
          

 

LOSI, Université de Technologie de Troyes, BP 2060, 10010 Troyes Cedex, France 
Phone: +33 3 25 71 56 26 – Fax: +33 3 25 71 56 49 – Web: http://www-losi.utt.fr 

 
 

Research Report  
LOSI-2001-01 

 
 
 
 
 
 

Competitive Memetic Algorithms  
for Arc Routing Problems 

 
 
 
 
 

Philippe LACOMME 
Christian PRINS 

Wahiba RAMDANE-CHERIF 

 
 
 
 
 
 

First version: 07/11/2001 – Revised: 21/04/2002 
Submitted for publication to Annals of Operations Research 



Competitive memetic algorithms for arc routing problems – P. Lacomme et al. 
 

 
 

RR LOSI-2001-01 – Page 1 

 
 
 
 
 
 

Competitive Memetic Algorithms  
for Arc Routing Problems 

 
 

Philippe LACOMME 
LIMOS, Université Blaise Pascal 

Campus Universitaire des Cézeaux 
63177 Aubière Cedex, France 
e-mail: lacomme@sp.isima.fr 

 

Christian PRINS (corresponding author) 
LOSI, Université de Technologie de Troyes 

12 Rue Marie Curie, BP 2060 
10010 Troyes Cedex, France 

e-mail: prins@utt.fr, phone (33) 3 25 71 56 41, fax (33) 3 25 71 56 49 
 

Wahiba RAMDANE-CHERIF 
LOSI, Université de Technologie de Troyes 

12 Rue Marie Curie, BP 2060 
10010 Troyes Cedex, France 

ramdane@utt.fr 
 
 
 



Competitive memetic algorithms for arc routing problems – P. Lacomme et al. 
 

 
 

RR LOSI-2001-01 – Page 2 

Abstract 
 
The Capacitated Arc Routing Problem or CARP arises in applications like waste collection or 
winter gritting. Metaheuristics are tools of choice for solving large instances of this NP-hard 
problem. The paper presents basic components that can be combined into powerful memetic 
algorithms (MAs) for solving an extended version of the CARP (ECARP). The best resulting 
MA outperforms all known heuristics on three sets of benchmark files containing in total 81 
instances with up to 140 nodes and 190 edges. In particular, one open instance is broken by 
reaching a tight lower bound designed by Belenguer and Benavent, 26 best-known solutions 
are improved, and all other best-known solutions are retrieved. 
 
Keywords: Capacitated Arc Routing Problem, CARP, metaheuristic, memetic algorithm. 
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1. INTRODUCTION 
 
Contrary to the well-known Vehicle Routing Problem (VRP), in which goods must be 
delivered to client nodes in a network, the Capacitated Arc Routing Problem (CARP) consists 
of visiting a subset of edges. CARP applications include for instance urban waste collection, 
winter gritting and inspection of power lines. From now on, to make the paper more concrete 
without loss of generality, examples are inspired by municipal refuse collection. 
 
The basic CARP of literature tackles undirected networks. Each edge models a two-way street 
whose both sides are treated in parallel and in any direction (bilateral collection), a common 
practice in residential areas with narrow streets. A fleet of identical vehicles of limited 
capacity is based at a depot node. Each edge can be traversed any number of times, with a 
known traversal cost. Some edges are required, i.e., they have a non-zero demand (amount of 
waste) to be collected by a vehicle. The CARP consists of determining a set of vehicle trips of 
minimum total cost, such that each trip starts and ends at the depot, each required edge is 
serviced by one single trip, and the total demand processed by a trip fits vehicle capacity.  
 
The CARP is NP-hard, even in the single-vehicle case called Rural Postman Problem (RPP). 
Since exact methods are still limited to 20-30 edges (Hirabayashi et al., 1992), heuristics are 
required for solving large instances, e.g. Augment-Merge (Golden and Wong, 1981), Path-
Scanning (Golden et al., 1983), Construct-and-strike (Pearn's improved version, 1989),  
Augment-Insert (Pearn, 1991) and Ulusoy's tour splitting algorithm (1985). 
 
