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Abstract

In this paper we give deterministic competitive k-server algorithms for all k and all
metric spaces. This settles the k-server conjecture [MMS] up to the competitive ratio.
The best previous result for general metric spaces was a 3-server randomized competitive
algorithm [BKT] and a non-constructive proof that a deterministic 3-server competitive
algorithm exists [BBKTW]. The competitive ratio we can prove is exponential in the
number of servers. Thus, the question of the minimal competitive ratio for arbitrary metric
spaces is still open.

1 Introduction

Competitive algorithms were introduced by Sleator and Tarjan [ST] in the context of searching
a linked list of elements and the paging problem. [ST] sought a worst case complexity measure
for on-line algorithms that have to make decisions based upon current events without knowing
what the future holds. The immediate problem is that on-line algorithms are incomparable,
on-line algorithm A may be better than on-line algorithm B for one sequence of events and al-
gorithm B may be better than A for another sequence of events. The conceptual breakthrough
in [ST] was to compare the algorithms, not to each other, but to a globally optimal algorithm
that knows the request sequence in advance. The competitive ratio of an on-line algorithm A
is defined as the supremum, over all sequences of events and all possible algorithms ADV, of
the ratio between the cost of A and the cost of ADV. An algorithm that achieves a competi-
tive ratio of at most c is called c-competitive. The competitive ratio may depend on the size
and parameters of the problem. Algorithms are called competitive if the competitive ratio is
independent of the parameters of the problem or if the dependency is provably unavoidable.

Sleator and Tarjan gave competitive algorithms for managing a linked list of elements and
for paging. Karlin et al. [KMRS] later gave competitive algorithms for Snoopy Caching.

Borodin, Linial and Saks [BLS] generalize the concept to arbitrary task systems. Task
systems capture a very large set of on-line problems but the generality of task systems implies
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that task systems cannot perform very well relative to an optimal off-line (prescient) algorithm.
[BLS] give an upper bound on the competitive ratio of any task system and show that some task
systems have a matching lower bound. The competitive ratio upper bound for task systems
depends on the number of states of the system. For a limited set of task systems, Manasse,
McGeoch and Sleator [MMS] later gave a decision procedure to determine if a given on-line
algorithm is c-competitive.

[MMS] generalize the paging problem to the k-server problem. The on-line k-server problem
may be defined as follows: We are given a metric space M and k servers which move among
the points of M. Repeatedly, a request, a point x in the metric space, is given. In response
to this request, we must choose one of the k servers and move it from its current location
to x, incurring a cost equal to the distance from its current location to x. Note that the
paging problem with k page slots in memory and n pages overall is isomorphic to the k-server
problem on a metric space with n points and a uniform distance matrix (except with 0s on the
diagonals). Let A = {A(k,M)} be a family of on-line k-server algorithms for the metric space
M, where k ranges over all positive integers, andM ranges over all possible metric spaces. A
is called competitive if there exists a sequence c1, c2, c3, . . ., such that for each metric spaceM,
and for each k, A(k,M) is ck-competitive. The competitive ratio for the algorithm of [BLS]
depends on the number of points in the metric space.

Another version of the k-server problem is to charge for “time” rather than “transport”.
If we assume that all servers move at some common speed and allow all servers to move
simultaneously then the off-line problem becomes one of minimizing the total time spent to
serve the requests, subject to the limitation that requests are served in order of arrival. The
on-line algorithm may position its servers to deal with future events but gets the next request
only when the current event is dealt with. We call this version of the problem the min-time
server problem.

[MMS] give a lower bound for the competitive ratio of any on-line k-server algorithm: for
any deterministic k-server algorithm and any metric space with more than k points there exists
a sequence of requests such that the cost of the on-line algorithm is no less than k times the
cost of an optimal off-line algorithm, minus an additive term.

[MMS] also conjectured that this lower bound is tight, up to an additive term. This
conjecture is known as the k-server conjecture. They constructed k-competitive algorithms for
all metric spaces if k = 2 and for all (k + 1)-point metric spaces. (Other competitive 2-server
algorithms were later given by Irani and Rubinfeld [IR], by Chrobak and Larmore [CL2], by
Turpin [Tur], and by the authors).

Prior to this paper, only the additional case k = 3 was solved for general metric spaces
using the randomized HARMONIC algorithm suggested by Raghavan and Snir [RS]. This is
due to Berman, Karloff and Tardos [BKT]. The competitive ratio is bounded by 317000 [Rag].
Recently, Grove [Gro] showed that HARMONIC is O(k2k)-competitive. The competitive ratio
for randomized on-line algorithms is described as an expectation. It is important to make
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precise the definition of the worst case competitive ratio for randomized algorithms. This
can be done in terms of an adversial game with various assumptions on the strength of the
adversary. HARMONIC uses randomization rather weakly; the randomization is used to select
the next move but is not used to “hide” the on-line configuration from the adversary designing
the sequence. The lower bound of k from [MMS] holds for such randomized algorithms.

A general result of Ben-David et al. [BBKTW] gives a non-constructive proof that the
existence of any randomized on-line algorithm, which uses randomization of the form used
by HARMONIC, implies the existence of a deterministic on-line algorithm, at the cost of
squaring the competitive ratio. Randomized algorithms that use randomization to hide the
on-line configuration from the adversary are dealt with by Fiat et al. [FKLMSY], McGeoch
and Sleator [MS], and Karlin et al. [KMMO].

