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The responses of native plants to competition with invasive plants depend mainly on

the density of the invasive plants and on the ability of the native plants to compete

for resources. In this study, we tested the influence of the invasive exotic Urochloa

arrecta (Poaceae) on the early colonization of two native species (Pontederia cordata

and Leersia hexandra) of aquatic macrophytes. Our hypotheses were (i) the competitive

effects of U. arrecta on the native species P. cordata and L. hexandra are density-

dependent and that (ii) these species respond differently to competitive interactions with

the invasive species. We conducted the experiments in a greenhouse and in the field,

in a tropical reservoir. The biomass of U. arrecta (ranging from 206.2 to 447.1 g) was

manipulated in the greenhouse in trays with different densities. After the establishment

of the invasive species, we added P. cordata and L. hexandra propagules to each

tray. In the field, a propagule of P. cordata was planted in 36 sites with different

densities of U. arrecta. The biomass and length of the natives and the biomass of

the invasive species were measured in the greenhouse and in the field experiments.

The biomass and length of the native plants decreased with increasing biomass of the

exotic species in both experiments, showing that the competition between U. arrecta

and native species depends on the density of the exotic species. The root:shoot ratio of

L. hexandra decreased with increasing U. arrecta biomass, but the opposite occurred

for P. cordata. These results indicate that native species exhibit different strategies of

biomass allocation when interacting with U. arrecta. The strong competitive effects of

U. arrecta and the different responses of the native species help to explain the reduced

diversity of native macrophytes observed in sites colonized by U. arrecta. The results

also suggest that in a scenario of dominance of exotic species, recolonization by native

macrophytes is unlike to occur naturally and without human interventions that reduce

the biomass of the exotic species.
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INTRODUCTION

In general, only a small fraction of introduced species become
successfully established and exhibit population growth to the
point of becoming “invasive” (Levine, 2008; Davis, 2009). When
they do become invasive, they can reduce the richness and
abundance of native species (Madsen et al., 1991; Daehler and
Strong, 1994; Roberts et al., 1999; Michelan et al., 2010b). In
addition, they can even change the environmental conditions
of the invaded sites (Pyšek et al., 2008; Strayer, 2010), causing
ecological and economic damage (Richardson and Pyšek, 2008;
Carey et al., 2016; Cuassolo et al., 2016). Invasion success depends
on multiple factors, including species-specific traits (e.g., growth
rate, competitiveness and dispersal ability; Rejmánek, 2011) and
the characteristics of the invaded ecosystem (e.g., environmental
conditions, disturbances and diversity; Fridley, 2011).

The impacts of invasive species on native species depend
largely on the abilities of interacting species to compete
for resources (Seabloom et al., 2003; Blindow et al., 2016).
Competition is an important biological interaction that
influences the structure and development of plant communities
(Kiaer et al., 2013; Blindow et al., 2016). Additionally, species
respond differently to competition depending on the abiotic
conditions and on the density of each population (Gopal and
Goel, 1993; Nunes and Camargo, 2017). As a direct result of
competition with invasive species, one can predict changes in the
structure of invaded communities and a decrease in biodiversity
at local and regional scales (Michelan et al., 2010b; Powell et al.,
2011, 2013; Amorim et al., 2015).

Competition among plants occurs predominantly by nutrient
(“root competition”) and/or light acquisition (“above-ground
competition”). The roots and shoots of the plants acquire
different resources from the environment, and some studies
therefore try to separate the effects of the competition of each
plant part (Wang et al., 2008; Kiaer et al., 2013; Richter and
Gross, 2013). One of the methods to evaluate which organ is most
involved in the competition is to use root:shoot biomass ratio
(Robinson et al., 2010). High values of this ratio indicate that
competition for nutrients and water (by root) is more important,
while lower values indicate greater competition for light (Wang
et al., 2008; Craine and Dybzinski, 2013; Kiaer et al., 2013; Richter
and Gross, 2013; but see Cahill, 2003 for another point of view).

Coexistence between species under natural conditions can
be facilitated by several mechanisms, such as disturbances and
trade-offs between competitive and dispersal abilities (Grime,
1979; Connell, 1983). However, the competitive effects of invasive
species occurring at high densities may be so intense that, at least
at fine spatial scales, native species are excluded by competition
(Madsen et al., 1991). Yet, little is known about the tolerable limits
of the biomass of invasive macrophytes for the recolonization of
native macrophyte species. Thus, it is important to evaluate the
competitive interactions between native and invasive macrophyte
species at different biomasses of the latter. Studies employing
this approach would help to identify native species with higher
potential for recolonizing environments dominated by invasive
species and to identify thresholds of invasive biomass that allow
native recolonization and survival.

