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COMPETITIVE EXCLUSION AND COEXISTENCE

FOR COMPETITIVE SYSTEMS

ON ORDERED BANACH SPACES

S. B. HSU, H. L. SMITH, AND PAUL WALTMAN

Abstract. The dynamics of competitive maps and semiflows defined on the
product of two cones in respective Banach spaces is studied. It is shown that
exactly one of three outcomes is possible for two viable competitors. Either
one or the other population becomes extinct while the surviving population
approaches a steady state, or there exists a positive steady state representing
the coexistence of both populations.

1. Introduction

The amount of research devoted to mathematical models of two competing pop-
ulations is enormous. Most such models consist of ordinary differential equations or
difference equations, but more recently models consisting of delay differential equa-
tions, partial differential equations, and even partial differential equations with
delays have been studied. As the list of papers on the subject is very large, we con-
tent ourselves by referencing the works [6]–[10], [15], [16], [18]. Obviously, this is a
biased list of references on the subject. Despite the fact that there are techniques
of analysis that are common to a large body of this research, it was not until very
recently that an abstract approach to competition was taken. The work of Hess
and Lazer [7] seems to be the first such work. Another paper on the subject is Hsu,
Waltman and Ellermeyer [9].

In the present paper, we continue the study of abstract competitive systems but
in contrast to the approach in [7], it is not assumed that the competitive system is
continuously differentiable.

The basic setup is as follows. For i = 1, 2, let Xi be ordered Banach spaces
with positive cones X+

i such that IntXi 6= ∅. We use the same symbol for the
partial orders generated by the cones X+

i . If xi, x̄i ∈ Xi, then we write xi ≤ x̄i if
x̄i − xi ∈ X+

i , xi < x̄i if xi ≤ x̄i and xi 6= x̄i, and xi � x̄i if x̄i − xi ∈ IntX+
i .

If xi, yi ∈ Xi satisfy xi < yi, then the order interval [xi, yi] is defined by [xi, yi] =
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{u ∈ Xi : xi ≤ u ≤ yi}. If xi � yi then [[xi, yi]] = {u ∈ Xi : xi � u� yi} is called
an open order interval.

Let X = X1×X2, X+ = X+
1 ×X+

2 , and K = X+
1 × (−X+

2 ). X+ is a cone in X
with nonempty interior given by IntX+ = IntX+

1 × IntX+
2 . It generates the order

relations ≤, <,� in the usual way. In particular, if x = (x1, x2) and x̄ = (x̄1, x̄2),
then x ≤ x̄ if and only if xi ≤ x̄i, for i = 1, 2. For our purposes, the more important
cone is K which also has nonempty interior given by IntK = IntX+

1 × (−IntX+
2 ).

It generates the partial order relations ≤K , <K ,�K . In this case,

x ≤K x̄ ⇐⇒ x1 ≤ x̄1 and x̄2 ≤ x2.

A similar statement holds with �K replacing ≤K and � replacing ≤.
Let T : X+ → X+ be continuous and denote by Tn the n-fold composition of

T . The following hypotheses on T are meant to capture the essence of competi-
tion between two adequate competitors (ones which can survive in the absence of
competition).

(H1) T is order compact and strictly order-preserving with respect to <K . That
is, x <K x̄ implies T (x) <K T (x̄).

(H2) T (0) = 0 and 0 is a repelling fixed point. By repelling we mean there exists
a neighborhood U of 0 in X+ such that for each x ∈ U , x 6= 0, there is an
integer n = n(x) such that Tn(x) /∈ U .

(H3) T (X+
1 × {0}) ⊂ X+

1 × {0}. There exists x̂1 satisfying 0 � x̂1 such that
T ((x̂1, 0)) = (x̂1, 0), and Tn((x1, 0))→ (x̂1, 0) for every x1 satisfying 0 < x1.
The symmetric conditions hold for T on {0}×X2. The fixed point is denoted
by (0, x̃2).

(H4) If x, y ∈ X+ satisfy x <K y and either x or y belongs to IntX+, then T (x)�K

T (y). If x = (x1, x2) ∈ X+ satisfies xi 6= 0, i = 1, 2, then T (x)� 0.

Recall that T is order compact if for every (x1, x2) ∈ X+, it follows that
T ([0, x1]× [0, x2]) has compact closure in X .

The strict order preserving property described in (H1) is the signature of a
competitive system. It is biologically intuitive. The two related states, x = (x1, x2)
and x̄ = (x̄1, x̄2), where x <K x̄, represent initial conditions in which the state
of the first population is given by the first component and the state of the second
population is given by the second component. The relation says that the second
population has an advantage over the first in the state x relative to the state x̄
since the second population is greater in state x and its competitors population is
smaller. Viewed differently, population one has the advantage over population two
in state x̄. The order preservation property says merely that the relative advantage
of one state over the other is preserved into the future.