The first metaheuristic for the CARP, a simulated annealing procedure, was designed by 
Eglese in 1994 for solving a winter gritting problem. Several tabu search (TS) algorithms are 
also available, both for particular cases like the undirected RPP (Hertz et al., 1999) or the 
mixed RPP (Corberan et al., 2000) and for the CARP itself (Eglese, 1996; Hertz et al., 2000). 
All these metaheuristics and classical heuristics may be evaluated thanks to lower bounds, 
generally based on linear programming formulations, see Benavent et al. (1992), Belenguer 
and Benavent (1998), Amberg and Voβ (2001). On most instances, the best-known lower 
bound is obtained by a cutting-plane algorithm (Belenguer and Benavent, to appear). 
 
Compared to the VRP, the CARP has been relatively neglected for a long time but it attracts 
more and more researchers: successful applications are reported (Mourão and Almeida, 2000) 
and extensions are now investigated, for instance the directed RPP with turn penalties 
(Benavent and Soler, 1999), the multi-depot CARP (Amberg et al., 2000) and the CARP with 
intermediate facilities (Ghianni et al., 2001). 
 
This paper presents powerful memetic algorithms (MAs) for an extended CARP. Compared 
to an earlier GA for the mixed CARP with forbidden turns (Lacomme et al., 2001), they 
handle other objectives, like the makespan or the number of vehicles used, and extensions like 
parallel arcs, turn penalties, a maximum trip length and a limited fleet. Several possible bricks 
for each MA step are designed with a low complexity and tested, e.g. a generational approach 
and a partial replacement procedure. The best resulting MA is twice faster, it improves 26 
best-known solutions and tackles large instances with 140 nodes and 190 edges. 
 
The extended problem (ECARP) is presented in section 2. Three classical constructive 
heuristics are extended to the ECARP in section 3 to provide good initial solutions. Section 4 
describes possible components for each step of memetic algorithms. Section 5 is devoted to 
computational evaluations: the best MA structure is defined after a preliminary testing and 
results are reported for three sets of benchmark instances. 
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2. EXTENDED CARP MODEL (ECARP) 
 
2.1 Extensions considered and street modelling 
 
For the sake of clarity, this subsection presents without mathematical symbols our extended 
problem and the modelling technique for the streets of a real network. Subsections 2.2 to 2.4 
are respectively devoted to the required notation, to some complications raised by forbidden 
turns, and to the representation of solutions. The ECARP tackles the following extensions: 

a) mixed multigraph with two kinds of links (edges and arcs) and parallel links,  
b) two distinct costs per link (deadheading and collecting),  
c) prohibited turns (e.g., U-turns) and turn penalties (e.g., to penalize left turns)  
d) maximum trip length (an upper limit on the cost of any trip).  
 
Like in the basic CARP, the depot is unique, the fleet is homogeneous, and no split collection 
is allowed. The number of vehicles is a decision variable. To ensure the existence of feasible 
solutions, the maximum trip length allows a vehicle to reach any required link, collect it, and 
return to the depot. The cost of a trip comprises collecting costs (for each link collected) and 
deadheading costs (for each link traversed without collection), see 2.4 for a formula. The goal 
is to find a set of trips of minimum total cost, covering all required links. 
 
A mixed graph allows to model non-required streets and three kinds of required streets. A 
non-required street is modelled either as one arc (one-way street) or two opposite arcs (two-
way streets). The three types of required streets are: i) two-way streets collectable in any 
direction (giving one edge), ii) two-way streets with sides collected separately (giving two 
opposite arcs) and iii) one-way streets (modelled as one arc). We use a mixed multigraph to 
handle more complicated cases: for instance, two parallel arcs can model a one-way street too 
wide for bilateral collection and requiring two traversals, one for each side.  
 
To ease algorithmic design, the mixed multigraph is coded as a fully directed graph in which 
each edge is replaced by two arcs with opposite directions. Only one of these arcs must be 
collected in any feasible solution. To ensure this, both arcs are linked by a pointer variable: 
when an algorithm selects one direction, both arcs can be marked "collected".  
 
