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We consider a long-term capacity investment problem in a competitive market under demand uncertainty.

Two firms move sequentially in the competition and a firm’s capacity decision interacts with the other firm’s

current and future capacity. Throughout the investment race, a firm can either choose to plan its investments

proactively, taking into account possible responses from the other firm, or decide to respond reactively to

the competition. In both cases, the optimal decision at each period is determined according to an ISD

(Invest, Stayput, Disinvest) policy. We develop two algorithms to efficiently derive proactive ISD policies

for the leader and follower firms. Using data from the container shipping market (2000-2015), we show that

the optimal capacity determined by our competitive strategy is consistent with the realized investments in

practice. By revealing strategical flexibility of proactive strategies, our results demonstrate that firms in the

competition can gain more capacity and profit through such a strategy. Using Monte Carlo simulations, we

explore the impact of different market conditions and investment irreversibility levels on capacity strategies.

In particular, by comparing the results of competitive strategies and strategies that separate firms into

different markets, we show that both firms can benefit from the competition and that market downturns

likely lead to investment cascades.
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1. Introduction

Capacity investment refers to the change in a firm’s stocks of various processing resources over

time (Van Mieghem, 2003). Firms face a number of challenges in such decisions, since capital assets

are costly and an investment is usually irreversible while there is uncertainty in future rewards.

As a discrepancy between a firm’s capacity and demand results in inefficiency and losses, either

through under-utilized resources or unfulfilled demand, the goal of capacity planning is often to

minimize this discrepancy in a profitable way. However, doing this is not always possible when

firms compete in quantity and their decisions interact with each other (Del Sol and Ghemawat,

1999). In a competitive market where dominant firms exist and product price fluctuates with these

firms’ capacity, the decisions of one firm directly impact those of the other firms. Investment strate-

gies that ignore competition can have fundamental problems, as they either tend to recommend

waiting too long before making an investment, or underestimate the likely countermoves of the

other dominant firms towards the decision firm’s investment. Without a proper theory, investment

decisions in a competitive market can lack guidance.
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The container shipping market, where the shipping service price is controlled by a small number

of liner operators through their capacity1, is a good example of a competitive market. Over the past

few years, we have observed a striking investment race among shipping firms for fleet capacity: the

world fleet capacity in fully cellular containerships has increased by 60.3% since 2009 (Alphaliner,

2015). However, in stark contrast to the enormous increase in fleet capacity, the shipping industry

has had a difficult ride since the 2008 global recession (Barnato, 2015). The battle of survival for

shipping firms can only be partially attributed to the crisis or to “buying too many ships” before

the crisis started, in anticipation of continued growth. The situtation was aggrevated by post-crisis

investment cascades. Except Maersk’s E class, all Ultra Large Container Vessels were ordered after

2008 (Wikipedia, 2016). For example, in 2011 CMA-CGM increased the capacity option of its three

on-order vessels by 15.7%2 (CMA-CGM, 2011) and this capacity record only stood for a short

while. In the same year, Maersk spent $3.8 billion to build 20 Triple-E-class vessels, causing the

size of the largest containership to instantly rise by another 14.2% (Macguire, 2013).

On the one hand, these large investments during market downturn cannot be explained by generic

investment frameworks. First, the investments are not supported by demand. Market economy

theories recommend firms to order more new ships when they expect demand to outpace supply

growth (Olhager et al., 2001; Van Mieghem, 2003). However, the continuing recession in Europe and

the slowdown in China have led firms to downgrade their demand growth estimation from 9%-13%

before the crisis to 3%-5% now (Drewry, 2005, 2014). Second, the competition for vessel size cannot

be justified by economies of scale. Larger vessels are more cost efficient as they result in lower unit

costs in many categories, e.g., operating cost and building cost (Cullinane and Khanna, 2000).

However, as the gap between global fleet capacity and trade volume has increased to over 144%

since 2005 (Søndergaard and Eismark, 2012), the advantage of economy-of-scale cannot always be

realized. In fact, carriers face more losses if they sail large vessels with insufficient cargo. Third, the

outcome of fleet investments in the container shipping market does not meet the general expectation

of investment, which is to boost profit. Instead, these investments cause high volatility in freight

rate and losses in profits (UNCTAD, 2012, 2013, 2014). For instance, after CMA-CGM’s Marco

Polo vessels and Maersk’s Triple-E-class were ordered, the spot rates in the Asia-Europe market

hit rock bottom, dropping from an average value of $1789 per TEU in 2010 to $450 per TEU in

December 2011 (Odell, 2012; UNCTAD, 2013). Consequently, in 2011 many carriers suffered huge

losses and depleted their cash reserves; some were close to bankruptcy (Sanders, 2012).

1 By December 2015, the top 10 shipping lines controlled over 62% of the world container fleet (www.Alphaliner.com).

2 CMA-CGM’s Marco Polo vessels were originally ordered in 2007 with a capacity of 13,830 TEU. In 2011, CMA-CGM
increased the capacity to 16,000 TEU.
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On the other hand, these post-crisis investments clearly have a competitive feature since firms

invested to get ahead of their competitors during a slow-growth economy and to get ready to win

when good times return. Facing market downturn since 2008, leading carriers didn’t lay off capacity

to mitigate declining freight rates. Instead, they further deflated rates by ordering more vessels,

resulting in lower profits and suppressed capacity for competitors (Søndergaard and Eismark,

2012). Competitors with a strong financial position managed to survive by increasing their capacity

likewise, whereas weaker firms lacked business to balance the cash flow and thus went bankrupt.

Besides the shipping industry, other oligopolistic markets such as the airline industry and the

semiconductor industry have also shown similar investment races. For instance, airlines compete in

buying larger aircraft while facing meager profits (Chen and MacMillan, 1992) and semiconductor

manufacturers invest aggressively in capacity during market downturns (Ghemawat, 2009).

Obviously, competitive capacity investment is risky for any firm as the future is uncertain. One

way to reduce the risk is to divide the investment project into several sub-projects and execute them

in phases, which gives firms possibilities to respond to future market changes. Because capital assets

have long lifetimes, investment decisions that are made in earlier phases influence decision making

in the future. A long-term investment strategy should address optimal timing and size of a capacity

adjustment. Capturing the optimal investment timing in a competitive market requires firms to

balance the financial risk of investing and the competitive risk of not investing. Once-in-a-cycle

delays can create a lasting competitive disadvantage in a multi-round investment race. Moreover,

practice examples, such as the lack of success of the Airbus 380, have shown that competition does

not always require firms to have a high-capacity fleet.

An investment strategy, which help firms survive a recession and thrive in the competition, should

achieve an “elusive” balance between being too defensive and too aggressive (Gulati et al., 2010).

However, little research has been done on revealing the structure of such an optimal competitive

investment strategy, especially in which firms sequentially respond to each other’s investments by

adjusting its own capacity. Our study fills this gap by investigating optimal long-term investment

strategies of two firms moving sequentially in a competitive market where 1) uncertainty exists

in exogenous demand growth; 2) competitive interaction between a firm’s decision and the other

firm’s current and future decisions is considered; and 3) a firm’s objective at each period is to

maximize the expected value of its long-term plan by adapting it to the evolving market.

We contribute to research and practice as follows. First, we contribute to the literature by

providing a theory that can explain the competitive investment phenomena observed in practice,

which cannot be fully understood from current models. Second, we derive full optimal long-term
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investment policies in a competitive market, in terms of investment timing and size. Existing

research either focuses on timing only or studies investment as a single-shot game. Third, we

explicitly take the competition effect into account by developing methods which derive all stayput

regions for both the leader and the follower in their optimal policies. Each stayput region represents

an optimal solution set of a firm, taking into account the impact of the competitor’s responses on

the firm’s current and future rewards. Fourth, we allow both firms to choose either a proactive or

a reactive strategy and develop different methods to efficiently derive the optimal policy in each

case. By revealing strategical flexibility of a proactive strategy, our methods show the potential

advantage of firms being proactive in the competition. Fifth, using data from the container shipping

market over a timespan of 16 years (2000-2015), we show that the investment decisions computed

by our model are consistent with what happened in practice. Last, using Monte Carlo simulations,

we show that market and investment cost parameters influence capacity strategies differently.

2. Literature review

Literature on strategic capacity investment is concerned with determining the timing and size of

buying or selling additional capacity under uncertainty (see Van Mieghem, 2003 and Chevalier-

Roignant et al., 2011 for a detailed literature review). Models that study the optimal capacity type

often consider a one-period problem where a firm sells two products and has the option to invest in

two types of resources: flexible vs dedicated (Van Mieghem, 1998; Goyal and Netessine, 2007). A

flexible resource is able to produce either product, at the expense of a higher investment cost than

the dedicated resources. These models study the impact of capacity characteristics and demand

correction between the two products on the optimal capacity strategy. Since our focus is on the

impact of competition on the long-term investment strategy, we limit the review to models that

consider only a single type of capacity resources.

Brennan et al. (2000) address the three stages in the development of capacity models: (1) static

models, (2) dynamic models, and (3) combined real options and game-theoretic models. As combined

real options and game-theoretic models also study investment dynamics, they can be considered as a

stream within dynamic models. Static models investigate the optimal locations and sizes of capacity

in a processing network for a single or multiple decision makers in a stationary environment where

there is no managerial flexibility to cope with market changes (Bish and Wang, 2004; Van Mieghem,

2007). It collapses the problem to a single initial capacity investment where the optimal capacity

remains constant over time. This category of capacity models adopts queuing (Lederer and Li,

1997; Cachon and Harker, 2002) and newsvendor network formulations (Van Mieghem and Rudi,

2002; Netessine et al., 2002; Kulkarni et al., 2004). While losing dynamics in capacity decisions,
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some models extend the single-period solution to a situation with dynamic i.i.d. demand and hence

investigate further dynamics in inventory (Van Mieghem and Rudi, 2002). Static models that

involve multiple players often study coordination between “vertical” players such as manufacturers

and retailers (Cachon and Lariviere, 1999; Armony and Plambeck, 2005; Plambeck and Taylor,

2005; Caldentey and Haugh, 2006), or competition between “horizontal” players (Lederer and Li,

1997; Van Mieghem and Dada, 1999) who supply a common market. Two main aspects considered

in these multi-player static models are supply network partitioning and information asymmetry.

Although these models consider competition effect between firms, they are still restricted to a

stationary setting, emphasizing optimal capacity size rather than timing.

Dynamic models allow time-dependent investments to respond to the resolution of uncertainty.

