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Abstract 

In order to ensure the validity and usability of activity recognition approaches, an agreement on a set of standard 
evaluation methods is needed.  Due to the diversity of the sensors and other hardware employed, designing and 
accepting standard tests is a difficult task. This article presents an initiative to evaluate activity recognition systems: 
a living-lab evaluation established through an annual competition − EvAAL-AR (Evaluating Ambient Assisted 
Living Systems through Competitive Benchmarking − Activity Recognition). In the competition, each team brings 
their own activity-recognition system, which is evaluated live on the same activity scenario performed by an actor. 
The evaluation criteria attempt to capture the practical usability: recognition accuracy, user acceptance, recognition 
delay, installation complexity, and interoperability with ambient assisted living systems. The article also presents the 
competing systems with emphasis on two best-performing ones: (i) a system that achieved the best recognition 
accuracy, and (ii) a system that was evaluated as the best overall. Finally, the article presents lessons learned from 
the competition and ideas for future development of the competition and of the activity recognition field in general. 
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1. Introduction 

Ambient Assisted Living (AAL) is a research area that uses technology to improve the quality of life of the elderly, 
by increasing their autonomy in daily activities, and by enabling them to feel secure, protected and supported. It is 
motivated by the ageing of the population: projections for the developed world show that by 2050, every elderly 
person will be supported by only two persons of working age, as opposed to four in 2012 [1]. AAL solutions employ 
various sensors, both wearable (such as accelerometers) and ambient (such as cameras, or sensors built into furniture 
and home appliances). They perform a wide range of functions, such as health monitoring, help with daily activities, 
and communication with family, friends and caregivers. 

In order to ensure the validity and usability of AAL approaches, leading to eventual real-life application, researchers 
should agree on a set of standard evaluation methods. However, this is a difficult task because of the diversity of 
both the functions performed by AAL solutions, as well as the sensors and other hardware they employ. 
Additionally, the evaluation tests should be as close to real life as possible, since real life poses different problems 
than laboratory tests. A function that has emerged as central to many AAL solutions is Activity Recognition (AR), 
mainly because the ability to understand the user’s situation and context is key for real-life usability. This article 
thus presents an initiative to evaluate AR Systems (ARS) on recognizing basic activities in a close approximation of 
a real-life environment, i.e., living lab. 

The first ARS were evaluated on datasets specific to each system, recorded in laboratory settings, and they generally 
achieved high accuracy. However, since each research group evaluated their system using their own dataset, 
comparison between different ARS was almost impossible. The first improvement towards standardized test was 
achieved when the first benchmark datasets were developed: OPPORTUNITY dataset [2], HASC activity 
recognition corpus [3], HARL competition datasets [4], datasets in the AmI Repository [5], etc. These datasets 
finally enabled researchers to compare different ARS. Such an evaluation approach is well established in many 
research areas related to artificial intelligence: examples include the UCI Machine Learning Repository, TREC 
(Text REtrieval Conferences) that feature competitions in various disciplines, etc. However, for ARS this approach 
is not sufficient for two reasons. First, the comparison is limited to systems that use the same sensor configuration 
(type and placement of sensors, etc.) as the one used while recording the dataset. Most of the benchmark datasets are 
recorded with wearable inertial sensors and can thus only be used to compare ARS that use inertial sensors. And 
second, benchmark datasets allow only the comparison of the data-processing parts of ARS. This is a severe 
limitation because it is often the data-acquisition part (the sensors) that limits the systems’ reliability and 
acceptability, and thus their real-life usability.   