We introduce the following notation for the “boundary” fixed points of T :

E0 = (0, 0), E1 = (x̂1, 0), E2 = (0, x̃2).(1.1)

We say that a fixed point E∗ of T is positive if it belongs to the interior of X+.
The order interval I defined by

I ≡ [0, x̂1]× [0, x̃2]

will play an important role.
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Given x ∈ X+ we write O(x) = {Tn(x) : n ≥ 0} for the positive orbit of x. Its
omega limit set is defined in the usual way as

ω(x) = {y ∈ X+ : Tni(x)→ y, some sequence {ni} satisfying ni →∞}.
Our main result says that, for a competitive system, either there is a positive

fixed point of T , representing coexistence of the two populations, or one population
drives the other to extinction.

Theorem A. Let (H1)–(H4) hold. Then the omega limit set of every orbit is
contained in I and exactly one of the following holds:

(a) There exists a positive fixed point E∗ of T in I .
(b) Tn(x)→ E1 as n→∞ for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2.
(c) Tn(x)→ E2 as n→∞ for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2.

Finally, if (b) or (c) holds and x = (x1, x2) ∈ X+ \ I satisfies xi 6= 0, i = 1, 2,
then either Tn(x)→ E1 or Tn(x)→ E2.

In case (b) (and (c)) our result may seem a bit unsatisfactory in the sense that
we do not conclude Tn(x) → E1 for all x = (x1, x2) with xi 6= 0, i = 1, 2. More
precisely, we cannot rule out that there is such an x ∈ X+\I such that Tn(x)→ E2.
In fact, we give an example of such behavior at the conclusion of this section. If such
a point exists, then it is easy to see that E2 attracts the set {y ∈ X+ : y ≤K T (x)}
which has nonempty interior in X+. As E2 also repels a relatively open set in I in
case (b), E2 would certainly be non-hyperbolic if T were a smooth map.

If one is concerned only in establishing that exactly one of alternatives (a)–(c)
of Theorem A holds and not at all in the behavior of T outside of I, i.e., one is not
interested in the first and last assertions of the theorem, then (H1)–(H4) can be
appropriately weakened so as to hold only in I. For example, the third sentence of
(H3) would require convergence of the orbit of (x1, 0) to (x̂1, 0) only for 0 < x1 < x̂1.

As a consequence of (H4) and the fact that the omega limit set of every orbit is
contained in I, it follows that any fixed point, E, of T , distinct from the boundary
fixed points (1.1), is necessarily a positive fixed point satisfying

E2 �K E �K E1.(1.2)

In [7] it is shown that if T is C1 and the spectral radius of its derivative at Ei is
smaller than one for i = 1, 2 or larger than one for i = 1, 2, then (a) holds. Our
result is more general.

The following corollary of Theorem A and its proof provides sufficient conditions
for the existence of a positive fixed point of T .

Corollary 1. Let (H1)–(H4) hold. Then T has a positive fixed point if any one of
the following holds.

(i) Both E1 and E2 are stable relative to I with respect to the order topology.
(ii) Both E1 and E2 are unstable relative to I with respect to the order topology.
(iii) There is a point x ∈ X+ and a point z ∈ ω(x) such that z � 0.

The order topology on X is the topology generated by the open order intervals
[[x1, y1]]× [[x2, y2]] where xi � yi. It is a norm topology (see [1]) and every order
open set is open in the usual topology of X . A fixed point x ∈ I is stable relative
to I in the order topology if for every order open set U containing x there is an
order open set V containing x such that if y ∈ V ∩ I, then Tn(y) ∈ U ∩ I for all
n ≥ 1. If this does not hold, we say that x is unstable relative to I in the order
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topology. If the cones X+
i are normal (there exists ki > 0 such that 0 ≤ xi ≤ yi

implies ‖xi‖ ≤ ki‖yi‖), then the order topology coincides with the usual topology
(see [1]).

As a special case of (iii), if the dynamical system generated by T is uniformly
persistent (see [4]) then there is a positive fixed point. In fact, it suffices to assume
that z = (z1, z2) in (iii) satisfies zi 6= 0 since then Tz � 0, by (H4), and Tz belongs
to ω(x). Consequently, if T has a periodic point z = (z1, z2) of period p > 1 with
zi > 0, i = 1, 2, then T has a positive fixed point.

The existence of a positive fixed point has implications for the stability of E1

and E2 as the next result shows.

Proposition 2. Let (H1)–(H4) hold and suppose that T has a positive fixed point.
Suppose further that E1 is an isolated fixed point of T . Then there exists a positive
fixed point E∗ in I such that exactly one of the following holds:

(i) Tn(x)→ E∗ for all x = (x1, x2) satisfying E∗ ≤K x <K E1 and x2 6= 0.
(ii) Tn(x)→ E1 for all x satisfying E∗ <K x ≤K E1.

A symmetric conclusion holds if it is assumed that E2 is an isolated fixed
point.