2.2 Reference list of mathematical symbols  
 
Table 1 provides a quick reference for the remainder of the paper. The mixed multigraph is 
coded as a fully directed graph G = (N, A) with m arcs indexed from 1 to m (pairs of nodes are 
ambiguous for parallel arcs). The required arcs are the ones with a non-zero demand q(u) 
(amount of waste). They have a service cost w(u), generally greater than the deadheading cost 
c(u) in waste management applications. By convention, w(u) = 0 if u is not required. All costs 
and demands are non-negative integers.  
 
As explained in 2.1, a pointer inv is used to link two arcs u and v coding an edge. In that case, 
inv(u) = v, inv(v) = u and edge data are copied on each arc: q(u) = q(v), c(u) = c(v) and 
w(u) = w(v). If an arc u is required but does not code an edge, or if it is not required, then 
inv(u) = 0. We call tasks the τ required links in the mixed multigraph. They comprise ε edge-
tasks and α arc-tasks. Since each edge-task is coded as two arcs in A, the number of required 
arcs in A is ρ =  2ε + α. τ and ρ have an impact on the complexity of our algorithms. 
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Table 1. Glossary of mathematical symbols 
Mixed multigraph Data for each arc u Miscellaneous 

G = (N, A) directed encoding  
n   no of nodes in N 
m  no of arcs in A 
τ   no of tasks (required links) 
ε   no of edge-tasks 
α  no of arc-tasks 
ρ  no of required arcs in A 

b(u)    begin node 
e(u)    end node 
q(u)    demand 
c(u)    deadheading cost 
w(u)   service cost 
inv(u) pointer to opposite arc 
suc(u) set of successor-arcs 

s             depot node 
K            fleet size (variable) 
W           vehicle capacity 
L            maximum trip length 
pen(u,v) penalty for turn (u,v) 
D m×m  distance matrix 
P m×m   predecessor matrix 

 
 
2.3 Forbidden turns, turn penalties and distance matrix 
 
This subsection shows how to make forbidden turns transparent. Each arc u has a set suc(u) of 
allowed successor-arcs, i.e. v ∈ suc(u) if e(u) = b(v) and the turn (u,v) is allowed. Given two 
arcs u and v, we define a feasible deadheading path from u to v as a sequence of arcs 
µ  = (u = u1, u2, …, uk = v), such that ui+1 ∈ suc(ui) for i = 1, …, k-1. Its deadheading cost c(µ) 
is defined by Equation 1. By convention, the costs of u and v are not counted, to ease some 
trip operations like arc insertions and deletions. 
 

∑
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Dijkstra's algorithm (Cormen, 1990) can be adapted to pre-compute a shortest feasible path 
between all pairs of nodes, in two m × m matrices D and P. D(u,v) is the cost of the shortest 
path found from arc u to arc v, P(u,v) is the predecessor of v on this path. Paths from / to the 
depot s are handled by putting in A one fictitious loop σ with b(σ) = e(σ) = s. Algorithm 1 
computes row u of D and P. It must be called m times with u = 1, 2, …, m to fill the matrices. 
An arc v is said fixed when a shortest path from u to v is obtained. At the beginning, no arc is 
fixed and all paths from u have an infinite cost. Each iteration of the third for loop determines 
the destination arc v with the smallest path cost, among the arcs not yet fixed. This arc is fixed 
and each successor-arc z is checked to see if the provisional path from u to z can be improved. 

 
for v := 1 to m do D(u,v) := ∞; fix(v) := false endfor 
for each v in suc(u) do D(u,v) := pen(u,v); P(v) := u endfor  
for count := 1 to m do 
   v      := argmin{D(u,z):fix(z)=false} 
   fix(v) := true 
   for each z in suc(v) with D(u,v) + c(v) + pen(v,z) < D(u,z) do 
      D(u,z) := D(u,v) + c(v) + pen(v,z) 
      P(u,z) := v 
   endfor 
endfor 
 

Algorithm 1. Algorithm for shortest paths from one given arc u to all other arcs. 

