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Abstract

The matching law describes how individual for-
agers often allocate their choices, occasionally
suboptimally, in experimental situations. The
‘ideal free distribution’ predicts how groups of
foraging agents should distribute themselves, op-
timally, over patchy environments. This paper
explores the possibility that a single behavioural
heuristic can account for both phenomena, allow-
ing the potential suboptimality of matching to
be understood in terms of adaptation to a group
context. Two simple heuristics are compared, ε-
sampling and ω-sampling: the latter is success-
ful in both cases, but contrary to prior claims in
the literature the former is successful in neither.
These results emphasise the importance of multi-
ple environmental value estimates in effective de-
cision making.

1 Introduction

The principle of ‘ecological rationality’ holds that cogni-
tive mechanisms are best understood as fitting the de-
mands and structure of particular environmental niches,
as opposed to the classical view of cognition approximat-
ing a ‘Laplacean superintelligence’ for achieving “general
purpose, optimal performance in any situation” (Bullock
& Todd, 1999, p.3). An implication of ecological ratio-
nality is that cognitive mechanisms operating outside of
their proper niche may deliver irrational behaviour, in
much the same way that a fish out of water is disadvan-
taged with respect to breathing.

This paper focuses on Herrnstein’s (1961) ‘matching
law’, which describes how individual foragers allocate
their choices in many experimental situations. Match-
ing behaviour is very widespread, characterising much
decision making activity in both humans and animals,
and importantly, whilst often optimal, it is not always
so. Here, we explore the idea that matching can be ac-
counted for by an ecologically rational decision making
heuristic well adapted for decision making in a group con-
text, from this perspective the occasional suboptimality

(or irrationality) of matching would be a consequence of
shifting from a group to an isolated individual environ-
ment. A broader motivation is to provide an alternative,
empirically grounded perspective on the problem of ‘ac-
tion selection’ (see Tyrrell, 1993, for example), a term
which is often used synonymously with decision making
in the field of adaptive behaviour.

The group context we consider is the ‘ideal free dis-
tribution’ (IFD), which describes the equilibrium (and
optimal) distribution of foragers over an environment
with patchy resource distribution (Fretwell, 1972). Even
though the IFD and the matching law derive from differ-
ent disciplines (the former from behavioural ecology, the
latter from psychology), they present many similarities:
(1) the matching law is to do with individual choice and
the IFD is to do with its collective consequences; (2) they
display striking mathematical congruency (Gray, 1994;
Baum & Kraft, 1998, see also sections 2 and 3); and (3)
perhaps most importantly, the laboratory environments
employed by psychologists are often interpreted as ab-
stractions of natural foraging environments (Dallery &
Baum, 1991; Shettleworth, 1988). The suggestion that a
single behavioural dynamic may underlie both phenom-
ena is therefore not new (Houston, 1986; Gallistel et al.,
1991; Thuisjman et al., 1995; Seth, 1999). The present
contribution is primarily to explicitly assess candidate
heuristics, to demonstrate success in one case, and to re-
pudiate equivalent claims of success in another (Thuisj-
man et al., 1995).

Two simple heuristics are compared, ε-sampling and
ω-sampling (fully defined later), differing primarily in
that the former maintains a single estimate of environ-
ment ‘value’ and the latter maintains multiple estimates.
Contrary to the claims of Thuisjman et al. it is shown
that ε-sampling fails to account for either matching or
the IFD, but that the novel ω-sampling heuristic is suc-
cessful in both cases.

2 The ideal free distribution

Given a patchy distribution of resources, the IFD de-
scribes the equilibrium distribution of foragers such that
no forager can profit by moving elsewhere, regardless of



the local resource quality (Fretwell, 1972); in this state
all foragers will obtain equal resources.1 In order to make
specific predictions, IFD models require a way of relating
the per forager intake rate Wi (s−1) to both the forager
density Ni and the resource availability Fi on each patch
i. The following equation is adapted from Sutherland
(1983) and Milinski and Parker (1991):

Wi =
QFiF

∗

Ni
m , (1)

in which Q (ms−1) is a measure of patch-independent
forager efficiency, Fi ∈ [0.0, 1.0] (dimensionless) repre-
sents the resource fraction in patch i, F ∗ represents the
total resources available, and m (dimensionless) is the
interference constant, which is usually taken to vary be-
tween 0.0 (no interference) and 1.0 (high interference),
where interference is defined as the (more-or-less imme-
diately reversible) decline in intake due to the presence
of conspecifics (Goss-Custard, 1980; Sutherland, 1983).2

Across two patches A and B, assuming WA = WB (the
IFD condition):

log
NA

NB
=

1
m

log
FA

FB
, (2)

this being the ‘generalised habitat matching rule’ of Fa-
gen (1987). Also, taking the total forager number to be
NT (= NA + NB), it is possible to predict both NA and
NB directly (Tregenza, Parker, & Thompson, 1996):

NA =
NT

(10−c + 1)
, c =

log FA

FB

m
. (3)

In what follows, we will use equation 3 to assess the
ability of ε-sampling and ω-sampling to lead populations
to the IFD under different levels of interference.