They emphasize the timing of capacity adjustment in a single-shot3 or a multi-round game and

derive a structured policy for investments at different time points (Burnetas and Gilbert, 2001; An-

gelus and Porteus, 2002; Narongwanich et al., 2002; Ryan, 2004; Huh and Roundy, 2005; Huh et al.,

2006). Some noted approaches in this category are decision-tree analysis, dynamic programming,

control theory, and real options approach. Often, optimal investment dynamics follow a so-called

ISD (invest, stayput and disinvest) policy, which is characterized by a continuation region: when

current capacity falls in this region, it is optimal to stay put; otherwise, it should be adjusted to

an appropriate point on the region’s boundary (Eberly and Van Mieghem, 1997). Although tradi-

tional dynamic models have been refined over time to incorporate many real-world features, such

as hedging, the lack of consideration given to competitive interactions between firms limits their

applications in a competitive setting. Our work is built on Eberly and Van Mieghem (1997) and

we extend their method to incorporate the competition impact on investments.

Our model belongs to the most recent development of dynamic models, i.e., combined real op-

tions and game-theoretic models (Chevalier-Roignant et al., 2011). In these models, firms not only

condition their decisions on the resolution of exogenous uncertainties but also on the (re)actions of

competitors. The focus is on determining the investment timing of different players and explaining

competitive behavior. The most widely used method is the “option games” approach, which in-

volves several decision makers and an uncertain market (Ferreira et al., 2009). Most models consider

two types of players only (i.e., leader vs. follower or n players moving simultaneously4), while only

a few incorporate a third player (Bouis et al., 2009). There are two major types of combined real

options and game-theoretic models. The first studies a single-shot investment with lumpy capacity

3 A single-shot game can contain multiple time periods, where “single” refers to the number of capacity investments
a firm can make during the game.

4 In the case where n players moving simultaneously, the two types of players refer to the decision firm and its rivals.
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(Dixit, 1994; Hoppe, 2000; Murto, 2004; Pawlina and Kort, 2006; Thijssen et al., 2006; Swinney

et al., 2011). Investment is viewed as an optimal stopping problem, focusing on finding the demand

values at which capacity should be adjusted in order to maximize the expected reward.

The second type of combined real options and game-theoretic models allows multiple rounds

of investments and explores an optimal capacity strategy that contains a sequence of decisions.

Most models in this category focus on incremental capacity expansion (Grenadier, 2002; Aguerre-

vere, 2003, 2009), while a few investigate repeated lumpy investment decisions (Novy-Marx, 2007).

Numerical results of a multi-round investment problem can be derived using stochastic dynamic

programming and Monte Carlo simulation (Murto et al., 2004). For analytical results, control the-

ory is used to derive equilibrium investment strategies in a Nash framework. The key feature is that

each firm determines its optimal capacity strategy while taking its competitors’ strategies as given.

Up to now, research has mostly focused on strategies where both firms invest simultaneously and

in the same proportion, like in a Cournot-Nash equilibrium strategy (Grenadier, 2002; Smit and

Trigeorgis, 2012). The concept of the Nash equilibrium, especially a Cournot-Nash equilibrium, is

challenged by Back and Paulsen (2009). They prove that the Cournot-Nash equilibrium presented

by Grenadier (2002) fails subgame perfection: if one firm invests more than the equilibrium strategy

specifies, driving the price down, other firms ignore this and continue to invest as they would have

done otherwise. Another drawback of Cournot capacity models is that the optimal policy does not

explicitly reflect the competition impact on firms’ investments. Strategies that form a subgame

perfect equilibrium and recognize competition should allow firms to react to each other’s invest-

ments. These strategies have a Stackelberg nature, because all firms respond to the investments of

any other firm like a Stackelberg follower (Back and Paulsen, 2009).

Research that examines dynamic competitive investments is an emerging trend in the literature

of capacity models. So far they have been applied mostly in financial studies and have some

limitations. First, most studies specify fixed capacity sizes as actions available to a firm and use the

real options approach to determine only the timing of taking a particular action. Second, current

studies have been limited to simultaneous investment strategies and are considered as “open-loop”

strategies in the sense that there is no feedback from the investment of any firm to the investment of

any other firm, neither in the same period nor in the next ones (Back and Paulsen, 2009). Although

“open-loop” strategies are mathematically tractable, they are dynamically inconsistent as decisions

are derived at the initial time, without accounting for the state evolution beyond that time. We

contribute to the extant literature by introducing sequential feedback strategies, modeled by a

Stackelberg game. When using feedback strategies, firms have information on their competitors’

current capacity and react to capacity perturbations through their own investments. Moreover,
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we allow the size of an investment to be determined by the optimal policy and hence study more

complete features of a capacity strategy, i.e., timing and size. Table 1 gives an overview of some

existing capacity models and our model.

Capacity models Examples Multi-round

Investment decisions Firm interaction

timing size vertical
horizontal

simultaneous sequential

Static

Netessine et al., 2002 X

Kulkarni et al., 2004 X

Van Mieghem and Rudi, 2002 X X

Plambeck and Taylor, 2005 X X

Caldentey and Haugh, 2006 X X

Lederer and Li, 1997 X X

Van Mieghem and Dada, 1999 X X

Dynamic

Eberly and Van Mieghem, 1997 X X X

Ryan, 2004 X X X

Huh et al., 2006 X X X

Dixit, 1994 X X

Hoppe, 2000 X X

Pawlina and Kort, 2006 X X

Thijssen et al., 2006 X X

Swinney et al., 2011 X X

Grenadier, 2002 X X X

Aguerrevere, 2003, 2009 X X X

Our research X X X X

Table 1 Overview of some existing capacity models and our model

3. The model

The notations used in our model are listed in Table 2. To illustrate the model, consider the following

example: two firms (l and f) sell a homogeneous product (e.g., shipping service) in an oligopolistic

market within a finite time horizon Γ= {1, · · · , T}, assuming capacity is instantaneously adjustable

but investment is partially irreversible. At the beginning of Γ, firm j is referred to as the leader

if j = l and as the follower if j = f . Let ktj ∈ Ktj represent firm j’s capacity level at period t. k0l

and k0f are the initial capacity levels. The finite set Ktj ⊆R≥0 denotes the set of capacity choices

available to firm j at period t. At the beginning of each period t ∈ Γ, both firms have the option

to change their capacity from kt−1j to ktj or continue their current capacity (i.e., ktj = kt−1j). The

decisions will take the form of a Stackelberg competition: one firm moves first and the other firm

observes the opponent’s decision and then makes its own decision. We assume that the sequence

is fixed among all periods: the leader always moves first.
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At the beginning of each period t ∈ Γ, the optimal capacity is determined such that the value

of a firm’s long-term strategy, which is a sequence of actions from the current one to the one at

the end of Γ, is maximized. Therefore, the capacity decision is based on the demand, supply, and

investment cost information then available to the firm and on its assessment of the uncertain future.

Let ωτ ∈ Θ represent the demand at the beginning of period τ or an estimation of the demand

outlook of period τ , where Θ⊆R is the set of demand realizations. We allow exogenous uncertainty

to exist in ωτ for τ > t and it possesses a Markov property. Thus, there is a transition probability

function Pr : Θ×Θ×Γ→ [0,1] such that the conditional transition probability is Pr{ωt+1 = xt+1 |

ωt = xt}= Pr(xt, xt+1, t), independent of xt0 for t0 < t. Thus, the demand information relevant to

the capacity decision at period t contains only the current demand, i.e., ωt.

The supply information comprises both firms’ current capacity levels, available capacity choices,

capacity utilization parameters, and utilization cost functions at period t. Let time period t, the

value of the demand ωt, and the firms’ capacity ktj (or kt−1j) define the state of the system.

Denote the state space by Ω = Ktl ×Ktf ×Θ× Γ. At the beginning of period t, the state vector

that the leader observes is Ytl = (kt−1l, kt−1f , ωt, t), and after the leader’s first move ktl, the state

vector observed by the follower is Ytf = (ktl, kt−1f , ωt, t). Hereinafter, we omit the time variable t

in the state vector. After capacity decisions ktl and ktf , the two firms then engage in a short-term

production competition which takes the form of a Cournot competition. The optimal production

quantities can be found by allowing firms to set their production simultaneously to maximize their

own operating profit of the current period. It is worth mentioning that the production decisions

are different in nature from the capacity decisions as the former only affect the current period,

whereas the latter influence firms permanently (see also Murto et al., 2004).

Firm j’s production quantity at period t is qtj, which is determined by a function of the

state (ktl, ktf , ωt), i.e., qtj = Qtj(ktl, ktf , ωt). The total production quantity at period t is qt =
∑

j∈{l,f}Qtj(ktl, ktf , ωt). Given the total production quantity and the demand of period t, the price

of the homogeneous product is given by an inverse demand function: pt = Pt(qt, ωt). As qt can be

represented as a function of the state (ktl, ktf , ωt), we can write the price function in the same man-

ner, i.e., Pt(ktl, ktf , ωt). Given the production quantity and capacity, the production cost of firm j

at period t, htj, is given by a function: htj =Htj(qtj, ktj). Let atj denote the capacity utilization

parameter, which represents the capacity usage per produced unit of firm j at period t. Firm j’s

operating profit at period t is given as follows:

πtj(ktl, ktf , ωt) = ptqtj −htj, ∀t6 T

s.t. atjqtj ≤ ktj
(1)
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As the marginal profit of an investment is usually nonincreasing in practice, we make the following

assumption on the operating profit function:

Assumption 1. For any given and fixed capacity of the other firm kti ∈Kti (i 6= j) and for each

ωt ∈Θ, firm j’s operating profit function πtj(kti, ·, ωt) is concave in its own decision ktj.

Examples of operating profit functions that satisfy Assumption 1 include profit functions associated

with market-clearing prices and those with isoelastic prices. Details of the profit function we use

will be given in the case study section (Section 7).

In addition to the demand and supply information, which are used for determining the profit of

each period, the investment cost information is also used in the capacity decision. This includes

the discount rate and both firms’ marginal investment costs and marginal disinvestment revenues

at period t, ctj and rtj. It may seem quite strict to assume firms know each other’s cost parameters,

available capacity choices, capacity utilization parameters, and utilization cost functions mentioned

above. However, in industries like shipping, such parameters are published by market observers

such as Drewry in their annual reports on container census and on carrier financials (Drewry

Maritime Research, 2015a,b). These values are not only useful for the investment decisions at the

current period, but also for planning future investments since shipping firms as well as firms in

other industries often neglect potential changes in future parameters. This is to say, they presume

Kτj = Ktj, aτj = atj, Hτj =Htj, cτj = ctj, and rτj = rtj for τ > t. This assumption is also in line

with existing dynamic capacity models, which only allow univariate uncertainty (e.g., demand

uncertainty). We define the investment cost function of firm j at period t as a kinked piece-wise

linear function: Ctj(ktj) = ctj×(ktj−kt−1j)
+−rtj×(kt−1j−ktj)

+ where (x)+ denotes max{0, x}. As

purchasing capital assets or technology is partially irreversible, we make the following assumption

on the investment cost parameters:

Assumption 2. Capacity investment is costly to reverse as ctj > rtj. In addition, the present

value of a unit of used capacity cannot be higher than a new unit, i.e., ctj > δτ−trτj for τ ∈ {t, · · · , T}

where δ > 0 is the single-period discount factor.

