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A mixed manna contains goods (that everyone likes) and bads (that everyone dis-
likes), as well as items that are goods to some agents, but bads or satiated to others.

If all items are goods and utility functions are homogeneous of degree 1 and con-
cave (and monotone), the competitive division maximizes the Nash product of utilities
(Gale–Eisenberg): hence it is welfarist (determined by the set of feasible utility profiles),
unique, continuous, and easy to compute.

We show that the competitive division of a mixed manna is still welfarist. If the zero
utility profile is Pareto dominated, the competitive profile is strictly positive and still
uniquely maximizes the product of utilities. If the zero profile is unfeasible (for in-
stance, if all items are bads), the competitive profiles are strictly negative and are the
critical points of the product of disutilities on the efficiency frontier. The latter allows
for multiple competitive utility profiles, from which no single-valued selection can be
continuous or resource monotonic.

Thus the implementation of competitive fairness under linear preferences in inter-
active platforms like SPLIDDIT will be more difficult when the manna contains bads
that overwhelm the goods.

KEYWORDS: Fair division, goods, bads, competitive equilibrium, Nash product, Gale
Eisenberg.

1. INTRODUCTION

THE LITERATURE ON FAIR DIVISION OF PRIVATE COMMODITIES, with few exceptions dis-
cussed in Section 2, focuses almost exclusively on the distribution of disposable commodi-
ties, that is, desirable goods like a cake (Steinhaus (1948)), family heirlooms (Pratt and
Zeckhauser (1990)), the assets of divorcing partners (Brams and Taylor (1996)), office
space between co-workers, seats in overdemanded business school courses (Sönmez and
Ünver (2010), Budish and Cantillon (2010)), computing resources in peer-to-peer plat-
forms (Ghodsi, Zaharia, Hindman, Konwinski, Shenker, and Stoica (2011)), and so on.
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Many important fair division problems involve bads (nondisposable items generating disu-
tility): family members distribute house chores, workers divide job shifts (Budish (2011))
like teaching loads, cities divide noxious facilities, managers allocate cuts within the firm,
and so on. Moreover the bundle we must divide (the manna) often contains the two types
of items: dissolving a partnership involves distributing its assets as well as its liabilities,
some teachers relish certain classes that others loathe, the land to be divided may include
polluted as well as desirable areas, and so on. And the manna may contain items, such
as shares in risky assets or hours of babysitting, over which preferences are single-peaked
without being monotone, so they will not qualify as either good or bad: they are satiable
items. Of course each item may be a good to some agents, a bad to others, and satiable to
yet other agents. We will speak of a mixed manna. Our paper is, to the best of our knowl-
edge, the first to address the interplay of these different types of items in the fair division
problem.

To see why it is genuinely more complicated to divide a mixed rather than a good or
a bad manna, consider the popular fairness test of egalitarian equivalence (EE) due to
Pazner and Schmeidler (1978). A division of the manna is EE if everyone is indifferent
between her share and some common reference share: with mixed items this property may
well be incompatible with efficiency.1 The news is much better for the division favored by
microeconomists for over four decades (Varian (1974)): the competitive equilibrium with
equal incomes (here, competitive division for short). Existence is guaranteed when pref-
erences are convex, continuous but not necessarily monotonic, and possibly satiated; see,
for example, Shafer and Sonnenschein (1975) and Mas-Colell (1982). And this division
retains the key normative properties of efficiency, no envy, and core stability from equal
initial endowments.

A striking result by Gale, Eisenberg, and others (Gale (1960), Eisenberg (1961),
Chipman (1974), Shafer and Sonnenschein (1993)) shows that in the subdomain of utili-
ties homogeneous of degree 1 (1-homogeneous for short) as well as concave and continu-
ous, the competitive division of goods obtains by simply maximizing the product of indi-
vidual utilities. This is remarkable for three reasons. First the “resourcist” concept of com-
petitive division guided by price balancing Walrasian demands, has an equivalent “wel-
farist” interpretation as the Nash bargaining solution of the feasible utility set. Second,
the competitive utility profile is unique because by the latter definition it solves a strictly
convex optimization program; it is also computationally easy to find and continuous with
respect to the parameters of individual utilities (Vazirani (2005), Megiddo and Vazirani
(2007)); these properties all fail under general Arrow–Debreu preferences. Finally the
result is broadly applicable because empirical work relies mostly on 1-homogeneous util-
ities, which include additive, Cobb–Douglas, constant elasticity of substitution (CES),
Leontief, and their positive linear combinations. So the Gale–Eisenberg theorem is ar-
guably the most compelling practical vindication of the competitive approach to the fair
division of goods.

Main Result

We generalize this result to the division of a mixed manna when utilities are concave,
continuous, and 1-homogeneous, but not necessarily monotonic. We show that the wel-

1Two agents 1 and 2 share (one unit of) two items a and b, and their utilities are linear: u1(z1)= z1a − 2z1b;
u2(z2) = −2z2a + z2b. The only efficient allocation gives a to 1 and b to 2. In an EE allocation (z1� z2) there
is some y ≥ 0 such that ui(zi) = ui(y) for i = 1�2. This implies u1(z1)+ u2(z2) = −(ya + yb) so that z is not
efficient.
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farist interpretation of the competitive division is preserved: the set of feasible utility
profiles is still all we need to know to identify the competitive utility profiles (those asso-
ciated with a competitive division of the items), and they are still related to the product of
utilities or disutilities. A description of our main result, Theorem 1 in Section 4, follows.

We identify a partition of all division problems in three types, determined by a very
simple welfarist property. Keep in mind that, by 1-homogeneity of utilities, the zero of
utilities corresponds to the state of the world without any manna to divide. Call an agent
attracted if there is a share of the manna giving her strictly positive utility, and repulsed if
there is none, that is to say, zero is her preferred share.

If it is feasible to give a positive utility to all attracted agents, and zero to all repulsed
ones, we call this utility profile positive and speak of a positive problem. Problems of this
type include those with only goods, but also all those where, intuitively, the goods can
overwhelm the bads.Then the competitive utility profile is positive and maximizes the
product of the attracted agents’ utilities over positive profiles; as in Gale–Eisenberg, this
utility profile is unique and easy to compute. Also, upon arrival of the manna, everyone’s
utility increases (at least weakly).

By contrast, if the efficiency frontier contains allocations where everyone gets a strictly
negative utility, we call the problem negative. The division of only bads is a negative prob-
lem, but this class also includes all problems with not enough goods to overwhelm the
bads. Then the competitive utility profiles are the critical points (for instance, local max-
ima or minima) of the product of all disutilities on the intersection of the efficiency fron-
tier with the (strictly) negative orthant: in particular, the arrival of the manna implies a
(strict) utility loss for everyone.

Finally the null problems are those knife-edge cases where the zero utility profile is
efficient: it is then the unique competitive utility profile, and the arrival of the manna has
no impact on welfare.

Beyond the above similarities of the competitive approach to fair division in positive
and negative problems, there are also important differences.

First, computing the efficient disutility profiles critical for the product of disutilities
is no longer a convex program, so we expect computational difficulties in problems with
many agents and/or items. Second, negative problems routinely have multiple competitive
allocations with distinct utility profiles. We show, for instance, that the number of compet-
itive divisions can grow at least exponentially in the (minimum of the) number of agents
and goods. Third, any single-valued selection from the competitive correspondence has
unpalatable features described below.

Applications to Practical Fair Division

Our results have implications for the user-friendly internet platforms like SPLIDDIT
(www.spliddit.org/) or ADJUSTED WINNER (www.nyu.edu/projects/adjustedwinner/),
computing fair outcomes in a variety of problems including the division of manna. Visi-
tors to these sites must distribute 1000 points over the different items, and these “bids” are
interpreted as fixed marginal utilities for goods or marginal disutilities for bads. Thus a
participants must report linear preferences (additive utilities), a fairly manageable task
if complementarities between items can be ignored. Thousands of visitors have used
SPLIDDIT since November 2014, fully aware of the interpretation of their bids (Goldman
and Procaccia (2014)). This is proof enough that the linearity assumption is often accept-
able in practical division problems.

SPLIDDIT proposes the competitive solution to divide goods, but for the division of
tasks it reverts to the egalitarian equivalent solution mentioned in the second paragraph.

http://www.spliddit.org/
http://www.nyu.edu/projects/adjustedwinner/
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That solution may generate envy in problems with three or more agents, and has sev-
eral other undesirable features explained in Bogomolnaia, Moulin, Sandomirskiy, and
Yanovskaya (2016). Moreover, as mentioned above, the EE approach collapses for a
mixed manna. So it is tempting to recommend instead the competitive approach for the
division of a mixed manna.

Additive utilities are the simplest domain to which our result applies; therefore, we ex-
pect multiple competitive allocations when dividing bads and, more generally, in negative
problems. Multiplicity is a useful qualitative insight when the interpretation of the equi-
librium is descriptive, but our prescriptive approach looks for unambiguous answers to
the fair division problem.

If a negative problem involves only two agents with additive utilities, there are several
natural ways to single out a particular competitive utility profile. The set of Pareto optimal
(dis)utility profiles is a line made of several segments, along which sit (generically) an odd
number of competitive profiles, so we can, for instance, pick the “median” profile. In a
(necessarily negative) problem with two bads, the set of Pareto optimal and envy-free
allocations is similarly a line connecting several segments, and it contains (generically)
an odd number of competitive allocations, so the median allocation is again a reasonable
compromise. For general problems, we propose a simple but not particularly compelling
selection that maximizes the product of disutilities on the strictly negative part of the
efficiency frontier.