2.1 Resource allocation

Both ε-sampling and ω-sampling operate over discrete
time intervals, and as such it is possible to interpret the
resource level Fi in at least two ways. The first is simply
as specifying a resource level that contributes to the for-
ager intake at every time-step. This process of ‘continu-
ous allocation’ (C-allocation) is the usual interpretation
in the literature (see, for example, Bernstein, Kacelnik,

1This last clause requires the assumption that foragers are able
to move, without cost, to the patch in which their rewards are
maximised.

2Values of m in excess of 1.0 are possible, and can be expected
in cases in which prey items can be lost (for example, by fleeing) as
a result of interference. Note also that the model described here is
known in the literature as a ‘standing stock’ or ‘interference’ model
for the reason that it assumes relatively constant resources in each
patch. Another popular choice is the ‘immediate consumption’
model, which assumes a steady input of immediately consumed
resources. With m = 1.0 in equation 1, but not otherwise, the
two models are equivalent; see Van der Meer and Ens (1997) for
further discussion.

& Krebs, 1991), and in this case equation 1 can be used
at every time-step, exactly as it is written. The second
approach is to understand Fi as as specifying a proba-
bility that patch i will yield the fixed resource quantity
F ∗ to each forager at each time-step. Under this process
of ‘probabilistic allocation’ (P-allocation), Wi becomes
a random variable:

Wi =
{

QF∗

Ni
m , p(Fi)

0, p (1− Fi)
(4)

The IFD condition of equal intake rates across all patches
in this case must apply to expected intake rates over many
time-steps. We can write:

E (Wi) =
(

QF ∗

Ni
m

)
Fi.

from which the condition E (WA) = E (WB) leads to the
same generalised habitat matching law described above
(equation 2).

No claims are made for the biological relevance of
the distinction between C-allocation and P-allocation,
it is motivated by analogous resource allocation meth-
ods often employed in ‘matching law’ experiments, de-
scribed below. One possible intuition, however, is that
it may reflect a difference between relatively accessible
and widespread types of resource (grass, for example),
and relatively inaccessible yet potent types of resource
(truffles, for example).

3 The matching law

Moving on to the matching law, Krebs and Kacelnik
(1991) offer the following definition: “the matching law
states that the animal allocates its behaviour to two al-
ternatives in proportion to the rewards it has obtained
from them” (p.131). If the proportionality is direct,
this is known as ‘strict’ matching (Davison & McCarthy,
1988):

BA

BB
=

RA

RB
, (5)

where BA and BB represent the rate of response to op-
tions A and B, and RA and RB represent the resources
obtained in each case. The ‘generalised’ matching law
(Baum, 1974) includes parameters for bias (b) and sen-
sitivity (s) to account for the departures from strict
matching often observed in empirical data:

log
BA

BB
= s.log

RA

RB
+ log(b). (6)

Of the similarities between the IFD and matching
noted earlier, their mathematical congruence should now
be particularly evident (compare equations 2 and 6),
but there are also profound differences: whereas habi-
tat matching predictions are normative, the individual



matching law is an observed relation, and whereas habi-
tat matching is expressed in terms of available resources
(Fi), the individual matching law is expressed in terms
of obtained resources (Ri). (Notice that Fi can still be
used in the context of individual matching even if it is not
represented in the matching equations themselves, and
indeed it is necessary to do so in order to describe the
various ‘schedules of reinforcement’ by which resources
are allocated in matching experiments.3)

Psychologists have investigated matching under many
different reinforcement schedules, four of which are con-
sidered here, each with two options A,B with associated
resource availabilities FA, FB :

• Basic: Each response is rewarded with an amount
determined by the relative values of FA and FB . Re-
sponses are rewarded at every time-step. This is anal-
ogous to C-allocation.

• Concurrent (conc) VR VR: A variable ratio (VR)
schedule indicates that an option must receive a cer-
tain number of responses before a reward is given.
This number can vary around a mean value, and can
therefore be implemented by associating a probabil-
ity of reward with each option. FA and FB are here
interpreted as the mean values, so that conc VR VR
is analogous to P-allocation.

• Concurrent (conc) VI VI: A variable interval (VI)
schedule requires that a certain delay elapse after a
reward on a given option until that option can be
rewarded again. This delay time can vary around a
mean, and these means can differ between response
options (FA and FB are interpreted as the delays).

• Concurrent (conc) VI VR: This is a ‘mixed’ schedule
in which one choice option is rewarded under a VI
schedule, and the other under a VR schedule.