Competitive k-server algorithms were discovered for specific metric spaces. Specifically,
k-competitive deterministic on-line algorithms for points on a line (Chrobak et al. — [CKPV])
and for points on a tree (Chrobak and Larmore — [CL1]). Randomized on-line algorithms
were discovered for resistive graphs (Coppersmith et al. — [CDRS]) and points on a circle
([CDRS] and Karp — [Kar]). A deterministic competitive k-server algorithm for the circle was
recently discovered (Fiat et al. [FRRS]). [CKPV] also prove that the optimal off-line k-server
problem is equivalent to network flow problems and thus has a polynomial-time solution.

The [MMS] definition of the competitive ratio allows an additive term in addition to the
ratio; i.e., the on-line algorithm is allowed to perform some (constant) amount of work for
free. The analysis of the line and tree algorithms above ([CKPV], [CL1]) require this additive
term. The analysis gives an additive term if the initial configuration does not have all servers
starting at one common point. This term depends on the initial distances between the servers.
While the analysis is clearly overly pessimistic, neither of these algorithms is k-competitive if
one discards the additive term.

[FKLMSY] introduce the concept of an on-line algorithm competitive against a set of on-line
algorithms. The idea is to combine two on-line algorithms to obtain a third algorithm which
has the advantages of both, at least to within some ratio. The new algorithm can be viewed as
some kind of MIN operator on the two input algorithms. For the paging problem, [FKLMSY]
show that the MIN operation is possible and give tight bounds on what is realizable and what
is not. Performing a MIN operation for other metric spaces was left as an open problem.

Our main result is a competitive k-server algorithm for any metric space, called the Expand-
Contract algorithm (denoted EC). We give a recursive construction for the k-server algorithm
using `-server algorithms, ` < k. The base case is the optimal greedy algorithm for one server.
Our algorithm is deterministic and runs in polynomial time, with respect to the length of
the input sequence. It requires no additive term in the definition of the competitive ratio,
irrespective of the initial configuration. However, the bound we can prove on its competitive
ratio is exponential in k log k.

Our construction also gives competitive algorithms for the min-time server problem.
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Extending the results in [FKLMSY], we describe a MIN operator for on-line k-server al-
gorithms on any metric space. Viewed properly, the existence of a MIN operator follows
immediately from a result of Baeza-Yates, Culberson and Rawlins on the m-lane cow problem
[BCR] or from a result of Papadimitriou and Yannakakis on traversing a dynamically revealed
layered graph [PY]. Generalizations of the results of [BCR] and [PY] appear in [FFKRRV].

Our competitive k-server algorithm is derived from the MIN operator applied to a large
set of (non-competitive) k-server algorithms. The basic observation we make is that one of our
non-competitive k-server algorithms is competitive if the optimal off-line algorithm does little
work. If the MIN operator is applied to a set of algorithms, one of which is competitive, then
the MIN algorithm must also be competitive. Thus, we relate the work done by the optimal
off-line algorithm to the competitiveness of our MIN algorithm. If the optimal algorithm did
perform a great deal of work then we perform a reorganization step, the cost of which is charged
against the work that the optimal algorithm already did.

2 Basic Definitions

We define and describe k-server algorithms that work on any specific metric space. The
underlying metric spaceM = (X, dist) will usually be omitted from the definitions. Definitions
1, 2, and 6 of k-server algorithms below are equivalent to the definitions in [MMS]. The
definition of competitiveness against other algorithms follows [FKLMSY].

Definition 1 A k-server algorithm gets an initial k-server configuration C0 and a sequence
of requests σ = σ1 . . . σ|σ|. A configuration is the set of points occupied by the k servers in the
metric space. The request sequence σ is a sequence of points in the metric space. The k-server
algorithm selects a sequence of configurations C1, C2, . . . , C|σ| such that σi ∈ Ci. We say that
such an algorithm serves σ.

Definition 2 An on-line k-server algorithm gets an initial k-server configuration C0 and a
sequence of requests σ = σ1 . . . σ|σ|. The request sequence is presented element by element.
Following the presentation of request σi, the on-line k-server algorithm selects a configuration
Ci such that σi ∈ Ci. The configuration Ci does not depend on requests σi+1, . . . , σ|σ|.

Definition 3 A minimal match between two configurations C and C ′ is the weight of a min-
imum weight perfect matching in a complete bipartite graph with the points of C on the right
and the points of C ′ on the left. The weight associated with the edge (p,q) is dist(p, q). We
denote the minimal match between the two configurations by MM(C,C ′).

Definition 4 Suppose a k-server algorithm A is given a request sequence σ = σ1 . . . σ|σ| and
an initial configuration C0. Let Ci, i = 1, . . . , |σ|, be the configurations selected by A. A fixed
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numbering of A’s servers is a labelling of the points in each Ci, i = 0, . . . , |σ|, with distinct
labels chosen from {1, . . . , k} such that for 1 ≤ i ≤ |σ|, there exists a minimal match of Ci and
Ci−1 such that all matched pairs of points have the same label. We say that the request σi is
served by server s iff σi is labelled s in Ci. We say that a server s moves from a point p to a
point q iff p is labelled s in configuration Ci and q is labelled s in configuration Ci′ and i < i′.

Definition 5 A k-server algorithm A is lazy, iff for every request sequence σ = σ1 . . . σ|σ| and
for every initial configuration C0 the following holds. Let Ci, i = 1, . . . , |σ|, be the configurations
selected by A. Then, for every i, 1 ≤ i ≤ |σ|, if σi ∈ Ci−1, then Ci = Ci−1, and if σi 6∈ Ci−1,
then there exists p ∈ Ci−1 such that Ci = Ci−1 \ {p} ∪ {σi}.