In this article, we present a living-lab evaluation of ARS established through an annual competition − EvAAL-AR 
(Evaluating AAL Systems through Competitive Benchmarking − Activity Recognition). In the competition, each 
team is required to bring their own ARS, which is evaluated using criteria capturing its practical usability: 
recognition accuracy, user acceptance, recognition delay, installation complexity, and interoperability with AAL 
systems. The performance of each competing system is evaluated live on a predefined activity scenario performed 
by an actor. The article also describes the competing systems with an emphasis on two best-performing ones: the 
system that achieved the best recognition accuracy, and the system that was evaluated as the best overall. Finally, we 
present the lessons learned during the competition, discussion on future development of ARS and the competition. 
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2. EvAAL Activity Recognition Competition 

The EvAAL competition was conceived in 2010, as one of the main objectives of the universAAL project 
(http://universaal.org/index.php/en/). It was designed around the grand challenge of evaluating complete AAL 
systems, with a long-term roadmap that starts with the evaluation of simple components and building blocks in the 
first phase, and continues with the evaluation of aggregated components, services and even platforms in the second 
phase. It started in 2011 as a single-track localization competition [6], evaluating only systems for indoor 
localization, and later evolved into a two-track competition by including the AR track (EvAAL-AR) in 2012 ('12) 
and 2013 ('13) [7]. 

The main objective of the EvAAL-AR competition is to evaluate ARS intended to be used by the elderly in real life, 
therefore the performance of each competing ARS is evaluated live in a living lab. The '12 and '13 EvAAL-AR 
competitions were held in the CIAmI Living Lab in Valencia, Spain, shown in Figure 1. There was no limitation to 
the number and type of devices comprising the ARS brought by the competitors. The only constraint was the 
compatibility with the physical limitations of the living lab.  

 

Figure 1. CIAMI Living Lab, Valencia, Spain. 

The following seven activities had to be recognized: lying, sitting, standing, walking, bending, cycling on a 
stationary bike, and falling. Most of them were selected because they are common in daily life and thus recognizing 
them is the starting point for AR. Together with the localization of the user (tackled by the other EvAAL track), they 
provide the context for smart control of home automation, and paint a broad picture of an elderly’s lifestyle, 
including the very important level of physical activity. Falling was included because it is the main cause of injury 
among the elderly, while cycling is a recommended type of exercise for older people. All the activities were 
included in a scenario that lasted approximately 5 minutes, performed by an actor. The scenario represented a 
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simulation of a part of the day of an elderly (watching TV, working in the kitchen, bathroom activities, sleeping) and 
was repeated twice, with the better run by each competitor counting towards the final score. In order to get 
approximately the same ground truth for all the competitors, audio cues were played from a file to signal the actor as 
to which activity should be performed three seconds in advance, giving the actor the time to prepare for it. An 
evaluator who followed the actor refined the ground truth by marking the precise time-stamps of the activities with a 
custom smartphone application. 

The scoring of the ARS was overseen by an evaluation committee (EC) according to the following five criteria. The 
numbers in the brackets represent the weights by which each criterion was considered in the final score in the '12 
competition:  

 (25%) Recognition accuracy − how accurately the system recognizes the target activities. Even though different 
types of evaluation metrics can be found in the AR literature (overfill, merge, fragmentation, deletion, accuracy, 
recall, precision, F-measure, AUC, ROC, etc.) [2][8][9], a single metric was used to rank the competitors – the 
F-measure. It is calculated as a harmonic mean of the recall and the precision values which are averaged over 
the seven target activities. This metric is among the most commonly used in AR and is a good estimator of the 
AR performance. However, all the data (ground truth and recognized activities) is available and can be used to 
calculate different performance scores using other metrics.  

 (20%) Recognition delay – the elapsed time between the time at which the user begins an activity and the time 
at which the system recognizes it. The maximum allowed delay was 20 seconds, after that the system was 
evaluated with 0 points. In order to get the maximum score, the competing system was required to have a delay 
no more than 2 seconds. 

 (25%) Installation complexity – how much effort is required to install the ARS in the living lab. It was 
measured in minutes of work per person needed to complete the installation. The maximum allowed installation 
time was 60 minutes, after that the system was evaluated with 0 points. In order to get the maximum score, the 
competing system was required to have no more than 10 minutes of installation time. This and the following 
two parameters were evaluated by the EC. 

 (15%) User acceptance − how invasive the ARS is in the user’s daily life. Evaluated by the EC using a 
questionnaire available at: http://evaal.aaloa.org/2013/quest. 