Under both basic and conc VR VR schedules, the gen-
eral consensus in the literature is that exclusive choice
for the most profitable option is observed. There is noth-
ing counterintuitive about this; if repeatedly offered a
choice between 80p and 40p, any sensible subject would
presumably choose the former 100% of the time, and
the same would apply to repeated choices between odds
of 3:1 and odds of 5:1. Observations of exclusive choice,
although consistent with the matching law, are only triv-
ial instances of its applicability, as such these schedules
present relatively undemanding assessments of matching
behaviour.

The conc VI VI schedule is more interesting. Unlike
basic and conc VR VR, the reward rate can be largely
independent of the response rate, such that matching

3The terms ‘reinforcement’ and ‘reward’ are used interchange-
ably; ‘reinforcement’ is employed only when it helps to maintain
consistency with the psychological literature.

to obtained resources can be achieved with a variety of
response distributions, including - but not limited to -
exclusive choice. Furthermore, under conc VI VI, ex-
clusive choice is no longer optimal (Herrnstein, 1970).
Matching to obtained resources under conc VI VI has
been observed for both non-humans animals (Davison &
McCarthy, 1988) and human subjects (Conger & Killeen,
1974), in all cases without exclusive choice.

The final schedule, conc VI VR, also leads to ob-
servations of matching to obtained resources, in some
cases in the trivial form of exclusive choice, and in other
cases non-trivially, depending on the relative produc-
tivities of the two component schedules (Herrnstein &
Heyman, 1979; Herrnstein & Vaughan, Jr., 1980). The
most important feature of this schedule is its relation to
the reward maximisation. Unlike all previous schedules,
matching to obtained resources (whether trivial or not) is
not optimal. Conc VI VR therefore enables exploration
of the potential suboptimality associated with matching.
The consensus in the literature is that matching to ob-
tained resources - not maximisation - is observed under
conc VI VR (Herrnstein & Heyman, 1979; Herrnstein,
1997).

4 A Description of the model

With this background in place, we can now turn to the
heuristics themselves.

4.1 ε-sampling

The idea behind ε-sampling is simply that agents stay
on a ‘current’ patch, and occasionally ‘sample’ other
patches, switching if and only if the ‘sampled’ patch is
better.

More formally, given two alternatives A and B, an ε-
sampler initially selects A or B at random. At each sub-
sequent time interval, it abides by its choice with proba-
bility (1− ε), and samples with probability ε, remaining
with the sampled option (with probability 1 − ε) if the
reward from this option exceeds a ‘critical level’ (E),
which is a dynamic estimate of the ‘value’ of the envi-
ronment in which more recent rewards are more strongly
represented to a degree specified by an adaptation rate
γ. The operational definition of ε-sampling given below
is from Thuisjman et al. (1995):

Definition 1 Let γ, ε ∈ (0, 1), let M(t) ∈ A,B repre-
sent the option selected and let r(t) be the resources ob-
tained at time t ∈ {1, 2, 3 . . .}. Define E(1) = 0 and

E(t + 1) = γE(t) + (1− γ)r(t)

for (t ≥ 1). Then E(t) is called the critical level at
time t. Let Aε denote the behaviour of choosing A with
probability (1 − ε) and B otherwise. Let Bε be defined
similarly. The ε−sampling strategy is then defined by
playing:



at (t = 1) use A0.5,
at (t = 2) use M(1)ε,
at (t > 2) use M(t− 1)ε in case M(t− 1) 6= M(t− 2)
and r(t− 1) > E(t− 1), otherwise use M(t− 2)ε.

4.2 ω-sampling

The novel ω-sampling heuristic extends ε-sampling by
allowing patch switching to be driven directly by esti-
mates of patch value as well as by sampling excursions;
ω-samplers also maintain concurrent estimates of each
(visited) patch, rather than (as for ε-sampling) a single
estimate of environmental quality as a whole. (The im-
plications of relaxing this strong assumption in relatively
complex environments are discussed in section 5.2.)

For a two patch environment, a ω-sampler initially
selects A or B at random. At each subsequent time
interval, the other option is sampled with probability
ε, otherwise (with probability 1− ε) the estimate of the
current selection is compared with that of the unselected
option, and switching occurs if the former is the lower of
the two. Operationally:

Definition 2 Let γ, ε, M(t), r(t) be as in Definition 1,
let EA(t) and EB(t) represent the estimated values of op-
tions A,B, and let N(t) represent the unselected option
at time t ∈ {1, 2, 3 . . .}. Define EA(1) = EB(1) = 0. For
(t ≥ 1) then if M(t) = A:

EA(t+1) = γEA(t)+(1−γ)r(t), EB(t+1) = EB(t),

otherwise (if M(t) = B):

EA(t+1) = EA(t), EB(t+1) = γEB(t)+(1−γ)r(t).