Many species belonging to the family Poaceae are highly
invasive in several aquatic ecosystems (Bunn et al., 1998; Bell
et al., 2011; Mugwedi et al., 2015). In general, they have
greater competitive effects than species of other groups, such
as herbaceous and leguminous plants (Kiaer et al., 2013). This
is also the case for Urochloa arrecta (Hack. ex T. Durand
& Schinz) Morrone & Zuloaga, a species native to Africa,
which has colonized tropical and subtropical aquatic ecosystems.
In particular, this species is invading and causing ecological
impacts in various Brazilian aquatic ecosystems (Pott et al., 2011;
Fernandes et al., 2013; Amorim et al., 2015). U. arrecta forms
large patches, accumulates large amounts of biomass in littoral
zones (Michelan et al., 2010b; Fernandes et al., 2013; Amorim
et al., 2015), regenerates rapidly after disturbances (Michelan
et al., 2010a) and can thrive even in relatively oligotrophic
environments with nutrient-poor sandy substrates (Fasoli et al.,
2015). However, there is a paucity of experimental studies
evaluating the competitive effects of U. arrecta on individual
macrophyte species.

In this study, we investigated the biomass-dependent effects
of U. arrecta on the recolonization of two native species of
macrophytes (Pontederia cordata L. and Leersia hexandra Sw.)
and tested whether the competitive effects on them differ. First,
we developed a greenhouse experiment to test the effects of
U. arrecta on the biomass and on the root:shoot ratio of the two
native species. Then, we repeated the experiment in the field,
using P. cordata as a focal species, to test the generality of our
results obtained in the greenhouse. We tested the hypotheses
that (i) the competitive effects of U. arrecta on P. cordata
and L. hexandra depend on the invasive biomass and (ii)
that native species respond differently to these effects. These
hypotheses were postulated because previous studies in the field
showed that the native macrophyte biomass decreases in the
presence of U. arrecta (Michelan et al., 2010b) and that the
frequencies of co-occurrence between native macrophytes and
U. arrecta are species-specific, indicating that native species may
respond differently to increasing invasive biomass (Thomaz and
Michelan, 2011). We predicted that the effects of U. arrecta on
L. hexandra would be higher than those on P. cordata because
of the morphological similarity and phylogenetic relationship
between the first pair of species. Consequently, they should
use resources more similarly, which intensifies competition and
reduces the chances of co-existence (Chesson and Kuang, 2008;
Rejmánek, 2011). Finally, to place our results in a broader
context, we compared our results with those obtained in a recent
meta-analysis (Jauni and Ramula, 2015).

We believe that the use of U. arrecta as a model plant in
our study contributes to a broader view regarding the impacts
of exotic plants on native species because this species belongs
to the family Poaceae, which is responsible for the greatest
ecological impacts among invasive plants (Kiaer et al., 2013).
In addition, by conducting experiments in a greenhouse and
in the field, we believe that our outcomes can be useful to
assess whether the former can be extrapolated to nature, an issue
that has been questioned by some investigations that highlight
the shortcomings of microcosm experiments (e.g., Wilson and
Keddy, 1991).
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MATERIALS AND METHODS

We performed two experiments employing an additive design
(Gibson et al., 1999) to assess the ability of native species to
colonize and grow in sites with different biomasses of U. arrecta,
one experiment in a greenhouse at the State University of
Maringá (Paraná State, Brazil) and the other in situ in the Rosana
Reservoir (Paraná/São Paulo, Brazil; 22◦39′26.19′′ S 52◦46′52.35′′

W; see Supplementary Figure S1 for photos of the experiment in
a greenhouse and in situ).

Greenhouse Experiment
Urochloa arrecta (exotic), P. cordata, and L. hexandra (natives)
were used in our greenhouse experiment. The native species were
selected based on different levels of co-occurrence withU. arrecta
(details about this selection in Michelan et al., 2013). L. hexandra
(Poaceae species often found to co-occur with U. arrecta) is a
perennial species that can grow vigorously in aquatic ecosystems
(Pott and Pott, 2000; Moreira et al., 2011). The Pontederiaceae
P. cordata has low level of co-occurrence with U. arrecta and
is a perennial herbaceous species that can also form dense
stands (Pott and Pott, 2000). Both species reproduce sexually
and asexually (by stems and rhizomes). P. cordata rhizomes
can survive to fire or dry seasons (Pott and Pott, 2000). The
macrophytes were collected in the Rosana Reservoir and taken
to the greenhouse.