 
Algorithm 1 runs in O(m2). A heap data structure (Cormen et al., 1990) allows an O(h log m) 
version, with h the total number of allowed turns in G. So, D and P can be computed in 
O(mh log m) by calling the algorithm m times. For real street networks with m ≈ 4n and 
h ≈ 4m ≈ 16n, D and P are computed very quickly, in O(n2 log n). 
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2.4 Implementation of trips and solutions 
 
A trip θ is a list (θ1, θ2, …, θ|θ|) of required arcs, with a total demand load(θ) ≤ W and a total 
cost cost(θ) ≤ L defined by Equations 2-3. Implicitly, θ starts and ends at the depot and 
shortest feasible paths are assumed between two tasks and between one task and the depot 
loop σ (cf 2.3). A solution T is a list (T1, …, TK) of K vehicle trips (K is a decision variable). 
Its cost is the sum of its trip costs. Each arc-task appears once in T and each edge-task occurs 
as one of its two opposite arcs. So, T requires a space proportional to the number of tasks τ. 
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3. CONSTRUCTIVE HEURISTICS FOR THE ECARP 
 
This section extends three classical CARP heuristics to the ECARP: Path-Scanning (Golden 
et al., 1983), Augment-Merge (idem, 1981) and Ulusoy's heuristic (1985). The extended 
versions are used in 4.5 to initialize the population of our memetic algorithms. The main 
difference with classical versions is to use D, the arc-to-arc distance matrix described in 2.3, 
instead of a node-to-node matrix. This allows a simple treatment of forbidden turns. 
 
3.1 Extended Path-Scanning (EPS) 
 
This heuristic builds one trip at a time. In constructing each trip, the sequence of tasks is 
extended by joining the task looking most promising, until capacity W or maximum trip 
length L are exhausted. For a sequence ending at a required arc u, the extension step 
determines the set M of required arcs closest to u, not yet collected, and feasible for W and L. 
Five rules are used to select the next arc v in M: 1) maximize the distance D(v,σ) to the depot 
loop σ (cf. 2.3), 2) minimize D(v,σ), 3) maximize the yield q(v) / w(v), 4) minimize this yield, 
5) use rule 1 if the vehicle is less than half-full, else use rule 2.  
 
Once selected, v must be flagged as "collected", to avoid reselection in subsequent iterations. 
If v belongs to an edge-task, inv(v) must be flagged too. EPS builds one solution per criterion 
and returns the best one. It can be implemented in O(τ2), i.e., O(n2) for a real street network 
with τ ≤ ρ ≤ m ≈ 4n. In spite of its great simplicity, EPS gives good results in practice, thanks 
to compensation effects among criteria: the five solutions are never simultaneously bad. 
 
3.2 Extended Augment-Merge (EAM) 
 
The original version is illustrated in Figure 1. τ trips are built (one per task) and sorted in 
decreasing cost order. For each trip Ti (i = 1, 2, …, τ-1), the augment phase scans each 
smaller trip Tj (j = i+1, i+2, …, τ). If the required edge u of Tj is on a deadheading path of Ti 
and if load(Ti) + q(u) ≤ W, Tj is absorbed. The cost of Ti does not vary because deadheading 
and service costs are equal in the basic CARP. However, the total cost decreases by cost(Tj). 
Then, the merge phase evaluates the concatenation of any two trips, subject to W: e.g, in the 
figure, concatenating Ti then Tj yields a saving of 4. Merge concatenates the two trips with the 
largest positive saving. The process is repeated until no such concatenation is possible. 
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Figure 1. Principle of augment (left) and merge (right) 
Thick lines correspond to edge-tasks, thin lines to shortest deadheading paths 

 
In the ECARP, each required arc u has two distinct costs c(u) and w(u). In augment, if trip Ti 
absorbs trip Tj with its required arc u, the total saving is now cost(Tj) + c(u) - w(u) and is not 
always positive like in the basic CARP. In fact, some testing shows that augment can be 
suppressed without affecting average solution costs. So, we actually removed it. Moreover, 
matrix D is generally asymmetric for mixed networks and a trip is no longer equivalent to its 
mirror trip obtained by inverting the sequence of tasks. This gives up to 8 ways of concate-
nating two trips Ti and Tj: Ti then Tj or Tj then Ti, with each trip inverted or not. Note that a 
trip cannot be inverted if it contains arc-tasks, non-invertible. The extended heuristic EAM 
can be implemented in O(τ2 log τ), i.e. O(n2 log n) for real street networks. 
 