Let R ∈ (0, 1) be a random number. Let Aε and Bε be as
in Definition 1. The ω−sampling strategy is then defined
by playing:

at (t = 1) use A0.5,
at (t = 2) use M(1)ε,
at (t > 2) if (R < ε) use N(t− 1), else if
(EM(t−1) < EN(t−1)) use N(t− 1), otherwise use
M(t− 1).

It would not do to overstate the novelty of ω-sampling.
Many similar strategies are described in the theoretical
biology literature, and it is certainly comparatively triv-
ial in relation to the many reinforcement learning al-
gorithms described in the computer science literature.
What is novel here is application to matching and the
IFD, and simplicity in this context can be considered a
bonus.4

4There are particularly evident similarities between ω-sampling
and decision rules based on the ‘marginal value theorem’ (Charnov,
1976) which have long been associated with the IFD (but not with
matching; see, for example, Bernstein et al., 1991), and which spec-
ify switching whenever the gain rate in a given patch is lower than
the expected gain rate for the environment as a whole. ω-sampling
may be considered a marginal-value rule augmented by (1) patch-
specific value estimates and (2) sampling-driven switching.

4.3 Model structure

Both heuristics were explored using individual-based
models to assess their performance in three conditions:
(1) ability to lead groups of agents to the IFD, (2) match-
ing performance of agents when isolated, and (3) match-
ing performance when embedded in a group (this latter
condition included because the few empirical biology pa-
pers that consider both matching and the IFD generally
consider only embedded individuals).

The first condition involved recording the equilibrium
distribution (after 1000 time-steps) of populations of 100
ε- and ω-samplers, for each of 9 different resource distri-
butions across two patches A and B. Four separate pop-
ulations were analysed for each strategy, one for each
combination of interference level (1.0 or 0.3) and allo-
cation method (C-allocation or P-allocation). In each
case, agents were initially randomly allocated to either
A or B. Then, each time-step, the resource obtained by
each agent was calculated (equation 1 for C-allocation
and equation 4 for P-allocation), the appropriate heuris-
tic applied, and the new agent distributions determined.
The final equilibrium distributions were compared with
the predictions of the IFD (equation 3).

Isolated individual behaviour was analysed under var-
ious reinforcement schedules. For the basic and conc VR
VR schedules, single ε- and ω-samplers foraged in isola-
tion, under C-allocation or P-allocation respectively, for
1000 time-steps under each of 9 different resource distri-
butions. Conc VI VI was implemented by using Fi to
set delay intervals (Di) such that Di = 20(1.0−Fi) + r,
with r ∈ [−2, 2] an integer random number. The first
response to option i on each evaluation procured the
full reward F ∗ and initialised Di. Subsequent responses
to i went unrewarded until Di time-steps had elapsed,
after which a response would again procure F ∗ and re-
initialise Di, with the incorporation of r ensuring that
the schedule was indeed ‘variable interval’. Conc VI VR
was implemented by applying VI to one option (A), and
P-allocation to the other (B). As before, isolated agents
were allowed to forage for 1000 time-steps under each of
9 different resource distributions.

The final condition involved recording the behaviour
of individuals embedded within their respective groups
from each of the 4 original populations over the full 1000
time-steps, under each of the 9 resource distributions,
comparing their behaviour with the predictions of the
individual matching law.

All three conditions were repeated 30 times each, en-
abling means and standard deviations to be calculated.

4.4 Parameter values

Both heuristics require values to be chosen for ε and γ.
Rather than relying on arbitrary choice and holding this
choice constant across all conditions, as is usually the



case, in this study a genetic algorithm (GA) was used to
evolve near-optimal values for each condition (see Ap-
pendix A for details). The reasoning behind this is as
follows. The objective of comparing heuristic perfor-
mance over a range of conditions requires some equiv-
alence criteria to be drawn in terms of the parameters
ε and γ. If a fixed parameter set is chosen, it could be
argued that because the parameters themselves are iden-
tical in all conditions, any performance differences must
be due to inherent strategy properties, however an al-
ternative interpretation is that the arbitrary set may be
more appropriate for some conditions than others, and
so performance differences may, to some extent, reflect
imbalances in parameter suitability rather than inherent
strategy properties. An alternative equivalence criteria
is that of optimality. Optimal (or near-optimal) param-
eter values may well vary across conditions, but it can
now be asserted that, in each condition, each strategy is
performing as well as it possibly can, therefore any per-
formance differences really must reflect inherent strategy
properties, and cannot be explained away in terms of pa-
rameter (un)suitability. This is the intuition followed in
the present study.

Importantly, whilst this methodological point is worth
making and has been largely overlooked in the litera-
ture, the following results do not depend on it. Identical
results (not shown here, see Seth, 2000) were obtained
from a control study performed using a fixed parameter
set derived from near-optimal values averaged over all
conditions (ε = 0.052 and γ = 0.427). These control re-
sults also proved robust to small variations in this mean
near-optimal set (Seth, 2000).