Definition 6 The cost associated with a k-server algorithm A given an initial configuration
C0 and a request sequence σ is denoted by

costA(C0, σ) =
|σ|∑
i=1

MM(Ci, Ci−1).

Definition 7 Where c ∈ IR, an on-line k-server algorithm A is said to be c-competitive against
an algorithm A′ iff for every request sequence σ and for every initial configuration C0,

costA(C0, σ) ≤ c · costA′(C0, σ)

The infimum of all such c is called the competitive ratio of A against A′.

Definition 8 An on-line k-server algorithm A serving requests in a metric spaceM is said to
be c-competitive iff for every k-server algorithm A′ serving requests in M, A is c-competitive
against A′. For a metric spaceM, an infinite sequence of algorithms A1, A2, . . . , Ak, . . ., where
for every k, k ≥ 1, Ak is an on-line k-server algorithm serving requests in M, is said to be
competitive iff there exists a function c(k) of k alone such that for every k, k ≥ 1, Ak is
c(k)-competitive.

Note that this definition is similar to the definition in [MMS] excluding the additive term
that we disallow. Any algorithm that is competitive by this definition is also competitive
according to [MMS].

Observation 1 Let A be a c-competitive k-server algorithm serving a request sequence σ and
starting at a server configuration CA. Suppose a k-server algorithm ADV starts serving σ at
a server configuration CADV . Then,

costA(CA, σ) ≤ c · (costADV (CADV , σ) + MM(CA, CADV )).
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procedure initializeMin ( C , m , (A0, . . . , Am−1))
begin

current← 0
for j := 0 to m− 1 do begin

advancej ← 0
lastj ← C

end
scale← 0

end

function Min ( request ) : configuration
begin

for j := 0 to m− 1 do begin
nextj ← Aj ’s next configuration after serving request
advancej ← advancej + MM(nextj , lastj)
lastj ← nextj

end
if scale = 0 then scale← minj=0,...,m−1 advancej

while advancecurrent > scale · m
m−1 do begin

current← current + 1(modm)
scale← scale · m

m−1

end
return ( nextcurrent )

end

Figure 1: The Min Algorithm

Proof: Consider a new k-server algorithm ADV′ that given σ and CA selects the same
configurations as ADV given σ and CADV (except for the initial configuration, of course). As

costA(CA, σ) ≤ c · costADV ′(CA, σ)

and
costADV ′(CA, σ) ≤ costADV (CADV , σ) + MM(CA, CADV )

the observation follows. 2

3 The MIN Operator

In this section, we exhibit an on-line k-server algorithm which is competitive against several
other on-line k-server algorithms. We define an operator MIN over a fixed number of on-line al-
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gorithms. Given c ∈ IR and m on-line k-server algorithms, A0, . . . , Am−1, MIN(A0, . . . , Am−1)
is an on-line k-server algorithm which is c-competitive against Ai for every 0 ≤ i ≤ m − 1.
[FKLMSY] show a MIN operator with c = m for the special case of the uniform k-server prob-
lem. Here we show that it is always possible to construct MIN(A0, . . . , Am−1) with c ≤ 2em,
where e is the base of the natural logarithm.

Informally, the method used to construct MIN is as follows: Simulate A0, . . . , Am−1 on the
sequence of requests received σ = σ1 . . . σ|σ| and the initial configuration C0 (wlog assume that
σ1 6∈ C0). Follow one of the algorithms, say Ai. Scale all costs so that mini=0,...,m−1{costAi(C0, σ1)}
is 1. Before serving σj check costAi(C0, σ1 . . . σj) against a bound L, which is initially m/(m−
1). If costAi(C0, σ1 . . . σj) is greater than L, then multiply L by m/(m − 1), switch to
Ai+1(mod m), and check the cost of this algorithm against the new value of L. Repeat until
an algorithm Ai+`(mod m)’s cost does not exceed the current value of the bound L. Continue
by following Ai+`(mod m).

MIN is equivalent to the strategy given in [BCR] for the m-lane cow problem. The m-lane
cow problem is to traverse m paths of unknown lengths and reach the end of one of them, and
while doing so, traveling at most some constant times the length of the shortest path. [BCR]
give a strategy for which the distance traveled during the traversal is at most 2em + 1 times
the length of the shortest path. For any Ai, define a path that traverses Ai’s configurations.
The length of the path between two adjacent configurations is the minimal match between
them, so the total length of a path is equal to Ai’s total work. A minor modification of [BCR]
gives the following result:

Theorem 1 Given m on-line k-server algorithms, A0, . . . , Am−1, for serving a sequence of
requests, let MIN = MIN(A0, . . . , Am−1). For any request sequence σ and for any initial
configuration C0,

costMIN (C0, σ) ≤ 2em · min
i=0,...,m−1

{costAi(C0, σ)}

Proof: The MIN operator uses the algorithms A0, . . . , Am−1 cyclically. It follows an algo-
rithm for some time, then switches to a configuration of a different algorithm and follows it.
This is repeated until all algorithms are exhausted. When all algorithms are exhausted, we
say that a cycle is complete. When a cycle is complete, and the end of the request sequence σ
is not reached, a new cycle begins. Observe the jth cycle. The amount of work performed in
the jth cycle (assuming MIN does not reach the end of σ during that cycle) is at most

2 ·
(

m

m− 1

)m(j−1)

+ 2 ·
(

m

m− 1

)m(j−1)+1

+ · · ·+ 2 ·
(

m

m− 1

)mj−1

.