At the end of Γ, the salvage value function of firm j is Fj(kTl, kTf , ωT+1). Analogous to the operating

profit function, we make the following assumption on the salvage value function:

Assumption 3. For any given and fixed capacity of the other firm kTi ∈KTi (i 6= j) and for each

ωT+1 ∈Θ, firm j’s salvage value function Fj(kTi, ·, ωT+1) is concave in its own capacity kTj.
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Parameter Description

Γ set of time periods
ktj firm j’s capacity at period t
Ktj set of capacity choices available to firm j at period t
Ktj firm j’s investment strategy vector from period t to the end of Γ
Ktj set of all investment strategy vectors Ktj

ωt demand indicator of period t
Θ set of demand realizations
Pr transition probability function of the demand
Ytj state vector observed by firm j at the beginning of period t

qtj, Qtj firm j’s production quantity and production quantity function at period t
qt total production quantity at period t

pt, Pt market price and price function of the product at period t
htj, Htj production cost and production cost function of firm j at period t

atj firm j’s capacity utilization parameter at period t
πtj firm j’s operating profit function at period t

ctj, rtj firm j’s marginal investment cost and marginal disinvestment revenue at period t
Ctj investment cost function of firm j at period t
δ single-period discount factor
Fj salvage value function of firm j

Vtj, V
∗
tj firm j’s value function and optimal value function at the beginning of period t

Stj firm j’s stayput region at period t
kL
tj, K

L
tj lowerbound and lowerbound function of firm j’s stayput region at period t

kH
tj , K

H
tj upperbound and upperbound function of firm j’s stayput region at period t

Table 2 Model parameters

4. The optimal value function

4.1. The follower’s value function

Let Ktj = (ktj, kt+1j, · · · , kTj) denote firm j’s investment strategy vector from period t to the end of

Γ and Ktj denote the set of all investment strategy vectors Ktj. At the beginning of period t, given

the state Ytf = (ktl, kt−1f , ωt), and strategies Kt+1l and Ktf will be implemented, the follower’s

expected net present value (NPV) conditioned on the current demand is:

Vtf (ktl, kt−1f , ωt,Kt+1l,Ktf ) =E

[ T
∑

τ=t

δτ−t(πτf (kτl, kτf , ωτ )−Cτf (kτf ))+δT+1−tFf (kTl, kTf , ωT+1) | ωt

]

(2)

Here Kt+1l is the follower’s opinion of the leader’s future strategy. In order to derive a structured

optimal strategy, we assume that there is a stationary relationship between the follower’s strategy

Ktf and his opinion of the leader’s response strategy Kt+1l. This is to say, for every kτf in Ktf , a

value for kτ+1l is assumed according to a rule and this rule is consistent for τ ∈ {t, · · · , T − 1}. All

existing oligopoly capacity models (e.g., Grenadier (2002); Novy-Marx (2007)) implicitly assume

that both players know ex ante the opponent’s optimal response to the player’s own strategy.
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This assumption may hold true for the leader, as he can exert some control over the market

and thus know the follower’s possible responses. However, the same assumption is not always

applicable to the follower in a multi-round game. We relax the optimality assumption and allow the

follower to either respond reactively to the competition or plan its investment proactively, taking

into consideration the leader’s possible future responses. In cases where the follower proactively

considers the leader’s strategy, we further elaborate on two situations: the follower has partial or

full information on the leader’s future strategy.

After specifying the case, we can omit Kt+1l in the follower’s value function, i.e.,

Vtf (ktl, kt−1f , ωt,Ktf ). The follower’s optimal value function at the beginning of period t is:

V ∗
tf (ktl, kt−1f , ωt) = sup

Ktf∈Ktf

Vtf (ktl, kt−1f , ωt,Ktf ) (3)

4.2. The leader’s value function

Similar to the follower, the leader can either adopt a reactive strategy or proactively plan his

investments, considering the follower’s responses. As the leader moves first, we assume that in the

proactive case, he has full information on the follower’s responses. Full information includes the

follower’s value function Vtf , as well as the follower’s opinion of the leader’s future strategy in

Vtf . At the beginning of period t, given the state Ytl = (kt−1l, kt−1f , ωt) and a strategy Ktl will be

implemented, the leader’s expected NPV conditioned on the current demand is:

Vtl(kt−1l, kt−1f , ωt,Ktl) =E

[ T
∑

τ=t

δτ−t(πτl(kτl, kτf , ωτ )−Cτl(kτl))+ δT+1−tFl(kTl, kTf , ωT+1) | ωt

]

(4)

In the reactive strategy, kτf = kt−1f ∈ Kt−1f , ∀τ ∈ {t, · · · , T}5, whereas in the proactive strategy,

kτf is the first item in the vector K∗
τ f that is determined by V ∗

τf (kτl, kτ−1f , ωτ ).

The leader’s optimal value function at the beginning of period t is:

V ∗
tl (kt−1l, kt−1f , ωt) = sup

Ktl∈Ktl

Vtl(kt−1l, kt−1f , ωt,Ktl) (5)

Mixing the two players’ strategies, four cases are considered: (a) the leader is proactive, while

the follower reacts to the competition by assuming that the leader will stay put in the next pe-

riod, i.e., kτl = ktl, ∀τ ∈ {t+ 1, · · · , T} in equation (2); (b) both players are proactive, however,

the follower only has partial information on the leader’s strategy and assumes that the leader is

adversarial, i.e., kτl = argmink∈Kτl
V ∗
τf (k, kτ−1f , ωτ ), ∀τ ∈ {t+ 1, · · · , T} in equation (2); (c) both

5 Instead of observing Ktf at the beginning of period t, the leader in the reactive case assumes Ktf =Kt−1f .
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players are proactive and the follower has full information on the leader’s optimal strategy, i.e.,

kτl = argmaxk∈Kτl
V ∗
τl(kτ−1l, kτ−1f , ωτ ), ∀τ ∈ {t + 1, · · · , T} in equation (2); (d) both players are

reactive by assuming that the other player will stay put in the next period. Case (b) corresponds

to one of the situations where the follower is proactive, but guesses incorrectly about the leader’s

strategy. A case in which the leader is reactive and the follower is proactive is not mentioned here,

as it is identical to case (a) with a delayed starting point (i.e., the follower moves first). We denote

cases (c) and (d) as symmetric cases since both players adopt the same type of strategies and have

the same amount of information on each other’s strategy, whereas cases (a) and (b) are asymmetric

as the situations are different for the two players. In any proactive case, equations (3) and (5) suffer

the curse of dimensionality. Below, we use recursive optimality equations to get the optimal value

and derive an ISD policy which determines the optimal action of the current period.

4.3. The optimality equations

The value of a long-term strategy can be broken into the value of the current action and the value of

the future ones. According to Bellman’s principle of optimality, Vtj (equations (3) and (5)) satisfy

the following recursive optimality equations for t∈ Γ:

At the beginning of period T + 1, firm j’s optimal value associated with the state YT+1j =

(kTl, kTf , ωT+1) is equal to its salvage value:

V ∗
T+1j(kTl, kTf , ωT+1) = Fj(kTl, kTf , ωT+1) (6)

At the beginning of period t, the follower’s optimal value function associated with the state Ytf =

(ktl, kt−1f , ωt) is:

V ∗
tf (ktl, kt−1f , ωt) = sup

ktf∈Ktf

{

πtf (ktl, ktf , ωt)−Ctf (ktf )+ δE[V ∗
t+1f (kt+1l, ktf , ωt+1) | ωt]

}

(7)

where kt+1l depends on whether it is case (a) (or (d)), (b) or (c).6

At the beginning of period t, the leader’s optimal value function associated with the state Ytl =

(kt−1l, kt−1f , ωt) is:

V ∗
tl (kt−1l, kt−1f , ωt) = sup

ktl∈Ktl

{

πtl(ktl, ktf , ωt)−Ctl(ktl)+ δE[V ∗
t+1l(ktl, ktf , ωt+1) | ωt]

}

(8)

where ktf depends on whether it is case (d) or the other cases.

6 In the e-companion, we list the follower’s optimal value functions in the four above-mentioned cases, respectively.
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Without specifying the case here, we define a function Gtj as firm j’s expected NPV evaluated

at period t, given that its capacity has been adjusted to ktj and an optimal follow-up investment

strategy will be implemented (i.e., V ∗
t+1j(·)). The follower’s expected NPV at period t is:

Gtf (ktl, ktf , ωt) = πtf (ktl, ktf , ωt)+ δE[V ∗
t+1f (kt+1l, ktf , ωt+1) | ωt] (9)

The follower’s optimization problem at period t then becomes the following:

V ∗
tf (ktl, kt−1f , ωt) = sup

ktf∈Ktf

{

Gtf (ktl, ktf , ωt)+ rtf × (kt−1f − ktf )
+ − ctf × (ktf − kt−1f )

+

}

(10)

The leader’s expected NPV at period t is:

Gtl(ktl, kt−1f , ωt) = πtl(ktl, ktf , ωt)+ δE[V ∗
t+1l(ktl, ktf , ωt+1) | ωt] (11)

The leader’s optimization problem at period t equals the following:

V ∗
tl (kt−1l, kt−1f , ωt) = sup

ktl∈Ktl

{

Gtl(ktl, kt−1f , ωt)+ rtl × (kt−1l − ktl)
+ − ctl × (ktl − kt−1l)

+

}

(12)

Eberly and Van Mieghem (1997) solve the optimization problem for a single-firm case. They

show that if the optimal value function V ∗ is strictly concave, the optimal policy (also called as

ISD policy) can be represented in the form of a unique stayput region, which is a continuum

of optimal solutions to the investment problem. The boundaries of the stayput region define the

decision rule for investments at each period: if capacity falls within the boundaries (i.e., inside the

stayput region), it is optimal not to adjust capacity; otherwise, capacity should be adjusted to

an appropriate point on the region’s boundary. Extending their method to a two-firm setting, we

first derive the ISD policy for a firm that behaves reactively in the competition. In cases where a

proactive strategy is adopted, we compute the follower’s ISD policy which can be seen as a function

of the leader’s first move and the current demand. We then obtain the leader’s ISD policy which

takes into account the follower’s response policy.

5. The reactive ISD policy

In Proposition 1, we show that a player’s optimal value function (V ∗
tf or V ∗

tl ) is concave if he adopts

the reactive strategy (e.g., the follower in case (a) and both players in case (d)). This allows us to

efficiently find an optimal solution to the investment problem. The proactive cases will be dealt

with separately.



14 Li et al.: Competitive Capacity Investment under Uncertainty

Proposition 1. If firm j adopts the reactive strategy, the optimal value function V ∗
tj is jointly

concave in (kt−1j, ktj) for any given current capacity7 of the other firm kti 6=j ∈ Kti and for each

ωt ∈Θ.

Proof. The proof will be given in the e-companion to this paper.