The last assertion of Proposition 2 says that if E2 is an isolated fixed point,
then there exists a positive fixed point E∗∗ satisfying (1.2) such that one of the
following holds: (i) Tn(x) → E∗∗ for all x = (x1, x2) satisfying E2 <K x ≤K E∗∗
and x1 6= 0, or (ii) Tn(x) → E2 for all x satisfying E2 ≤K x <K E∗∗. If both
E1 and E2 are isolated fixed points, then it follows from the proof of Proposition
2 that E2 �K E∗∗ ≤K E∗ �K E1 with equality E∗∗ = E∗ possible. However,
if equality does not hold, then E∗∗ �K E∗, by (H4). In that case, the proof of
Theorem A implies that exactly one of three alternatives holds: (1) there is a fixed
point E satisfying E∗∗ �K E �K E∗, or (2) Tn(x) → E∗∗ for all x satisfying
E∗∗ ≤K x <K E∗, or (3) Tn(x) → E∗ for all x satisfying E∗∗ <K x ≤K E∗. It is
clear that this reasoning can be extended further. In fact, by Zorn’s Lemma, there
exists a maximal totally ordered (by <K) set of equilibria containing the minimal
element E2 and the maximal element E1.

One of the motivations for the present study was the conjecture that the bound-
ary of the basin of attraction of, say E1, must contain a positive fixed point in the
case that E1 is a local attractor but not a global attractor. E1 is a local attractor
if Tn(x) → E1 for all x in some relatively open subset of X+ containing E1. Ob-
viously, if E1 is a local attractor but alternative (b) of Theorem A does not hold,
then alternative (a) must hold and case (ii) of Proposition 2 must hold.

We now formulate a continuous-time version of Theorem A. Assume that T :
[0,∞) × X+ → X+ is a continuous semiflow. We write Tt(x) = T (t, x). The
semiflow properties are (i) T0(x) = x for all x ∈ X+, and (ii) Tt ◦ Ts = Tt+s for
t, s ≥ 0. The analogous hypotheses to (H1)–(H4) above are given below.

(H1) T is strictly order-preserving with respect to <K . That is, x <K x̄ implies
Tt(x) <K Tt(x̄). For each t > 0, Tt : X+ → X+ is order compact.

(H2) Tt(0) = 0 for all t ≥ 0 and 0 is a repelling equilibrium. There exists a
neighborhood U of 0 in X+ such that for each x ∈ U , x 6= 0, there is a t0 > 0
such that Tt0(x) /∈ U .

(H3) Tt(X
+
1 × {0}) ⊂ X+

1 × {0} for all t ≥ 0. There exists x̂1 � 0 such that
Tt((x̂1, 0)) = (x̂1, 0) for all t ≥ 0, and Tt((x1, 0)) → (x̂1, 0) as t → ∞ for all
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x1 6= 0. The symmetric conditions hold for T on {0} ×X+
2 with equilibrium

point (0, x̃2).
(H4) If x = (x1, x2) ∈ X+ satisfies xi 6= 0, i = 1, 2, then Tt(x) � 0 for t > 0. If

x, y ∈ X+ satisfy x <K y and either x or y belongs to IntX+, then Tt(x)�K

Tt(y) for t > 0.

As in the discrete case, the boundary equilibria are given by (1.1). We say that
E∗ is a positive equilibrium of T if it belongs to the interior of X+. If x ∈ X+

then O(x) = {Tt(x) : t ≥ 0} is called the positive orbit of T . Its omega limit set is
defined in the usual way.

Theorem B. Let (H1)–(H4) hold. Then the omega limit set of every orbit is
contained in I and exactly one of the following holds:

(a) There exists a positive equilibrium E∗ of T in I.
(b) Tt(x)→ E1 as t→∞ for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2.
(c) Tt(x)→ E2 as t→∞ for every x = (x1, x2) ∈ I with xi 6= 0, i = 1, 2.

Finally, if (b) or (c) hold, x = (x1, x2) ∈ X+ \ I and xi 6= 0, i = 1, 2, then
either Tt(x)→ E1 or Tt(x)→ E2 as t→∞.

The obvious counterparts to Corollary 1 and Proposition 2 hold in the continuous
case as well.

The following example shows that case (c) of Theorem B may hold yet some
open set of initial data outside I is attracted to E1. Consider the planar system

x′1 = x1(1− x1 − µx2)3

x′2 = x2(1− x1 − x2)

where µ > 1. It is easy to verify that all positive solutions beginning in I =
[0, 1]× [0, 1] are attracted to E2 = (0, 1) but that solutions starting at (x1, x2) near
E1 = (1, 0) and satisfying x1 > 1, 0 < x2 < (x1 − 1)2 are attracted to E1. The
time-one map corresponding to the flow gives a similar example for Theorem A.