However it turns out that in negative problems, any single-valued selection from the
set of efficient and non-envious divisions (a much larger set than the competitive corre-
spondence) has two undesirable features that do not affect positive problems. First, it is
discontinuous in the parameters of the problem (the profile of additive utilities): Propo-
sition 1 in Section 7. Second, it violates the familiar resource monotonicity (RM) axiom,
requiring solidarity in individual welfares when the manna improves: if we increase the
amount of a good or decrease that of a bad, everyone should benefit at least weakly.2
Moreover the latter impossibility result holds if we replace no envy by the much weaker
fair share guarantee property:3 Proposition 2 in Section 7.

We conclude that the practical implementation of competitive division, on these inter-
net platforms or elsewhere, is feasible for negative problems but not as palatable as for
positive problems.

Turning Bads Into Goods?

It is is somewhat counterintuitive (it certainly surprised us) that dividing bads compet-
itively proves so different from dividing goods. Indeed the division of bads can be turned
into that of goods in the same way as we view labor as the negative of leisure. Say that we
must allocate 5 hours of a painful job a among three agents. Working 2 hours on a is the
same as being exempt from a for 3 hours, so the distribution of 5 hours of a is equivalent
to that of 10 hours of “a-exemption” between the three agents. Repeating this for each
job, the bad manna (the jobs) becomes a good manna (the exemptions). But in the new
problem, no agent can eat more than 5 hours of a-exemption, and these additional ca-
pacity constraints prevent us from applying the Gale–Eisenberg theorem. It is well known

2RM has been applied to many different resource allocation problems with production and/or indivisibilities.
See the recent survey by Thomson (2010).

3That is, no one is worse off than by consuming a 1
n

th share of every item. Equal split plays the role of the
disagreement option in bargaining.
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that capacity constraints on individual consumption enlarge the set of competitive alloca-
tions.

Contents

After reviewing the literature in Section 2 and defining the model in Section 3, we state
our main result in Section 4. We illustrate the multiplicity issue in a series of problems
with additive utilities in Section 5; most of the examples involve two agents or two items.
For negative problems with additive utilities, Section 6 defines the single-valued compet-
itive rules mentioned above; then Section 7 state two impossibility results. All substantial
proofs are given in Section 8.

2. RELATED LITERATURE

Steinhaus’ (1948) “cake division” describes the “good” cake as a compact euclidean
set, and assumes linear preferences represented by atomless measures over the cake. This
model contains ours (for goods) as the special case where the measures have piecewise
constant densities. Segal-Halevi and Sziklai (2015) show that the competitive allocations
are still the Nash product maximizer, hence generalizing Eisenberg–Gale. They also show
that the competitive rule is resource monotonic. The cake-division literature pays some
attention to the division of a bad cake to prove the existence of envy-free divisions of
the cake (Su (1999), Peterson and Su (2002), and Heydrich and van Stee (2015)) or to
examine how the classic algorithms by cuts and queries can or cannot be adapted to this
case (Brams and Taylor (1996) and Robertson and Webb (1998)). It does not discuss the
competitive rule for a bad cake or a mixed cake. Following our work, Segal-Halevi (2017)
discusses the existence of non-envious division of a cake with good and bad parts.

Our paper Bogomolnaia et al. (2016) (hereafter the companion paper) focuses on the
contrast between “all goods manna” and “all bads manna” problems in the additive do-
main. It compares systematically the competitive and egalitarian equivalent division rules,
vindicating the former rule by additional independence and monotonicity properties. It
contains the proof of some of the results stated here in Sections 5 and 7.

The recent work in computational social choice discusses extensively the fair division of
goods (see the survey Brandt, Conitzer, Endriss, Lang, and Procaccia (2016)), recognizing
the practical convenience of additive utilities and the conceptual advantages of the com-
petitive solution in that domain (see Moulin (2003) and Vazirani (2005)). For instance,
Megiddo and Vazirani (2007) show that the competitive utility profile depends continu-
ously upon the rates of substitution and the total endowment; Jain and Vazirani (2010)
show that it can be computed in time polynomial in the dimension n+m of the problem
(number of agents and of goods).

The fair division of indivisible goods with additive utilities is a much studied variant of
the standard model. The maximization of the Nash product loses its competitive interpre-
tation and becomes hard to compute (Lee (2017)); however, it is envy-free “up to at most
one object” (Caragiannis, Kurokawa, Moulin, Procaccia, Shah, and Wang (2016)) and can
be efficiently approximated for many utility domains (Cole and Gkatzelis (2015), Anari,
Gharan, Saberi, and Singh (2016), Anari, Mai, Gharan, and Vazirani (2016), and Cole,
Devanur, Gkatzelis, Jain, Mai, Vazirani, and Yazdanbod (2016)). Also Budish (2011) ap-
proximates the competitive allocation in problems with a large number of copies of several
good types by allowing some flexibility in the number of available copies.
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The probabilistic assignment of goods with von Neumann–Morgenstern utilities is an-
other fair division problem with linear and satiated preferences where Hylland and Zeck-
hauser (1979) and the subsequent literature recommend (a version of) the competitive
rule (e.g., He, Miralles, Pycia, and Yan (2015)). That rule is no longer related to the max-
imization of the product of utilities.

The purely welfarist axiomatic discussion of nonconvex bargaining problems identifies
the set of critical points of the Nash product among efficient utility profiles as a natural
generalization of the Nash solution: Herrero (1989) and Serrano and Shimomura (1998).
This solution stands out also in the rationing model of Mariotti and Villar (2005) where
we divide utility losses instead of gains. The latter is closer in spirit to our results for the
division of bads.

3. THE MODEL

Notation: We write R
X
+ , RX

− , RX
++, and R

X
= for, respectively, the nonnegative, nonposi-

tive, strictly positive, and strictly negative vectors in R
X .

The set of agents is N , that of items is A; both are finite. The domain H(A) consists
of all preferences on R

A
+ represented by a real-valued utility function v on R

A
+ that is

concave, continuous, and 1-homogeneous: v(λy)= λv(y) for all λ≥ 0� y ∈R
A
+ . It is easily

checked that if two such utility functions represent the same preference, they differ by a
positive multiplicative constant. All our definitions and results are purely ordinal, that is,
independent of the choice of the utility representations; we abuse language by speaking
of “the utility function v in H(A).”

The graph of a concave and continuous function v on R
A
+ is the envelope of its sup-

porting hyperplanes; therefore, it takes the form v(y) = mink∈K{αk · y + βk} for some
αk ∈ R

A, βk ∈ R, and a possibly infinite set K. It is easy to see that v is also 1-
homogeneous if and only if we can choose βk = 0 for all k. So the simplest utilities
in H(A) are additive, v(y) = α · y , and piecewise linear. For instance, A = {a�b} and
v(y)= min{ya + yb�4ya − yb�4yb − ya}, of which the indifference contours are represented
on Figure 1, left. Note that this utility is not globally satiated, but for fixed yb it is sati-
ated at ya = yb. A smooth nonlinear and nonmonotonic function in H(A) is, for example,
v(y)= yb ln{ ya

yb
+ 1

2 }, represented in Figure 1, right.
A fair division problem is P = (N�A�u�ω), where u ∈ H(A)N is the profile of utility

functions and ω ∈ R
A
+ is the manna; we assume ωa > 0 for all a.

FIGURE 1.—Examples of indifference contours.
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A feasible allocation (or simply an allocation) is z ∈ R
N×A
+ such that

∑
N zia =ωa for all

a or, in a more compact notation, zN = ω. The corresponding utility profile is U ∈ R
N ,

where Ui = ui(zi). Let F(N�A�ω) be the set of feasible allocations, and let U(P) be
the corresponding set of utility profiles. We always omit P or N�A if this creates no
confusion.

We call a feasible utility profile U efficient if it is not Pareto dominated;4 a feasible
allocation is efficient if it implements an efficient utility profile.

DEFINITION 1: Given problem P , a competitive division is a triple (z ∈F�p ∈ R
A�β ∈

{−1�0�+1}), where z is the competitive allocation, p is the competitive price, and β is
the individual budget. The allocation z is feasible and each zi maximizes i’s utility in the
budget set B(p�β)= {yi ∈ R

A
+|p · yi ≤ β}:
zi ∈ di(p�β)= arg max

yi∈B(p�β)
{
ui(yi)

}
� (1)

Moreover, zi minimizes i’s wealth in her demand set

zi ∈ arg min
yi∈di(p�β)

{p · yi}� (2)

We write CE(P) for the set of competitive allocations, and CU(P) for the corresponding
set of utility profiles.

Existence of a competitive allocation can be derived from (much) earlier results that do
not require monotonic preferences (e.g., Mas-Colell (1982, Theorem 1); see also Shafer
and Sonnenschein (1975)); our main result in the next section gives instead a constructive
proof.