In Theorem 1, we present firm j’s ISD policy at period t in cases where the optimal value

function V ∗
tj is jointly concave in (kt−1j, ktj) for any given kti 6=j ∈Kti and for every ωt ∈Θ. According

to Proposition 1, the follower in the reactive case (a) and both players in case (d) satisfy the

condition, thus the corresponding ISD policy will take the form as shown in Theorem 1. Let
∇−G(x)

∇x
and

∇+G(x)

∇x
denote the infimum of all left-sided difference quotients and the supremum

of all right-sided difference quotients of the function G at the point x, i.e., G(y)−G(x)

y−x
≥

∇−G(x)

∇x
,

∀y < x and G(y)−G(x)

y−x
≤

∇+G(x)

∇x
, ∀y > x, where x and y are in the domain of G.

∇−Gtj(ktj)

∇ktj
and

∇+Gtj(ktj)

∇ktj

8 can be seen as firm j’s (minimal) marginal value of investment and (maximal) marginal

value of disinvestment at capacity ktj. Define the origin and end of the firm j’s capacity space as

kjo = inf Ktj and kje = supKtj.

Theorem 1. Given the other firm’s current capacity kti 6=j ∈Kti and ωt ∈Θ, if firm j’s optimal

value function V ∗
tj is jointly concave in (kt−1j, ktj) and there exists a unique solution to the opti-

mization problem in equation (10) if j = f or (12) if j = l, then the solution is an ISD policy which

can be characterized by the following lowerbound and upperbouond functions:

KL
tj(kti, ωt) = sup

{

{kjo}∪ {ktj :
∇−Gtj(kti, ktj, ωt)

∇ktj
≥ ctj, ktj ∈Ktj}

}

(13)

KH
tj (kti, ωt) = inf

{

{kje}∪ {ktj :
∇+Gtj(kti, ktj, ωt)

∇ktj
≤ rtj, ktj ∈Ktj}

}

(14)

Proof. If firm j’s optimization problem V ∗
tj is jointly concave in (kt−1j, ktj) for any given kti 6=j ∈

Kti and for every ωt ∈Θ, the function Gtj(kti, ktj, ωt) is concave in ktj under Assumption 1 as a

sum of concave functions is concave. The rest of the theorem then follows the reasoning of Theorem

2 in Eberly and Van Mieghem (1997).

Corollary 1. Let kL
tj and kH

tj denote the lowerbound and upperbound computed by the two

boundary functions in Theorem 1, i.e., kL
tj =KL

tj(kti, ωt) and kH
tj =KH

tj (kti, ωt), then kL
tj ≤ kH

tj .

Proof. Under Assumption 2, which specifies rtj < ctj, and concavity of the optimization problem

in equation (10), it guarantees that kL
tj ≤ kH

tj .

7 If j = l, the leader in the reactive case observes the follower’s current capacity kt−1f ∈Kt−1f and assumes ktf = kt−1f .

8 We write Gtj(k) to represent Gtf (kti 6=j , ktj = k,ωt).
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According to Property 1 in Eberly and Van Mieghem (1997), the ISD policy defined in Theorem

1 can be expressed in terms of a set9 Stj(kti, ωt)⊂R≥0 for each kti 6=j ∈Kti and each ωt ∈Θ:

Stj(kti, ωt) = [kL
tj, k

H
tj ] =

{

ktj : rtj ≤
∇+Gtj(kti, ktj, ωt)

∇ktj
∧
∇−Gtj(kti, ktj, ωt)

∇ktj
≤ ctj, ktj ∈Ktj

}

(15)

At the beginning of period t, firm j’s investment decision rule indicated by Stj(kti, ωt) is described

as follows:

• if kt−1j ∈ Stj(kti, ωt), no adjustment should be made, i.e., ktj = kt−1j;

• if kt−1j /∈ Stj(kti, ωt) and kt−1j <KL
tj(kti, ωt), an investment should be made such that the new

capacity hits the boundary of Stj(kti, ωt) at the lower side, i.e., ktj =KL
tj(kti, ωt);

• if kt−1j /∈ Stj(kti, ωt) and kt−1j >KH
tj (kti, ωt), a disinvestment should be made such that the

new capacity hits the boundary of Stj(kti, ωt) at the higher side, i.e., ktj =KH
tj (kti, ωt).

The economic meaning behind the stayput region Stj(kti, ωt) is: capacity should be adjusted when

the marginal value of investment is larger than the marginal investment cost ctj or the marginal

value of disinvestment is smaller than the marginal disinvestment revenue rtj. The marginal value

of investment equals ctj at the investment boundary, and the marginal value of disinvestment equals

rtj at the disinvestment boundary.

6. The proactive ISD policy

If firm j adopts a proactive strategy, the optimal value function V ∗
tj, as well as the function Gtj,

may not be concave in ktj. Non-concavity of the optimization problem may arise from the fact

that the firm in a proactive case strategically plans its investments, considering their impact on

the other firm’s present and future value. As a result, a proactive ISD policy may contain multiple

stayput intervals at a period. Each interval indicates an optimal solution set of the firm, taking into

account the impact of the other firm’s responses on the firm’s strategy. The more stayput intervals

a proactive ISD policy contains, the more strategical flexibility the player has at that period.

Depending on the player’s current capacity and the proactive ISD policy, the optimal solution to

the investment problem can then be determined.

6.1. The follower’s proactive ISD policy

In a proactive case, the follower perceives that his current decision may influence the leader’s future

investments. Regardless of the accuracy of the follower’s information on the leader’s future strategy,

if the follower expects that
∇Vt+1l(ktl,ktf ,ωt+1)

∇ktf
6= 0, he can strategically choose ktf to influence the

9 In the case where the capacity space is discrete, the stayput region is a subset containing a finite number of values
in the interval [kL

tj , k
H
tj ].
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leader’s future capacity kt+1l, · · · , kTl, with the purpose of maximizing his own total value of the

present and future. We develop an elimination algorithm (Algorithm 1) to compute the follower’s

proactive ISD policy at period t. There are two steps in our algorithm. First, a unique range

is identified, in which the stayput region is contained, and capacity values that fall outside of

this range are excluded from the final solution set. Second, using two sequential rolling capacity

procedures over the range computed at the first step, we further eliminate capacity values, of

which the associated objective function in equation (10) can be improved. Given a capacity space

Ktj = [kjo, kje], the range of the stayput region computed at the first step is denoted as Sr
[kjo,kje]

and the final solution set at the second step, i.e., the stayput region, is denoted as S[kjo,kje].

To solve the follower’s investment problem in equation (10), we first use the two boundary func-

tions (equations (13) and (14)) in Theorem 1 to identify the range Sr
[kfo,kfe]

, i.e., Sr
[kfo,kfe]

= [kL
tf , k

H
tf ].

Note that as Gtf is not necessarily concave, kL
tf is not guaranteed to be smaller than or equal to

kH
tf . However, in Proposition 2 we show that the stayput region S[kfo,kfe] is exclusively contained in

the range Sr
[kfo,kfe]

. Therefore, kL
tf ≤ kH

tf (Sr
[kfo,kfe]

6= ∅) if solutions exist to the optimization prob-

lem, i.e., S[kfo,kfe] 6= ∅. Such a condition is guaranteed if the capacity space Ktf is nonempty and

closed. Hereinafter, we assume the existence of an optimal solution k∗
tf (not necessarily unique). In

Proposition 3, we show that the boundaries of the range Sr
[kfo,kfe]

is contained in the final solution

set, i.e., kL
tf , k

H
tf ∈ S[kfo,kfe]. In the proofs of the propositions, we use the argument that a capacity

value k is a non-stayput point (i.e., k /∈ S[kfo,kfe]) if there exists another value k
′

> k such that
Gtf (k)−Gtf (k

′
)

k−k
′ ≥ ctf or k

′

< k such that
Gtf (k)−Gtf (k

′
)

k−k
′ ≤ rtf . This means the value of the objective

function in equation (10) can be increased by adjusting k to k
′

.

Proposition 2. S[kfo,kfe] ⊆ Sr
[kfo,kfe]

= [kL
tf , k

H
tf ].

Proof. The proof will be given in the e-companion to this paper.

Proposition 3. kL
tf and kH

tf are the lowerbound and the upperbound of the stayput region

S[kfo,kfe]
10.

Proof. The proof will be given in the e-companion to this paper.

After identifying the range Sr
[kfo,kfe]

, two sequential rolling capacity procedures are implemented

at the second step of the elimination algorithm to eliminate all remaining non-stayput points from

Sr
[kfo,kfe]

. Below, we define the two types of sequential rolling capacity procedures using an example

of capacity interval [ko, ke]. Given [ko, ke] and a capacity value ki ∈ [ko, ke], denote △ki as the

smallest possible value after ki: △ki = inf(ki, ke] if ki < ke; and △ki = ke if ki = ke. Denote △−ki as

the largest possible value before ki: △
−ki = sup[ko, ki) if ki > ko; and △−ki = ko if ki = ko.

10 S[kfo,kfe] may contain several disconnected stayput intervals. Therefore, kL
tf , k

H
tf can also be interpreted as the

lowerbound of the first stayput interval and the upperbound of the last stayput interval.
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Rolling up procedure Starting with the capacity interval origin ko, the first iteration interval

is set as K1 := [ko, ko] and the ith iteration interval is denoted as Ki = [ko, ki] for i > 1. At each

iteration i, we extend the previous iteration interval Ki−1 by adding the smallest possible value

after ki−1 to the right end of the iteration interval, i.e., ki = △ki−1, until ki = ke
11. Given each

iteration interval Ki = [ko, ki], we identify the upperbound of the range Sr
[ko,ki]

using the upperbound

function (equation (14)) in Theorem 1: if ki is not the upperbound of Sr
[ko,ki]

, eliminate ki from

[ko, ke]; otherwise, keep ki.

Rolling down procedure Starting with the capacity interval end ke, the first iteration interval

is set as K1 := [ke, ke] and the ith iteration interval is denoted as Ki = [ki, ke] for i > 1. At each

iteration i, we extend the previous iteration interval Ki−1 by adding the largest possible value

before ki−1 to the left end of the iteration interval, i.e., ki = △−ki−1, until ki = ko. Given each

iteration interval Ki = [ki, ke], we identify the lowerbound of the range Sr
[ki,ke]

using the lowerbound

function (equation (13)) in Theorem 1: if ki is not the lowerbound of Sr
[ki,ke]

, eliminate ki from

[ko, ke]; otherwise, keep ki.

Starting with the origin of the range Sr
[kfo,kfe]

= [kL
tf , k

H
tf ], we first implement the rolling up

procedure. This procedure is finished once the upperbound of the range Sr

[kL
tf

,kH
tf

]
is checked. The

set of remaining capacity values after the rolling up procedure is denoted as Sr1
[kfo,kfe]

, which may

consist of several disconnected intervals. According to Proposition 3, kL
tf , k

H
tf ∈ S[kfo,kfe]. Hence,

kL
tf , k

H
tf ∈ S[a,b], ∀[a, b]⊂ [kfo, kfe]. This means that if a capacity value k is a stayput point in a space

K , k is also a stayput point in any space that contains k and is a subset of the original space K .