We used trays (0.30 m × 0.37 m × 0.14 × m) that were
filled halfway with sediment and maintained with a 3–5 cm water
layer. The water was replaced with tap water whenever necessary.
To create a gradient of U. arrecta biomass, we added fragments
with two nodes each of U. arrecta from the apical stems, at
densities of 0, 5, 10, 15, 20, 25, and 30 fragments per tray, with
five replicates for each treatment, amounting to 35 trays. Trays
were randomized inside the greenhouse to offset any undetected
environmental variation.

A clear gradient in biomass, a necessary condition to test our
hypotheses, was formed by 200 days after planting U. arrecta
(0–450 g DWm−2). Then, we added one propagule of P. cordata
and one of L. hexandra at the opposite extremes of each tray
(separated from each other by ca. 30 cm). These propagules
of P. cordata and L. hexandra were collected in the Rosana
Reservoir and brought to the greenhouse, where we removed
their leaves and roots in order to allow all plants to start to
grow at similar conditions. In addition, we selected propagules
with similar weights. The distance between the native species
in the microcosms (ca. 30 cm) was assumed to be enough to
avoid interaction between them. Although we did not measure
the survival rates of the propagules of the native species during
the course of the experiment, all propagules survived in our
experiment and even those planted in more dense microcosms
formed small individuals.

The experiment was completed 3 months after the
introduction of the native species. The length of P. cordata
and the average length of shoots generated by L. hexandra were
measured with a tape (cm). Afterward, the biomass of each
species was washed to remove sediment and was separated into
shoots and roots. After drying in an oven (70◦C, until constant

weight), the dry mass of roots and shoots of each species was
measured on a scale with a precision of 0.01 g. We emphasize
that the experimental design of this study simulates a situation in
which the recolonization by native aquatic macrophyte species
occurs after the occupation of an invasive exotic species that
is dominant in an ecosystem, a common situation in several
Neotropical aquatic environments.

Field Experiment
The field experiment was conducted in one arm of the
Rosana Reservoir (between 22◦39′19.29′′ S; 52◦46′58.93′′

W–22◦40′27.19′′ S; 52◦47′10.32′′ W and 22◦39′32.42′′ S;
52◦46′36.52′′ W–22◦40′26.18′′ S; 52◦46′47.43′′ W; Brazil), near
the sites where the native macrophytes were collected for the
greenhouse experiment. We first selected 50 sites (squares of
0.09 m2–0.3 m × 0.3 m) with different densities of U. arrecta.
These sites were identified and demarcated with stakes, and a
propagule of P. cordata was planted in each site. The P. cordata
propagules were treated the same way as those used in the
greenhouse (see details above for the greenhouse experiment).
We monitored the field experiment at every week and observed
that the propagules of P. cordata were consumed by herbivores
in 14 sites. Thus, 3 months after the establishment of the native
species, only 36 sites were used in this study.

At the end of the experiment (90 days), the individuals of
P. cordata and the shoots of U. arrecta in an area of 0.09 m2

(0.3 m × 0.3 m) around the native species were collected. For
each site, the species were separated and washed, packed and
placed in an oven at 70◦C until reaching a constant weight. The
dry shoot biomass of U. arrecta and the shoot and root biomass
of P. cordata were obtained by using a precision scale with an
accuracy of 0.01 g.

Data Analysis
Following Goldberg and Scheiner (2001), we used an analysis
of covariance (ANCOVA) for each response variable (i.e., total
biomass, length and root:shoot ratio of native plants). In each
ANCOVA model, the quantitative and categorical predictor
variables were the shoot biomass of U. arrecta and the native
species identity (L. hexandra and P. cordata), respectively. The
response variables were standardized to the values of these
variables expected in the absence of U. arrecta. Thus, we
expressed them as log response ratios, lnRR = ln(Yu/Yc), where
Yc was the value of a response variable without U. arrecta and
Yu was the value of this response variable under the influence
of U. arrecta. To estimate Yc, we used the mean values of the
response variables in the control experimental units. Thus, lnRR
is equal to 0.0 in the absence of competitive effects, and the
more negative lnRR is, the higher the effect of U. arrecta in
limiting the growth of the natives. As our objective was to analyze
the competition between the invasive and native species and to
evaluate whether they responded differently to the competition
effect in a scenario of exotic dominance, we chose to remove
the sites with the absence of the invasive species (but see the
Supplementary Figure S2 for the results based on the entire
gradient of U. arrecta biomass—with the addition of treatment
0—absence of competition).
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In the field experiment, the effect of U. arrecta biomass on
P. cordata biomass was tested using a second-order polynomial
regression due to the non-linearity of the data. All statistical
analyses were performed in R (RDevelopment Core Team, 2014).