In the normative perspective we adopt in this paper, we are only interested in efficient
allocations. This is why to the usual demand property (1) we add (2) requiring demands
to be parsimonious: each agent spends as little as possible for her competitive allocation.
As already noted in Mas-Colell (1982), if we omit (2), some satiated agents in N− may
inefficiently eat some items useless to themselves but useful to others.5

Recall three standard normative properties of an allocation z ∈ F(N�A�ω). It is non-
envious if and only if (iff) ui(zi)≥ ui(zj) for all i� j. It guarantees fair share utility iff ui(zi)≥
ui(

1
n
ω) for all i. It is in the weak core from equal split iff for all S ⊆ N and all y ∈ R

S×A
+

such that yS = |S|
n
ω, there is at least one i ∈ S such that ui(zi) ≥ ui(yi). When we divide

goods, the competitive allocations meet these three properties, even in the much larger
Arrow–Debreu preference domain. This is still true when we divide mixed items.

LEMMA 1: A competitive allocation is efficient; it is non-envious, guarantees fair share,
and is in the weak core from equal split.

PROOF: No envy is clear. Fair share guaranteed holds becauseB(p�β) contains 1
n
ω. We

give for completeness the standard argument for efficiency. If (z�p�β) is a competitive

4That is, U ≤U ′ and U ′ ∈ U(P)=⇒U ′ =U .
5For instance, N = {1�2}, A = {a�b}, ω = (1�1), and u1(z1) = 6z1a + 2z1b, u2(z2) = −z2b. The inefficient

allocation z1 = ( 1
3 �1) and z2 = ( 2

3 �0) meets (1) for p= ( 3
2 �

1
2 ) and β= 1. But z′

2 = (0�0) also gives zero utility
to agent 2 and costs zero, so z2 fails (2). The unique competitive division according Definition 1 is efficient:
z1 = (1�1), z2 = (0�0), and p= ( 1

2 �
1
2 ).
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division and z is Pareto-dominated by some z′ ∈ F , then for all i ∈ N , we must have
(p�z′

i) ≥ (p�zi) because otherwise i can either benefit or save money by switching to z′
i

(property (2)). Since z′ dominates z, some agent j strictly prefers z′
j to zj and, therefore,

z′
j is outside his budget set, that is, (p�z′

j) > (p�zj). Summing up these inequalities over
all agents, we get the contradiction (p�ω) > (p�ω). The argument for the weak core
property is similar. Q.E.D.

REMARK 1: A competitive allocation may fail the standard core from equal split prop-
erty, where coalition S blocks allocation z if it can use its endowment |S|

n
eA to make ev-

eryone in S weakly better off and at least one agent strictly better. This is because “equal
split” may give resources to agents who have no use for them.

4. MAIN RESULT

We define formally the partition of division problems alluded to in the Introduction.
Given a problem P , we partition N as

N+ = {
i ∈N∣∣∃z ∈F : ui(zi) > 0

}; N− = {
i ∈N∣∣∀z ∈F : ui(zi)≤ 0

}
�

We call agents in N+ attracted to the manna, and those in N− repulsed by it. All agents in
N−, and only those, are globally satiated, and for them, zi = 0 is a global maximum, not
necessarily unique.

The partition is determined by the relative position of the set U of feasible utility pro-
files and the cone Γ = R

N+
+ × {0}N− , where attracted agents benefit while repulsed agents

do not suffer. Write Γ ∗ =R
N+
++ × {0}N− for the relative interior of Γ .

LEMMA 2: Each problem P is of (exactly) one of three types: positive if U ∩ Γ ∗ �= ∅; nega-
tive if U ∩ Γ = ∅; null if U ∩ Γ = {0}.

Note that the problem is positive if ui(ω) > 0 for at least one agent i. If we give nothing
to a repulsed agent, an arbitrarily small allocation such that uj(zj) > 0 to each attracted
agent j other than i, and the rest to i, the resulting utility profile is in Γ ∗ when zj is small
enough. The converse statement is not true: we give an example in the next section of a
positive problem such that ui(ω) < 0 for all i.

Given a smooth function f and a closed convex set C, we say that x ∈ C is a critical
point of f in C if the upper contour of f at x has a supporting hyperplane that supports C
as well:

∀y ∈C : ∂f (x) · y ≤ ∂f (x) · x and/or ∀y ∈C : ∂f (x) · y ≥ ∂f (x) · x� (3)

This holds in particular if x is a local maximum or local minimum of f in C.
In the next statement we write U eff for the set of efficient utility profiles, and write R

N
=

for the interior of RN
− .

THEOREM 1: Competitive divisions exist in all problems P . Moreover, the following state-
ments hold:

(i) If P is positive, the budget is +1; an allocation is competitive iff its utility profile
maximizes the product

∏
N+ Ui over U∩Γ ∗; soCU(P) contains a single utility profile, positive

in N+ and null in N−.
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(ii) If P is negative, the budget is −1; an allocation is competitive iff its utility profile is in
U eff ∩RN= and is a critical point of the product

∏
N |Ui| in U ; so all utility profiles in CU(P)

are negative.
(iii) Problem P has a competitive division with a zero budget iff it is null; an allocation is

competitive iff its utility profile is 0.

We see that the competitive utility profiles are entirely determined by the set of feasible
utility profiles: the competitive approach still has a welfarist interpretation when we divide
a mixed manna.

Moreover, Theorem 1 implies that the task of dividing the manna is either good news
(at least weakly) for everyone or strictly bad news for everyone.

REMARK 2: The competitive equilibrium with fixed income shares (CEFI for short) re-
places in Definition 1 the common budget β by individual budgets θiβ, where the positive
weights θi are independent of preferences. It is well known that in an all goods prob-
lem, this asymmetric generalization of the competitive solution obtains by maximizing
the weighted product

∏
N U

θi
i of utilities, so that it preserves the uniqueness, and com-

putational and continuity properties of the symmetric solution. The same is true of our
Theorem 1, which remains valid word for word for the CEFI divisions upon raising |Ui|
to the power θi. In particular, the partition of problems in positive, negative, or null is
unchanged.

5. EXAMPLES AND THE MULTIPLICITY ISSUE

We restrict attention in this section to the simple subdomain L(A) of H(A), where
utilities are additive and represent linear preferences. Recall that the online platforms
discussed in the Introduction work only in L(A), and that the companion paper provides
additional normative results about competitive division in this domain.

5.1. Additive Utilities

An additive utility function is a vector ui ∈R
A. We write Ui = ui · zi = ∑

A uiazia for the
corresponding utility at allocation zi. For agent i, item a is a good (resp. a bad) if uia > 0
(resp. uia < 0); if uia = 0, she is satiated with any amount of a. Given a problem P , we
partition A as

A+ = {
a|∃i : uia > 0

}; A− = {
a|∀i : uia < 0

}; A0 =
{
a|max

i
uia = 0

}
� (4)

We call an item in A+ a collective good, an item in A− a collective bad, and an item in A0

a neutral item. In an efficient allocation, an item in A+ is consumed only by agents for
whom it is a good, and an item in A0 is consumed only by agents who are indifferent to it.
This partition determines the sign of competitive prices.

If (z�p�β) is a competitive division, we have

pa > 0 if a ∈A+; pa < 0 if a ∈A−; pa = 0 if a ∈A0� (5)

The proof is simple. If the first statement fails, an agent who likes a would demand an
infinite amount of it; if the second statement fails, nobody would demand b. If the third
statement fails with pa > 0, the only agents who demand a have uia = 0, which violates
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parsimony (2); if it fails with pa < 0, an agent such that uia = 0 gets an arbitrarily cheap
demand by asking large amounts of a, so (2) fails again.

Suppose a collective good a ∈A+ is a bad for agent i, uia < 0, and let z be a competitive
allocation. Then i consumes no a, zia = 0; moreover, if we only replace uia by u′

ia = 0,
ceteris paribus, then z is still competitive in the new problem. This is why it is without
loss of generality that in the examples below, a collective good is never a bad for anyone:
a ∈A+ =⇒ uia ≥ 0 for all i.

Another innocuous assumption is that the manna has one unit of each item.

5.2. Two Items

5.2.1. One Good, One Bad

The simplest mixed manna problem is easy to solve. Assume A= {a�b} and uib < 0<
uia for all i. Then label the agents so that uia

|uib| decreases with i: agent 1 is the least averse
to b relative to a. The problem is positive iff u1a

|u1b| > 1. In this case the competitive division
gives all of b and some of a to agent 1, and the same smaller share of a to agents 2� � � � � n.

The problem is null iff u1a
|u1b| = 1 (agent 1 eats the entire manna) and is negative iff

u1a
|u1b| < 1. In the latter case, the competitive division is still unique (utilitywise) and has
agent 1 eating all a and some b while others eat the same smaller share of b. Here is an
example with two bads and three agents:

P :
a b

u1 3 −4
u2 2 −3
u3 1 −2

→ CE(P) :
a b

z1 1 5
6

z2 0 1
12

z3 0 1
12

�

Note that in all three cases, agent 1 ends up exactly at her fair share utility level ui · 1
n
ω,

while the other agents get strictly more.

5.2.2. Two Bads

Computing competitive allocations is easy in this case because they are aligned in the
one-dimensional set of efficient and envy-free allocations.