(The cost of switching from Ai to Ai+1(modm) can be bounded by the cost so far of Ai plus
the cost so far of Ai+1(modm)). Now, suppose that MIN reaches the end of σ during the jth
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cycle. We may assume that MIN pays for the entire jth cycle. This only makes a possible
increase in the cost charged for MIN. So, the total cost of MIN to serve σ is at most

2 ·
mj−1∑
i=0

(
m

m− 1

)i

= 2m

(
m

m− 1

)m(j−1)

− 2m + 2.

If j > 1, since the (j − 1)th cycle ended without reaching the end of σ, all algorithms input to
MIN pay at least ( m

m−1)m(j−2), so the ratio between the cost of MIN and the cost of the best
input algorithm is at most 2em. If j = 1, the best input algorithm pays at least 1, while MIN
pays at most 2 + 2 · m

m−1 + · · ·+ 2 · ( m
m−1)m−1 = 2m( m

m−1)m−1 − 2m + 2. The ratio is again at
most 2em. 2

We note that a similar result can be reached using a layered graph traversal algorithm
given by [PY].

4 The Expand-Contract Algorithm

In this section we show how to construct a competitive on-line k-server algorithm using com-
petitive on-line algorithms for fewer than k servers. Our algorithm, EC (expand-contract
algorithm), is defined by induction over the number of servers k. Let ECk denote the al-
gorithm for k servers. The basis for the induction is the greedy one-server algorithm EC1,
that for each request moves its single server to cover the request. Obviously, this algorithm
is 1-competitive. Suppose that all algorithms EC1, EC2, . . . , ECk−1 are defined. Following
is the definition of ECk. ECk maintains two variables, a point x in the metric space and a
non-negative real r, which define a sphere of radius r centered at x. Initially, the values of x
and r are determined according to the initial configuration of the servers as follows. Choose
among the server positions two points which are the farthest apart. One of the points is arbi-
trarily chosen as x. Twice the distance to the other point is r. ECk uses 2k(k− 1) algorithms,
which are defined by 2k partitions of the sphere centered at x with radius r. For i, 1 ≤ 2k,
the ith partitioning sphere has its center at x and a radius of r · i

4k+2 . With respect to each
partitioning sphere, k − 1 different k-server algorithms are defined. For a given sphere, for `,
1 ≤ ` < k, the `th algorithm partitions its servers into two sets, one of size ` and the other
of size k − `. The size-` set is used to serve requests inside the partitioning sphere. For this,
EC` is used. Similarly, the size-(k − `) set of servers and ECk−` are used to serve requests
outside the partitioning sphere. The initial configurations for EC` and ECk−` are determined
by the initial configuration of ECk. The ` servers closest to x are used by EC`. The other
servers are used by ECk−`. (ties are broken arbitrarily). ECk runs the MIN of those 2k(k− 1)
algorithms on the request sequence. In parallel, it computes the optimal cost to serve the
sequence of requests given so far starting at any initial configuration. ECk continues to serve
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requests with this MIN, until one of two special events happens: If the distance d between
x and the next request is more than r, the algorithm modifies r. Its new value is set to 2d.
New 2k(k − 1) algorithms are defined with respect to the new 2k partitioning spheres. ECk

restarts the MIN computation, with the initial configurations of the new 2k(k− 1) algorithms
derived from ECk’s current configuration. ECk also restarts the computation of the optimal
cost. This restart operation is call an expand step. The request that caused the expand step
is served after the expand step is performed. The other special event happens if the optimal
cost computed by ECk exceeds r/6 after the optimal algorithm serves the next request. In
this case, ECk serves this request by moving all its servers to the location of the request. This
is called a contract step. As in the expand step, ECk restarts everything. The variable x is
assigned to be the location of the request that caused the contract step. The next request to
a point not covered by the algorithm’s servers (i.e., any request different than the one that
caused the contract step) determines the new radius r, which is taken to be twice the distance
between the new x and this request. New partitioning spheres are defined. New 2k(k − 1)
algorithms are defined. MIN is restarted with ECk’s current configuration (which is all servers
at the point that caused the contract step). The computation of the optimal cost is restarted.

We formally define the above-mentioned concepts:

Definition 9 Given a metric spaceM = (X, dist), for x ∈ X and r ∈ IR we define the sphere
B(x, r) as the set of points {y ∈ X|dist(x, y) ≤ r}.

Definition 10 A partition set B(x, r, m) is the set of spheres {B(x, ir/(2m + 2))}mi=1. In the
context of some B(x, r, m) we use Bi as a shorthand for B(x, ir/(2m + 2)).

Definition 11 We define the optimal cost of a request sequence σ, costOPT (σ), as

costOPT (σ) = min
A,C
{costA(C, σ)},

where A runs over all k-server algorithms and C runs over all k-server initial configurations.
(The existence of the minimum follows from the existence of lazy optimal algorithms for all
C, σ; see [MMS]).

We examine optimal algorithms on request sequences σ = σ1 . . . σ|σ| of at least two requests,

where {σi}|σ|i=1 ⊂ B(σ1, r) for r = 2 · dist(σ1, σ2). Let A be a k-server algorithm and C0 be
a k-server initial configuration such that costA(C0, σ) = costOPT (σ). In Lemma 1 we show
that if the optimal cost of σ is less than r/6 then A maintains a non-trivial partitioning of its
servers with respect to some Bi ∈ B = B(σ1, r, 2k). Some of A’s servers remain in Bi while
serving σ and others remain in Bi = X \ Bi. We use the following definition in the proof of
the lemma:
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procedure ECinitial ( C0 )
begin
1 (x, y)← x, y ∈ C0 that maximize dist(x, y);

r ← 2 · dist(x, y); %← xy
2 Let {Bi

`|1 ≤ i ≤ 2k, 1 ≤ ` ≤ k − 1}
be k-server algorithms defined by B(x, r, 2k)