3.3 Extended Ulusoy's heuristic (EUH) 
 
The original heuristic for the basic CARP temporarily relaxes vehicle capacity W to compute 
a least-cost giant tour S covering the τ edge-tasks. If all edges are required, this sub-problem 
is an easy undirected Chinese postman problem. If not, it is a NP-hard rural postman problem 
that can be solved heuristically. Then, this tour is optimally split into capacity-feasible trips. 
 
Figure 2 depicts the splitting procedure (Split in the sequel) for a giant tour S = (a,b,c,d,e) 
with demands in brackets and deadheading costs, assuming W = 9. Split builds an auxiliary 
graph H with τ+1 nodes indexed from 0 onward. Each subsequence (Si, …, Sj) corresponding 
to a feasible trip is modeled by one arc (i-1, j), weighted by the trip cost. A shortest path from 
node 0 to node τ in H (bold) indicates the optimal splitting: 3 trips and a total cost 141. Note 
that H is an artificial construction having nothing to see with the CARP graph G. 
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Figure 2. Principle of Split 
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In the ECARP version EUH, W but also the maximum trip cost L are relaxed to compute a 
good giant tour S in a mixed multigraph with forbidden turns and turn penalties, modelled by 
the directed multigraph G. We solve this mixed rural postman problem approximately, by 
running EPS (cf. 3.1) with a big value of W and L. For better results, we keep the 5 tours 
obtained by the 5 criteria of EPS, split them, and return the best solution. Split computes the 
load and cost of (Si, …, Sj) using equations 2 and 3 and creates (i-1, j) only if W and L are 
respected. Forbidden turns are entirely hidden in the arc-to-arc matrix D used in equation 3. 
 
We now analyze complexity, missing in Ulusoy's paper. Path-Scanning (cf. 3.1) returns an 
initial giant tour in O(τ2). Then, by construction, H is topologically sorted and contains O(τ2) 
arcs. Bellman's algorithm (Cormen et al., 1990) can compute the shortest path in O(τ2). The 
global complexity is then O(τ2), i.e. O(n2) for a real street network with τ ≤ ρ ≤ m ≈ 4n. If the 
minimal demand qmin is large enough, a trip contains at most ω =  min/ qW  tasks, H contains 

O(ωτ) arcs and Split becomes faster, in O(ωτ). 
 
 
4. COMPONENTS FOR MEMETIC ALGORITHMS 
 
This section describes the main features of our memetic algorithms: chromosome structure, 
chromosome evaluation, crossover operators, mutation by local search, population structure 
and initialization, population management. It describes several possible implementations for 
certain features. No computational evaluation is performed here: the best assembly of 
components is determined in section 5. 
 
4.1 Chromosomes: representation, evaluation and generation 
 
Most genetic algorithms for routing problems use quasi-direct representations of solutions, as 
sequences of tasks. A natural idea for the multi-vehicle case is to use sub-chromosomes (one 
per trip), separated by special symbols called trip delimiters. In that case, crossovers generally 
require a repair operator because children may contain overloaded trips. This technique is 
used for instance by Potvin and Bengio for the VRP with Time Windows (1996). In our MAs, 
a chromosome S simply is a sequence of τ required arcs (one per task), without trip delimiters, 
and with implicit shortest paths between consecutive tasks (see Figure 3, presented later). 
 