We assume for simplicity that all ratios uia
uib

are different, and we label the agents
{1� � � � � n} so that uia

uib
increases with i. Efficiency means that if i consumes some a and

j consumes some b, then i ≤ j; therefore, at most one agent consumes both bads. Let zi

be the allocation where the agents in {1� � � � � i} share a (each gets 1
i

unit) while those
in {i + 1� � � � � n} share b. It is efficient, and all envy-free allocations sit on the line⋃n−1

i=1 [zi� z1+1]. It is easy to check that zi is envy-free iff i and i + 1 do not envy each
other, and in that case it is a competitive allocation as well. There may be other such allo-
cations in the open intervals ]zj� zj+1[. The tedious but straightforward computations are
detailed in Proposition 4 of the companion paper: they imply that the upper bound on the
cardinality of CU(P) is 2n− 1.
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FIGURE 2.—Three big dots represent the competitive utility profiles; the smaller dot corresponds to the
equal split of the manna in which both agents get their fair share utilities.

An example with n= 2, where |CU(P)| = 3, is

P :
a b

u1 −3 −1
u2 −1 −2

�

CE(P) :
a b

z1
1
3 1

z2
2
3 0

�
a b

z′
1 0 1
z′

2 1 0
�

a b
z′′

1 0 3
4

z′′
2 1 1

4

�

(6)

and the corresponding utility profiles are depicted on Figure 2. Note that agent 1 (resp.
agent 2) only gets his fair share utility at z (resp. at z′′).

5.3. Two Agents, Goods and Bads

Two agent problems are prominent in practice: they make for more than half of the
visits on the SPLIDDIT website, and ADJUSTED WINNER is designed only for those
problems. We explain after the examples why the competitive allocations are still easy to
compute.

Let us add a good c to the problem P from Section 5.2.2. Assuming that c is worth
λ > 0 for both agents, we get the family of problems

P(λ) :
a c b

u1 −3 λ −1
u2 −1 λ −2

�

When λ goes from 4 to 1, the problem from positive becomes null (λ = 2) and then
negative, thereby illustrating all the patterns described by Theorem 1. Figure 3 shows the
competitive utility profiles for three representative values of λ: 4, 2, and 1. And Figure 2
is for λ= 0.

As noted after Lemma 2, the problem is positive if ui ·ω> 0 for one of i= 1�2: this is
true here for λ > 3. But the problem is still positive for 2 < λ ≤ 3, despite the fact that
ui ·ω≤ 0 for both agents.
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FIGURE 3.—Positive (λ= 4), null (λ= 2), and negative problems (λ= 1).

In a two agent problem, the set of efficient utility profiles is the one-dimensional fron-
tier of a two-dimensional polytope. Recall that each item a is either a good for both
agents or a bad for both, and assume for simplicity that all ratios u1a

u2a
are different. We la-

bel the items as A= {1� � � � �m}, ensuring that u1k
u2k

decreases with k. For k ∈ {0�1� � � � �m}
let zk be the allocation where agent 1 gets all goods in {1� � � � �k} (or no good if k = 0)
and all bads in {k + 1� � � � �m} (or no bad if k = m); agent 2 eats the rest, that is, all
goods in {k+ 1� � � � �m} and all bads in {1� � � � �k}. It is easy to check that the broken line⋃m

k=0[zk� zk+1] is precisely the set of efficient allocations, and it is fairly straightforward
to compute all competitive allocations from the sequence of ratios u1k

u2k
. It follows that

the upper bound on |CU(P)| is 2m− 1 (statement (iii) in Theorem 1 of the companion
paper).

5.4. Counting Competitive Allocations

In problems with three or more agents and items, it is no longer elementary to com-
pute the set of competitive allocations. We know that the number |CU(P)| of different
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competitive utility profiles is always finite, and that its upper bound grows exponentially
in n�m: |CU(P)| can be as high as 2min{n�m} − 1 if n �=m, and 2n−1 − 1 if n=m (statement
(iii) in Theorem 1 of the companion paper). A 6 × 5 example illustrating this fact is given
in Section 8.3.

We also check in the companion paper that if n = 2 and/or m = 2, |CU(P)| is odd in
almost all problems (excluding only those where the coefficients of u satisfy certain simple
equations). We conjecture that a similar statement holds for any n�m.

6. SINGLE-VALUED COMPETITIVE DIVISION RULES

Without backing up this proposal by specific normative arguments, we submit that a
natural selection of CU(P) obtains by maximizing the product

∏
i∈N |Ui| of individual

disutilities on the negative efficiency frontier.6

LEMMA 3: If P is a negative problem, the profile U∗ maximizing the Nash product∏
i∈N |Ui| over U eff ∩ R

N
− is a critical point of this product on U . It is a competitive utility

profile: U∗ ∈CU(P).
We prove Lemma 3 in Section 8.4 in the domain H(A). In the additive domain L(A),

this selection is almost always unique.

LEMMA 4: Fix N , A, and ω. For almost all negative problems P = (N�A�u�ω) with
additive utilities (with respect to (w.r.t.) the Lebesgue measure on the space RN×A of utility
matrices), the utility profile U∗ defined in Lemma 3 is unique.

In the 6×5 example of Section 8.3,U∗ is the profile treating equally the first five agents.
However, in example (6) the three competitive utility profiles are (−2�− 2

3), (−1�−1), and
(− 3

4 �− 3
2), andU∗ is the first one where agent 1 gets his fair share −2. This is the typical (in

fact generic) situation for two agent, two-bad problems where |CU(P)| = 3: our selection
always picks one of the two extreme divisions instead of the natural compromise where
both agents improve upon their fair share.

Finally, when n = 2 and/or m = 2, we mentioned in the previous subsection that
|CU(P)| is generically odd. As the corresponding profiles are arranged along a broken
line, a more natural selection (again, not supported by any normative argument) picks the
median profile.

Whatever the selection we end up proposing, it will exhibit the two unpalatable features
to which we now turn.

7. TWO IMPOSSIBILITY RESULTS

7.1. The Continuity Issue

We show that there is no single-valued selection P → CU(P) continuous in the util-
ity parameters. In fact, we show a stronger discontinuity result about the much bigger
correspondence of utility profiles at efficient and envy-free allocations.

Because Proposition 1 and Proposition 2 (in the next subsection) deal with axioms com-
paring the allocations selected at different problems, we define first division rules. For the

6Note that minimizing
∏
i∈N |Ui| on U ∩R

N
− picks all the boundary points where this product is null—neither

a competitive allocation nor a meaningful division rule.
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sake of brevity, we only give the definition in the additive domain L(A). Its extension to
H(A) is straightforward.

NOTATION: When we rescale each utility ui as λiui, the new utility matrix is written
λ ∗ u.

DEFINITION 2: A division rule f associates to every problem P = (N�A�u�ω) a set
of feasible allocations f (P)⊂ F(N�A�ω) such that for any rescaling λ ∈ R

N
++, we have

f (N�A�λ∗u�ω)= f (N�A�u�ω). Moreover, f meets Pareto indifference (PI): for every
P and z� z′ ∈F(N�A�ω), we have

{
z ∈ f (P) and ui · zi = ui · z′

i for all i
} =⇒ z′ ∈ f (P)�

Property PI implies that f is entirely determined by its utility correspondence P →
F(P)= {u · z|z ∈ f (P)}. Invariance to rescaling makes sure that division rules are ordi-
nal constructs: they only depend on the underlying linear preferences. The competitive
division rule P →CE(P) meets Definition 2.

Abusing language, we call the division rule f single-valued if the corresponding mapping
F is single-valued.

We call the division rule f continuous (CONT) if for each choice of N , A, and ω the
corresponding mapping u→ F(N�A�u�ω) is upper hemicontinuous in R

N×A. If the di-
vision rule does not depend on the units of items in A,7 CONT implies that P → F(P) is
also (upper hemi-) continuous in ω ∈R

A
+ .

We call the rule f envy-free (EVFR) if f (P) contains at least one envy-free allocation
for every problem P .

PROPOSITION 1: With two or more bads and four or more agents, no single-valued rule
can be efficient, envy-free, and continuous.

In particular, the competitive rule CE, that is a continuous and envy-free correspon-
dence, admits no continuous single-valued selection.

Proposition 1 is Theorem 2 in the companion paper, where it follows from the fact that
when the manna contains two bads, the set of envy-free and efficient allocations can have
� 2n+1

3 � connected components (Proposition 4). In Section 8.6, we give for completeness a
four agents, two bads example illustrating the key arguments.

This incompatibility result is tight. The equal division rule, Fi(P) = { 1
n
ui · ω} for all

P , meets EVFR and CONT. A single-valued selection of the competitive rule CU meets
EFF and EVFR. We leave it to the reader toconstruct a rule meeting EFF and CONT.

7.2. Resource Monotonicity

Our last axiomatic property is often viewed as a compelling normative consequence
of the common property of the resources we are dividing. Increasing in the manna the
amount of a unanimous good (an item that everyone likes) or decreasing that of a unan-
imous bad should not hurt anyone: welfare should be co-monotonic to the quality of
the common resources. Early references are Roemer (1986) and Moulin and Thomson
(1988); Thomson (2010) is a recent survey.

7That is, for each λ > 0, the set F(P) is unchanged if we replace ωa by λωa and each uia by 1
λ
uia. Clearly

CU meets this property.
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We say that problem P ′ improves problem P on item a ∈A if P and P ′ only differ in
ωa �=ω′

a and either {ωa <ω
′
a and uia ≥ 0 for all i} or {ωa >ω

′
a and uia ≤ 0 for all i}.

RESOURCE MONOTONICITY—RM: If P ′ improves upon P on item a ∈ A, then
F(P)≤ F(P ′).