3 initializeMin ( C0 ,2k(k − 1), (Bi
`))

end

function EC ( p ) : configuration
begin
4 %← %p
{case 1} if p ∈ EC server configuration then

5 return ( EC current configuration )
{case 2} if dist(p, x) > r then {an expand step}

6 r ← 2 · dist(p, x)
7 Let {Bi

`|1 ≤ i ≤ 2k, 1 ≤ ` ≤ k − 1} be
k-server algorithms defined by B(x, r, 2k)

8 initializeMin ( EC server configuration ,2k(k − 1),(Bi
`))

9 %← xp
10 return ( Min( p ) )
11 {case 3} if costOPT (%) > r/6 then {a contract step}
12 x← p; r ← 0; %← x
13 return ( All servers are at x )
14 {case 4} return ( Min( p ) )
end

Figure 2: The Expand-Contract Algorithm
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Definition 12 Let C1, . . . , C|σ| be the configurations selected by A given σ and C0. Given
a fixed numbering of A’s servers, we say that A moves server s across the boundary of Bi

(denoted by ∂Bi) iff there exist 0 ≤ i, j ≤ |σ| and points p ∈ Bi, q /∈ Bi such that p is labelled
s in Ci and q is labelled s in Cj.

Lemma 1 If costOPT (σ) < r/6 then there exist: i, 1 ≤ i ≤ 2k, `, 1 ≤ ` ≤ k − 1 and a
fixed numbering of A’s servers such that while A serves σ, all of A’s configurations have points
labelled 1, . . . , ` in Bi and points labelled ` + 1, . . . , k in Bi.

Proof: Let ν be the number of Bi’s, 1 ≤ i ≤ 2k, where A moved some server across ∂Bi.
There are only k servers, so if ν = 2k then there are at least k pairs (Bi, Bi+1), 1 ≤ i < 2k,
such that A moved the same server across both ∂Bi and ∂Bi+1. Therefore, costA(C0, σ) ≥
k · r/(4k + 2) ≥ r/6, a contradiction. So, ν < 2k. Now, let Bi ∈ B, 1 ≤ i ≤ 2k, be a sphere
such that A does not move any server across ∂Bi. The first request σ1 ∈ Bi and the second
σ2 /∈ Bi. So, there exists 1 ≤ ` ≤ k − 1 such that while A serves σ, ` servers remain in Bi and
k − ` servers remain in Bi. Label points occupied by servers in Bi with 1, . . . , ` and points
occupied by servers in Bi by ` + 1, . . . , k. 2

Corollary 1 Let C0 be a k-server configuration such that σ1 ∈ C0. Let A be any k-server
algorithm. Define a fixed numbering on A’s servers given σ and C0 by numbering points in C0

in order of increasing distance from σ1. If costA(C0, σ) < r/6 then there exist i, 1 ≤ i ≤ 2k,
and `, 1 ≤ ` ≤ k − 1, such that while A serves σ, all of A’s configurations have points in Bi

labelled 1, . . . , ` and points in Bi labelled ` + 1, . . . , k.

Definition 13 Let B = B(x, r, 2k) be a partition set. Let Bi ∈ B, 1 ≤ i ≤ 2k. For ` =
1, . . . , k− 1, let EC` be a c`-competitive on-line `-server algorithm. Define Bi

` as follows, Bi
` is

an on-line k-server algorithm that numbers its servers 1, . . . , k, server i being the ith farthest
server from the center x before Bi

` begins operation. Bi
` serves requests in Bi with servers

1, . . . , ` and requests in Bi with servers ` + 1, . . . , k. It does that by simulating EC` with the
servers 1, . . . , ` on the subsequence of requests in Bi, and by simulating ECk−` with the servers
` + 1, . . . , k on the subsequence of requests in Bi.

We have the following lemma concerning Bi
`:

Lemma 2 Suppose a k-server algorithm A is given a request sequence σ and an initial con-
figuration C0. Suppose that while serving σ, A maintains a fixed numbering of its servers and
serves requests in Bi with the first ` servers and requests in Bi with the other k − ` servers.
Then, for any initial configuration C,

costBi
`
(C, σ) ≤ max{c`, ck−`}(costA(C0, σ) + MM`(C0, C)),
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where MM`(C0, C) is the minimal match between the points in C0 labelled 1, . . . , ` and the points
in C labelled 1, . . . , ` plus the minimal match between the points in C0 labelled ` + 1, . . . , k and
the points in C labelled ` + 1, . . . , k.

Proof: Follows from the competitiveness of EC` and ECk−` and observation 1. 2

5 Competitive Analysis

Given a request sequence σ and an initial configuration C0, EC divides σ into subsequences
τ1, . . . , τd called phases. Each contract step performed by EC ends a phase, the request that
caused the contract included in the phase. The end of σ also ends a phase. We use the term
complete to refer to a phase that ends with a contract step. The last phase might be incomplete.
We use a slightly different analysis for request sequences that end with a complete phase and
for request sequences that end with an incomplete phase.

A phase τ j is further divided by EC into subsequences τ j
1 , . . . , τ j

pj
called sub-phases of τ j .

An expand step performed by EC ends a sub-phase, the request that caused the expand not
included in the sub-phase. The end of a phase also ends a sub-phase. We use the term complete
to refer to a sub-phase that ends with a contract step. All sub-phases in a complete phase,
except the last sub-phase, are incomplete.