5 Results

5.1 ε-sampling

Figure 1 compares observed distributions of ε-sampling
agents to the predictions of the IFD (equation 3). Al-
though in most cases there is a good match, ε-sampling
agents are unable to find the IFD under P-allocation
with m = 0.3.

With regard to matching (figure 3), ε-sampling agents
exhibit exclusive choice (trivial matching) under basic
reinforcement, in line with the psychological data (3a,e).
Under conc VR VR, however, although they continue to
match to available resources, they no longer match to ob-
tained resources, and certainly do not exhibit exclusive
choice (3b,f). Performance is no better under conc VI VI
or conc VI VR; in both cases there are clear departures
from strict matching to obtained resources (3g,h).

Embedded ε-sampling agents in most cases match
closely to obtained resources (figure 4), although there
is some divergence from strict matching when m = 0.3
under P-allocation (4h).

Contrary to the claims of Thuisjman et al. (1995),

these results demonstrate that ε-sampling can neither
reliably lead populations of agents the IFD, nor reliably
lead individual agents to match to obtained resources. It
is worth asking why Thuisjman et al. reached such dif-
ferent conclusions, and one likely reason is that they con-
sidered only a small set of analytically tractable special
cases. With respect to the IFD they explored only C-
allocation with m = 1.0, a condition in which ε-sampling
does indeed lead populations to the IFD, but there is at
least one other condition (representative of many oth-
ers) in which it does not. They also analysed isolated
ε-samplers only under the equivalent of conc VR VR,
which not a useful way to explore matching since only
trivial adherence (exclusive choice) is to be expected.
Moreover, ε-sampling does not even deliver this, instead
leading agents to match to available resources. Unfor-
tunately, this result, which Thuisjman et al. (1995) did
obtain, was wrongly asserted by them to be consistent
with the individual matching law; it appears they sim-
ply misunderstood the matching law as pertaining to
available resources. Here we have seen that ε-sampling
matches to obtained resources only under basic reinforce-
ment. It should be stressed that the present results are
in agreement with those of Thuisjman et al. (1995) in
those special cases considered by them. The problem is
that these cases are not sufficient for substantiating their
claims.

5.2 ω-sampling

Turning to ω-sampling, it is immediately clear that it
outperforms ε-sampling at least with respect to the IFD.
In all 4 conditions (m = 1.0 or 0.3, C-allocation or P-
allocation) ω-sampling populations closely fit equation 3
(fig 2).

Matching performance is also improved by ω-
sampling. ω-samplers agents exhibit exclusive choice
(trivial matching to obtained resources) under basic and
conc VR VR (figure 5).5 Furthermore, matching to ob-
tained resources is also observed under both conc VI VI
and conc VI VR (figure 5g,h). (The slight deviations
from strict matching entailed by ω-sampling under conc
VI VR are in the opposite direction to that expected if
agents were maximising reward; see Herrnstein & Hey-
man, 1979.)

Embedded ω-samplers also reliably match to obtained
resources under all 4 test conditions (figure 6). Notice,
however, that these observations are not reflected in the
relatively accessible (in the field) statistic of matching
to available resources. The significance of this is that if
embedded agents are not observed to match to available

5Careful inspection of fig 5(a,b) reveals that the exclusive choice
of ω-sampling under conc VR VR is not quite as exclusive as it is
under basic. Although this deviation is slight, it is interesting to
note that similar deviations have also been observed empirically
(see, for example, Sutherland & Mackintosh, 1971).
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Figure 1: Observed (solid) and predicted (dashed) ε-sampling population distributions under 9 different resource distributions

(IFD predictions obtained using equation 3). Each observation derives from the mean of 30 distributions, standard deviations

are shown. Each abscissa represents FA and each ordinate represents the percentage of agents on patch A. Four conditions

are shown, defined by all combinations of interference level (1.0 or 0.3), and C-allocation or P-allocation (CA or PA).
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Figure 2: Observed (solid) and predicted (dashed) ω-sampling population distributions under ω-sampling, to be interpreted

as figure 1.
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Figure 3: Matching behaviour of isolated ε-sampling agents. Data for each plot is collected from 30 analyses at each of 9

values of FA, with dashed lines indicating strict matching. Plots labelled (av) concern matching to available resources; solid

lines show mean proportion of time spent on A (ordinate) as a function of FA (abscissa), standard deviations are shown. Plots

marked (ob) concern matching to obtained resources; mean proportion of time spent on A (ordinate) is scatter-plotted as a

function of proportion of resources obtained from A (abscissa), with best-fit lines superimposed. The equation of each best-fit

line is given together with a measure of goodness-of-fit (this ‘error’ measure specifies the range around any point on the line

that contains at least 50% of the predictions).
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Figure 4: Matching behaviour of embedded ε-sampling agents. Dashed lines represent strict matching. Each plot shows mean

proportion of time spent on A (ordinate) as a function of resources available (av) or obtained (ob) from A (abscissa), with

data collected from 30 analyses at each of 9 values of FA. Best fit lines are superimposed and equations (with goodness-of-fit)

are given as in figure 3.
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Figure 5: Matching behaviour of isolated ω-sampling agents, to be interpreted as figure 3.
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Figure 6: Matching behaviour of embedded ω-sampling agents, to be interpreted as figure 4.

resources, it cannot be concluded that isolated agents us-
ing the same strategy would fail to match to obtained re-
sources. In other words, matching behaviour in the field
may not be a reliable indicator of the performance of iso-
lated individuals with regard to the individual matching
law.