PROPOSITION 2:
(i) If we divide bads between two or more agents, no single-valued rule can be efficient,

resource monotonic, and guarantee fair share.
(ii) The competitive rule to divide goods is resource monotonic in the additive utility do-

main.

The proof of statement (i) is by means of a simple two-person, two-bad example. Fix a
rule F meeting EFF, RM, and GFS, and consider the problem

P :ω= (1�1) and
a b

u1 −1 −4
u2 −4 −1

�

Set U = F(P). As (−1�−1) is an efficient utility profile, one of U1�U2 is at least −1, say
U1 ≥ −1. Now let ω′ = ( 1

9 �1) and pick z′ ∈ f (P ′). By GFS and feasibility,

− z′
2b ≥ u2 · z′

2 ≥ 1
2
u2 ·ω′ = −13

18
�

=⇒ z′
1b ≥ 5

18
=⇒ u1 · z′

1 =U ′
1 ≤ −10

9
<U1�

contradicting RM. Extending this argument to the general case n ≥ 2�m ≥ 2 is straight-
forward.

We omit for brevity the proof of statement (ii), which is available as Proposition 2 in
the companion paper and in Segal-Halevi and Sziklai (2015) for the more general cake-
division model. This statement generalizes easily to positive problems when we add a
unanimous good to an already positive problem.

We stress that this positive result applies only to the domain L(A), it does not extend
to general monotone 1-homogenous utilities in H(A). On the latter domain, precisely the
same combination of axioms as in Proposition 2 cannot be together satisfied: see Moulin
and Thomson (1988) and Thomson and Kayi (2005). This makes the contrast between
goods and bads problems in L(A) all the more stark.

8. PROOFS

8.1. Proof of Lemma 2

The three cases are clearly mutually exclusive; we check that they are exhaustive. It is
enough to show that if U intersects Γ �=0 = Γ \ {0}, then it intersects Γ ∗ as well. Let z ∈ F
be an allocation with u(z) ∈ Γ �=0 and let i+ be an agent with ui+(zi+) > 0. Define a new
allocation z′ with z′

i+ = zi+ +ε∑
j �=i+ zj and z′

j = (1 −ε)zj for j �= i+. By continuity, we can
select a small ε > 0 such that u(z′) ∈ Γ �=0. By construction, z′

i+a > 0 for all a ∈A.
For any j ∈ N+ \ {i+}, we can find yj ∈ R

A such that uj(z′
j + δyj) > 0 for small δ > 0.

Indeed if uj(z′
j) is positive, we can take yj = 0. And if uj(z′

j) = 0, assuming that yj does
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not exist implies that z′
j is a local maximum of uj . By concavity of uj , it is then a global

maximum as well, which contradicts the definition of N+.
Consider an allocation z′′: z′′

i+ = z′
i+ − δ∑

j∈N+\{i+} yj , z
′′
j = z′

j + δyj for j ∈N+ \ {i+} and
z′′
k = z′

k for k ∈N−. For small δ > 0, this allocation is feasible and yields utilities in Γ ∗.

8.2. Proof of Theorem 1

Throughout the proof it is convenient to consider competitive divisions (z�p�β) with
arbitrary budgets β ∈ R (not only β ∈ {−1�0�1}); this clearly yields exactly the same set
of competitive allocations CE(P) and utility profiles CU(P).

8.2.1. Positive Problems: Theorem 1, Statement (i)

Let N (V )= ∏
i∈N+ Vi be the Nash product of utilities of the attracted agents. We fix a

positive problem P and proceed in two steps.

STEP 1: If U maximizes N (V ) over V ∈ U ∩ Γ ∗ and z ∈ F is such that U = u(z), then
z is a competitive allocation with budget β> 0.

Let C+ be the convex cone of all y ∈R
N×A
+ with u(y) ∈ Γ . For any λ > 0, put

Cλ = {
y ∈ C+ |N (

u(y)
) ≥ λ|N+|}�

Since P is positive, the set Cλ is nonempty for any λ > 0. Continuity and concavity of
utilities imply that Cλ is closed and convex. Homogeneity of utilities gives Cλ = λC1.

Set λ∗ = (N (U))
1

|N+| . The set Cλ does not intersect F for λ > λ∗, and Cλ∗ touches F
at z.

STEP 1.1: There exists a hyperplane H separating F from Cλ∗ .

Consider a sequence λn converging to λ∗ from above. Since Cλn and F are convex sets
that do not intersect, they can be separated by a hyperplane Hn. The family {Hn}n∈N has
a limit point H. The hyperplane H separates F from Cλ∗ by continuity of u. Thus there
exist q ∈ R

N×A and Q ∈ R such that
∑

i�a qiayia ≤Q for y ∈ F and
∑

i�a qiayia ≥Q on Cλ∗ .
The coefficients qia will be used to define the vector of prices p.

By the construction, z maximizes N (u(y)) over BN(q�Q) = {y ∈ C+ | ∑
i�a qiayia ≤ Q}.

Think of the latter as a budget set with agent-specific prices.
Define the vector of prices p by pa = maxi∈N qia and B∗(p�Q)= {y ∈ C+ | ∑i p ·yi ≤Q}.

We show now that we do not need agent-specific pricing.

STEP 1.2: The allocation z maximizes N (u(y)) over y ∈ B∗(p�Q).

It is enough to show the double inclusion z ∈ B∗(p�Q) ⊂ BN(q�Q). The second one
is obvious since

∑
i�a yiapa ≤ Q implies

∑
i�a yiaqia ≤ Q. Let us check the first inclusion.

Taking into account that z ∈F and
∑

i�a qiayia ≤Q for y ∈F , we get

∑
i

p · zi =
∑
a

pa
∑
i

zia =
∑
a

pa =
∑
a

max
i
qia = max

y∈F

∑
i�a

qiayia ≤Q�
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STEP 1.3: The triple (z�p�β) is a competitive division for some β> 0.

Consider an agent i from N+. Check that the bundle zi belongs to his competitive de-
mand di(p�βi), where βi = p · zi. Indeed if there exists z′

i ∈ R
A
+ such that p · z′

i ≤ βi and
ui(z

′
i) > ui(zi), then switching the consumption of agent i from zi to z′

i gives an allocation
in B∗(p�Q) and increases the Nash product, contradicting Step 1.2. Note that βi > 0 for
i ∈N+ because otherwise we can take z′

i = 2zi. Check now that zi is parsimonious: it min-
imizes p · yi over di(p�βi). If not, pick yi ∈ di(p�βi) with p · yi < p · zi. Then for δ small
enough and positive, the bundle z′

i = (1 + δ)yi meets p · z′
i ≤ βi and ui(z′

i) > ui(zi).
We use now the classic equalization argument (Eisenberg (1961)) to check that βi does

not depend on i ∈N+. We refer to the fact that the geometric mean is below the arithmetic
mean as the inequality of means.

Assume βi �= βj and consider a new allocation z′, where the budgets of i and j are
equalized: z′

i = βi+βj
2βi

zi and z′
j = βi+βj

2βj
zj . This allocation belongs to B∗(p�Q) and homo-

geneity of utilities implies

N
(
u
(
z′)) =N (U)

(
βi +βj

2βi

)(
βi +βj

2βj

)
�

Now the (strict) inequality of means gives βi+βj
2 >

√
βiβj ; therefore, N (u(z′)) >N (U),

contradicting the optimality of z. Denote the common value of βi by β.
Turning finally to the repulsed agents, we check that for any i ∈N− there is no z′

i such
that ui(z′

i) = 0 and β′
i = p · z′

i < p · zi = βi, that is, i cannot decrease his spending. As-
suming that z′

i exists, we can construct an allocation z′ ∈ B∗(p�Q), where agent i switches
to z′

i, consumption of other agents from N− remains the same, and z′
j = zj

N+β+βi−β′
i

N+β for
j ∈N+. In other words, money saved by i is redistributed among positive agents. By ho-
mogeneity, N (u(z′)) >N (U)—a contradiction. A corollary is that βi must be zero: take
z′
i = 0 if βi > 0 and z′

i = 2zi if βi is negative. At zi agent i reaches his maximal welfare of
zero. Therefore, if i can afford zi, then zi is in the demand set. Since the price βi of zi is
zero, we conclude that zi ∈ di(p�β). The proof of Step 1.3 and of Step 1 is complete.

STEP 2: If (z�p�β) is a competitive division, then β > 0, and U = u(z) belongs to
U ∩ Γ ∗ and maximizes N over this set.

Check first that β > 0. If β ≤ 0, the budget set B(p�β) contains zi and 2zi for all i;
therefore ui(2zi)≤ ui(zi) impliesUi ≤ 0. ThenU is Pareto-dominated by anyU ′ ∈ U ∩Γ ∗,
contradicting the efficiency of z (Lemma 1).

Now β> 0 implies U belongs to Γ ∗: every i ∈N+ has a yi with ui(yi) > 0 and can afford
δyi for small enough δ > 0; every i ∈N− can afford yi = 0, hence ui(zi)= 0 and p · zi ≤ 0
(by (2)).

ConsiderU ′ = u(z′) that maximizes N over U ∩Γ ∗. For any i ∈N+ his spending β′
i = p ·

z′
i must be positive. Otherwise δz′

i ∈ B(p�β) for any δ > 0 and agent i can reach unlimited
welfare. Similarly β′

i < 0 for i ∈N− implies δz′
i ∈ di(p�β) for any δ > 0, so the spending

in di(p�β) is arbitrarily low, in contradiction to parsimony (2).