The semiflow T on X+ generates a monotone dynamical system which is strongly
monotone on IntX+ but not on X+. For strongly monotone systems, M.W. Hirsch
[5] showed that the generic solution converges to the set of equilibria. This result
was later improved by Polacik [14] and Smith and Thieme [17], under additional
smoothness conditions, to conclude that the generic solution converges to a single
equilibrium. See [16] for a self-contained treatment. In the present case, these
results do not generally apply but see [10], [15], [16], [18] for cases in which they
do.

The main tool in our proof of Theorem A is an extension of a result of Dancer and
Hess [2] concerning a strictly order preserving map on an order interval generated
by two ordered fixed points. This extension, treated in the next section, is of
independent interest. The main results are proved in a subsequent section.

2. The trichotomy of Dancer and Hess

Let Y be a Banach space and Y + be a cone in Y . As usual, we denote by ≤ and
< the partial order relation generated by Y +. If Y + has nonempty interior in Y ,
we write x� y if y − x ∈ IntY +. If x < y, we define [x, y] = {u ∈ Y : x ≤ u ≤ y}
and refer to it as the order interval generated by x and y. If x � y, set [[x, y]] =
{u ∈ Y : x� u� y}. If C is a convex subset of Y and e ∈ C, then e is an extreme
point of C if there do not exist points x, y ∈ C \ {e} such that e = 1/2(x+ y).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4088 S. B. HSU, H. L. SMITH, AND PAUL WALTMAN

Let U ⊂ Y and S : U → U be a continuous function. S is strictly order-
preserving if

x < y ⇒ S(x) < S(y).

A fixed point u of S is said to be an ejective fixed point if there is an open
subset V of U containing u such that for every x ∈ V \ {u} there is an integer m
for which Sm(x) /∈ V . In the previous section we called u a repelling fixed point.
However, the term ejective is more commonly used in the fixed point literature. Let
Z denote the set of integers. A sequence {xn}n∈Z in U is called an entire orbit of
S if xn+1 = S(xn) for all n ∈ Z. If there exist fixed points u and v of S in U such
that xn → v as n→∞ and xn → u as n→ −∞, then we say that the entire orbit
joins u to v.

The next result is a modification of a result of Dancer and Hess [2, Proposition
1]; see also Hess [6, Proposition 2.1].

Proposition 2.1. Let u1 < u2 be fixed points of the strictly order-preserving con-
tinuous function S : U → U , let I ≡ [u1, u2] ⊂ U , and suppose that S(I) has com-
pact closure in I. Suppose further that S has an ejective fixed point e ∈ I \ {u1, u2}
which is an extreme point of I. Then at least one of the following holds:

(a) S has a fixed point distinct from u1, u2, e in I.
(b) There is an entire orbit {xn}n∈Z of S joining u1 to u2 and satisfying xn+1 >

xn, n ∈ Z.
(c) There is an entire orbit {yn}n∈Z of S joining u2 to u1 and satisfying yn+1 <

yn, n ∈ Z.

Proof. The proof is a minor modification of the proof given in [2] so we will merely
indicate the modifications to that proof. The key point is that (Nussbaum [12], [13])
the fixed point index of an ejective fixed point that is an extreme point of I vanishes,
i(S, I, e) = 0, and therefore from the assumption that (a) does not hold and the
homotopy argument in [2] leading to i(S, I, u2) = 1 and i(S, I, I) = 1, the additivity
of the index still implies that i(S, I, u1) = 0 as in the proof in [2]. Furthermore, as
e is an ejective fixed point, no strictly monotone sequence of iterations Sn(u) can
satisfy Sn(u) → e as n → ∞. As a technical point, one should also choose δ0 > 0
in the proof of Dancer and Hess so that u2, e /∈ BI(0, δ0). The remainder of the
proof in [2] is unaffected by the existence of e.

Our Proposition 2.1 differs from Proposition 1 in [2] by allowing for the existence
of an ejective fixed point on the boundary of I provided that it is an extreme point
of I. It is clear from the proof that one can allow for any finite number of ejective
fixed points that are also extreme points. Furthermore, as in Wu et al. [20] and
noting the remarks following the proof of Theorem 3.4 in [13], the hypothesis that
S(I) has compact closure in I can be relaxed to requiring that S(I) ⊂ I and that
S is a strict-set-contraction with respect to a measure of noncompactness. Finally,
the assumption that the ejective fixed point e is an extreme point can be dropped if
I is not contained in any finite dimensional affine linear subspace of Y and can be
weakened in any event (see [12], [13]). Actually, we use only two properties of the
fixed point e implied by the assumptions that it is ejective and an extreme point.
Namely, that its fixed point index is zero and that it is not the limit of a strictly
monotone sequence of iterations.
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An ejective fixed point occurs naturally in competitive systems as formulated in
section 1. The set I can be viewed as an order interval I = {x ∈ X : E2 ≤K x ≤K
E1} containing the ejective fixed point E0 which is an extreme point.