Comparison of the Results With Those
Obtained in the Literature
To contrast our results with those obtained in the literature,
we first transformed the Pearson correlation coefficient (r)
between the total biomass of the invasive species and the
total biomass of the native species into Cohen’s d using:
d = 2r/

√
1 − r2 (Borenstein et al., 2009). The variance of d (Vd)

is given by:Vd = 4Vr/
(

1 − r2
)3
, where Vr is the variance of r

(

Vr =
(

1 − r2
)2

/n − 1
)

and n is the sample size. Finally, d was

transformed into Hedges’ g after multiplying d by a correction
factor j (see Eq. 4.22 in Borenstein et al., 2009). The variance of g
was estimated byVg = j2 ×Vd. Second, we compared the values of
g estimated in our study with the results of a recent meta-analysis
conducted by Jauni and Ramula (2015). This meta-analysis was
based on 75 competition studies between exotic and native
species. These studies (observational and experimental) evaluated
“how exotic plant species influence the fitness components of
native plants” (Jauni and Ramula, 2015) and were based on the
following response variables: establishment (i.e., germination),
growth rate, biomass, reproductive success and survival (or
mortality). Fifty-eight exotic species were included, and it is
important to note that no study with U. arrecta was used in
this meta-analysis, ensuring independent results. We focused our
comparison on results obtained for biomass, based on studies
with 19 exotic species (mainly from the order Poales) and 36
native species (see Figure 1 of Jauni and Ramula, 2015). In
general, the approach of quantitatively comparing the results
obtained in an experiment with those obtained in a meta-analysis
can be considered a type of cumulative meta-analysis (Leimu and
Koricheva, 2004).

RESULTS

Greenhouse Experiment
We found that the total biomass of both native species
significantly decreased with the increase in the biomass of
U. arrecta. The slopes of the relationships did not differ
significantly (test of parallelism: F1,56 = 3.47; P = 0.0676;
Figure 1A). However, the coefficient of determination of the
model for L. hexandra (R2 = 0.70; P < 0.001) was substantially
higher than that observed for P. cordata (R2 = 0.51; P < 0.001).

Similar to what we found for biomass, the native species’
length decreased significantly with the increase in the biomass
of U. arrecta (Figure 1B). However, the slope of the relationship
between the biomass of U. arrecta and length of L. hexandra
(b = −0.0032 ± 0.0006 SE; R2 = 0.54; P < 0.001) was significantly
steeper (test of parallelism: F1,56 = 5.14; P = 0.0272) than that for
P. cordata (b = −0.0017 ± 0.0003 SE; R2 = 0.48; P < 0.001).

The effects of the U. arrecta biomass on the root:shoot ratio
clearly differed between the two native species (F1,56 = 60.58;

FIGURE 1 | Relationship between the shoot biomass of U. arrecta and

different traits of two species of native macrophytes. Shown are the results for

(A) total biomass, (B) length, and (C) root:shoot ratio.
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P < 0.001; Figure 1C), being positive for P. cordata
(b = 0.0028 ± 0.0005 SE; R2 = 0.49; P < 0.001) and negative for
L. hexandra (b = −0.0032 ± 0.0006 SE; R2 = 0.54; P < 0.001).
Despite the opposite effects, the magnitudes of the slopes were
similar. These results indicate that L. hexandra invests more in
shoots, while P. cordata invests more in belowground structures
(roots), with an increasing degree of competition with U. arrecta.

Field Experiment
The results obtained in the field experiment with P. cordata
followed the pattern found in the greenhouse. The biomass
of U. arrecta negatively affected the biomass of P. cordata
(b = −0.0472 ± 0.006 SE; R2 = 0.85; P < 0.001; Figure 2A).
The root:shoot ratio of the biomass of this native species was
positively and significantly affected by the biomass of the invasive
species (b = 0.003 ± 0.0001 SE; R2 = 0.76; P < 0.001; Figure 2B).