As a result, kL
tf and kH

tf will not be eliminated after the rolling up procedure. We then implement

the rolling down procedure, starting with the end point in the set Sr1
[kfo,kfe]

, i.e., kH
tf . This procedure

is finished once the lowerbound of the range Sr

[kL
tf

,kH
tf

]
is checked. in Proposition 4 we show that the

remaining capacity values after the rolling up procedure and the rolling down procedure compose

the stayput region S[kfo,kfe]. In Theorem 2, we outline the elimination method for computing the

follower’s proactive ISD policy.

Proposition 4. The rolling up and rolling down procedures eliminate all the non-stayput ca-

pacity values from the range Sr
[kfo,kfe]

.

Proof. The proof will be given in the e-companion to this paper.

Theorem 2. Given ktl ∈ Ktl and ωt ∈ Θ, the solution to the follower’s optimization problem

at period t (see equation (10)) can be represented in the form of an ISD policy that may contain

multiple disconnected stayput intervals. The set of the stayput intervals, i.e., the stayput region

Stf (ktl, ωt), can be derived by Algorithm 1.

11 A point of convergence can occur because the capacity space is discrete.
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Proof. The first part of theorem follows directly as the optimal solution to the follower’s in-

vestment problem at period t can be expressed by a set of capacity values, of which the associated

value of equation (10) cannot be improved. According to Propositions 2, 3 and 4, the set of capac-

ity values computed by Algorithm 1 is the follower’s stayput region at period t. For consistency

purposes, we denote the stayput region as Stf (ktl, ωt), i.e., Stf (ktl, ωt) = S[kfo,kfe].

Algorithm 1 Elimination algorithm for computing the follower’s stayput region

1. Compute kL
tf and kH

tf using equations (13) and (14). If solutions exist to the follower’s opti-

mization problem in equation (12), then kL
tf ≤ kH

tf . The range Sr
[kfo,kfe]

= [kL
tf , k

H
tf ] contains the

stayput region, i.e., S[kfo,kfe] ⊆ Sr
[kfo,kfe]

.

2. Use two sequential rolling procedures over the range Sr
[kfo,kfe]

:

(a) First implement the rolling up procedure in Sr
[kfo,kfe]

. This eliminates capacity values of

which the associated objective function in equation (12) can be improved. Denote the set

of remaining capacity as Sr1
[kfo,kfe]

;

(b) Second implement the rolling down procedure in Sr1
[kfo,kfe]

. This eliminates capacity values

of which the associated objective function in equation (12) can be improved.

The remaining capacity values compose the stayput region S[kfo,kfe], i.e., Stf (ktl, ωt).

In Proposition 5 we prove that the optimal investment policy indicated by multiple disconnected

stayput intervals assigns a non-stayput capacity value to the closest boundary of a close-by stayput

interval. In Corollary 2, we show a decision rule, which uses a unique capacity value k, on how to

adjust a non-stayput capacity that falls between two consecutive stayput intervals. A binary search

can be used to identify this value k, which we refer to as the investment threshold between the two

consecutive stayput intervals. In the case where Threshold(k, kH1, kL2) = 0, there is no difference

between adjusting k to kH1 and adjusting k to kL2; for consistency, we select k as the threshold.

If Threshold(k, kH1, kL2) < 0, ∀k ∈ (kH1, kL2), we specify kL2 to be the threshold, indicating all

capacity in (kH1, kL2) should be adjusted to kH1. If Threshold(k, kH1, kL2)> 0, ∀k ∈ (kH1, kL2), we

specify kH1 to be the threshold, indicating all capacity in (kH1, kL2) should be adjusted to kL2.

Proposition 5. Given kt−1f = k and k /∈ Stf (ktl, ωt), if the optimal investment policy indicated

by Stf (ktl, ωt) assigns ktf = b, then no stayput values exist in the interval [k, b) for the case b > k,

or in the interval (b, k] for the case b < k. In other words, the interval [k, b) or (b, k]* Stf (ktl, ωt).

Proof. The proof will be given in the e-companion to this paper.

Corollary 2. Between any two consecutive stayput intervals (e.g., [kL1, kH1] and [kL2, kH2])

in the stayput region Stf (ktl, ωt), a unique capacity value k exists (i.e., kH1 < k < kL2) such that the
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optimal investment policy assigns all capacity in (kH1, k] to be adjusted to the upperbound of the

lower stayput interval (i.e., kH1) and assigns all capacity in (k, kL2) to be adjusted to the lowerbound

of the higher stayput interval (i.e., kL2).

Proof. For any non-stayput capacity value k that is between two stayput intervals, [kL1, kH1]

and [kL2, kH2], i.e., kH1 < k < kL2, an adjustment should be made either to kL2 or kH1 according to

Proposition 5. By comparing the expected NPV of adjusting k to kH1 with the one of adjusting k

to kL2, a decision whether to invest or disinvest can be made. Under Assumption 2, which specifies

rtj < ctj, the function Threshold(k, kH1, kL2) =Gtf (k
L2)−ctf×(kL2−k)−Gtf (k

H1)−rtf×(k−kH1)

is monotonously increasing in k. The rest of corollary then follows.

6.2. The leader’s proactive ISD policy

Similar to the follower’s value functions in cases (b) and (c), the leader’s optimal value function

V ∗
tl and the function Gtl in a proactive case, e.g., cases (a), (b) and (c), may not be concave in ktl.

This is because the leader’s first move influences the follower’s responses at the current period and

in the future (see equation (7)). Hence, the leader can strategically choose ktl in order to maximize

his own value, which depends on the follower’s current and future capacity (see equation (8)). We

develop a decomposition algorithm (Algorithm 2) to compute the leader’s proactive ISD policy. The

mechanism of this type of algorithm is to “divide and conquer” (see also Groenevelt (1991)). Since

the follower’s optimal response at the current period, k∗
tf , is determined by a function of the leader’s

first move (i.e., Stf (ktl, ωt)), we divide the leader’s capacity space into separate intervals, each of

which is associated with a value of k∗
tf . Within the same interval where the value of k∗

tf is fixed, the

leader can still choose different actions to influence the follower’s future capacity kt+1f , · · · , kTf ,

which influence the leader’s own future value. The elimination algorithm designed in Section 6.1

determines firm j’s stayput region at period t in a situation where given a fixed current action

from the opponent, firm j can influence the opponent’s future capacity by choosing ktj. Thus, after

dividing the capacity space into intervals, the elimination algorithm is used to identify the stayput

region in each interval.

Our decomposition algorithm contains three steps. The first step is to compute the range Sr
[klo,kle]

which contains the stayput region by using the same method as the first step of Algorithm 1. As the

leader’s capacity space is nonempty and closed, the existence of an optimal solution to the leader’s

optimization problem in (12) is guaranteed. Hence, the range Sr
[klo,kle]

exists and the boundaries of

the range are denoted as kL
tl and kH

tl , i.e., S
r
[klo,kle]

= [kL
tl, k

H
tl ]. We then divide the range Sr

[klo,kle]
into

separate terminal intervals, each of which ends at a terminal. Denote the start of the nth terminal

interval as Ino and the nth terminal as Ine . The nth terminal interval is then [Ino , I
n
e ]. Below, we

describe how terminals are identified and how terminal intervals are determined.
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Similar to the above-mentioned rolling up procedure, we roll up the capacity domain in order

to sequentially identify all the terminals. Let a function Ktf (ktl, kt−1f , ωt) represent the optimal

investment policy indicated by kt−1f and Stf (ktl, ωt), i.e., k
∗
tf =Ktf (ktl, kt−1f , ωt). The first termi-

nal interval starts with the origin of [kL
tl, k

H
tl ], i.e., I

1
o = kL

tl. If there exists k such that k = inf{ktl :

Ktf (ktl, kt−1f , ωt) 6=Ktf (△ktl, kt−1f , ωt), I
n
o ≤ ktl ≤ kH

tl }, then the nth terminal is Ine = k; otherwise,

Ine = kH
tl . If I

1
e 6= kH

tl , the nth terminal interval starts with Ino = inf(In−1
e , kH

tl ] for n> 1. The search-

ing process for terminals is continued until Ine = kH
tl . In order to explain the next steps in our

decomposition algorithm, we assume that at the first step N terminals are identified in the range

[kL
tl, k

H
tl ] and the range is thus divided into N terminal intervals.

The second step of our decomposition algorithm is to determine the stayput region in each

terminal interval by using Algorithm 1. Denote the stayput region in the nth terminal interval,

[Ino , I
n
e ] as Sn and the origin and end of Sn as ksn

o and ksn
e , i.e., Sn = [ksn

o , ksn
e ]. Sn represents the

leader’s optimal solution set in the capacity interval [Ino , I
n
e ] where the follower’s action at the

current period is fixed, i.e., Ktf (k, kt−1f , ωt) gives the same value ∀k ∈ [Ino , I
n
e ]. If the value of the

objective function in equation (12) can be improved by adjusting a capacity value k in Sn to a

value in Si 6=n, then it is said that k is a non-stayput value in the capacity space, i.e., k /∈ S[klo,kle];

if k does not need to be adjusted to any value in Si, ∀i 6= n, then k ∈ S[klo,kle].

I
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o I

n−1
e

I
n
o I

n
e I

n+1
o

I
n+1
e

n − 1th
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nth
terminal interval
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k
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o

k
sn−1
e

k
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o k

sn
e k

sn+1
o

k
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e

Sn−1 Sn Sn+1 Sn+2
k
L
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k
H
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(n − 1)st rolling up 1st rolling down

n + 2th
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k
sn+2
o k

sn+2
e

I
n+2
o I

n+2
e

2nd rolling down

Figure 1 Illustration of the cross-interval comparison

Using cross-interval comparisons, the third step of our decomposition algorithm is to eliminate

all the non-stayput values from Sn, ∀n = 1, · · · ,N . For a capacity k ∈ Sn, Proposition 6 shows

that whether k ∈ S[klo,kle] can be efficiently determined by comparing k with the upperbound of

Si, ∀i= 1, · · · , n− 1 and with the lowerbound of Si, ∀i= n+1, · · · ,N . Thus, we apply the rolling

up procedure n− 1 times for the upperbounds (see black solid lines in Figure 1) and apply the

rolling down procedure N − n times for the lowerbounds (see black dash lines in Figure 1). For

i= 1, · · · , n− 1, the ith rolling up procedure starts with the end of Si (i.e., k
si
e ) and stops at the

jth iteration if kj ∈ Sr

[k
si
e ,kj ]

, where [ksi
e , kj] is the jth iteration interval. For i= n+ 1, · · · ,N , the
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(i−n)th procedure starts with the start of Si (i.e., k
si
o ) and stops at the jth iteration if kj ∈ Sr

[kj ,k
si
o ]
,

where [kj, k
si
o ] is the jth iteration interval. Proposition 7 shows that these two stopping rules are

sufficient for eliminating non-stayput points in Sn. After cross-interval comparisons, no capacity

values need to be adjusted. The remaining capacity values in each terminal interval compose the

leader’s stayput region, and we write it as a function of the follower’s capacity and his ISD policy

at the beginning of period t: Stl(Stf , kt−1f , ωt). In Theorem 3, we outline the decomposition method

for computing the leader’s proactive ISD policy.