Clearly, S does not directly represent an ECARP solution but can be viewed as a giant trip 
ignoring capacity W and maximum trip cost L. The Split procedure described for Ulusoy's 
heuristic (cf. 3.3) is applied to S to get an ECARP solution. The fitness F(S) of S is the total 
cost of this solution. Two good properties hold: 1) chromosomes are optimally evaluated with 
respect to their sequence, 2) there exists at least one optimal chromosome, i.e., one giving an 
optimal solution after evaluation (consider one optimal solution and concatenate its trips). 
These properties, yet trivial, are rarely respected in published GAs. 
 
A chromosome is created either by random generation (initial population), by crossover, or by 
converting an existing ECARP solution T = (T1, …, TK). In the third case, the trips are 
concatenated from left to right and the fitness is recomputed with Split, i.e. we forget cost(T). 
There are two main reasons for this policy. First, the solution computed by Split is at least as 
good as T. Second, reproduction is based on a fitness-biased selection of parents (cf. 4.6): to 
be coherent, all chromosomes must be evaluated in the same way. 
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Compared to traditional local search, a genetic algorithm works on a population of solutions 
and its crossovers based on two solutions define larger neighbourhoods. This gives a spatial 
dimension to the search, often called intrinsic parallelism. Thanks to the two properties of our 
chromosome system, this parallelism is expected to find one optimal ECARP solution.  
 
Figure 3 shows a basic CARP with W = 5, 22 edges, and τ = 11 edge-tasks with unit demands 
(bold) and costs (in brackets). The underlying directed graph G with m = 44 is not shown but 
each edge [i, j] is given with the arc index (i,j) such that i < j, e.g., 7 for (2,4). The index for 
(j,i), not shown, is by convention 22 + u, e.g., 29 for (4,2). Three chromosomes P1, P2 and C1 
are given, for the LOX crossover explained in 4.3. The three last lines give the trips and 
solution costs found by Split. Note that some tasks are treated in two different directions by 
P1 and P2, e.g. edge [3,4] is collected as (3,4) in P2 (arc index 9) but as (4,3) in P1 (index 31).  
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Rank     :   1    2    3    4    5    6    7    8    9   10   11 = τ             
Cut at   :                           p=6       q=8 
                                      ↓         ↓ 
Parent P1:  31   21   20   17   15 | 07   03   12 | 23   19   26 
Parent P2:  34   09   29   20   41   26   43   25   15   39   23 
Child  C1:  09   20   41   26   43 | 07   03   12 | 15   39   23 
 
P1 split : (31,  21,  20,  17,  15),(07),(03,  12,  23,  19,  26),  F(P1) = 318 
P2 split : (34,  09,  29),(20,  41,  26),(43,  25,  15,  39,  23),  F(P2) = 324 
C1 split : (09,  20,  41,  26),(43,  07),(03,  12,  15,  39,  23),  F(C1) = 311 

 

Figure 3. A basic CARP instance with 11 tasks and an example of LOX crossover 
Each edge is given with the arc index u for direction (i,j), i < j. The opposite arc is inv(u) = 22 + u. 

 
 
4.2 Efficient splitting procedures for two objective functions 
 
Algorithm 2 is an O(τ2) version of Split minimizing total cost and, as a secondary objective, 
the number of vehicles. It runs in O(τ) space only, by avoiding an explicit generation of the 
auxiliary graph H. Two labels are used for each node i of H: Vi (cost of the shortest path from 
0 to i in H) and Ni (number of arcs on that path, i.e,. number of trips in ECARP solution).  
 
Given one chromosome S, the algorithm enumerates all feasible trips (Si, …, Sj) and compute 
their loads and costs using equations 2 and 3. Instead of creating one  arc (i-1, j) for each trip 
(Si, …, Sj) like in 3.3, the labels of j are immediately updated. At the end, the total cost F(S) 
and the minimum number of vehicles K for that cost can be read in Vτ and Nτ. If required, the 
corresponding ECARP solution can be extracted by tracing the shortest path back.  
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V(0),N(0) := 0 
for i := 1 to τ do V(i) := ∞ endfor 
for i := 1 to τ-1 do 
   load, cost := 0; j := i 
   repeat 
      load := load + q(S(j)) 
      if i = j then 

         cost := D(σ,S(i)) + w(S(i)) + D(S(i),σ)  
      else 

         cost := cost - D(S(j-1),σ) + D(S(j-1),S(j)) + w(S(j)) + D(S(j),σ) 
      endif 
      if (load ≤ W) and (cost ≤ L) then  
         VNew := V(i-1) + cost 
         if (VNew < V(j)) or ((VNew = V(j)) and (N(i-1) + 1 < N(j)) then 
            V(j) := VNew 
            N(j) := N(i-1) + 1 
         endif 
         j := j + 1 
      endif 
   until (j > τ) or (load > W) or (cost > L) 
endfor 
 