1864 BOGOMOLNAIA, MOULIN, SANDOMIRSKIY, AND YANOVSKAYA

For attracted agents, β

β′
i
z′
i ∈ B(p�β) gives β

β′
i
U ′
i = ui(

β

β′
i
z′
i)≤Ui. Therefore if U is not a

maximizer of N , we have

N (U) <N
(
U ′) ≤N (U)

∏
i∈N+

β′
i

β
=⇒ 1<

(∏
i∈N+

β′
i

β

) 1
|N+|

≤

∑
i∈N+

β′
i

|N+|β�

where we use again the inequality of means. Now we get a contradiction from
∑
i∈N+

β′
i ≤

∑
i∈N
β′
i = p ·ω=

∑
i∈N
p · zi ≤

∑
i∈N+

β+
∑
i∈N−

0 = |N+|β�

8.2.2. Negative Problems: Theorem 1, Statement (ii)

The proof is simpler because we do not need to distinguish agents from N+ and N−.
We define the Nash product for negative problems by N (V ) = ∏

i∈N |Vi| and focus now
on its critical points in U eff. We start by the variational characterization of such points. If
V ∈ R

N
= , we have ∂

∂Vi
N (V )= 1

Vi
N (V ). Therefore U ∈ U ∩R

N
= is a critical point of N on U

that lies on U eff iff ∑
i∈N

U ′
i

|Ui| ≤ −|N| for all U ′ ∈ U � (7)

The choice of the sign in this inequality is determined by efficiency. Set ϕU(U ′) =∑
i∈N

U ′
i

|Ui| : inequality (7) says that U ′ =U maximizes ϕU(U ′) on U .
We fix a negative problem P and proceed in two steps.

STEP 1: If a utility profile U ∈ U eff ∩ R
N
= is a critical point of N on U , then any z ∈ F

implementing U is a competitive allocation with budget β< 0.

By (7) for any y ∈F , we have ϕU(u(y))≤ −|N|. Define

Cλ = {
y ∈ R

N×A
+ | ϕU

(
u(y)

) ≥ λ}�
For λ ≤ 0, it is nonempty (it contains 0), closed, and convex. For λ > −|N|, the set
Cλ does not intersect F and for λ = −|N|, it touches F at z. Consider a hyperplane∑

i�a qiayia =Q separating F from C−|N| and fix the sign by assuming
∑

i�a qiayia ≤Q on F
(existence follows as in Step 1.1 for positive problems). By the construction, z maximizes
ϕU(u(y)) on BN(q�Q)= {y ∈ R

N×A
+ | ∑

i�a qiayia ≤Q}. Defining prices by pa = maxi∈N qia
and mimicking the proof of Step 1.2 for positive problems we obtain that z belongs to
B∗(p�Q)= {y ∈R

N×A
+ | ∑i�a payia ≤Q} and maximizes ϕU(u(y)) there.

We check now that z is a competitive allocation with negative budget. For any agent i ∈
N , the bundle zi belongs to his demand di(p�βi) (as before βi = p ·zi). If not, i can switch
to any z′

i ∈ B(p�βi) with ui(z′
i) > Ui, thus improving the value of ϕU and contradicting

the optimality of z. The maximal spending βi must be negative; otherwise i can afford
yi = 0 and ui(zi) < ui(yi). If there is some z′

i ∈ di(p�βi) such that p · z′
i < βi, the bundle

z′′
i = βi

p·z′i
z′
i is still in B(p�βi) and ui(z′′

i ) > Ui: therefore p · zi = βi and zi is parsimonious
((2)).

Finally, βi = βj for all i� j ∈N . If βi �= βj , we use an unequalization argument dual to
that in Step 1.3 for positive problems. Assume, for instance, βi > βj ⇔ |βi| < |βj| and
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define z′ from z by changing only z′
i to 1

2zi and z′
j to 2βj+βi

2βj
zj . Clearly z′ ∈ B∗(p�Q) and we

compute

ϕU
(
u
(
z′)) −ϕU(U)= −1

2
− 2βj +βi

2βj
+ 2 = 1

2
− βi

2βj
> 0�

But we showed that z maximizes ϕU(u(y)) in B∗(p�Q)—a contradiction.

STEP 2: If (z�p�β) is a competitive division, then β< 0 and the utility profileU = u(z)
is a critical point of the Nash product on U that belongs to U eff ∩R

N
= .

Check first that β < 0. If not, each agent can afford yi = 0, so Ui ≥ 0 for all i, which is
impossible in a negative problem. Assume next Ui ≥ 0 for some i: we have 2zi ∈ B(p�β),
ui(2zi) ≥ ui(zi), and p · (2zi) < p · zi, which contradicts (1) and/or (2) in Definition 1.
Therefore U belongs to R

N
= . Finally p · zi < β would imply ui(zi) < ui(λzi) for λ ∈ [0�1[

and λzi ∈ B(p�β) for λ close enough to 1—a contradiction. Summarizing, we have shown
U ∈ U eff ∩R

N
= and p · zi = β< 0 for all i.

To prove thatU is a critical point it is enough to check that it maximizes ϕU(u(y)) on F .
Fix z′ ∈F , set U ′ = u(z′), and set p · z′

i = β′
i. To show ϕU(U ′)≤ ϕU(U), we will prove

U ′
i ≤

β′
i

β
Ui for all i� (8)

This holds if β′
i < 0 because β

β′
i
z′
i ∈ B(p�β) so β

β′
i
U ′
i = ui(

β

β′
i
z′
i) ≤ Ui. If β′

i ≥ 0, we set

z′′
i = αz′

i + (1 −α)zi, where α> 0 is small enough that p · z′′
i < 0. We just showed (8) holds

for ui(z′′
i ); therefore,

ui
(
z′′
i

) ≤ p · z′′
i

β
Ui = αβ

′
i

β
Ui + (1 − α)Ui�

Concavity of ui gives αU ′
i + (1 − α)Ui ≤ ui(z′′

i ) and the proof of (8) is complete. Now we
sum up these inequalities and reach the desired conclusion:

ϕU
(
U ′) =

∑
i∈N

U ′
i

|Ui| ≤ −

∑
i∈N
β′
i

β
= −

∑
i∈N
p · z′

i

β
= −p ·ω

β
= −|N| = ϕU(U)�

8.2.3. Null Problems: Theorem 1, Statement (iii)

The proof resembles that for positive problems, as we must distinguish N+ from N−,
but the Nash product no longer plays a role. Fix a null problem P .

STEP 1: Any z ∈F such that u(z)= 0 is competitive with β= 0.

Suppose first that all agents are repulsed, N = N−. Then ui(yi) ≤ 0 for all i ∈ N and
yi ∈ R

A
+ , and (z�0�0) is a competitive division: everybody has zero money, all bundles are

free, and all agents achieve the best possible welfare with the smallest possible spending.
We assume from now on N+ �= ∅.

Define ψ(y)= mini∈N+ ui(yi) for y ∈ R
N×A
+ and the sets Cλ = {y ∈ C+ |ψ(y)≥ λ}, where

C+ = {y ∈ R
N×A
+ |u(y) ∈ Γ } (as in the positive proof). For λ ≥ 0 the set Cλ is nonempty,
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closed, and convex. If λ > 0, the sets Cλ and F do not intersect. As in Step 1.1 of the pos-
itive proof, we construct a hyperplane separating F and C0, and define the set BN(q�Q),
the vector of prices p, and the set B∗(p�Q). Similarly we check that the allocation z max-
imizes ψ(y) over y ∈ B∗(p�Q), and that ψ(z)= 0.

We set βi = p · zi and show that (z�p�0) is a competitive division in three substeps.

STEP 1.1: For all i ∈N and xi ∈R
A
+ , p · xi < βi =⇒ ui(xi) < 0.

Suppose p · xi < βi and ui(xi) ≥ 0 for some i ∈ N+. For each j in N+, pick a bundle
y+
j such that uj(y+

j ) > 0 and construct the allocation z′ as z′
i = xi + δy+

i ; z′
j = zj + δy+

j for
any other j ∈N+; z′

j = zj for j ∈N−. If δ > 0 is small enough, z′ ∈ B∗(p�Q) and for any
j ∈N+, we have uj(z′

j) > 0 by concavity and homogeneity of uj . For instance,

1
2
ui

(
z′
i

) = ui
(

1
2
xi + 1

2
δy+

i

)
≥ 1

2
ui(xi)+ 1

2
δui

(
y+
i

)
> 0�

Therefore ψ(z′) > 0, contradicting the optimality of z.
The proof when p · xi < βi and ui(xi) ≥ 0 for some i ∈N− is similar and is left to the

reader.

STEP 1.2: We have βi = 0 for all i ∈N .

If βi > 0, then xi = 0 is such that p · xi < βi and ui(xi)= 0, which we just ruled out. If
βi < 0, then p · (2zi) < βi yet ui(2zi)= 0, contradicting Step 1.1.

From Steps 1.1 and 1.2 we see that for all i, if yi ∈ di(p�0), then p · yi = 0: so if we
show zi ∈ di(p�0), the parsimony property (2) is automatically satisfied. Therefore our
next substep completes the proof of Step 1.

STEP 1.3: We have zi ∈ di(p�0) for all i ∈N .