Proposition 6. Given the stayput region in the ith terminal interval, i.e., Si = [ksi
o , ksi

e ], if

there exists a capacity value k1 > ksi
e satisfying k1 ∈ Sr

[k
si
e ,k1]

(or a capacity value k1 < ksi
o satisfying

k1 ∈ Sr

[k1,k
si
o ]
), then k1 ∈ S[k2,k1] (or k1 ∈ S[k1,k2]), ∀k2 ∈ Si.

Proof. The proof will be given in the e-companion to this paper.

Proposition 7. Given the stayput region in the ith terminal interval, i.e., Si, if a capacity

value k1 ∈ Si satisfying the following: k1 ∈ Sr
[k,k1]

, ∃k < k1 (or k1 ∈ Sr
[k1,k]

, ∃k > k1), then we have:

k2 ∈ S[k,k2], ∀{k2 : k1 < k2 ∈ Sn} (or k2 ∈ S[k2,k], ∀{k2 : k2 < k1 ∧ k2 ∈ Sn}).

Proof. The proof will be given in the e-companion to this paper.

Theorem 3. Given Stf , kt−1f ∈ Kt−1f , and ωt ∈ Θ, the solution to the leader’s optimization

problem at period t (see equation (12)) can be represented in the form of an ISD policy that may

contain multiple disconnected stayput intervals. The set of the stayput intervals, i.e., the stayput

region Stl(Stf , kt−1f , ωt), can be derived by Algorithm 2.

Proof. The first part of theorem follows directly as the optimal solution to the leader’s invest-

ment problem at period t can be expressed by a set of capacity values, of which the associated

value of equation (12) cannot be improved. According to Theorem 2, Propositions 6 and 7, the set

of capacity values computed by Algorithm 2 is the leader’s stayput region at period t.

Algorithm 2 Decomposition algorithm for computing the leader’s stayput region

1. Compute the range Sr
[klo,kle]

of the stayput region using the same method as the first step of

Algorithm 1: S[klo,kle] ⊆ Sr
[klo,kle]

= [kL
tl, k

H
tl ]. Next, identify terminals in the range [kL

tl, k
H
tl ] and

divide the range into separate terminal intervals. Assume that there are N terminals in [kL
tl, k

H
tl ]

and the range is divided into N terminal intervals.

2. Use Algorithm 1 to search for the stayput region in each terminal interval. Denote the stayput

region in the nth terminal interval as Sn.

3. Eliminate all the non-stayput values from Sn, ∀n= 1, · · · ,N through cross-interval comparisons.

The remaining capacity values constitute the leader’s stayput region S[klo,kle], i.e., Stl(Stf , kt−1f , ωt).
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7. Case study on the container shipping market

We first use data from the container shipping market to determine the optimal ISD investment

strategies for a leader and a follower in all four cases (i.e., (a) stay put, (b) adversarial, (c) optimal,

and (d) reactive). Abbreviations are used to refer to a player in a specific case, e.g., the leader in case

stay put is abbreviated as SL. The results are then compared with the realized capacity investments

of the two players in practice. Second, we study the underlying structures of the optimal ISD

strategies between different players and cases. Third, using Monte Carlo simulations, we investigate

the impact of different market and investment cost parameters on capacity strategies. Lastly, based

on our results, we draw several implications for investors in a competitive market.

7.1. Optimal ISD investment strategies in the container shipping market

We use the demand and supply data of the container shipping market over a timespan of 16 years

(2000-2015). To avoid the border effect in a long-term strategy, we extend the timespan to 2017,

i.e., Γ = {1, · · · ,18}. Maersk and MSC, which are currently ranked as the first and second liner

operators based on their fleet capacity (Alphaliner, 2015), are chosen as the leader and the follower.

At the beginning of each year, firms observe the current demand and predict the demand growth

of the coming year. In order to mitigate the risk, a demand forecast often consists of several future

scenarios with different probabilities, each scenario taking into account forecast errors to a varying

degree. We use a categorical distribution as an approximation of a normal distribution to represent

the demand forecast. At the beginning of 2000, the first observed demand is set as 1. ωt+1, ∀t∈ Γ,

evolves according to the following transition rule:

ωt+1 =



























ωt(1+µt +2σt) with pr= 2.28%

ωt(1+µt +σt) with pr= 13.59%

ωt(1+µt) with pr= 68.26%

ωt(1+µt −σt) with pr= 13.59%

ωt(1+µt − 2σt) with pr= 2.28%

where µt is the industry-wide accepted forecast of demand growth at period t and σt is the forecast

error at period t, which is represented by the average discrepancy between all previous forecasts µτ

and the realized demand growths µ
′

τ , ∀τ = 1, · · · , t. At each period t∈ Γ, the values of µt and µ
′

t are

the average forecast and the average realization, which are based on the two half-yearly Clarkson

Shipping Review and outlook12 (Clarkson Research Services, 2000-2015a, 2000-2015b). Note that

the forecast error is measured on realized demand growths in practice, rather than on simulated

growths ωτ . A maximal forecast deviation in the container shipping market, 5%, is chosen as the

first value in σ = (σ1, · · · , σ18). The transition probabilities, i.e., pr, are taken from the Z-score

12 We use the same forecast of 2015 for 2016 and 2017, i.e., µ18 = µ17 = µ16, and assume an zero demand growth in
2016 and 2017, i.e., µ

′

18 = µ
′

17 = µ
′

16.
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table. A large sample of random demand paths is generated and Figure 2 shows an example that

closely matches realized demand growths in practice, i.e., (µ
′

1, · · · , µ
′

18).

Figure 2 A simulated demand growth path

Supply and investment cost parameters are kept constant throughout the whole timespan. Dis-

crete market share values are used to represent the capacity choices available to firm j at period t

and thus firms’ capacity decisions can be interpreted as changes in their respective market shares.

An upper limit of 19 is set to both firms’ capacity space, due to the fact that to date, a liner opera-

tor’s market share (based on its fleet capacity) has never exceeded 19% (Alphaliner, 2015). At each

period t∈ Γ, both firms have the same set of available capacity choices: Ktl =Ktf = {0,1, · · · ,19}.

At period t ∈ {1, · · · ,16} (i.e., 2000-2015), the realized capacity k
′

tj of Maersk and MSC are the

end-of-year capacity, which are extracted from UNCTAD Review of Maritime Transport (UNC-

TAD, 2001-2015) and from Alphaliner (2015). At the beginning of 2000, Maersk and MSC owned

around 12% and 5% market share, i.e., k0l = k
′

0l = 12 and k0f = k
′

0f = 5 (UNCTAD, 2000).

Assume for simplicity that at each period both firms’ capacity utilization parameters equal 1, i.e.,

atj = 1, and utilization cost functions Htj(·) take the following form: if atjqtj ≤ ktj, Htj(qtj, ktj) = 0;

otherwise, Htj(qtj, ktj) =∞, ∀j ∈ {l, f},∀t ∈ Γ. In cases where htj =Htj(·) = 0, the product price

pt can be seen as the marginal profit of a unit capacity (see equation (1)). As the price of shipping

services fluctuates heavily with the firms’ capacity investment, a linear market-clearing price is

used, i.e., qtj = ktj and Pt(ktl, ktf , ωt) = α ·ωt − ktl − ktf where α> 0 is a given market parameter.

As atj = 1 and qtj = ktj, Htj(qtj, ktj) = 0. Therefore, firm j’s operating profit function is:

πtj(ktl, ktf , ωt) = (α ·ωt − ktl − ktf )× ktj (16)

We use the same form for the salvage value function, i.e., Fj(kTl, kTf , ωT+1) = (α · ωT+1 − ktl −

kTf )×kTj. Assumptions 1 and 3 are satisfied with this example of profit functions.. In addition, as
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Pt(·)< 0 is possible, a firm can have negative profits for a period. This is consistent with common

practice in the shipping industry, i.e., in order to remain active in the market, shipping lines

continue to operate even if they are facing a loss. With this profit function, a firm benefits from

all its capacity when the marginal profit of a unit capacity is positive and suffers losses from all its

capacity when supply in the market exceeds demand (i.e., the marginal profit is negative). The α

value is determined using the historical freight rates (dollars per TEU), demand and supply data

(both in thousand TEUs) on the three major liner trade routes, i.e., transpacific, Europe-Asia, and

transatlantic. Assuming the linear market-clearing price, at the beginning of 2000 the marginal

demand impact on price ranged from 1.2 to 2.1 on the three routes (UNCTAD, 2001). Since we

use single-digit demand values (e.g., ω1 = 1) and double-digit capacity choices (e.g., k0l = 12), we

scale the marginal demand effect by multiplying 10, i.e., α= 15.

Based on the latest released vessel prices in Maersk’s container market weekly report (Maersk,

2015), which states that the average second-hand vessel price is $4,837 per TEU and the average

newbuilding vessel price is $10,741 per TEU, both firms’ investment cost parameters are set as

ctl = ctf = 10.7 and rtl = rtf = 4.8. Notice that these are not the prices of changing 1% market

share, however, the difference between c and r represents the investment irreversibility level in the

container shipping market. Using Monte Carlo simulations, we will further investigate the impact

of different investment irreversibility levels on the optimal strategies in Section 7.3. We adopt a

discount rate of 0.89 as this value is frequently used by shipping firms to calculate the present

value of future earnings (Gullaksen, 2012; Greenwood and Hanson, 2013).

The leader’s and follower’s optimal value functions (see equations (7) and (8)) can be computed

using a backward induction method. The optimal capacity at each period are then determined

based on the respective ISD policy as discussed in Sections 5 and 6. As πtf in equation (16) is

nonincreasing in the leader’s capacity ktl for any given ktf ∈ Ktf and for each ωt ∈ Θ. It is easy

to show by backwards induction that the follower’s value function in case (b) adversarial is jointly

concave in (kt−1f , ktf ). Thus, the follower’s ISD policy in case (b) can be computed in the same

way as the reactive ISD policy using Theorem 1. Using the same demand path as shown in Figure

2, we compute the optimal capacity and profits of the four cases in Figure 3. The realized capacity

investments of the two liner operators are represented by the red and green dash lines in Figure 3a.