Algorithm 2. Split procedure minimizing total cost and number of vehicles 
 
Algorithm 3 implements Split for an interesting ECARP version, discovered during visits to 
waste management companies. The fleet is limited. The number of trips K is still free but 
cannot exceed the fleet size Kmax. All costs are times and the goal is to minimize makespan 
(longest trip duration). Note that the problem is trivially solved without Kmax, by collecting 
each task by a separate trip. The algorithm uses the same labels as Algorithm 2. It computes a 
min-max path from node 0 to node τ in the auxiliary graph H, which must be constructed 
before. Zij is the weight of arc (i,j) in H. 
 
K,V(0),V2(0),N(0),N2(0) := 0 
for i := 1 to τ do V(i),V2(i) := ∞ endfor 
repeat 
   K      := K+1 
   stable := true 
   for i := 0 to τ-1 do 
      for each successor j of i in H with max(V(i),Z(i,j)) < V2(j) do 
         V2(j)  := max(V(i),Z(i,j)) 
         N2(j)  := N(i)+1 
         stable := false 
      endfor 
   endfor 
   V := V2 
   N := N2 
until stable or (K = Kmax) 
 

Algorithm 3. Split procedure minimizing makespan subject to a limited fleet  
 
Each iteration of the repeat loop computes in O(τ2) shortest paths in H with at most K arcs. It 
scans the arcs of H and stores the improved label values in V2 and N2. V2 and N2 are copied 
into V and N at the end of the iteration. The algorithm stops when all labels are stable (this is 
checked with the boolean stable) or when K = Kmax. The chromosome S is infeasible if Vτ = ∞. 
If not, the minimal makespan for S and the number of trips actually used are given by Vτ and 
Nτ. Since a shortest path from node 0 to node τ in H may have up to τ arcs, the algorithm runs 
in O(min(τ,Kmax) ⋅τ2). Note that the algorithm can be simply adapted to minimize total cost 
instead of makespan, by replacing max(Vi,Zij) by Vi + Zij. 
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4.3 Crossovers 
 
Our chromosomes without trip delimiters can undergo classical crossovers for permutation 
chromosomes. The resulting children are immediately evaluated with Split. We tried LOX 
(linear order crossover) and OX (order crossover). LOX is designed for linear chromosomes 
(chromosomes coding objects that clearly have one begin and one end, like hamiltonian 
paths), while OX rather concerns circular permutations (like TSP tours). Intuitively, the best 
choice that will be confirmed in section 5 should be OX, because the chromosome before 
splitting may be viewed as a circular object (giant trip). 
 
Given two parents P1 and P2 with τ tasks, both crossovers draw two cutting sites p and q with 
1 ≤ p ≤ q ≤ τ. To get the first child C1, LOX copies P1(p)…P1(q) into C1(p)…C1(q). P2 is 
then swept from left to right and the tasks missing in C1 are used to fill C1(1)…C1(p-1) then 
C1(q+1)…C1(τ). In OX, the sequence for C1 is P1(p)…P1(q) followed by P2(q+1)…P2(τ), 
P2(1),…,P2(p-1), with restriction that tasks from P2 are taken only if missing in C1. 
However, C1 is interpreted as a circular list and the result stored such that C1(p) = P1(p). For 
both crossovers, the other child C2 is obtained by exchanging the roles of P1 and P2. 
 