It is worth noting that as u1 < e < u2, Proposition 1 of [2] applies to S on [u1, e]
and on [e, u2]. Obviously, the corresponding alternative (b) of that result cannot
hold for S on [u1, e] since e is an ejective fixed point. Similarly, the corresponding
alternative (c) of that result cannot hold for S on [e, u2].

The following example shows that more than one of the alternatives (a)–(c) may
hold. Let Y = R2 with cone Y + = {y ∈ Y : yi ≥ 0}, 0̂ = (0, 0), 1̂ = (1, 1), I = [0̂, 1̂],
and let S be the time-one map corresponding to the flow of the planar system:

x′ = x(1− x), y′ = y(1− y).

Clearly, S is strictly order-preserving and, in addition to the fixed points 0̂ and 1̂, it
fixes the points (0, 1) and (1, 0) and has a monotone entire orbit, Sn(1/2, 1/2), n ∈
Z, joining 0̂ to 1̂. Thus, alternatives (a) and (b) hold. It is easy to argue that if Y +

has nonempty interior and u1 � u2, then (b) and (c) cannot simultaneously hold.
For in that case, since yn → u2 (xn → u1) as n → −∞, there exists an n0 ∈ Z
such that u1 � yn0 and there exists an m0 such that xm0 � yn0 . As S is strictly
monotone, we get

xm0+l = Sl(xm0) < Sl(yn0) = yn0+l, l ≥ 0.

Letting l →∞ leads to the contradiction u2 ≤ u1.
The next result says that if Y + has nonempty interior in Y and if u1, u2, e are

the only fixed points on the boundary of I, then precisely one of the alternatives
(a)–(c) can hold.

Proposition 2.2. In addition to the hypotheses of Proposition 2.1, assume that Y +

has nonempty interior in Y and u1 � u2. If u ∈ I \ {u1, u2, e} and Su = u implies
that u ∈ [[u1, u2]], then precisely one of the alternatives (a)–(c) of Proposition 2.1
holds.

Proof. We have already noted that u1 � u2 implies that alternatives (b) and (c)
are incompatible so it remains only to show that (a) and (b) and (a) and (c) are
incompatible. Suppose that (a) and (b) hold for S and let {xn}n∈Z be the entire
orbit described in (b). Then S has a fixed point u ∈ [[u1, u2]] and xn0 � u for
some n0 so we conclude from strict monotonicity of S that xn0+l < u for all l ≥ 0.
Letting l → ∞ leads to the contradiction u2 ≤ u. A similar contradiction follows
in case (a) and (c) hold.

The following result is well-known but we include a proof for completeness. Re-
call that x ∈ E is a maximal element of a set E if e ∈ E and x ≤ e implies that
x = e. A minimal element is similarly defined.

Lemma 2.3. Let E be a compact subset of Y . Then E contains a maximal (min-
imal) element.

Proof. By Zorn’s lemma, it suffices to show that if F is a totally ordered subset of
E, then F has an upper bound in E. As F can be viewed as a net in the compact
space E, it has a cluster point x ∈ E. This means that given a neighborhood U of
x and f ∈ F , there exists f ′ ∈ F satisfying f ≤ f ′ and f ′ ∈ U . Therefore, given
f ∈ F we can construct a sequence fn of points of F such that f ≤ fn ≤ fn+1
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for all n and fn → x. Letting n → ∞ in this inequality leads to f ≤ x, and since
f ∈ F was arbitrary, x is the desired upper bound.

We conclude this section by formulating a semiflow version of Proposition 2.1.
An entire orbit of a semiflow S = {St}t≥0 on U is a continuous map γ : R → U
satisfying St(γ(s)) = γ(t+ s) for t ≥ 0 and s ∈ R.

Proposition 2.4. Let u1 < u2 be equilibria of the strictly order-preserving semi-
flow St : U → U , let I ≡ [u1, u2] ⊂ U , and suppose that St(I) has compact closure in
I for each t > 0. Suppose further that S has an ejective equilibrium e ∈ I \ {u1, u2}
which is an extreme point of I. Then at least one of the following holds:

(a) There is an equilibrium in I distinct from u1, u2, e.
(b) There is an entire orbit γ : R → I satisfying γ(t1) < γ(t2) if t1 < t2 and

γ(−∞) = u1, γ(+∞) = u2.
(c) There is an entire orbit γ : R → I satisfying γ(t2) < γ(t1) if t1 < t2 and

γ(+∞) = u1, γ(−∞) = u2.

Proof sketch. Our proof outline borrows key ideas from the outline given in [2],
[6] but appears to be significantly different and less economical. As in [2], [6], we
assume hereafter that alternative (a) does not hold. The following points address
issues related to the ejective equilibrium e.