 (15%) Interoperability with AAL systems – the metrics used are: the use of open-source solutions, availability 
of libraries for development, integration with standard protocols. Evaluated by the EC using a questionnaire 
available at: http://evaal.aaloa.org/2013/quest. 

The choice of the criteria and their weights was inspired by the evaluation criteria used in the EvAAL localization 
competition held in 2011. The choice was also supported by the following assumptions: (1) the accuracy is the best 
way to determine the operational quality of the system; (2) the delay is an indication of whether the system works in 
real-time; (3) the installation complexity is an indication of the adoption barrier for end users, and is used to limit 
the time that the competitor has to install his system; (4) the user acceptance - although it is a subjective criteria, it 
is an important issue in actual use; and finally (5) the interoperability was motivated by being one of the goals of 
the universAAL project (to create open AAL platforms).  

The initial competition setup was based on the organizers’ extensive experience with AR, but since such an event 
had not been organized before, the experience gained in the '12 competition prompted some improvements for the 
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’13 edition. Firstly, the actor performing the activities wore an elderly simulation kit. This is a specially designed 
garment to hinder the movements of the actor emulating an elder (the actor wearing the kit is shown in the bottom 
right panels in Figure 1). Note that having an elder as an actor was not an option because of the risky fall event and 
the physical burden of repeating the activities for each team. Secondly, the weight for accuracy was increased (from 
25% to 35%) and weights for installation complexity and interoperability with AAL systems reduced (from 25% to 
20% and 15% to 10%, respectively). These changes were introduced to better reflect the current state of AR 
development, since the main goal is still to achieve adequate accuracy in real life, while the installation complexity 
and interoperability will come to the fore once the area matures. Thirdly, several kinds of falls were considered, 
including backward, forward and lateral falls. 

During the competition, each competing system recorded a dataset using its own sensor configuration. These 
datasets were labeled with the appropriate activity and can be used for offline comparison of different algorithms 
and data-processing techniques. Eight labeled datasets are available at the competition's web-site 
(http://evaal.aaloa.org/), which include a variety of sensors data: accelerometers, camera images, heart rate, breath 
rate, etc.  

Table 1 shows the scores on the scale of 0–10 for the '12 and '13 editions. Due to the change in the weights of the 
criteria for the ’13 edition, we include the final scores by both years' rules. Even though the system by the Carnegie 
Mellon and Utah universities (CMU&Utah) experienced some installation problems, it still achieved the best 
recognition accuracy. However, the system by Jožef Stefan Institute (JSI) obtained the highest final score for both 
years, by achieving not only high accuracy, but also scoring very well on the other criteria. 

Table 1. EvAAL-AR '12 and '13 teams and results (score: from 0 to 10) 

 

Team  Accuracy Delay  
Installation 
complexity 

User 
Acceptance 

Interoper-
ability 

Overall 
score '12 

Overall 
score '13 

E
vA

A
L

-A
R

 '1
2 

Seville'12 (Spain) 4.33 9 10 7.47 7.63 7.39 7.07 

CMU&Utah (USA) 7.17 9 0 7.93 6.15 6.5 6.51 

Chiba'12 (Japan) 1.44 5 0 5.6 5.09 3.52 3.13 

Dublin (Ireland) 0 0 10 5.2 1.25 2.99 2.67 

         

E
vA

A
L

-A
R

 '1
3 

JSI (Slovenia) 6.94 10 10 8.55 7.2 8.45 8.36 

CNR (Italy) 4.04 10 10 7.04 6.15 7.19 6.94 

Seville'13 (Spain) 4.68 9 10 6.99 5.54 7.05 6.89 

Chiba'13 (Japan) 4.43 10 0 5.44 2.24 4.8 4.86 
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3. The Competitors 

3.1.  CMU&Utah System 

The CMU&Utah system [10], which participated in the '12 edition only, actually managed to achieve the highest 
accuracy across both competition years. The system is composed of the BioHarness BT chest strap, a smartphone, 
an indoor localization system, and a laptop. The BioHarness and the smartphone, carried in the user’s pocket, collect 
3D accelerations. The indoor localization system estimates the user’s indoor location with radio tomographic 
imaging, measuring the disruption of radio signal strength caused by a moving object that either reflects or absorbs 
the wireless signal [11]. The data from the three sources are collected on the laptop, which performs the AR. 