As a candidate mechanism underlying both the IFD
and individual matching, then, ω-sampling is clearly
more successful than ε-sampling. This is perhaps unsur-
prising; by maintaining multiple estimates and employ-
ing a more flexible switching rule, ω-sampling is much
less likely than ε-sampling to be adversely affected by
the indeterminacy of P-allocation (with respect to the
IFD) or of the conc VR VR, conc VI VI, and conc VI
VR schedules (with respect to the matching law), and it
is of course in these very conditions that the inadequa-
cies of ε-sampling are revealed. One may nonetheless
conclude that there do exist simple heuristics capable
of underlying both the IFD and individual matching, in
several non-trivial situations: ω-sampling is such a strat-
egy, ε-sampling is not.

A significant cost of ω-sampling, however, is that it
requires concurrent maintenance of more than one value
estimate, a cost which would seem rise with environment
complexity. Certainly, many ‘mechanisms of matching’
proposed in the psychology literature use multiple esti-
mates (for example, ‘melioration’, Herrnstein, 1982, or
‘momentary maximisation’, Hinson & Staddon, 1983),
but is it necessary to assume that agents are able to
maintain estimates for every patch in their environment?
A possible answer is perhaps only to the extent that
agents can specify which patch (or option) to choose,
which may seem trite, but in fact many patch-switching
strategies specify only when to depart from a current

patch (or option), without specifying where to go after-
wards (Bernstein et al., 1991, for example). Consider the
IFD. If only random movement is possible, and all ar-
eas of the environment can be accessed with equal ease,
then it would only be necessary to maintain a single es-
timate (to prompt departure). If directed (non-random)
movement is possible to any part of the environment
(again with equal ease) then concurrent estimates of ev-
ery patch might be valuable. However, if it is assumed
that movement is somewhat restricted, but non-random,
then some intermediate solution is likely to be best, at
which the agent only maintains a few functionally rele-
vant estimates.

6 Discussion and summary

Perhaps the single most important result of those pre-
sented above is that ω-sampling entails matching in at
least one situation in which such behaviour is subopti-
mal (conc VI VR). This supports the idea that some in-
stances of individual suboptimal behaviour can be under-
stood in terms of the operation of mechanisms adapted
to a group context; ω-sampling can be considered eco-
logically rational. Of course, this does not imply that
all irrational behaviour must be explained this way, and
nor are alternative explanations of matching necessarily
excluded (Niv, Joel, Meilijson, & Ruppin, 2001, for ex-
ample), we have simply demonstrated that the present
account is at least plausible, and perhaps parsimonious.

In a previous paper this same idea was explored in
the context of foraging within a single patch containing
both rich and poor resources (Seth, 1999, see also Seth,
in press), and a similar result was uncovered: agents
evolved in a group context displayed matching behaviour



when assessed in isolation, but those evolved in isolation
did not. Compared to the present model, this study was
minimal in some ways - no distinct patches, no complex
reinforcement schedules, no learning or lifetime adap-
tation - but rich in others, particularly in the extent
to which it captured sensorimotor interactions between
agents and their immediate environment, a level of de-
scription the present model abstracts away from. Be-
cause of these differences, the character of the matching
behaviour observed in the two models is also different.
In the single patch case, matching was accounted for
purely in terms of sensorimotor interaction patterns, to
do with inter-agent interference, that acted as histori-
cal constraints (Di Paolo, 2001), and was identified only
qualitatively. Here, matching has been accounted for in
terms of the IFD, and has been identified very closely
with its description in the literature. Taken together,
these studies light the way to a range of matching phe-
nomena, some of which attach to distinct, separable, and
spatially arbitrary choices, others to single patches and
basic sensorimotor interaction patterns, and still others
to intermediate levels of description, in which sensori-
motor interactions may engender patch-switching in the
generation of choice behaviour. It remains to be seen
what further insights into matching behaviour, and de-
cision making in general, can be attained by modelling
at these levels.