For i ∈N− this is obvious since such an agent reaches his maximal welfare ui = 0. Pick
now i ∈N+ and assume zi /∈ di(p�0). Then di(p�0) contains some yi with ui(yi) > 0. Letw
be a bundle with negative price. Such a bundle exists since p ·ω= ∑

i∈N βi = 0 and p �= 0.
Hence the bundle xi = yi + δw with small enough δ > 0 has negative price p · xi < 0 and
ui(xi) > 0—a contradiction.

STEP 2: If (z�p�β) is a competitive division, then u(z)= 0 and (z�p�β′) with β′ = 0 is
also competitive.

If β< 0, we have ui(zi) < 0 for all i ∈N . Otherwise ui(zi)≥ 0 and p · zi < 0 implies as
before that z′

i = 2zi improvesUi (at least weakly) while remaining in B(p�β) and lowering
i’s spending. But U ∈R

N
= is not efficient in a null problem.

Thus β ≥ 0, hence ui(zi) ≥ 0 for all i ∈ N because the bundle 0 is in the budget set.
The problem is null and, therefore, u(z)= 0, implying 0 ∈ di(p�β) and by parsimony (2)
p ·zi ≤ 0, for all i. Hence zi ∈ di(p�0); therefore, (z�p�0) is clearly a competitive division.
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8.3. An Exponential Number of Competitive Divisions

We give an example where n = 6�m = 5, where |CU(P)| = 25 − 1 = 31. Set N =
{1�2�3�4�5�6} and A= {a�b� c�d� e}, and consider the problem

a b c d e
u1 −1 −3 −3 −3 −3
u2 −3 −1 −3 −3 −3
u3 −3 −3 −1 −3 −3
u4 −3 −3 −3 −1 −3
u5 −3 −3 −3 −3 −1
u6 −1 −1 −1 −1 −1

�

There is one symmetric competitive division with uniform price 6
5 for each bad: it gives

5
6 of her preferred bad to each agent 1� � � � �5 , while agent 6 eats 1

6 of every bad, precisely
his fair share. Now for each strict subset of the first five agents, for instance, {3�4�5},
there is a competitive allocation where each such agent eats “her” bad in full, while agent
1 shares the other bads with the other agents:

a b c d e
z1 2/3 0 0 0 0
z2 0 2/3 0 0 0
z3 0 0 1 0 0
z4 0 0 0 1 0
z5 0 0 0 0 1
z6 1/3 1/3 0 0 0

�

Here prices are p= −( 3
2 �

3
2 �1�1�1).

This construction can be adjusted for each nontrivial subset of the first five agents. Then
agent 6’s utility goes from −1 (his fair share) to − 1

2 , when he shares a single bad with a
single other agent; utilities of other agents vary also between −1 and − 1

2 .

8.4. Proof of Lemma 3

We have ui(ω) < 0 for every i ∈N , else the allocation z with zi =ω and zj = 0 for j �= i
yields utilities in Γ .

Consider the set of utility profiles dominated by U ∩R
N
− : U≤ = {U ∈ R

N
−|∃U ′ ∈ U ∩R

N
− :

U ≤U ′}. This set is closed and convex, and contains all points in R
N
− that are sufficiently

far from the origin. Indeed, any U ∈R
N
− such that UN <mini ui(ω), where UN = ∑

i Ui, is
dominated by the utility profile z : zi = Ui

UN
ω, i ∈N .

Fix λ ≥ 0 and consider the upper contour of the Nash product at λ: Cλ = {U ∈ R
N
− |∏

N |Ui| ≥ λ}. For sufficiently large λ, the closed convex set Cλ is contained in U≤. Let λ∗

be the minimal λ with this property. Negativity of P implies that U≤ is bounded away from
0 so that λ∗ is strictly positive. By definition of λ∗, the set Cλ∗ touches the boundary of U≤
at someU∗ with strictly negative coordinates. LetH be a hyperplane supporting U≤ atU∗.
By the construction, this hyperplane also supports Cλ∗ ; therefore, U∗ is a critical point of
the Nash product on U≤, that is, U∗ maximizes

∑
i∈N

Ui
|U∗
i | over all U ∈ U≤. So U∗ belongs

to the Pareto frontier of U≤, which is contained in the Pareto frontier of U . Thus U∗ is a
critical point of the Nash product on U and belongs to U eff ∩R

N
= . By the construction, any
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U in the interior of Cλ∗ is dominated by some U ′ ∈ U ∩ R
N
− , so U∗ maximizes the Nash

product on U eff ∩R
N
− .

8.5. Proof of Lemma 4

In the previous proof, note that the supporting hyperplane H to U at U∗ is unique
because it is also a supporting hyperplane to Cλ∗ that is unique. Hence, if U is a polytope,
U∗ belongs to a face of maximal dimension.

When utilities are additive, both sets U and U≤ are polytopes. Let D⊂R
N×A be the set

of all u such that the problem (N�A�u) is negative and U∗ is not unique. By the above
remark if u ∈D, then for some λ > 0, the set U≤ has at least two faces F and F ′ of maximal
dimension that are tangent to the surface Sλ:

∏
i∈N |Ui| = λ, U ∈ R

N
= . The condition that

F is tangent to Sλ fixes λ. The set of all hyperplanes tangent to a fixed surface Sλ has
dimension |N| − 1 (for every point on S there is one tangent hyperplane) though the
set of all hyperplanes in R

N is |N|-dimensional. Hence tangency of F ′ and Sλ cuts one
dimension. So D is contained in a finite union of algebraic surfaces and, therefore, has
Lebesgue measure zero.

8.6. Proof of Proposition 1

Recall the complete proof is in Proposition 4 and Theorem 2 of the companion paper.
We fix N = {1�2�3�4} and A= {a�b}, and construct two problems. The set A(0) of effi-
cient and envy-free allocations in the first problem P(0) has three connected components
Bi, i= 1�2�3. By a symmetry argument, it is without loss of generality to assume that an
efficient and envy-free rule picks an allocation in B2 or B3. Then as we move linearly from
P(0) to P(1), the components B2 and B3 of A disappear, without ever intersecting B1,
until eventually A(1)= B1. This forces a discontinuity in the rule. Define

P(0) :
a b

u1 1 5
u2 1 4
u3 4 1
u4 5 1

; P(1) :
a b

u1 1 5
u2 1 4
u3 1 2
u4 2 1

�

If an allocation z is efficient, then at most one agent i eats both bads. Suppose it is agent
1: then if z is also envy-free, it takes the form

z =
a b

z1 1 1 − 3x
z2 0 x
z3 0 x
z4 0 x

� where
3
10

≤ x≤ 5
16
�

This interval in F is B1, the first component of A(0), in which x= 3
10 yields the compet-

itive allocation z1. Exchanging the roles of a and b and of agents i and 5 − i, we find
symmetrically the component B3,

z =
a b

z1 x 0
z2 x 0
z3 x 0
z4 1 − 3x 1

� where
3
10

≤ x≤ 5
16
�
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with another competitive allocation z2 at x= 3
10 . The third component B2 is itself symmet-

ric around the symmetric competitive allocation z3, where agents 1 and 2 split a equally,
while 3 and 4 split b. Unlike the two other components, B2 is of dimension 2: half of B2 is
the set of allocations

z =
a b

z1 x 0
z2 1 − x 1 − 2y
z3 0 y
z4 0 y

� where x+ 5y ≤ 3�4x+ 3y ≤ 5�2x+ 8y ≥ 5;

the other half obtains by exchanging the roles of a and b and of agents i and 5 − i. So
A(0)= ⋃3

i=1 Bi.
Turning to P(1), we see that the above allocation z1 is still competitive, and the corre-

sponding connected component of A(1) is still the interval B1. However, there is no other
competitive allocation: A(1)= B1. Finally we consider the interval of problems P(λ) con-
necting our two problems

P(λ) :
a b

u1 1 5
u2 1 4
u3 4 − 3λ 1 + λ
u4 5 − 3λ 1

� 0 ≤ λ≤ 1�

and check that B1 remains a component for all λ while B2 and B3 shrink and eventually
disappear after λ= 3

4 .