Our proof that EC is competitive follows these steps:

(a) We show that the cost of EC to serve an incomplete sub-phase is bounded from above
by some value proportional to the optimal cost incurred during that sub-phase plus the
radius of the sphere maintained by EC during that sub-phase. By Lemma 1, an algorithm
achieving the optimal cost satisfies the conditions of Lemma 2 with respect to at least
one Bi

`.

(b) We prove that the optimal cost incurred during the complete sub-phase in a complete
phase is an upper bound on the sum of the optimal costs on all the incomplete sub-
phases in that phase. Every expand step doubles, at least, the radius of the sphere
maintained by EC. Therefore, the last radius bounds the sum of all previous radii in a
phase. These radii bound the optimal costs incurred during the respective sub-phases.

(c) We show that the cost of EC to serve a complete phase is bounded from above by some
value proportional to the optimal cost incurred during the complete sub-phase of that
phase. The cost of EC during all incomplete sub-phases of a complete phase is bounded
by some value proportional to the sum of optimal costs incurred during these sub-phases
plus the sum of radii of the spheres maintained by EC during these sub-phases. This
sum of radii is bounded by the last radius. The complete sub-phase can be treated as an
incomplete sub-phase, except for the last request, which causes a contract step. The cost
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of the contract step is proportional to the last radius. A lower bound for the optimal
cost incurred during the last sub-phase is proportional to the last radius.

(d) We prove that the optimal cost incurred during the complete sub-phase in a complete
phase is a lower bound on the cost of any k-server algorithm to serve the entire phase.
The sequence of requests for which the optimal cost is incurred during the complete
sub-phase begins with one or two request locations that must be occupied by adversary
servers at the start of the phase; the remainder is a subsequence of the requests served
during the entire phase. This proves EC’s competitiveness for request sequences that
end with a complete phase.

(e) We conclude the proof by showing that EC is competitive for request sequences that end
with an incomplete phase. We show that EC’s cost during the last phase can be amortized
against the adversary’s cost during the entire sequence.

We use Cj to denote EC’s configuration just before serving requests from phase τ j . We
use xj to denote the center of all spheres maintained by EC during τ j . We use Cj

t to denote
EC’s configuration just before serving requests from τ j

t . We use rj
t to denote the radius of the

sphere maintained by EC during τ j
t .

During a sub-phase τ j
t , EC computes the minimal cost of an accumulated sequence % (see

Fig. 2, line 11). We use %j
t to denote the value of % at the end of τ j

t . At the end of τ j
t , unless

t = j = 1, %j
t = xjτ j

t (see Fig. 2, lines 4,9). At the end of τ1
1 , %1

1 = x1yτ1
1 , where x1, y define

the radius of the initial sphere (see Fig. 2, line 1,4)
Let ∆ = 4ek(k − 1) ·max{c`, ck−`}k−1

`=1 .

Lemma 3 If τ j
t is an incomplete sub-phase, then

costEC(Cj
t , τ

j
t ) ≤ ∆ · (costOPT (%j

t ) + 2krj
t ).

Proof: We assume at first that τ j
t is not the first sub-phase of σ. Let B = B(xj , rj

t , 2k) be the
partition set during τ j

t . Let A be a k-server algorithm and C an initial configuration such that
costA(C, %j

t ) = costOPT (%j
t ). From EC, rj

t is twice the distance between the first two requests
in %j

t (see Fig. 2, line 6). Note that τ j
t is an incomplete sub-phase, so costOPT (%j

t ) < r/6.
Therefore, by Lemma 1, there exist i, 1 ≤ i ≤ 2k, a fixed numbering of A’s servers and `,
1 ≤ ` ≤ k−1, such that while A serves %j

t , points labelled 1, . . . , ` are in Bi and points labelled
` + 1, . . . , k are not in Bi.

A’s cost is minimal, so we may assume that A is lazy and that xj ∈ C. Therefore, without
loss of generality, we may assume that A, given τ j

t and C, constructs the same configurations
as A given %j

t and C. Therefore, the conditions required by Lemma 2 hold for A given τ j
t and

C, so,
costBi

`
(Cj

t , τ
j
t ) ≤ max{c`, ck−`} · (costA(C, τ j

t ) + MM`(C,Cj
t )). (1)
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If τ j
t started after a contract step then EC has all servers at xj ∈ B(xj , rj

t ) (see Fig. 2,
line 13). If τ j

t started after an expand step, then, by induction over t, EC has all servers in
B(xj

t−1, r
j
t−1) initially since the request causing the expand at the end of τ j

t−1 is not included in
τ j
t−1. In both cases, Cj

t ⊂ B(xj , rj
t ). A’s cost is minimal, so we may assume that C ⊂ B(xj , rj

t ).
Therefore,

MM`(C,Cj
t ) ≤ k · 2rj

t . (2)

EC given τ j
t and Cj

t , follows MIN of 2k(k−1) algorithms including Bi
` (see Fig. 2, line 14).

Therefore, by Theorem 1,

costEC(Cj
t , τ

j
t ) ≤ 2e[2k(k − 1)] · costBi

`
(Cj

t , τ
j
t ). (3)

By Equations 1, 2 and 3 the lemma holds, except for τ1
1 .

To prove the correctness of the lemma for τ1
1 , we can use the same proof with the following

modifications: The first two requests in %1
1 are in C1

1 (see Fig. 2, line 1), so costBi
`
(C1

1 , %1
1) =

costBi
`
(C1

1 , τ1
1 ). In Equation 1 replace τ j

t with %1
1 and Cj

t with C1
1 . The rest of the proof remains

the same. 2

Lemma 4 If τ j = τ j
1 . . . τ j

pj
is a complete phase, then

pj−1∑
t=1

costOPT (%j
t ) ≤ costOPT (%j

pj
).