A final comment concerns the familiar problem of ‘ac-
tion selection’, as it is understood in the adaptive be-
haviour literature (Tyrrell, 1993). An obvious difference
between action selection and matching is that the former
normally analyses choices that satisfy distinct require-
ments (for example feeding and sleeping), and the latter
concerns different ways of satisfying the same require-
ment. Yet the concepts are clearly very close, and no sat-
isfying and general account of decision making can afford
to ignore either. To risk belabouring a commonly made
point, the psychological literature contains a wealth of
conceptual and empirical resources that relatively novel
methodologies directed towards understanding adaptive
behaviour, for example agent-based modelling, would do
well to consider.

In summary, this paper has assessed two simple heuris-
tics, ε-sampling and ω-sampling, on their ability to un-
derlie both matching behaviour and the IFD in a num-
ber of non-trivial conditions. Contrary to the claims of
Thuisjman et al. (1995), ε-sampling proved inadequate
at both; ω-sampling, by contrast, was successful, even
to the extent of entailing matching under conditions in
which such behaviour is suboptimal. ω-sampling can
therefore be considered an ecologically rational candi-
date for a ‘mechanism of matching’, and from this van-
tage matching behaviour - and its potential subopti-
mality - can be interpreted in terms of decision making
adapted to a group environment. The extent to which

1,CA .3,CA 1,PA .3,PA
ε-samp.,ε .038 .037 .039 .038
ε-samp.,γ .071 .069 .038 .030
ω-samp.,ε .061 .040 .105 .040
ω-samp.,γ .021 .065 .022 0.030

Table 1: Evolved parameters. Columns labelled by interference

level m and allocation method.

other forms of irrational behaviour can be understood
in this way, or in similar ways, remains an interesting
and open question. Finally, a novel method of param-
eter setting has been described which may find useful
application in other models of this kind.

Acknowledgements

I am grateful to the CCNR, the Neurosciences Research Foun-

dation, and to my anonymous reviewers, for a combination of fi-

nancial support and constructive discussion. The material in this

paper is drawn in part from my D.Phil. thesis (Seth, 2000).

Appendix A

For both ε- and ω-sampling, initially random populations (size 100)
were evolved in each of 4 cases (m = 1.0 or 0.3, C-allocation ‘CA’ or
P-allocation ‘PA’): 8 conditions in total. Each agent (in each con-
dition) possessed a genome of 2 real numbers (range [0.0,1.0]) spec-
ifying ε and γ. Each condition applied a tournament GA for 100
generations (mutation rate 0.01, each mutation drawn from Gaus-
sian distribution radius 0.13; range transgressions were truncated).
Fitness was averaged over 10 separate evaluations. Each evaluation
randomly assigned values for FA and FB (FA + FB = 1.0, total
resource F ∗ = 200.0 in all conditions), and randomly allocated
agents between A and B. Fitness of each agent was determined by
total accumulated resources after 1000 cycles. The entire GA pro-
cess was repeated 10 times in each condition, from which average
(condition-specific) near-optimal parameter values were recovered
(table 1). Analysis of each condition used these values. Note that
analysis of isolated individual matching utilised the average near-
optimal parameters across all conditions (ε = 0.052,γ = 0.427),
since no corresponding populations were evolved in these condi-
tions.

References

Baum, W. (1974). On two types of deviation from the match-
ing law: Bias and undermatching. Journal of the Ex-
perimental Analysis of Behavior, 22, 231–242.

Baum, W., & Kraft, J. (1998). Group choice: Competition,
travel, and the ideal free distribution. Journal of the
Experimental Analysis of Behavior, 69 (3), 227–245.

Bernstein, C., Kacelnik, A., & Krebs, J. (1991). Individual
decisions and the distribution of predators in a patchy
environment II: The influence of travel costs and struc-
ture of the environment. Journal of Animal Ecology,
60, 205–225.

Bullock, S., & Todd, P. (1999). Made to measure: Ecologi-
cal rationality in structured environments. Minds and
Machines, 9 (4), 497–541.

Charnov, E. (1976). Optimal foraging: The marginal value
theorem. Theoretical Population Biology, 9, 129–136.



Conger, R., & Killeen, P. (1974). Use of concurrent operants
in small group research. Pacific Sociological Review,
17, 399–416.

Dallery, J., & Baum, W. (1991). The functional equivalence
of operant behavior and foraging. Animal Learning and
Behavior, 19 (2), 146–152.

Davison, M., & McCarthy, D. (1988). The matching law.
Erlbaum, Hillsdale, NJ.

Di Paolo, E. (2001). Artificial life and historical processes.
In Kelemen, J., & Sosik, P. (Eds.), Proceedings of the
Sixth European Conference on Artificial Life, pp. 649–
658. Springer-Verlag.

Fagen, R. (1987). A generalized habitat matching law. Evo-
lutionary Ecology, 1, 5–10.

Fretwell, S. (1972). Populations in seasonal environments.
Princeton University Press, Princeton.

Gallistel, C., Brown, A., Carey, S., Gelman, R., & Keil, F.
(1991). Lessons from animal learning for the study
of cognitive development. In Carey, S., & Gelman,
R. (Eds.), The epigenesis of mind, pp. 3–37. Lawrence
Erlbaum, Hillsdale, NJ.

