resistant Staphylococcus aureus was
achieved [74].

4. Antioxidant Activity

Free radical reaction is considered the major cause of several
specific human disease and has become an intense interested
theme to scientists. Due to its atomic or molecular structure,
free radicals are unstable and very reactive. Thus, they tend to
pair up with other molecules and atoms to be more stable
state [75]. Phaniendra and his colleagues defined free radical
as an atom or molecule containing one or more unpaired
electrons in a valence shell or outer orbit and is capable of
independent existence [76].

In human body, reactive oxygen species (ROS) are
produced during the normal metabolism and they oxidize
biomolecules, such as lipids, proteins, carbohydrates, and
DNA, ultimately leading to oxidative stress [20]. The term
of ROS is used not only for oxygen-derived free radicals like
superoxide, hydroxyl radical, and nitric oxide but also for
nonradical oxygen derivatives of high reactivity like singlet
oxygen, hydrogen peroxide, peroxynitrite, and hypochlorite
[75, 77]. In biological system, mitochondria are the main
responsible for ROS generation during physiological and
pathological states and their own ROS scavenging mecha-
nisms required for cell survival [78]. Besides the normal
cellular metabolism, there are many exogenous sources to
generate ROS such as ozone exposure, hyperoxia, ionizing
radiation, and heavy metal ions [79]. In cell metabolism, var-
ious enzymes such as catalase, superoxide dismutase, and
glutathione peroxidase are involved as a part of the cellular
defense system against ROS-mediated cellular injury [80].
When excessive ROS are generated in cellular metabolism,
the defense mechanism is not able to protect cellular sys-
tem and thus the oxidative stress is caused. The oxidative
stress in the human body can cause various pathogenic
processes including aging, cancer, wrinkle formation,
rheumatoid arthritis, inflammation, hypertension, dyslipid-
emia, atherosclerosis, myocardial infraction, angina pec-
toris, heart failure, and neurodegenerative diseases such

as Alzheimer, Parkinson, and amyotrophic lateral sclerosis
[80–84]. In this aspect, an increasing interest in antioxi-
dant agents is very natural.

Therefore, the antioxidant activity of chitosan has been
getting high attention from many scientists. Chitosan has
shown a notable scavenging activity against different
radical species presenting a great potential for an extensive
applications. The scavenging activity of chitosan
derivatives against free radicals comes through donating
hydrogen atom, and several theories were proposed by
Xie et al. [85]:

(i) The hydroxyl groups in the polysaccharide unit can
react with hydroxyl radicals by the typical H-
abstraction reaction.

(ii) OH can react with the residual-free amino groups
NH2 to form stable macromolecules radicals.

(iii) The NH2 groups can form ammonium groups NH3
+

by absorbing H+ from the solution, and then they
react with OH through addition reactions.

The DDA and MW of chitosan are also the major
factors deciding the scavenging capacity of chitosan [21].
Different with chitosan, chitin is an insoluble polymer in
water and thus the major limitation exists for being a use-
ful antioxidant agent.

The NH2 groups in chitosan are responsible for free
radical scavenging, and they can be protonated in acidic solu-
tion. There are many publications about the effect of MW
and DDA on the scavenging capacity of chitosan. Mahdy
Samar and his colleagues experimented an antioxidant activ-
ity with various chitosan samples with different DDA and
MW and obtained results as high rate of DDA and low
MW of chitosan has higher antioxidant activity [27]. Hajji
et al. studied three types of chitosan obtained by deacetyla-
tion of chitin extracted from Tunisian marine sources shrimp
(Penaeus kerathurus) waste (DDA: 88%), crab (Carcinus
mediterraneus) shells (DDA: 83%), and cuttlefish (Sepia offi-
cinalis) bones (DDA: 95%) [86]. In the test of antioxidant
activity, chitosan from cuttlefish with 95% DDA showed
the highest value of scavenging effect on DPPH-free radical.
Kim and Thomas evaluated the antioxidant activity of chito-
san with different MW like 30, 90, and 120 kDa and proved
that higher antioxidant activity acquired with lower MW of
chitosan (30 kDa) [87]. Sun and his colleagues studied about
chitosan oligomers with different MW and tested the
scavenging capacity against superoxide anion and hydroxyl
radical [88]. In both superoxide anion and hydroxyl radical,
the chitosan oligomers presented relative stronger scaveng-
ing activity with lower MW. The antioxidant activity of enzy-
matically degradated chitosan against hydrogen peroxide, 2,
2-diphenyl-1-picrylhydrazyl radical, and chelating ferrous
ion was reported by Chang et al. [89]. The results showed
that lower MW of chitosan (~2.2 kDa) has the highest impact
on the scavenging capacity. Li et al. prepared the low MW of
chitosan by oxidative degradation using hydrogen peroxide
and tested scavenging capacity against hydroxyl radical
[90]. The results indicated that the MW of chitosan (lower
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MWhas better activity) and concentration were attributed to
free radical scavenging effect.