Proof: For 1 ≤ t < pj , costOPT (%j
t ) < rj

t /6; otherwise τ j would have ended during τ j
t .

Because a contract step was performed at the end of τ j
pj

, costOPT (%j
pj

) ≥ rj
pj

/6. For 1 ≤ t < pj ,

rj
t ≤ rj

t+1/2, because the expand step ending τ j
t was performed only when the distance to the

new request was at least twice the distance to the request that started τ j
t . So,

pj−1∑
t=1

costOPT (%j
t ) <

pj−1∑
t=1

rj
t /6 ≤ rj

pj
/6 ≤ costOPT (%j

pj
).

2

Let Γ = 2∆ + 12k(2∆ + 1).

Lemma 5 If τ j = τ j
1 . . . τ j

pj
is a complete phase, then

costEC(Cj , τ j) ≤ Γ · costOPT (%j
pj

).
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Proof: Observe the first pj − 1 sub-phases. They are all incomplete. We use Lemma 3 and
Lemma 4 to bound EC’s cost on these sub-phases. By Lemma 3,

pj−1∑
t=1

costEC(Cj
t , τ

j
t ) ≤ ∆

pj−1∑
t=1

(costOPT (%j
t ) + 2krj

t ) (4)

By Lemma 4,
pj−1∑
t=1

costOPT (%j
t ) ≤ costOPT (%j

pj
). (5)

Note that for every 1 ≤ t < pj , rj
t ≤ rj

t+1/2 (see Fig. 2, line 6). So,
pj−1∑
t=1

2krj
t ≤ 2krj

pj
, (6)

Equations 4, 5 and 6 give:
pj−1∑
t=1

costEC(Cj
t , τ

j
t ) ≤ ∆costOPT (%j

pj
) + ∆2krj

pj
. (7)

Now we handle the last sub-phase, τ j
pj

, which is a complete sub-phase. Observe that without
the last request, this sub-phase is incomplete. We use τ to denote the sequence of requests
derived from τ j

pj
by removing the last request. The cost of EC to serve τ can be bounded by

the optimal cost incurred during τ (incurred for the sequence %, equals %j
pj

without the last
request) using Lemma 3. The additional cost of EC to serve the last request of τ j

pj
is the cost

of a contract step. This cost is bounded by the maximal distance of k servers from the request
causing the contract. More formally, costOPT (%) < rj

pj
/6 (see Fig. 2, line 11), so by Lemma 3,

costEC(Cj
pj

, τ) ≤ ∆ · (costOPT (%) + 2krj
pj

). (8)

The cost of the contract step performed by EC to serve the last request in τ j is at most 2krj
pj

,
because all of EC’s servers are in B(xj , rj

pj
) while performing the contract step. The request

sequence % is a prefix of the request sequence %j
pj

, so costOPT (%) ≤ costOPT (%j
pj

). Therefore,

costEC(Cj
pj

, τ j
t ) ≤ ∆costOPT (%j

pj
) + (∆ + 1) · 2krj

pj
. (9)

From Equations 7 and 9, EC’s cost over all sub-phases in τ j is
pj∑

t=1

costEC(Cj
t , τ

j
t ) =

pj−1∑
t=1

costEC(Cj
t , τ

j
t ) + costEC(Cj

pj
, τ j

pj
)

≤ ∆costOPT (%j
pj

) + ∆2krj
pj

+ ∆costOPT (%j
pj

) + (∆ + 1) · 2krj
pj

= 2∆costOPT (%j
pj

) + (2∆ + 1) · 2krj
pj

.
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To complete the proof we must get rid of the additive term (2∆ + 1) · 2krj
pj

. The last
sub-phase ends with a contract step, so rj

pj
≤ 6 · costOPT (%j

pj
). Thus,

(2∆ + 1) · 2krj
pj
≤ 12k(2∆ + 1) · costOPT (%j

pj
).

It follows that

costEC(Cj , τ j) =
pj∑

t=1

costEC(Cj
t , τ

j
t )

≤ 2∆costOPT (%j
pj

) + (2∆ + 1) · 2krj
pj

≤ 2∆costOPT (%j
pj

) + 12k(2∆ + 1) · costOPT (%j
pj

)

≤ (2∆ + 12k(2∆ + 1)) · costOPT (%j
pj

).

2

Lemma 6 If τ j = τ j
1 . . . τ j

pj
is a complete phase, then for any k-server algorithm ADV that

serves all of σ and starts in CO,

costOPT (%j
pj

) ≤ costADV (CADV , τ j),

where CADV is ADV’s configuration just before serving requests from τ j.

Proof: We assume at first that if j = 1 then pj 6= 1. If j = 1 then x1 is a point in
the initial configuration C0 = CADV . If not, xj is the request that ended τ j−1. In either
case, CADV must have a server located at xj . Let A be a k-server algorithm that given the
sequence xjτ j and the initial configuration CADV , moves to configuration CADV in order to
serve xj and then chooses the configurations selected by ADV for τ j . Since xj ∈ CADV ,
costA(CADV , xjτ j) = costADV (CADV , τ j). Let τ = τ j

1 . . . τ j
pj−1 be the concatenation of τ j ’s

incomplete sub-phases. As xjτ j = xjττ j
pj

, it follows that costOPT (%j
pj

) ≤ costOPT (xjτ j) (note
that %j

pj
= xjτ j

pj
). Therefore,

costOPT (%j
pj

) ≤ costOPT (xjτ j) ≤ costA(CADV , xjτ j) = costADV (CADV , τ j).