First, we verify that e is an ejective fixed point of the map S1/n for all large
integers n. If x ∈ Y and r > 0, we denote by B(r, x) the open ball of radius
r centered at x. As e is an ejective equilibrium for the semiflow S, there exists
r > 0 such that for each x ∈ B(r, e) ∩ I, x 6= e, there is an ε = ε(x) > 0 and
t = t(x) > 0 such that Ss(y) /∈ B(r, e) for all y ∈ B(ε, x) and s ∈ (t − ε, t+ ε). As

C = S1(B(r, e) ∩ I)∩B(r, e) is compact, there is a finite subcover {B(ε(xi), xi)}pi=1

of the cover {B(ε(x), x)}x∈C of C. Consequently, if x ∈ C, then for some i, Ss(x) /∈
B(r, e) for s ∈ (ti − εi, ti + εi), where ti = t(xi) and εi = ε(xi). Now choose N such
that N−1 < εi, 1 ≤ i ≤ p. We claim that e is an ejective fixed point of the map
S1/n if n ≥ N . We will show that if x ∈ (B(r, e) ∩ I) \ {e}, then Sk1/n(x) /∈ B(r, e)

for some positive integer k. If S1(x) /∈ B(r, e), then we are done so we can suppose
that S1(x) ∈ B(r, e) and therefore it belongs to C. Consequently, S1+s(x) /∈ B(r, e)
for all s ∈ (ti − εi, ti + εi) for some i = 1, 2, . . . , p. As 1/n < εi, there is a positive
integer k such that S1+k/n(x) /∈ B(r, e). This completes the proof of the claim.

Now we show that given ε > 0, there exists δ > 0 such that if St(x) = x for some
x ∈ I and t ∈ (0, δ), then either x = e or x ∈ B(ε, u1) ∪ B(ε, u2). First note that

J = ω(I) ≡
⋂
τ>0

⋃
t≥τ St(I) is nonempty, compact, invariant and attracts I (see

[3]). It is easy to see that if St(x) = x for some t > 0, then x ∈ J . If the claim is
false, then for some ε > 0 and every integer n ≥ 1, there are points xn and times
tn > 0 with tn → 0 such that Stn(xn) = xn, xn 6= e and ‖xn − ui‖ ≥ ε. As xn ∈ J ,
we can assume that xn → x where x ∈ I. A standard argument establishes that x is
an equilibrium of the semiflow S. By assumption, the only equilibria are u1, u2 and
e. Since ‖x−ui‖ ≥ ε, it follows that x 6= ui, i = 1, 2. But x 6= e either as otherwise
xn ∈ B(r, e) \ {e} for all large n, where B(r, e) is as in the previous paragragh. By
continuity of S, we may assume that St(xn) ∈ B(r, e) for 0 ≤ t ≤ 1 for all large
n. In that case, St(xn) ∈ B(r, e) for all t ≥ 0, contradicting the ejectivity of e.
This contradiction shows that x 6= e. As there are no other equilibria in I, we have
reached a contradiction to our assumption that the claim is false.
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Using the results of the previous paragraph, for each positive integer n, we can
choose a positive integer mn such that mn < 1/n and if S1/mn(x) = x, then x = e
or x ∈ B(1/n, u1) ∪ B(1/n, u2). We can assume that mn < mn+1 for all n. Now
applying Lemma 2.3 and the compactness of the set of fixed points, there exist a
maximal fixed point vn of S1/mn in B(1/n, u1) and a minimal fixed point wn in
B(1/n, u2) ∩ [vn, u2]. Consequently, the only fixed points of S1/mn in [vn, wn] are
vn, un and possibly e, if vn < e < wn. If the latter holds then e is an extreme point
of [vn, wn] and an ejective fixed point. Now apply Proposition 2.1, if e ∈ [vn, wn],
or Proposition 1 of [2] otherwise, to conclude that for each n there is an entire orbit
{xnk}k∈Z of S1/mn satisfying either (1) xnk < xnk+1 and the orbit connects vn to wn,
or (2) xnk+1 < xnk and the orbit connects wn to vn. By passing to a subsequence if
necessary, we assume that (1) holds for all n. Note that for all n, {xnk}k∈Z ⊂ J .