Although the antioxidant activity of chitosan has been
proven through many researches, the level of activity is not
very satisfactory due to the lack of a H-atom donor to serve
as a good chain-breaking antioxidant [91]. The scavenging
capacity of free radicals is related to bond dissociation energy
of O–H or N–H and the stability of the formed radicals. Due
to strong intramolecular and intermolecular hydrogen bonds
in chitosan molecules, the OH and NH2 groups are difficult
to dissociate and react with hydroxyl radicals [85]. The
various modifications of chitosan molecules to improve the
activity were accomplished by grafting functional groups into
molecular structure. Among the many tries, the grafting of
polyphenols onto chitosan was the most actively studied.
Most of polyphenols are found from natural sources and
considered safe and environmentally benign materials. After
recognizing their strong antioxidant activity, polyphenols
have been extensively studied in the area of nutrient, food
manufacturing, pharmaceuticals, and medicals [92–98]. The
grafting reaction of chitosan and polyphenols was mostly
assisted by enzymes [72, 99–101]. In the enzyme-catalyzed
reaction, phenolic compounds are oxidized to o-quinones
which are highly reactive electrophilic compounds further
covalently graft to nucleophilic amine groups in chitosan
through Schiff-base and/or Michael-type addition reaction
[45, 72]. After modification of chitosan by grafting poly-
phenols, the antioxidant activity was remarkably increased
due to the synergetic effects obtained from both chitosan
and polyphenols. Figure 3 shows the grafting mechanism of
chitosan and catechin by laccase-mediated oxidation reac-
tion (Figure 3(a)) and an increase of antioxidant activity on
the chitosan film after grafting catechol (Figure 3(b)).

5. Anticancer Activity

The general cancer treatments performed clinically using
chemotherapy, radiotherapy, and surgery have considerably
extended the life expectancy of patients. Many current anti-
cancer drugs have nonideal pharmacological properties such
as low aqueous solubility, irritating nature, lack of stability,
rapid metabolism, and nonselective drug distribution, and
they can cause several adverse consequences, including
suboptimal therapeutic activity, dose-limiting side effects,
and poor-patient quality of life [102, 103]. Thus, many scien-
tists are inspired to search for more effective and harmless
medication for cancer-suffering patients. Chitosan and its
derivatives are considered the potential anticancer polysac-
charide naturally obtained. Many efforts on searching an effi-
cient anticancer agent from natural products lead an
increasing interest in polysaccharides. Zong et al. published
a review article about the anticancer activity of polysaccha-
rides from fungi, plants, algae, animals, and bacteria [104].
They resumed the inhibition mechanism of tumor growth
by polysaccharides as the following:

(i) Prevention of tumorigenesis by oral consumption of
active preparations

(ii) Direct anticancer activity, such as the induction of
tumor cell apoptosis

(iii) Immunopotentiation activity in combination with
chemotherapy

(iv) Inhibition of tumor metastasis

An intrinsic antitumor activity of chitosan and its deriv-
atives with low MW was verified through in vitro and in vivo
experiments [105]. Along with antimicrobial and antioxi-
dant activities, the DDA and MW of chitosan and its
derivatives are also the major factors deciding antitumor
activity. The effects of the DDA and MW of chitosan olig-
omers on antitumor activity in vitro were investigated by
Park et al. [106]. The lower MW and higher DDA (higher
solubility) are promising factors for the development of
antitumor agents derived from chitosan in in vitro tests
with Human PC3 (prostate cancer cell), A549 (carcinomic
human alveolar basal epithelial cell), and HepG2 (hepato-
cellular carcinoma cell). Azuma and his colleagues well
reviewed about the antitumor activity of COS in vivo
and in vitro cell models showing an effectiveness on tumor
growing, reduction of the number of metastatic colonies,
suppressing cancer cell growing, and enhancement of
acquired immunity [107]. COS has comparatively short
chain length and readily soluble in water. Jeon and Kim
examined the antitumor activity of COS with different
molecular weight against S180 (sarcoma 180 solid) and
U14 (uterine cervix carcinoma number 14) tumor cell-
bearing mice [108]. The results proved that the antitumor
activity was clearly dependent on MW and the range of
MW 1.5 to 5.5 kDa effectively inhibited the growth of both
tumor cells S180 and U14 in the mice. At the same time,
the mice survived more days without weight loss. In sev-
eral studies, nanoparticles prepared with chitosan showed
direct inhibition activity to the proliferation of human
tumor cell by inducing apoptosis and growth suppression
without signs of neurological toxicity or weight loss prov-
ing the safeness of chitosan nanoparticles in the mouse
model [109–111]. Xu et al. described that the antitumor
activity of chitosan nanoparticles might be related to anti-
angiogenic activity that is correlated with vascular endo-
thelial growth factor receptor (VEGFR2) production and
subsequent blockage of vascular endothelial growth factor-
(VEGF-) induced endothelial cell activation [109]. The
stearic acid-g-chitosan oligosaccharide (CSO-SA) micelles
were studied for antitumor drug or gene delivery carriers
[112, 113]. Hydrophobic drug, podophyllotoxin, was suc-
cessfully loaded in the CSO-SA micelles demonstrating a
sustained release and in vitro anticancer effects for sup-
pressing against human breast carcinoma (MCF-7) cells,
human lung cancer cells (A549), and human hepatoma
cell line (Bel-7402) [112]. Polyethylenimine-conjugated
stearic acid-g-chitosan showed good DNA-binding capac-
ity (formation of gene delivery complex) with effectively
suppressing the tumor (above 60% tumor inhibition) with-
out systematic toxicity [113]. There are also many other
studies about the chitosan and chemically/physically
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Figure 3: (a) Schematic presentation of enzymatic oxidation of catechin by laccase and nonenzymatic grafting with chitosan and (b)
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modified chitosan or chitosan derivatives for various types
of cancer treatment in vivo and in vitro. Most of the stud-
ies commonly demonstrated that chitosan involved anti-
carcinogenic tools that are very efficient on the inhibition
of cell proliferation, inducing apoptosis, cell viability,
reduction of tumor size, cell targeting, less side effect,
and low toxicity. In Table 1, the summarized several liter-
atures about the anticancer effects of chitosan involved
anticarcinogenic tools on breast, prostate, esophageal, liver,
oral cancer cells, and so on.

6. Anti-Inflammatory Activity

Inflammation is the first protective response to infection or
injury of human body driven in a tissue compartment by a
specific set of immune and inflammatory cells with the aim
of restoring its structural and functional integrity after expo-
sure to an adverse stimulus [128]. Numerous researches have
carried out about the anti-inflammatory and proinflamma-
tory properties of chitosan and its derivatives. Davydova
and his colleagues tested the anti-inflammatory activity of
chitosan with high (MW: 115 kDa) and low molecular weight
(MW: 5.2 kDa), and both chitosan samples presented an