REFERENCES

ANARI, N., S. O. GHARAN, A. SABERI, AND M. SINGH (2016): “Nash Social Welfare, Matrix Permanent, and
Stable Polynomials,” in ITCS (to appear); arXiv:1609.07056 [cs.DS]. [1851]

ANARI, N., T. MAI, S. O. GHARAN, AND V. V. VAZIRANI (2016): “Nash Social Welfare for Indivisible Items
Under Separable, Piecewise-Linear Concave Utilities,” arXiv:1612.05191 [cs.GT]. [1851]

BOGOMOLNAIA, A., H. MOULIN, F. SANDOMIRSKIY, AND E. YANOVSKAYA (2016): “Dividing Goods or Bads
Under Additive Utilities,” arXiv:1608.01540 [cs.GT]. [1850,1851]

BRAMS, S. J., AND A. D. TAYLOR (1996): Fair Division: From Cake-Cutting to Dispute Resolution. Cambridge
University Press. [1847,1851]

BRANDT, F., V. CONITZER, U. ENDRISS, J. LANG, AND A. PROCACCIA (2016): Handbook of Computational
Social Choice. Cambridge University Press. [1851]

BUDISH, E. (2011): “The Combinatorial Assignment Problem: Approximate Competitive Equilibrium From
Equal Incomes,” Journal of Political Economy, 119 (6), 1061–1103. [1848,1851]

BUDISH, E., AND E. CANTILLON (2010): “The Multi-Unit Assignment Problem: Theory and Evidence From
Course Allocation at Harvard,” Manuscript. [1847]

CARAGIANNIS, I., D. KUROKAWA, H. MOULIN, A. PROCACCIA, N. SHAH, AND J. WANG (2016): “The Un-
reasonable Fairness of Maximum Nash Welfare,” in Proceedings of the 17th ACM Conference on Electronic
Commerce, Maastricht, June 24–27. [1851]

CHIPMAN, J. S. (1974): “Homothetic Preferences and Aggregation,” Journal of Economic Theory, 8, 26–38.
[1848]

COLE, R., AND V. GKATZELIS (2015): “Approximating the Nash Social Welfare With Indivisible Items,” in
Proceedings of the 47th STOC Conference, 371–380. [1851]

COLE, R., N. R. DEVANUR, V. GKATZELIS, K. JAIN, T. MAI, V. V. VAZIRANI, AND S. YAZDANBOD (2016):
“Convex Program Duality, Fisher Markets, and Nash Social Welfare,” arXiv:1609.06654 [cs.GT]. [1851]

EISENBERG, E. (1961): “Aggregation of Utility Functions,” Management Science, 7, 337–350. [1848,1863]
GALE, D. (1960): Linear Economic Models. McGraw Hill. [1848]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://arxiv.org/abs/arXiv:1609.07056
http://arxiv.org/abs/arXiv:1612.05191
http://arxiv.org/abs/arXiv:1608.01540
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/BT&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/COMSOC&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/B&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/C&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/CG&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://arxiv.org/abs/arXiv:1609.06654
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/E&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/BT&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/COMSOC&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/B&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/CG&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U


1870 BOGOMOLNAIA, MOULIN, SANDOMIRSKIY, AND YANOVSKAYA

GHODSI, A., M. ZAHARIA, B. HINDMAN, A. KONWINSKI, S. SHENKER, AND I. STOICA (2011): “Dominant
Resource Fairness: Fair Allocation of Multiple Resource Types,” in Proceedings of the 8th NSDI Conference,
24–37. [1847]

GOLDMAN, J., AND A. D. PROCACCIA (2014): “Spliddit: Unleashing Fair Division Algorithms,” SIGecom Ex-
changes, 13 (2), 41–46. [1849]

HE, Y., A. MIRALLES, M. PYCIA, AND J. YAN (2015): “A Pseudo-Market Approach to Allocation With Priori-
ties,” Unpublished Manuscript. [1852]

HERRERO, M. (1989): “The Nash Program: Non-Convex Bargaining Problems,” Journal of Economic Theory,
49 (2), 266–277. [1852]

HEYDRICH, S., AND R. VAN STEE (2015): “Dividing Connected Chores Fairly,” Theoretical Computer Science,
593, 51–61. [1851]

HYLLAND, A., AND R. ZECKHAUSER (1979): “The Efficient Allocation of Individuals to Positions,” Journal of
Political Economy, 87 (2), 293–314. [1852]

JAIN, K., AND V. VAZIRANI (2010): “Eisenberg–Gale Markets: Algorithms and Game-Theoretic Properties,”
Games and Economic Behavior, 70 (1), 84–106. [1851]

LEE, E. (2017): “APX-Hardness of Maximizing Nash Social Welfare With Indivisible Items,” Information Pro-
cessing Letters, 122, 17–20. [1851]

MARIOTTI, M., AND A. VILLAR (2005): “The Nash Rationing Problem,” International Journal of Game Theory,
33 (3), 367–377. [1852]

MAS-COLELL, A. (1982): “Equilibrium Theory With Possibly Satiated Preferences,” in Equilibrium and Dy-
namics: Essays in Honor of David Gale, ed by M. Majumdar. Macmillan Press. [1848,1853]

MEGIDDO, N., AND V. VAZIRANI (2007): “Continuity Properties of Equilibrium Prices and Allocations in Lin-
ear Fisher Markets,” in Internet and Network Economics. Lecture Notes in Computer Science, Vol. 4858.
Springer, 362–367. [1848,1851]

MOULIN, H. (2003): Fair Division and Collective Welfare. MIT Press. [1851]
MOULIN, H., AND W. THOMSON (1988): “Can Everyone Benefit From Growth?: Two Difficulties,” Journal of

Mathematical Economics, 17 (4), 339–345. [1860,1861]
PAZNER, E., AND D. SCHMEIDLER (1978): “Egalitarian Equivalent Allocations: A New Concept of Economic

Equity,” Quarterly Journal of Economics, 92 (4), 671–687. [1848]
PETERSON, E., AND F. E. SU (2002): “Four-Person Envy-Free Chore Division,” Mathematics Magazine, 75 (2),

117–122. [1851]
PRATT, J., AND R. ZECKHAUSER (1990): “The Fair and Efficient Division of the Winsor Family Silver,” Man-

agement Science, 36 (11), 1293–1301. [1847]
ROBERTSON, J., AND W. WEBB (1998): Cake-Division Algorithms. Natik, MA: AK Peters. [1851]
ROEMER, J. (1986): “Equality of Resources Implies Equality of Welfare,” Quarterly Journal of Economics, 101

(4), 751–784. [1860]
SEGAL-HALEVI, E. (2017): “Fairly Dividing a Cake After Some Parts Were Burnt in the Oven,” Bar Ilan

University, arXiv:1704.00726. [1851]
SEGAL-HALEVI, E., AND B. SZIKLAI (2015): “Resource-Monotonicity and Population-Monotonicity in Cake-

Cutting,” arXiv:1510.05229 [cs.GT]. [1851,1861]
SERRANO, R., AND K. I. SHIMOMURA (1998): “Beyond Nash Bargaining Theory: The Nash Set,” Journal of

Economic Theory, 83 (2), 286–307. [1852]
SHAFER, W., AND H. SONNENSCHEIN (1975): “Equilibrium in Abstract Economies Without Ordered Prefer-

ences,” Journal of Mathematical Economics, 2 (3), 345–348. [1848,1853]
(1993): “Market Demand and Excess Demand Functions,” in Handbook of Mathematical Economics,

Vol. 2. Elsevier, 671–693, Chapter 14. [1848]
SÖNMEZ, T., AND U. ÜNVER (2010): “Course Bidding at Business Schools,” International Economic Review, 51

(1), 99–123. [1847]
STEINHAUS, H. (1948): “The Problem of Fair Division,” Econometrica, 16 (1), 101–104. [1847,1851]
SU, F. E. (1999): “Rental Harmony: Sperner’s Lemma in Fair Division,” The American Mathematical Monthly,

106 (10), 930–942. [1851]
THOMSON, W. (2010): “Fair Allocation Rules,” in Handbook of Social Choice and Welfare, Vol. 2. Elsevier,

393–492, Chapter 21. [1850,1860]
THOMSON, W., AND C. KAYI (2005): “Monotonicity Properties of the Walrasian Correspondence in Linear

Exchange Economies,” University of Rochester. [1861]
VARIAN, H. (1974): “Equity, Envy and Efficiency,” Journal of Economic Theory, 9, 63–91. [1848]

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/GP&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/Her&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/HS&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HZ&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/JV&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/L&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/MM&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/MT&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/PS&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/PSu&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/PZ&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/RW&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/Ro&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://arxiv.org/abs/arXiv:1704.00726
http://arxiv.org/abs/arXiv:1510.05229
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:34/SeSh&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:35/SS0&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/SS&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/SU&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/St&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:39/Su&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:42/V&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/GP&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/Her&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/HS&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/HZ&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/JV&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/L&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/MM&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/MT&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/PS&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/PSu&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/PZ&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/Ro&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:34/SeSh&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:35/SS0&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/SS&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:36/SS&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/SU&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:39/Su&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U


COMPETITIVE DIVISION OF A MIXED MANNA 1871

VAZIRANI, V. (2005): Combinatorial Algorithms for Market Equilibria. Algorithmic Game Theory, ed. by N.
Nisan, T. Rougarden, E. Tardos, and V. Vazirani. Cambridge University Press, Chapter 5. [1848,1851]

Co-editor Itzhak Gilboa handled this manuscript.

Manuscript received 26 July, 2016; final version accepted 20 August, 2017; available online 21 August, 2017.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:43/Va&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:43/Va&rfe_id=urn:sici%2F0012-9682%28201711%2985%3A6%3C1847%3ACDOAMM%3E2.0.CO%3B2-U

	Introduction
	Main Result
	Applications to Practical Fair Division
	Turning Bads Into Goods?
	Contents

	Related Literature
	The Model
	Main Result
	Examples and the Multiplicity Issue
	Additive Utilities
	Two Items
	One Good, One Bad
	Two Bads

	Two Agents, Goods and Bads
	Counting Competitive Allocations

	Single-Valued Competitive Division Rules
	Two Impossibility Results
	The Continuity Issue
	Resource Monotonicity

	Proofs
	Proof of Lemma 2
	Proof of Theorem 1
	Positive Problems: Theorem 1, Statement (i)
	Negative Problems: Theorem 1, Statement (ii)
	Null Problems: Theorem 1, Statement (iii)

	An Exponential Number of Competitive Divisions
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Proposition 1

	References