Let F = {x ∈ J : St(x) ≥ x, t ≥ 0} be the set of subequilibria in J . Then
F is compact and positively invariant. Its omega limit set, ω(F ), is invariant and
contains F (see [3]). It is easy to check that if, for each integer l, there exist a
positive integer nl and an integer kl such that nl → ∞ and xnlkl → x, then x ∈ F .
Since vn → u1 and xnk → vn as k → −∞, for each ε > 0, one can find a sequence
xnlkl as above and satisfying ε/2 ≤ ‖u1 − xnlkl ‖ ≤ ε. As this sequence belongs to the
compact set J , we conclude that there exist points of F arbitrarily close to u1. Let
yn ∈ F \ {u1} and yn → u1. Obviously, St(yn) > yn (yn is not an equilibrium) and
St(yn) → u2 as t → ∞. Now u1 does not belong to the compact set F ∩ [e, u2] so
there exists r > 0 such that B(r, u1) has no point in common with this set. For each
n, there exists tn > 0 such that ‖Stn(yn)− u1‖ = r and tn →∞ since yn → u1. It
follows that there is a subsequential limit z of {Stn(yn)} which belongs to ω(F ) and
satisfies ‖z − u1‖ = r. As ω(F ) is an invariant subset of F , there exists an entire
orbit γ : R → ω(F ) of S through z (see [3]). Because the entire orbit belongs to
F , it is monotone and since z is not an equilibrium, the orbit is strictly monotone.
Its limits as t→ ±∞ are equilibria and therefore its limit as t→ +∞ must be u2.
Since y does not belong to F ∩ [e, u2], it follows that γ(t)→ u1 as t → −∞. This
completes our sketch.

If Y + has nonempty interior in Y , u1 � u2, and whenever u ∈ I is an equilibrium
of S distinct from u1, u2, e, it follows that u1 � u � u2, then precisely one of
alternatives (a)–(c) of Proposition 2.4 holds. The proof mirrors the proof in the
discrete case.

3. Proof of main results

In this section, we use the notation developed in section 1. We begin by consid-
ering the restriction of T to the set

I ≡ [E2, E1]K ≡ {x ∈ X : E2 ≤K x ≤K E1} = [0, x̂1]× [0, x̃2].

Note that I is an order interval with respect to the ordering ≤K . Our first result
is an immediate consequence of Proposition 2.1.

Theorem 3.1. Let T satisfy (H1), (H2) and (H3). Then T (I) ⊂ I and at least
one of the following holds:

(a) T has a fixed point distinct from E0, E1, E2 in I.
(b) There is an entire orbit {xn}n∈Z of T in I joining E2 to E1 and satisfying

xn <K xn+1.
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(c) There is an entire orbit {xn}n∈Z of T in I joining E1 to E2 and satisfying
xn+1 <K xn.

Proof. We apply Proposition 2.1 to T on the order interval I ⊂ X+. By strict
monotonicity of T with respect to <K , we conclude that T (I) ⊂ I. Observe that
E0 is an extreme point of I and, by (H2), it is an ejective fixed point of T . Since
T is order compact, it follows that T (I) has compact closure in I. Therefore, the
hypotheses of Proposition 2.1 are satisfied and Theorem 3.1 follows from it.

As observed in the previous section, the inequality E2 �K E1 implies that
alternatives (b) and (c) cannot both hold. Next we show that if (H4) is satisfied,
then exactly one of (a)–(c) holds.

Proposition 3.2. Let T satisfy (H1)–(H4). Then precisely one of alternatives
(a)–(c) of Theorem 3.1 hold. Furthermore, if T has a fixed point E∗ in I distinct
from E0, E1, E2, then E2 �K E∗ �K E1 and, in particular, 0� E∗. If (b) holds,
then

E2 �K xn �K xn+1 �K E1,

while if (c) holds, then

E2 �K xn+1 �K xn �K E1,

for all n ∈ Z.

Proof. If E∗ = (x1, x2) is a fixed point distinct from E0, E1, E2, then xi 6= 0 for
i = 1, 2 by (H3). By (H4), 0 � E∗ = T (E∗) and by (H4), we may conclude that
E2 �K E∗ �K E1. Proposition 2.2 implies that precisely one of the alternatives
(a)–(c) holds. Suppose now that (b) holds. If xn = (x1, x2), then xi 6= 0 for i = 1, 2
by (H3). As n is arbitrary and xn = T (xn−1), we conclude that 0 � xn. Since
E2 <K xn−1 <K E1, it follows from (H4) that E2 �K xn �K E1. Similarly,
xn−1 <K xn implies xn �K xn+1 by (H4).

Lemma 3.3. Let T satisfy (H1)–(H4). If alternative (b) of Theorem 3.1 holds,
then Tn(x) → E1 for all x = (x1, x2) ∈ I such that xi 6= 0, i = 1, 2. If alternative
(c) holds, then Tn(x)→ E2 for all such x.

Proof. Suppose (b) holds. By (H4), T (x) � 0. As E2 <K T (x) <K E1, (H4)
implies that E2 �K T 2(x) �K E1. We may choose n ∈ Z such that E2 �K

xn �K T 2(x). By monotonicity, it follows that xn+l �K T l+2(x) �K E1 for
l = 1, 2, . . . . Letting l →∞ and noting that O(x) has compact closure leads to the
desired conclusion since xm → E1.