intensified induction of anti-inflammatory IL-10 cytokine
in animal blood and suppression of colitis progress [129].
The authors concluded that the main contribution to anti-
inflammatory activity of chitosan was driven by structural
elements comprising its molecule, but not depending on
MW. Friedman et al. reported the inhibition capacity of
chitosan-alginate nanoparticles against inflammatory cyto-
kines and chemokines induced by P. acnes, and the results
showed that chitosan-alginate nanoparticles efficiently
inhibited P. acnes-induced cytokine production in human
monocytes and keratinocyte in a dose-dependent manner
[130]. Besides inhibition capacity, they also showed high
specificity of controlled drug delivery potential for topical
therapeutics. Oliveira et al. examined the inhibition of proin-
flammatory cytokines and anti-inflammatory activities of
chitosan film [131]. From the achieved results, a reduction
of TNF-α (proinflammatory cytokines) in 3~10 days of cells
cultured on chitosan film and significant increase of anti-
inflammatory cytokines IL-10 and TGF-β1 are presented.
Anti-inflammatory activities of COS were demonstrated by
many scientists notwithstanding that the exact mechanism
is not yet fully understood. Chung et al. studied two types
of COS with high (70 kDa) and low molecular weight (MW:

Table 1: Anticancer and antitumor activity of chitosan involved preparations tested in various cancer cells.

Cancer types Used CS form Tested cells Remarkable results Ref.

Breast cancer

SCS1, SBCS2 MCF-7, MDA-MB-231
Inhibition cell proliferation and

inducing apoptosis
[114]

CS3 MDA-MB-231, MCF-7, T47D
Inhibition cell proliferation, inducing apoptosis

nontoxic to fibroblast L929 normal cells
[102]

Docetaxel-CN4 MCF-7
Inhibition cell proliferation,
nontoxic to normal cells

[115]

FA-CS-UA-NPs5 MCF-7
Inhibition cell viability, inhibition tumor

growth (reduction of size)
[116]

MCN6 MCF-7 Inhibition cell proliferation [117]

Prostate cancer

CA7 scaffolds LNCaP, C4-2, C4-2B, TRAMP-C2
Good interaction with immune cells,
including tumor-infiltrating B cells

[118]

CS-EGCG NP8 22Rν1 Inhibition tumor growth (reduction of size) [119]

GC-based CNPs9 PC-3 long-term tumor growth inhibition [120]

CHGC10 LNCaP, PC-3 Inhibition tumor growth (reduction of size) [121]

FA-CS PLGA NP11 DU145 Inhibition cell proliferation [122]

CS-AGR2 siRNA NP12 PC-3 Inhibition cell viability [123]

Colon cancer CSHA13 membranes HT29, DLD-1, HCT116, SW480, In situ inhibitory effect on cancer cell [124]

Liver cancer
Bio-CS NP14 SMMC7721

In situ inhibition cell proliferation, in vitro and
in vivo efficient cell targeting

[125]

CS, CSHA13 membranes Huh7, HepG2, Hep3B, SKHep-1 Inhibition cell proliferation [124]

Esophageal cancer CS NP CAF cell from cancer patient
Inhibition cell proliferation,

antimetastatic ability
[126]

Oral cancer
CLCS NP15 SCC-9 Reduction cell viability [118]

CS HSC-3, HSC-4, Ca9-22, and HaCaT Reduction cell viability [127]