The CMU&Utah's system uses a hybrid AR methodology [12], with one expert module per activity and a control 
module. Each expert module uses the data from the BioHarness and outputs the probability of the recognized 
activity. The control module improves the AR by considering the richer context of the user, including the user's 
location and the orientation of the smartphone in the pocket. Each new user of the system is required to perform 
each activity for a short time for the purpose of calibration, using a simple labeling interface on the smartphone. The 
calibration data is evaluated against a pool of AR models trained on different people, and the best-performing set of 
models is selected for the new user.  

This methodology was selected based on laboratory experiments using data collected for 15 participants. The 
participants performed a set of tasks, with no explicit instruction or restrictions to ensure realistic movements. 
Afterwards, three approaches for training the AR models were compared: individual, population and calibration. In 
the individual approach, for each of the 15 participants half of the data were used to train the AR models, and the 
other half to test them. In the population approach, for each participant the data from the other 14 participants and 
half of the participant's data were used for training. The models were then tested on the other half of the participant’s 
data. Finally, for the calibration approach, for each participant the data from the remaining 14 participants were used 
to train a pool of 14 sets of AR models. Then, half of the participant’s data were used for calibration, i.e., finding the 
best set of models out of the pool, and other half of the data was used for testing.  

As shown in Figure 2 (pre-competition part), the calibration approach achieved the highest accuracy of 74% on the 
test data and was thus used in the '12 competition. At the competition, it achieved similar accuracy of 72% on a 
previously unknown actor. 

84.7%

68.7%

52.8% 51.4%

76.6% 74.1% 71.7%

40%

50%

60%

70%

80%

90%

100%

Training Testing EvAAL-AR

A
cc
u
ra
cy

Individual Population Calibration

Pre-competition
EvAAL-AR

  

Figure 2. Pre-competition and EvAAL-AR accuracy for the CMU&Utah system. 
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The main strength of the CMU&Utah system is the personalization of the AR models. Even though the calibration 
needed for the personalization makes the installation somewhat more complex, it is probably worth it, since the 
accuracy at the competition was almost the same as in the laboratory experiments. The fact that no pre-defined 
activity scenario was used during training probably contributed to this result, since the AR models could not overfit 
to a training scenario. The localization should also increase the accuracy at the expense of installation complexity. 
Since it failed to work in the living lab due to wireless interference with the equipment in the environment, it was 
not used at the competition, but the modularity of the system made it possible to compete without it and still achieve 
the best recognition accuracy. However, the attempts to make the localization work resulted in a low installation 
complexity score and thus prevented the victory. This shows that sophisticated AR methods are not necessarily 
sufficient for success in the field. 

There are several improvements considered for future work: the encryption of the localization data to avoid the 
interference with other equipment, improving the accuracy by including the heart rate and breath rate outputs from 
the BioHarness chest strap, and finally smartphone implementation of the system so it can also be used outdoors.  

3.2.  JSI System 

The JSI system [13], competing in the '13 edition only, actually achieved the highest ranking overall across both 
competition years. It is composed of two accelerometers sewn into clothing, placed on the user's abdomen and thigh. 
The placement was chosen as a trade-off between the physical intrusiveness and the accuracy in preliminary tests 
[13]. The accelerometers use Bluetooth to transmit data to a laptop, where AR is performed. The software 
architecture of the system deals with AR and fall detection (FD) separately. First the FD module checks whether a 
fall has occurred, and if not, the AR module outputs the activity.  

The FD module detects a fall pattern: a decrease in acceleration (falling) followed by an increase (impact) [14]. The 
minimum and the maximum acceleration within a one-second window are measured, and the difference between 
them has to exceeded 10 m/s2. Following a fall pattern, if the abdomen sensor is in the horizontal orientation, the fall 
event is confirmed. 