To complete the proof for the case where j = pj = 1, note that %1
1 = x1yτ1

1 , where y is one
of the two points defining the radius. during τ1

1 (see Fig. 2, line 1). CADV contains both x1

and y, so we may define A that serves %1
1 with the same cost as ADV incurs in serving τ1 = τ1

1 .
The rest of the proof remains the same. 2
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Lemma 7 If all phases defined by running EC on a request sequence σ and an initial config-
uration C0 are complete, then for any k-server algorithm ADV,

costEC(C0, σ) ≤ Γ · costADV (C0, σ).

Proof: Let Dj be ADV’s configuration just before serving τ j . By lemma 6,

costOPT (%j
pj

) ≤ costADV (Dj , τ j).

By lemma 5,
costEC(Cj , τ j) ≤ Γ · costOPT (%j

pj
),

so
costEC(Cj , τ j) ≤ Γ · costADV (Dj , τ j).

Therefore,

costEC(C0, σ) =
d∑

j=1

costEC(Cj , τ j)

≤
d∑

j=1

Γ · costADV (Dj , τ j)

≤ Γ · costADV (C0, σ).

2

Lemma 7 proves that EC is competitive for all request sequences that end with a complete
phase. We conclude the proof of EC’s competitiveness by handling the case where a request
sequence ends with an incomplete phase.

Lemma 8 If the last phase defined by running EC on a request sequence σ and an initial
configuration C0 is incomplete, then for any k-server algorithm ADV,

costEC(C0, σ) ≤ 4Γ · costADV (C0, σ).

Proof: Let τd = τd
1 . . . τd

pd
be the last phase. For every t, 1 ≤ t ≤ pd, τd

t is an incomplete
sub-phase. By Lemma 3,

costEC(Cd, τd) =
pd∑
t=1

costEC(Cd
t , τd

t )

≤ ∆ ·
pd∑
t=1

(costOPT (%d
t ) + 2krd

t ). (10)
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All sub-phases of τd are incomplete, so for every t, 1 ≤ t ≤ pd, costOPT (%d
t ) < rd

t /6. Note
that for every t, 1 ≤ t < pd, rd

t ≤ rd
t+1/2, so

pd∑
t=1

costOPT (%d
t ) ≤ rd

pd
/3, (11)

and
pd∑
t=1

rd
t ≤ 2rd

pd
. (12)

By Equations 10, 11 and 12 we have

costEC(Cd, τd) ≤ (4k +
1
3
) ·∆ · rd

pd
.

We consider four cases:

1. d > 1 and rd
pd
≤ 2r1

p1
.

2. d > 1 and rd
pd

> 2r1
p1

.

3. d = 1 and p1 6= 1.

4. d = pd = 1.

Case 1: If rd
pd
≤ 2r1

p1
then consider the following: τ1 is a complete phase, so costOPT (%1

p1
) ≥

r1
p1

/6. We charge EC’s cost during τd against ADV’s cost during τ1
p1

, which must be at least
r1
p1

/6. At most 12(4k + 1
3) ·∆ is added to the competitive ratio. Now, 12(4k + 1

3) ·∆ < 3Γ, so
the competitive ratio is bounded by 4Γ in this case.

Case 2: If rd
pd

> 2r1
p1

then consider the following: Before serving σ, the maximal distance
between two servers of ADV was r1

1/2 ≤ r1
p1

/2. While ADV served σ, it had to place a
server at xd and to place a server at a distance of rd

pd
/2 from xd (not necessarily both in the

same configuration). Therefore, ADV’s cost to serve σ is at least rd
pd

/2 − r1
p1

/2 > rd
pd

/4. We
charge EC’s cost during τd against ADV’s cost during the entire sequence. This increases the
competitive ratio by at most 4(4k + 1

3) ·∆ < Γ, so 4Γ is a bound for the competitive ratio in
both cases.

Case 3: If τ1
p1

started with an expand step then ADV moved a distance of at least r1
p1

/4
during τ1, because the farthest server from x1 in C0 is at a distance of r1

1/2 ≤ r1
p1

/4 from x1.
We charge EC’s cost during τ1 against ADV’s cost during τ1. The competitive ratio remains
bounded by 4Γ.

Case 4: If τ1 consists of a single incomplete sub-phase τ1
1 then there are two cases: If

costADV (C0, τ
1
1 ) ≥ r1

1/6 then we charge EC’s cost during τ1 against ADV’s cost during τ1.
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The competitive ratio remains bounded by 4Γ. If costADV (C0, τ
1
1 ) < r1

1/6 then ADV satisfies
the conditions of Lemma 2, so there exists some Bi

` such that

costBi
`
(C0, τ

1
1 ) ≤ max{c`, ck−`} · (costADV (C0, τ

1
1 ) + MM`(C0, C0)).

MM`(C0, C0) = 0, because EC’s servers are numbered according to their distance from x1 in
C0. The competitive ratio in this case is

4ek(k − 1) ·max{c`, ck−`} ≤ ∆ < 4Γ.

2

The claims above have the following consequence:

Theorem 2 EC is a 2O(k log k)-competitive k-server algorithm.

Proof: Let ck denote the competitive ratio for the k-server EC algorithm. From Lemmas 7
and 8,

costEC(C0, σ) ≤ 4Γ · costADV (C0, σ).

Therefore,

ck ≤ 4Γ
= 4(2∆ + 12k(2∆ + 1)) ≤ 152k∆
≤ 1824k3 max{c`, ck−`}k−1

`=1 = 1824k3ck−1

Solving this recurrence, with the initial condition c1 = 1, gives ck = 2O(k log k). 2
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