Considering value and adjustment pattern, the leader’s realized capacity come close to AL from

period 1 to 8 and close to OL and RL from period 9 to the end, while the follower’s realized capacity

are best matched by OF and RF. At the end of 2015, the two liner operators had 14.7% and 13.2%

market share, which are exactly matched by OL and OF. While the dominant players followed

their respective competitive investment strategies, other players were reducing their capacity. This

is indeed what happened in practice: many small shipping firms have left the market (add ref).
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(a) Capacity (b) Profit

Figure 3 Optimal capacity and profit of the leader and the follower

7.2. Underlying structures of the ISD strategies

Using Algorithms 1 and 2 for OF and OL or Theorem 1 for SF, AF, RF and RL, we reveal the

underlying ISD policies of the leader and follower’s optimal capacity and explain the differences

between the four cases. With the black, red and green whisker lines indicating the first, second, and

third stayput intervals (if they exist), respectively, and the purple dots indicating the investment

threshold between two consecutive intervals, Figure 4 shows the stayput regions of the leader and

the follower in all four cases. In each subfigure, the red solid line depicts the leader or follower’s

optimal capacity over time. Taking Figure 4a as an example, at the beginning of period 4 with

k3l = 9, the stayput region at this period consists of two intervals: [9] and [11]. According to the

ISD policy, it is optimal for the leader to stay put at his current capacity, i.e., k∗
4l = 9.

First, as a result of the first mover advantage, the leader always acquires a same or higher

capacity than the follower in all four cases, except OL at period 6 (see Figure 3a). This is justified

by the observation in Figure 4: the leader’s stayput regions are usually higher than the follower’s

ones. In this example of demand path, higher capacity leads to more profits: the leader gains more

profits than the follower, except OL at period 5 (see Figure 3b).

Second, comparing a player’s capacity and profits in the symmetric cases (i.e., optimal and

reactive) with those in the asymmetric cases (i.e., stay put and adversarial), OL and RL have

lower capacity and profits than SL and AL, while OF and RF have higher capacity and profits

than SF and AF in Figure 3. As shown in Figure 4, a player’s ISD policy at a period can contain

multiple intervals in cases where he proactively considers the other player’s strategy (e.g., SL, AL,

OL and OF ). Multiple stayput intervals suggest more flexibility in a player’s strategy and thus a

higher probability that his capacity needs to be adjusted. In the asymmetric cases, the follower’s

ISD policies only contain a single interval at each period. It further gives the leader advantages
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and allows the ISD policies of SL and AL to have multiple stayput intervals more frequently than

the ISD policies of OL. This explains the difference between the leader’s capacity and profits in

symmetric and those in asymmetric cases. The follower favors the symmetric cases as both players

in the same symmetric case have similar ISD policies in terms of the number of intervals.

Third, comparing the symmetric cases in Figure 3, OL has similar profits but higher capacity

than RL, while OF has similar capacity but lower profits than RF. Compared to the ISD policies

of RL and RF in Figure 4, the ISD policies of OL and OF have smaller13 stayput regions and

multiple intervals at some periods. This indicates that proactive thinking in optimal gives both

players strategical flexibility and makes them more likely to have higher capacity than they do

in reactive. As the difference between the ISD policies of OL and those of RL is larger than the

difference between the ISD policies of OF and those of RF, it is more likely that OL will have

higher capacity than RL compared to the situation where OF surpasses RF.

Fourth, comparing the asymmetric cases in Figure 3, SL has higher capacity than AL. As time

proceeds, the profits of SL gradually catch up with those of AL, while both the capacity and

profits of SF are gradually surpassed by AF. In adversarial where the follower’s information on the

leader’s strategy appears to be inaccurate, the follower can still benefit from proactive thinking.

As indicated in Figure 4, the ISD policies of AL at some periods have larger stayput regions than

those of SL and thus strategical flexibility of AL is restrained. This explains why AL has lower

capacity than SL in Figure 3a. With our example of profit functions (equation (16)), the follower’s

assumption on the leader being adversarial directly suppresses the follower’s own capacity: the

stayput regions of AF are lower than those of SF. This describes why in the capacity and profits

of AF gradually surpass those of SF only during later periods (when the demand is picking up).

7.3. Impact of market condition and investment irreversibility

Using Monte Carlo simulations, we investigate the impact of different market conditions and in-

vestment irreversibility levels on the optimal strategies. Using the same remaining parameters as

in Section 7.1, we change α values to represent different market conditions in the first experiment

and change the value of disinvestment unit price, i.e., rtj, to represent different levels of invest-

ment irreversibility in the second experiment. Besides the four cases, a single-firm case is added

in order to distinguish the competitive effect. This is to say, with different parameter values, we

identify the occasions when a player’s strategy under duopoly changes significantly differently from

his strategy under monopoly. To allow direct comparison, we let both the leader and the follower

operate as a monopolist in their separate market (i.e., kol
kol+kof

ωt or
kof

kol+kof
ωt) and refer to them

13 The size of a stayput region depends on the number of contained capacity values, without considering whether the
values are continuous. Thus, a large stayput region does not necessarily contain few intervals.
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(a) SL (b) AL (c) OL (d) RL

(e) SF (f) AF (g) OF (h) RF

Figure 4 Stayput region of the leader and the follower

as monopoly “leader” (ML) and monopoly “follower” (MF ). The method developed by Eberly

and Van Mieghem (1997) is used to determine the monopolist’s optimal ISD investment strategy.

In each experiment, 10,000 random demand paths are simulated and the same demand path is

applied to all five cases with different parameter values. At each period, the optimal capacity and

profit are computed and then averaged over the 10,000 simulations. For each case, we then average

the mean optimal capacity and profits of each period over the entire timespan and use them to

indicate the overall performance of this case. Figures 5 and 6 show the average capacity and profits

of all five cases with different α and rtj values.

First, both players, especially the follower, perform better in cases where they adopt a competitive

strategy compared to the case where they act as a monopolist in a separate market. Comparing

the four cases to the single-firm case with different α and rtj values, SL, AL, OL have higher

average capacity than ML, whereas RL has similar average capacity as ML. In all four cases, the

follower has much higher average capacity than MF (see Figures 5a and 6a). SL and AL have

higher average profits than ML, while OL has more average profits than ML during either market

downturn (i.e., small α values) or revival (i.e., large α values). In all four cases, the follower has

much higher average profits than MF (see Figures 5b and 6b).

Second, the previous results using a single demand path are robust with different α and rtj

values. For example, the leader generally performs better than the follower in terms of average

capacity and profit and the leader performs better in asymmetric cases than he does in symmetric

cases, while the follower has the opposite situation. Comparing the symmetric cases, both players
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in optimal have slightly higher average capacity than they do in reactive with different α values

(see Figure 5a). Comparing the asymmetric cases, SF has higher average capacity during market

downturns, while AF gradually catches up as the market revives (see Figure 5a).

Third, when reducing the investment irreversibility (i.e., increasing the r value), only OL benefits

from the cost advantage and OF ’s average capacity and profits decrease.

(a) Average capacity (b) Average profit

Figure 5 Impact of market parameters on the optimal strategies

(a) Average capacity (b) Average profit

Figure 6 Impact of investment cost parameters on the optimal strategies

7.4. Managerial insights

In a market where dominant firms can influence the product price through their capacity invest-

ments, a competitive strategy allows these firms to benefit more in terms of capacity and profit,
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compared to the strategy which separates firms into different markets. While dominant firms exer-

cise their competitive strategies and thus gradually increase capacity, other small players’ capacity

are suppressed and the market continues to consolidate. During an investment race, it is crucial to

be the first one to act as it increases the competitive advantage over the other players. We consider

two types of competitive strategy (i.e., proactive and reactive) for the leader and follower firms in

the race. Figure 7 shows the ranking of the four cases based on a player’s average capacity, e.g., 1l

and 4l indicating the leader holds the highest and lowest average capacity among the four cases.

The shadow area where the follower is proactive while the leader is reactive can be seen as identical

to stay put, but with reverse players. Our results show that the best competitive strategy for any

player features proactive thinking. It allows a firm to strategically plan its investments considering

the possible responses from the other firm. As shown in Figure 7, the leader’s average capacity is

higher in the proactive cases than in the reactive case. As the leader moves first and exercises his

best strategy, the follower’s best response is to collect information on the leader’s future decisions

and to adopt a proactive strategy as well.

follower’s strategy

reactive

(partial information) (full information)

proactive

reactive

proactive

leader’s strategy
stay put adversarial optimal

reactive

4f

1l

3f

2l

1f

3l

2f

4l

Figure 7 Ranking based on a player’s average capacity

8. Conclusion

We study a competitive capacity investment problem under uncertainty and derive the optimal

strategy in the form of an ISD policy. Different from the majority of oligopoly capacity models in

the literature which focus on a single-shot investment, we investigate a long-term problem where

firms sequentially adjust their capacity at each period in order to maximize the sum of current

reward and expected future rewards. In a competitive market where firms’ decisions interact with

each other, our optimal long-term investment policies give different insights into the competitive

strategy by explicitly featuring the interaction between a firm’s capacity and the other firms’
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current and future capacity. Moreover, by allowing for flexible capacity choices, our optimal policies

do not only determine the timing of capacity adjustments, but also characterize the size of an

investment. In the two-player case, the follower’s ISD policy at period t is determined by the

leader’s first move ktl and the uncertainty level, while the leader’s ISD policy is a function of

the uncertainty level, the follower’s current capacity kt−1f , and the follower’s optimal investment

policy at period t. We consider two types of competitive investment strategies for both players:

proactive and reactive. The optimal ISD policies in each case are determined by different methods.

In cases where both players are proactive and strategically influence each other, we developed two

algorithms (i.e., decomposition algorith and elimination algorithm) to compute the leader’s and

follower’s ISD policies. A proactive strategy gives a player strategical flexibility, as indicated by

multiple stayput intervals in the ISD policies.

We demonstrate the optimal ISD investment strategies using data from the container shipping

market. Our results show that the realized investments in practice, which are questioned as “ir-

rational” decisions, follow an optimal structure. In addition, firms’ “overinvestments” during a

market downturn are also shown to be optimal decision according to their long-term competitive

strategies. Compared to the strategies that separate firms into different market, a competitive

strategy allows both firms to benefit from the competition. Our results show that the leader can

hold more capacity and make more profits when adopting a proactively rather than a reactively

competitive strategy. The follower’s best response to the leader’s proactive strategy is also to be

proactive. Regardless of the accuracy of the follower’s information on the leader’s strategy, the

follower can benefit from proactive thinking if he strategically plans his investments while taking

into account the their impact on the leader’s future. Besides a firm’s position in the investment

race and whether the firm adopts a proactive strategy, market condition and investment costs can

also influence the result of its ISD investment strategy.

Our model investigates investment strategies in a competitive market and provides insights into

the structure of an optimal investment policy. However, investment practice is more complex. The

competition often involves more than two firms and the middle player can adopt a leader, follower,

or mix strategy. A direction for future research is to investigate the optimal investment policy of

the middle player.
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Appendix. Proofs of Propositions

Proposition 1. In cases where firm j responds reactively to the competition, his optimal value function

V ∗
tj is jointly concave in (kt−1j , ktj) for any given the other firm’s current capacity kti 6=j ∈Kti and for each

ωt ∈Θ.