SCS1: sulfated chitosan; SBCS2: sulfated benzaldehyde chitosan; CS3: chitosan; docetaxel-CN4: docetaxel-loaded chitosan nanoparticle; FA-CS-UA-NPs5:
folate-chitosan nanoparticles loaded with ursolic acid; MCN6: magnetic chitosan nanoparticles; CA7: chitosan-alginate; CS-EGCG NP8: chitosan
nanoparticles encapsulating epigallocatechin-3-gallate; GC-based CNP9: glycol chitosan-based chitosan nanoparticles; CHGC10: glycol chitosan; FA-CS
PLGA NP11: folic acid conjugated-chitosan functionalized poly (D,L-lactide-co-glycolide) nanoparticles; CS-AGR2 siRNA NP12: chitosan-based AGR2
siRNA nanoparticle; CSHA13: hyaluronan- (HA-) grafted chitosan; bio-CS NP14: biotinylated chitosan nanoparticles; CLCS NP15: curcumin-loaded
chitosan-coated nanoparticles.
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<1 kDa), and their anti-inflammatory capacity was compared
[132]. In low molecular weight COS, the significant inhibi-
tion effect against IL-4, IL-13, and TNF-α cytokines was
found showing the potential in alleviating the allergic inflam-
mation in vivo. Li et al. proposed the mechanism of the
lipopolysaccharide-induced NF-κB-dependent inflammatory
gene expression by COS, which was associated with reduced
NF-κB nucleus translocation [133]. NF-κB is an important
transcription factor in mediating the proinflammatory
responses. Similar study was carried out by Ma et al. [134],
and the positive effect of pretreatment with COS on the
suppression of LPS-induced NF-κB and AP-1 activation in
macrophages was explained. The results explained that
COS is a potential inhibitor against NF-κB- and AP-1-
mediated inflammation responses in macrophage by
showing the suppression of the LPS-induced c-fos (proto-
oncogene) expression in macrophages in a concentration-
dependent manner. Yang and his colleagues reported COSs
with different MW: COS-A ( 10 kDa<MW< 20 kDa) and
COS-C (1 kDa<MW< 3 kDa) [135]. In both COS samples,
the remarkable inhibition activity was observed against the
LPS-induced nitric oxide production of RAW 264.7 cells by
50.2% and 44.1%, respectively, without cytotoxicity. Com-
paring to COS-A, COS-C (lower MW) has a higher level of
inhibition activity at lower concentration applied. Li et al.
reported the proinflammatory and inflammatory activities
of COS (obtained by enzymatic hydrolysis using chitosanase)
on cytokines [136]. The authors examined the level of proin-
flammatory cytokines like IL-1β, IL-6, and TNF-α and anti-
inflammatory cytokine IL-2 in mouse osteoarthritis (OA)
model. The reduction of serum expression of proinflamma-
tory cytokines and enhancement of anti-inflammatory
activity were achieved. Apart from that, the relief of knee
joint swelling symptom of mouse model was observed by
measuring the changes of the diameter of the knee joint.

7. Future Prospects

Chitosan and its derivatives are extensively studied for med-
ical and pharmaceutical applications. Their unique and
attractive bioactivities have been proved through in situ and
in vitro experiments. They are easy to obtain in nature with
low-cost processes via alkaline deacetylation of chitin.
Besides that, the possible acquirement of raw materials by
reusing of by-products from food processing industries is
also very competitive. Taking into account their many advan-
tages, the interest on the industrial applications of chitosan
and its derivatives might be constantly increased. The com-
mercialization of products prepared with chitosan and its
derivatives is not yet very common and easy to find. In the
future, the effort might be made for easier accessibility of cos-
tumers to commercial products in the market. To get more
confidence on the chitosan-based commercial products from
customers, more fundamental studies on the natural polysac-
charides with useful bioactivities might be accomplished
including the mechanism of bioactivities of chitosan mole-
cules. This review might help to clarify what have been the
most considered among many advantages of chitosan and
its derivatives for medical applications in the literatures and

will motivate many scientists to work on both fundamental
studies and more variety industrial applications.

8. Conclusion

Chitosan and its derivatives possess very attractive biological
activities. The potential availability of chitosan and its deriv-
atives in biomedical applications was mainly focused in this
review article like antimicrobial, antioxidant, anticancer,
and anti-inflammatory activities. Countless researches have
been carried out and have commonly reported excellent
activities without toxicity. The MW and DDA of chitosan
were the most decisive factors affecting on the biological
activities mentioned in this review. Thus, in many cases, the
hydrolysis of chitosan to reduce the MW to improve their
functionality in diverse manners and its effects on biological
activities were studied in parallel. The excellent results have
been shown through the many scientists, but still there are
many challenges required to be explored to explain their
mechanism of bioactivities. This review will contribute to
the authors working not only on the preparation of
chitosan-based biomedical products but also on the evalua-
tion of their specific biological activities.
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