Comparison of the Results With Those
Obtained in the Literature
The effect of U. arrecta on native species was substantially larger
than the effects reported in themeta-analysis of Jauni and Ramula
(2015). The results of this comparison also indicate that the
negative effect of U. arrecta on L. hexandra was greater than that
estimated for P. cordata in the greenhouse experiment. However,
the largest effect size was estimated for P. cordata when the
experiment was carried out in the field, despite the high overlap
between the confidence intervals (Figure 3).

DISCUSSION

We found that the competitive effects of U. arrecta on P. cordata
and L. hexandra are biomass-dependent, corroborating our
first hypothesis. Most importantly, in accordance with our
second hypothesis, we showed that the native species responded
differently to the competitive interaction with the invader, at
least in terms of plant height and root:shoot ratios. In addition,
it is likely that the increase in U. arrecta biomass increases the
competition for nutrient acquisition more in P. cordata than
in L. hexandra, given that the former species invested more
in root growth when in greater competitive interaction with
U. arrecta than the latter. However, although these native species
responded differently to the competitive interaction with the
invader, L. hexandra was not the most negatively affected by
U. arrecta (as suggested by similar responses in terms of biomass
production), which contradicts our prediction in this regard.

The negative effects of U. arrecta on native species were
even stronger in the field experiment, where the growth of
P. cordata was nearly suppressed at high densities of U. arrecta
(see Figure 2A). These results, along with those obtained in the
greenhouse, indicate that high densities of the invasive species
decrease recolonization success by native species, which may
explain the pattern of reduced macrophyte diversity with the
increase of U. arrecta biomass at small spatial scales (Michelan
et al., 2010b; Amorim et al., 2015). Our findings agree with
studies carried out with other invasive species that showed the
importance of density in the establishment success of native

species, mainly in controlled experiments (Doyle et al., 2003;
Martin and Coetzee, 2014). Thus, in field conditions, the effects
of exotic species on the growth of native species are likely
to be much stronger than the effects measured in greenhouse
experiments. For example, the biomass that U. arrectamay attain
in the field (approx. 7000 g DW m−2; Carniatto et al., 2013) is
much higher than the highest biomass in our experiment (approx.
2000 g DWm−2).

FIGURE 2 | Relationship between the shoot biomass of U. arrecta and the

biomass (A) and root:shoot ratio (B) of Pontederia cordata (data from the

in situ experiment).
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FIGURE 3 | Cumulative effect size estimated by Jauni and Ramula (2015) and effect sizes estimated in this study. These assess the effects of invasive exotic plants

on the biomass of native plants.

Macrophytes respond to competition (Burns andWinn, 2006)
and other environmental factors, such as increase in water
level (Gomaa and AbdElgawad, 2012), by shoot elongation. The
elongation (or etiolation) of terrestrial and aquatic plants is,
in general, a response to light limitation (e.g., Goldsborough
and Kemp, 1988; Paciullo et al., 2008, 2011; Li et al., 2011).
However, our results indicate a reduction in the length of native
species with increased competition (and shading) by U. arrecta
(see Figure 1B). Thus, our results agree with other studies
showing that not all species are able to etiolate in the face
of light competition. For example, Burns and Winn (2006)
demonstrated that competition reduced the lengths of two grass
species. A plausible explanation for the lack of etiolation in
face of competition, applicable only to L. hexandra, is that the
light limitation was offset by the increased investment in the
biomass of the shoots, as shown by the results for the root:shoot
ratio (see below). By contrast, P. cordata has broader leaves
than L. hexandra, and thus, increased light acquisition may be
obtained by increases in leaf area instead of etiolation. These
factors may also explain the steeper reduction in length for
L. hexandra than for P. cordata along the invasive biomass
gradient.

The native species responded differently to the increase in
U. arrecta biomass in terms of investment in belowground

or aboveground structures (see Figure 1C), revealing different
strategies to overcome competition with the invasive species.
The increase in plant density exacerbates competition, which
may occur for space, nutrients and/or light (Witkowski, 1991;
Daehler, 2003; Doyle et al., 2003; Davis, 2009). Increased
investment in shoots indicates a predominance of competition
between aboveground plant structures, while high investment in
roots indicates dominance of competition between belowground
structures (e.g., Berendse and Möller, 2009; Janeček et al., 2014).
Based on this premise, our results indicate that L. hexandra
growth becomes increasingly limited by light availability over a
gradient of U. arrecta biomass, while P. cordata growth becomes
increasingly limited by nutrients and space over the same biomass
gradient. The largest investment in shoots by L. hexandra at high
densities of the invasive probably occurs because Poaceae are,
in general, highly sensitive to shading conditions. Allocation to
shoot biomass, relative to root biomass, is likely to be a response
to light limitation under high competition, as observed for other
herbaceous species (Gibson et al., 2004; Awan et al., 2015). On the
other hand, increased allocation to roots in P. cordata indicates a
response to root competition (for other examples, see Bakker and
Wilson, 2001; Schiffers et al., 2011; Zhu et al., 2015).