In the AR module, a number of features are first computed from the acceleration data. The activities are then 
recognized by a three-level scheme [13]. On the first level, a classifier was trained only to distinguish the cycling 
activity from the others. If the activity is not classified as cycling, the feature vector is passed to the second level, 
where the postures (sitting, lying, bending, and the upright posture) are recognized by rules. If the recognized 
activity is the upright posture, a classifier on the third level is used to distinguish between standing and walking. 

To train the AR classifiers and to evaluate and tune the methodology, a complex 90-minute scenario was recorded 
by 10 participants. The AR model was evaluated by the leave-one-person-out population approach, so the model for 
each participant was constructed from the data from the remaining 9 participants. The data from all 10 participants 
were used for training the AR model used in the competition. 

Figure 3 shows the performance of the JSI system evaluated prior to the EvAAL-AR competition, compared to the 
results from the competition. The JSI system performed much less accurately in the competition than in the 
laboratory experiments beforehand (overall F-measure of 69% vs. 94%). The recognition accuracy of the JSI system 
in the pre-competition experiments was very good because the tested activity scenario was the same for all the 
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participants and was performed in a fairly controlled fashion. Because of that, somewhat worse results were 
expected at the competition. However, the accuracy at the competition was much lower, mainly because the actor at 
the competition was strongly leaning back when sitting, so that the angle of the abdomen sensor was very low. In the 
training data, the participants were sitting much more uprightly, so most of the sitting at the competition was 
misrecognized as lying. This clearly shows a need for personalization of the ARS, e.g., by calibrating the system and 
adjusting the models to the current conditions (sensor orientation angles).  
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Figure 3. Pre-competition and EvAAL-AR accuracy for the JSI system. 

Even though the JSI system performed best at the competition, the experience suggested several aspects that would 
benefit from improvement: to reduce the number of sensors to one, to use smaller and more robust sensors, to 
improve the interoperability with other systems and applications (providing API and services to other AAL 
applications), and smartphone implementation for outdoor AR. The JSI team is also considering personalization 
along the lines of CMU&Utah system. 

3.3. Other Systems 

The Chiba team participated in '12 and '13 editions. In 2012 it used a Roomba robot 
(http://store.irobot.com/family/index.jsp) with a laptop and two Kinect 3D scanners 
(http://en.wikipedia.org/wiki/Kinect), the first one to avoid obstacles when following the actor and the second one to 
recognize his activities. Roomba proved underpowered to carry the equipment, so in 2013 a Pioneer 3-AT robot 
(http://www.mobilerobots.com/researchrobots/p3at.aspx) was used instead, and only one Kinect did both tasks. 
However, this robot required mapping the living-lab in advance, resulting in low score for installation complexity 
criteria. Additionally, the robot could not pass through narrow spaces and could not get to the garden due to a step. 
This and the inability to cope with the bright lighting in the living lab prevented a high accuracy score. 

The Seville team also participated in both editions with a smartphone placed on the right hip. The embedded 
accelerometer was used to recognize the user’s activities. The phone was fixed with a belt to ensure stable 
placement. This detracted from the user acceptance, although it was still relatively high, while not being enough to 
achieve high accuracy. Low delay and installation complexity were sufficient for the victory in 2012, but not in 
2013. 

The CNR team used a smartphone placed in the front trousers pocket. In addition, three nodes with embedded radio 
transmitter/receivers were placed on the chest and both ankles, and another one on the stationary bike. The 
accelerometer embedded in the phone was the main sensor for the AR, while the received signal strength between 
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the radio nodes provided some localization information, mainly the distance to the bike. As in the case of the Seville 
team, one accelerometer was not enough for accurate AR. 

The Dublin team used a SenseCam camera (http://research.microsoft.com/en-us/um/cambridge/projects/sensecam/) 
hanging around the neck. The sampling frequency of the camera was not sufficient to detect changes in the activities 
of the user, and the analysis of the data was performed offline. These issues resulted in low scores for the accuracy 
and recognition delay. 