Proof. Follow the reasoning of Theorem 1 from Eberly and Van Mieghem (1997): satisfying Assumptions

1, 2, and 3, they show by induction and a concavity preservation lemma that a single firm’s optimal value

function Vt(kt−1, ωt) is jointly concave in (kt−1, kt). In the reactive case with kτi 6=j given and invariant ∀τ > t,

firm j’s optimal value function V ∗
tj(kti, kt−1j , ωt) is jointly concave in (kt−1j , ktj) for any given the other

firm’s current capacity kti 6=j ∈Kti and for each ωt ∈Θ.

Proposition 2. S[kfo,kfe] ⊆ Sr
[kfo,kfe]

= [kL
tf , k

H
tf ].

Proof. According to equations (13) and (14),
∇−Gtf (k

L
tf )

∇kL
tf

≥ ctf and
∇+Gtf (k

H
tf )

∇kH
tf

≤ rtf . Thus,

Gtf (k)−Gtf (k
L
tf )

k−kL
tf

≥
∇−Gtf (k

L
tf )

∇kL
tf

≥ ctf , ∀k < kL
tf and

Gtf (k)−Gtf (k
H
tf )

k−kH
tf

≤
∇+Gtf (k

H
tf )

∇kH
tf

≤ rtf , ∀k > kH
tf . It means that

capacity k should be adjusted in order to maximize the value of the objective function in equation (10), i.e.,

k /∈ S[kfo,kfe], ∀{k : k < kL
tf ∨k > kH

tf}. If k
L
tf > kH

tf , S[kfo,kfe] = [kL
tf , k

H
tf ] = ∅. If kL

tf ≤ kH
tf , S[kfo,kfe] ⊆ [kL

tf , k
H
tf ] 6=

∅. In conclusion, S[kfo,kfe] ⊆ Sr
[kfo,kfe]

= [kL
tf , k

H
tf ].
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Proposition 3. kL
tf and kH

tf are the lowerbound and the upperbound of the stayput region S[kfo,kfe].

Proof. Assume there exists k1, k2, such that k1 = inf{k :
Gtf (k

L
tf )−Gtf (k)

kL
tf

−k
≥ ctf , kL

tf < k < kH
tf} and k2 =

sup{k :
Gtf (k

H
tf )−Gtf (k)

kH
tf

−k
≤ rtf , kL

tf < k < kH
tf}. Thus, Gtf (k

L
tf ) −Gtf (k1) ≤ ctf × (kL

tf − k1) and Gtf (k
H
tf ) −

Gtf (k2)≤ rtf × (kH
tf −k2). In addition, Gtf (k

L
tf )−Gtf (k)> ctf × (kL

tf −k), ∀{k : kL
tf < k < k1} and Gtf (k

H
tf )−

Gtf (k) > rtf × (kH
tf − k), ∀{k : k2 < k < kH

tf}. According to equations (13) and (14),
Gtf (k)−Gtf (k

L
tf )

k−kL
tf

≥

∇−Gtf (k
L
tf )

∇kL
tf

≥ ctf , ∀k < kL
tf and

Gtf (k)−Gtf (k
H
tf )

k−kH
tf

≤
∇+Gtf (k

H
tf )

∇kH
tf

≤ rtf , ∀k > kH
tf . Adding the inequalities, we

get the followings:
Gtf (k)−Gtf (k1)

k−k1
> ctf ∀{k : kL

tf < k < k1} and
Gtf (k)−Gtf (k2)

k−k2
< rtf ∀{k : k2 < k < kH

tf};
Gtf (k)−Gtf (k1)

k−k1
≥ ctf , ∀k < kL

tf and
Gtf (k)−Gtf (k1)

k−k1
≤ rtf , ∀k > kH

tf . Hence, if k1, k2 exist,
Gtf (k)−Gtf (k1)

k−k1
≥ ctf ,

∀k < k1 and
Gtf (k)−Gtf (k1)

k−k1
≤ rtf , ∀k > k2.

According to the definitions of kL
tf and kH

tf (see equations (13) and (14)), the marginal values at k1and k2

are:
∇−Gtf (k1)

∇k1
< ctf and

∇+Gtf (k(2))

∇k2
> rtf . Thus, there exists some ka < k1 such that

Gtf (ka)−Gtf (k1)

ka−k1
< ctf

and exists some kb > k2 such that
Gtf (kb)−Gtf (k2)

kb−k2
> rtf . This contradicts the claim that ∀k < k1 or ∀k > k2,

k should be adjusted to k1 or k2. Therefore, k1 and k2 do not exist and kL
tf , k

H
tf ∈ S[kfo,kfe]. According to

Proposition 2, S[kfo,kfe] ⊆ Sr
[kfo,kfe]

= [kL
tf , k

H
tf ]. Hence, k

L
tf and kH

tf are the lowerbound and the upperbound of

the stayput region S[kfo,kfe].

Proposition 4. The rolling up and rolling down procedures eliminate all the non-stayput capacity values

from the range Sr
[kfo,kfe]

.

Proof. At each iteration of the rolling up procedure, k is eliminated if k /∈ Sr

[kL
tf

,k]
. According to Proposition

2, k /∈ S[kL
tf

,k] if k /∈ Sr

[kL
tf

,k]
. If k is a non-stayput point in a space K , k is also a non-stayput point in any

space that contains the original space K . Hence, k /∈ S[a,b], ∀[a, b] ⊇ [kL
tf , k], e.g., k /∈ S[kfo,kfe] This is to

say, capacity values that are eliminated by the rolling up procedure are the non-stayput points in the space

[kfo, kfe]. By the same token, capacity values that are eliminated by the rolling down procedure are also the

non-stayput points.

Next, we prove that all of the remaining values are the stayput points in the space [kfo, kfe]. At each iteration

of the rolling up procedure, k is kept if k ∈ Sr

[kL
tf

,k]
. According to Proposition 3, k ∈ S[kL

tf
,k] if S

r

[kL
tf

,k]
= [·, k]. If

k ∈ S[kL
tf

,k], it means that the value of the objective function in equation (10) cannot be improved by adjusting

k to any point in the interval [kL
tf , k]. The rolling down procedure follows the same argument as the rolling

up procedure: k ∈ S[k,KH
tf

] if S
r

[k,kH
tf

]
= [k, ·]. After the rolling up and rolling down procedures, any remaining

capacity value k is a stayput point in the interval [kL
tf , k

H
tf ] as k should neither be adjusted to any point in

the interval [kL
tf , k] nor to any point in the range [k, kH

tf ]. According to Proposition 2, S[kfo,kfe] ⊆ Sr
[kfo,kfe]

=

[kL
tf , k

H
tf ]. Hence, the stayput region in the range [kL

tf , k
H
tf ] is also the stayput region in the space [kfo, kfe],

i.e., S[kL
tf

,kH
tf

] = S[kfo,kfe]. In conclusion, the rolling up and rolling down procedures eliminate the non-stayput

capacity values from the range and all of the remaining capacity compose the stayput region S[kfo,kfe].

Proposition 5. Given kt−1f = k and k /∈ Stf (ktl, ωt), if the optimal investment policy indicated by

Stf (ktl, ωt) assigns ktf = b, then no stayput values exist in the interval [k, b) if b > k, or in the interval (b, k]

if b < k. In other words, the interval [k, b) or (b, k]* Stf (ktl, ωt).
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Proof. The optimal investment policy assigns ktf = b when kt−1f = k, thus Gtf (b) − ctf × (b − k) ≥

Gtf (k
′

)− ctf × (k
′

− k), ∀k
′

≥ k in the case b > k,. Therefore, capacity values in the interval [k, b) need to be

adjusted to b in order to maximize the value of the objective function in equation (10) as
Gtf (b)−Gtf (a)

b−a
≥ ctf ,

∀a ∈ [k, b). In other words, a /∈ Stf (ktl, ωt), ∀a ∈ [k, b). The proof for the case b < k follows the same argu-

ment. In conclusion, the interval [k, b) or (b, k] * Stf (ktl, ωt) if the optimal investment policy indicated by

Stf (ktl, ωt) assigns ktf = b when kt−1f = k /∈ Stf (ktl, ωt).

Proposition 6. 14 Given the stayput region in the ith terminal interval, i.e., Si = [ksi
o , ksi

e ], if there exists

a capacity value k1 > ksi
e satisfying k1 ∈ Sr

[k
si
e ,k1]

(or a capacity value k1 < ksi
o satisfying k1 ∈ Sr

[k1,k
si
o ]
), then

k1 ∈ S[k2,k1] (or k1 ∈ S[k1,k2]), ∀k2 ∈ Si.

Proof. Given Si = [ksi
o , ksi

e ], G(k
si
e )−G(k)

k
si
e −k

> r, ∀k ∈ [ksi
o , ksi

e ). If there exists a capacity value k1 > ksi
e sat-

isfying k1 ∈ Sr

[k
si
e ,k1]

, then k1 ∈ S[k
si
e ,k1]

according to Proposition 3. Thus, G(k1)−G(k
si
e )

k1−k
si
e

> r. Adding inequality

G(k1)−G(ksi
e )> r(k1 − ksi

e ) to inequality G(ksi
e )−G(k)> r(ksi

e − k), ∀k ∈ [ksi
o , ksi

e ), we get: G(k1)−G(k)

k1−k
> r,

∀k ∈ [ksi
o , ksi

e ). In conclusion, k1 ∈ S[k2,k1], ∀k2 ∈ Si. The proof for the case k1 < ksi
o follows the same argu-

ment.

Proposition 7. 15 Given the stayput region in the ith terminal interval, i.e., Si, if a capacity value

k1 ∈ Si satisfying the following: k1 ∈ Sr
[k,k1]

, ∃k < k1 (or k1 ∈ Sr
[k1,k]

, ∃k > k1), then we have: k2 ∈ S[k,k2],

∀{k2 : k1 < k2 ∈ Sn} (or k2 ∈ S[k2,k], ∀{k2 : k2 < k1 ∧ k2 ∈ Sn}).

Proof. If a capacity value k1 ∈ Si satisfying the following: k1 ∈ Sr
[k,k1]

, ∃k < k1, then k1 ∈ S[k,k1] according

to Proposition 3. Thus, G(k1)−G(k)

k1−k
> r. For any k2 > k1 and k1, k2 ∈ Si,

G(k2)−G(k1)

k2−k1
> r. Adding inequality

G(k1)−G(k)> r(k1 − k) to inequality G(k2)−G(k1)> r(k2 − k1), we get: G(k2)−G(k)

(k2−k)
> r, i.e., k2 ∈ S[k,k2],

∀{k2 : k1 < k2 ∈ Sn}. The proof for the case k > k1 follows the same argument.

ith
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(a) Proposition 6
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Figure 8 Figures for illustrating Propositions 6 and 7

14 See Figure 8a for an illustration; in Figure 8, the red symbols indicate the second situation which is stated within
the brackets in a proposition.

15 See Figure 8b for an illustration.
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