Despite the changes in biomass allocation of the native
species over the competition gradient, there was a reduction
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of approximately 90% of the native species biomass at high
biomass of U. arrecta, and the reduction was even higher
for P. cordata in the field. The significant reduction in the
growth of native species when exotic species are dominant, as
simulated in our experiments, supports the model of preemptive
competition, as found in other studies (Grace, 1987; Seabloom
and van der Valk, 2003; Moore and Franklin, 2012; Moore
et al., 2014). In practical terms, our experimental results indicate
that native species have low capacities to recolonize sites
dominated by invasive species. In addition, along with results
of “invasiveness” experiments (e.g., Xu et al., 2004; Michelan
et al., 2013), our results suggest that pre-occupation is key to
predicting competition effects. The negative effects on the native
species derived from the pre-occupation of the exotic species
are likely to be more pronounced in ecosystems subject to
anthropogenic impacts, since anthropogenic impacts are more
favorable to the success of invasive plants (Daehler, 2003; Havel
et al., 2005; Engelhardt, 2011). In summary, we speculate that
the natural recolonization by native species in environments
dominated by U. arrecta is unlikely and that their success can
only occur if the invasive species is manipulated, reducing its
occupation.

Experiments in greenhouses and controlled conditions are
criticized for using small spatial and temporal scales and for
not replicating the complexity found in natural environments
(Gibson et al., 1999). Experiments like ours could, for example,
bias the effects of shoot competition because of limited soil
volume, which reduces shoot growth, and because of edge effects,
which allow more access to light than would occur in the field
(Kiaer et al., 2013). However, the data obtained in the field for
P. cordata demonstrate that at least the direction and intensity of
the competitive effects exerted by U. arrecta were similar to those
found in the greenhouse. This congruence suggests that the data
obtained experimentally in the greenhouse can be extrapolated to
field situations, as the results obtained in the latter also indicate
the importance of density-dependent effects of an invasive species
on native species.

Finally, we believe that the larger effect sizes in our experiment
compared to those estimated by Jauni and Ramula (2015)
may indicate that U. arrecta possesses higher competitive
effects than other invasive species. The consistent negative
effect of exotic plants on the biomass of native plants,
according to Jauni and Ramula (2015), may be explained by
considering three mechanisms that are not mutually exclusive.
The first mechanism, and probably the most important, is
related to competition for light and nutrients, which reduces
biomass and may cause a decrease in the reproductive
success and survival of native plant species, leading to
population decline (Jauni and Ramula, 2015). The other
two mechanisms are related to pollinators and survival of
recruits, but these mechanisms cannot be used to explain our
results because our experiments considered only one plant
generation. Interestingly, the results obtained by Jauni and
Ramula (2015) suggest that native plants can be established
when associated with exotic plants. These authors suggest
that the population dynamics of native plants may not be
limited by the availability of micro-sites but by competition

with exotic species in later stages of the life cycle. Our results
corroborate this expectation, since most of the native propagules
established even in high biomass of the exotic species, but
they attained extremely low growth and did not flower in this
condition.

In short, our hypotheses that the effects of competition
betweenU. arrecta and nativemacrophytes are density dependent
and that P. cordata and L. hexandra respond differently to
this competitive interaction were corroborated. Our results
suggest that in a scenario of dominance of invasive Poaceae,
recolonization by native macrophytes is unlike to occur naturally.
Our results also indicate that the reduction of the diversity of
native macrophytes observed in sites colonized by U. arrecta
can be explained by the competitive effects of this invasive
species. In practical terms, due to the density-dependent
competitive effects, when it is not possible to eliminate the
invasive species, a strategy to maintain it at low density
would be required to allow recolonization by natives and to
maintain local biodiversity. Also in this context, we believe that
increasing the number of propagules to analyze the capacity
of native species to recolonize environments densely colonized
by exotic species would be an interesting avenue for further
research.
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