4. Discussion 

AR is an essential part of ambient intelligence and as such needs standard evaluation methods. We described the 
EvAAL-AR competition, whose ambition is to become a "gold standard" of AR quality. In comparison to 
benchmarking on datasets, the competition evaluates the performance of ARS live (in real-time) and does not limit 
the competing systems to a predefined sensor configuration and data, since each system captures its own data. 
Furthermore, it does not allow tuning to a particular dataset, which may happen with a benchmark dataset. This was 
observed in the JSI’s pre-competition and competition results, where a large drop in performance occurred. Finally, 
the competition allows evaluating ARS by criteria related to practical usability, not only by their recognition 
performance. 

The EvAAL-AR competition has been an interesting experience both for the competing teams and the organizers, 
despite all of them having substantial experience with AR. Some lessons that have been learned: 

 Since participating in the competition requires an investment in time and money, only teams that were confident 
in the quality of their ARS participated. However, they encountered numerous unexpected problems, such as 
those by the CMU&Utah and JSI teams, as well as equipment being damaged in transit and sensors falling off 
the actor. This is evidence that most of ARS developed in research laboratories need modifications for practical 
use. 

 Simultaneously detecting activities of daily living and falls presented quite a challenge for the competing 
systems, suggesting that AR and FD are being developed in isolation instead of as parts of a single system. 

 While the evaluation scenario was short and relatively simple, the impression of people involved – the authors 
as well as others – was that it is a decent indicator or real-life performance. The elderly simulation kit helped 
emulate the movements of a >65 years old person. A longer and more complex evaluation (multiple days of real 
life) would be preferable, but too difficult and expensive to organize. 

 The competition was a good environment for discussion and first-hand observation of different ARS, providing 
valuable feedback to improve both the ARS and the competition. The competition improves with each next year 
and should eventually evaluate all the necessary aspects of creating a complete ARS. 

 The best-performing systems recognized basic activities adequately. Such activities are building blocks of 
complex activities (e.g., preparing a meal) whose recognition is often more central to the tasks of AAL systems, 
and it is probably time to take the evaluation a step forward and tackle complex activities directly. 
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The main objectives for the next editions of the EvAAL-AR are: (i) to further the goal of establishing the 
competition as the "gold standard" for measuring quality of ARS, (ii) to increase the number of competitors, and (iii) 
to upgrade the test scenario with more complex activities in less controlled environments. To achieve the first two 
objectives, we are working to organize it in conjunction with a high-level conference that attracts more interested 
researchers than the current competition event, include more AR experts worldwide, and promote it in the AR 
community. Attracting vendors and increasing the value of the award is another possibility. As to the last objective, 
we are considering to include: 

 A simulated shower or toilet visit. These two events are of particular interest because on one hand those are the 
places where critical falls often occur, and on the other hand are technologically challenging because of the 
privacy, safety and sensor wearability issues.  

 More challenging FD by including some intentional fall-like events that may trigger a false alarm and possibly 
additional fall types. 

 Recognition of high-level activities of daily life, e.g., having a conversation, watching TV, reading a newspaper, 
cooking, etc., which are still a challenging task in the pervasive computing [15]. 

 Outdoor evaluation. Most of the ARS assume that the user is inside a controlled environment. However, 
outdoor monitoring is an important aspect and a challenging task, especially for physically active users. 

In order to improve the evaluation, we propose: 

 Further refining the evaluation criteria, particularly the recognition delay and the recognition accuracy. First, 
while it is important to recognize activities in a timely manner, a few seconds are usually not very important. 
Second, a more thorough analysis of the recognition accuracy is needed, e.g., including per-activity analysis – 
some activities are more important than others, e.g., falling vs. standing. 

 Improving the questionnaires. Although the technical committee members, who designed the questionnaires, are 
experts in AR (http://evaal.aaloa.org/2013/committees2013), some questions were not objective enough and 
require further refinement. Experts from other areas, such as usability, should also be involved. 
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