Proof of Theorem A. In order to prove Theorem A, we must extend Lemma 3.3 by
removing the restriction that x ∈ I. We begin by showing that I attracts all orbits.
According to (H4), we may as well assume from the start that 0 � Tn(x) for all
n. If x = (x1, x2), let u = (x1, 0) and v = (0, x2) and observe that v <K x <K u.
Consequently,

Tn(v) <K Tn(x) <K Tn(u)

for all n ≥ 1. (H1) implies that Tn(v) → E2 and Tn(u) → E1. In particular,
if s > 1, then Tn(x) ∈ [0, sx̂1] × [0, sx̃2] for all large n. As T is order compact,
we conclude that O(x) has compact closure in X . It follows that the omega limit
set is nonempty, compact, invariant (T (ω(x)) = ω(x)), and invariantly connected
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[11]. The latter means that ω(x) is not the disjoint union of two nonempty, closed,
invariant subsets. From the inequality above, ω(x) ⊂ I.

Suppose that alternative (b) of Proposition 3.2 holds. Let z ∈ ω(x) and z =
(z1, z2). If zi 6= 0 for i = 1, 2, then T (z)� 0 and therefore E2 �K T 2(z)�K E1 by
(H4). In this case, since T 2(z) ∈ ω(x), there exists m such that E2 �K Tm(x)�K

E1. But then Tn(x)→ E1 as desired. Therefore, we may now assume that for every
z ∈ ω(x), zi = 0 for exactly one index i, either i = 1 or i = 2 (0 /∈ ω(x) or else we are
in the previous case). Now ω(x) is invariantly connected so by (H3), either z1 = 0
for all z ∈ ω(x) or z2 = 0 for all z ∈ ω(x). By (H3), the only compact invariant
subset of X+

1 × {0} which does not include (0, 0) is E1. A symmetric conclusion
holds for the other ‘axis’ {0} × X+

2 . We conclude that either ω(x) = {E2} or
ω(x) = {E1}.

Proof of Corollary 1. The existence of a positive fixed point of T in case (i) holds
follows immediately from Theorem A since alternative (b) ((c)) of the theorem
implies that E2 (E1) is unstable relative to I in the order topology (or the usual
topology). If case (iii) holds, then, by Theorem A, z ∈ I and it is obvious from
Theorem A that neither alternative (b) nor (c) can hold. Finally, if alternative
(b) of Theorem A holds, then by Proposition 3.2, there is an entire orbit {xn}n∈Z
satisfying E2 �K xn �K xn+1 �K E1 and xn → E1 as n→∞. This implies that
E1 is stable (actually asymptotically stable) relative to I in the order topology. In
fact, to show the stability relative to I in the order topology, it suffices to show that
given x∗ ∈ X satisfying x∗ �K E1, there exists y∗ ∈ X with y∗ �K E1 such that
if y∗ �K x ≤K E1, then x∗ �K Tn(x) ≤K E1 for n ≥ 1. As xn → E1, there exists
xn such that x∗ �K xn �K E1. If xn �K x ≤K E1, then x∗ �K xn �K xn+l <K
T l(x) ≤K E1 for l ≥ 1 so y∗ can be taken to be xn and E1 is stable relative to I
in the order topology. This contradicts (ii). Similarly, alternative (c) of Theorem
A implies that E2 is stable relative to I in the order topology, contradicting (ii).
Thus alternative (a) must hold if (ii) holds.

Proof of Proposition 2. Let x∗ denote a positive fixed point of T , which by (H4)
must satisfy E2 �K x∗ �K E1. The set W = {x̄ : T (x̄) = x̄, x∗ ≤K x̄ �K E1}
is partially ordered by ≤K . Using the compactness of the set of fixed points, the
fact that E1 is an isolated fixed point, and Lemma 2.3 one can show that W has a
maximal element which we call E∗. Obviously, the order interval [E∗, E1]K contains
no fixed points of T other than E∗ and E1. Now we use the result of Dancer and
Hess [2], our Proposition 2.1 but without the ejective fixed point e, to conclude
that there exists a monotone entire orbit {xn} which either connects E∗ to E1 or
connects E1 to E∗. Suppose the former holds. Then, arguing as in the proof of
Proposition 3.2, we have E∗ �K xn �K xn+1 �K E1 for all n ≥ 1. If x = (x1, x2)
satisfies E∗ <K x ≤K E1 and x2 6= 0, then E∗ <K T (x) <K E1 and T (x) is positive
so E∗ �K T 2(x) <K E1. We can choose xn so that xn �K T 2(x) and it follows
by monotonicity that Tn(x) → E1. The same conclusion holds if x2 = 0 by (H3).
A similar argument shows that (i) holds if {xn} connects E1 to E∗.

It should be pointed out that the preceding proofs can be easily modified to allow
a slight weakening of (H4). If x = (x1, x2) satisfies xi 6= 0, then it suffices to assume
that there exists an integer m such that 0� Tm(x). In the continuous version, we
could assume that for each such x, there exists t0 > 0 such that Tt0(x)� 0.
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The proof of Theorem B is obtained from Proposition 2.4 by straightforward
extensions of the results of section 3 to the case of semiflows.
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