Goss-Custard, J. (1980). Competition for food and interfer-
ence amongst waders. Ardea, 68, 31–52.

Gray, R. (1994). Sparrows, matching, and the ideal free dis-
tribution: Can biological and psychological approaches
be synthesised?. Animal Behaviour, 48, 411–423.

Herrnstein, R. (1961). Relative and absolute strength of re-
sponses as a function of frequency of reinforcement.
Journal of the Experimental Analysis of Behavior, 4,
267–272.

Herrnstein, R. (1970). On the law of effect. Journal of the
Experimental Analysis of Behavior, 13 (2), 243–266.

Herrnstein, R. (1982). Melioration as behavioural dynamism.
In Commons, M., Herrnstein, R., & Rachlin, H. (Eds.),
Quantitative analyses of behavior, vol II: Matching and
maximizing accounts, pp. 433–458. Ballinger Publish-
ing Co., Cambridge, MA.

Herrnstein, R. (1997). The matching law. Harvard University
Press, Cambridge, MA. A posthumous collection of the
papers of R.J. Herrnstein, edited by H. Rachlin and
D.I. Laibson.

Herrnstein, R., & Heyman, G. (1979). Is matching compat-
ible with reinforcement maximization on concurrent
variable interval, variable ratio?. Journal of the Ex-
perimental Analysis of Behavior, 31, 209–223.

Herrnstein, R., & Vaughan, Jr., W. (1980). Melioration and
behavioral allocation. In Staddon, J. (Ed.), Limits
to action: The allocation of individual behavior. Aca-
demic Press, New York.

Hinson, J., & Staddon, J. (1983). Hill-climbing by pigeons.
Journal of the Experimental Analysis of Behavior, 39,
25–47.

Houston, A. (1986). The matching law applies to wagtails’
foraging in the wild. Journal of the Experimental Anal-
ysis of Behavior, 45, 15–18.

Krebs, J., & Kacelnik, A. (1991). Decision making. In Krebs,
J., & Davies, N. (Eds.), Behavioural ecology, pp. 105–
137. Blackwell Scientific Publishers, Oxford. 3rd edi-
tion.

Milinski, M., & Parker, G. (1991). Competition for resources.
In Krebs, J., & Davies, N. (Eds.), Behavioural ecology,
pp. 137–168. Blackwell Scientific Publishers, Oxford.
3rd edition.

Myers, J. (1976). Probability learning and sequence learning.
In Estes, W. (Ed.), Handbook of learning and cognitive
processes, Vol. 1, pp. 171–205. Erlbaum, Hillsdale, NJ.

Niv, Y., Joel, D., Meilijson, I., & Ruppin, E. (2001). Evo-
lution of reinforcement learning in uncertain environ-
ments: emergence of risk aversion and matching. In
Kelemen, J., & Sosik, P. (Eds.), Proceedings of the
Sixth European Conference on Artificial Life, pp. 252–
261. Springer-Verlag.

Seth, A. (1999). Evolving behavioural choice: An investi-
gation of Herrnstein’s matching law. In Floreano, D.,
Nicoud, J.-D., & Mondada, F. (Eds.), Proceedings of
the Fifth European Conference on Artificial Life, pp.
225–236. Springer-Verlag.

Seth, A. (2000). On the relations between behaviour, mecha-
nism, and environment: Explorations in artificial evo-
lution. Ph.D. thesis, University of Sussex.

Seth, A. (in press). Modelling group foraging: individual
suboptimality, interference, and matching. Adaptive
Behavior.

Shettleworth, S. (1988). Foraging as operant behavior and
operant behavior as foraging: What have we learned?.
In Bower, G. (Ed.), The psychology of learning and
motivation: Advances in research and theory, Vol. 22,
pp. 1–49. Academic Press, New York.

Sutherland, N., & Mackintosh, N. (1971). Mechanisms of
animal discrimination learning. Academic Press, New
York.

Sutherland, W. (1983). Aggregation and the ‘ideal free’ dis-
tribution. Journal of Animal Ecology, 52, 821–828.

Thuisjman, F., Peleg, B., Amitai, M., & Shmida, A. (1995).
Automata, matching, and foraging behaviour of bees.
Journal of Theoretical Biology, 175, 305–316.

Tregenza, T., Parker, G., & Thompson, D. (1996). Interfer-
ence and the ideal free distribution: Models and tests.
Behavioral Ecology, 7 (4), 379–386.

Tyrrell, T. (1993). Computational mechanisms for action
selection. Ph.D. thesis, University of Edinburgh.

Van der Meer, J., & Ens, B. (1997). Models of interference
and their consequences for the spatial distribution of
ideal and free predators. Journal of Animal Ecology,
66, 846–858.