In the ECARP, a required arc u is "missing" in C1 if both u and inv(u) are not yet in C1. 
Algorithm 4 shows an ad-hoc version of LOX for C1. An O(τ) complexity is achieved thanks 
to a table pack mapping the indexes of required arcs (in 1…m) into 1…τ. Pack is built once 
for all in O(m), when initializing the MAs. The boolean vector miss records the required arcs 
missing in C1. The algorithm avoids p = 1 and q = nt at the same time, to ensure C1 ≠ P1. 
 
for u := 1 to τ do miss(pack(u)) := true endfor 
draw p in [1,τ] 
if p = 1 then draw q in [1,τ] else draw q in [p,τ] endif 
for i := p to q do  
   C1(i) := P1(i) 
   miss(pack(P1(i))) := false 
   if inv(P1(i)) ≠ 0 then miss(pack(inv(P1(i)))) := false 
endfor 
j := 0 
for i := 1 to τ do 
   if miss(pack(P2(i))) then 
      j := j + 1    
      if j = p then j := q + 1 endif 
      C1(j) := P2(i) 
      miss(pack(P2(i))) := false 
      if inv(P2(i)) ≠ 0 then miss(pack(inv(P2(i)))) := false 
   endif  
endfor 
 

Algorithm 4. LOX crossover in O(τ) for the ECARP 
 
 

4.4 Mutation by local search 
 
In combinatorial optimization, it is well-known that the basic GA (Holland, 1975) with simple 
mutations cannot compete with simulated annealing (SA) and tabu search (TS). To be 
effective, the generic GA must be hybridized with a local search, giving a hybrid GA or 
memetic algorithm (MA) (Moscato, 1999). With a given probability, each child in our MAs is 
converted into an ECARP solution to undergo a local search LS. LS performs successive 
phases that scan in O(τ2) all pairs of tasks (u,v) to try the following moves, in which x (resp. 
y) is the task serviced after u (resp. v) in the trip of u (resp. v). 
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Each phase ends by performing the first improving move detected or when all pairs (u,v) are 
examined. LS stops when a phase reports no improvement. The final ECARP solution is 
converted into a chromosome, as explained in 4.1. Here are the types of moves examined: 
 
� N1: invert task u in its trip if it is an edge-task, i.e., replace u by inv(u) in the trip, 
� N2: move task u after task v, or before v if v is the first task of its trip, 
� N3: move adjacent tasks (u,x) after task v, or before v if v is the first task of its trip, 
� N4: swap tasks u and v, 
� N5: two-opt moves (explained in Figure 4).   
 
Each move type involves one trip or two distinct trips. Moreover, when moving an edge-task 
in N1 to N4, its service direction may be inverted or not. For instance, N4  comprises in fact 
four swapping cases: u and v may be replaced by v and u, inv(v) and u, v and inv(u), or inv(v) 
and inv(u). In N5, some moves may require the inversion of a substring of tasks (cf. Figure 4): 
they are discarded if the substring contains arc-tasks (not invertible). 
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Figure 4. 2-opt moves on one trip (left) and two trips (right) 
Thick lines correspond to edge-tasks, thin lines to shortest deadheading paths 

 
 
4.5 Population structure and initialization 
 
The population is implemented as an array Π of nc chromosomes, kept sorted in increasing 
cost order to ease the selection process described in 4.6. In traditional GAs, identical solutions 
or clones may appear, leading to a premature convergence. The phenomenon worsens in MAs 
because the local search quickly compresses Π in a reduced cost interval.  
 
A possible remedy is to forbid clones. Exact clone detection can be performed efficiently, e.g. 
using hashing techniques (Cormen et al., 1990). We adopted an approximate but faster system 
in which all individuals have distinct costs. Let UB be an upper bound on solution costs and 
used a boolean vector, indexed from 0 to UB, such that used(c) = true iff Π contains an 
individual of cost c. We know in O(1) if a new chromosome S can be added to Π by checking 
that used(F(S)) = false. A crossover is said unproductive if its children cannot be kept because 
of duplicate costs. This concerns a minority of crossovers if nc is not too large (cf. section 5). 
 
Π is initialized with random chromosomes. Because of clones, when nc is too large or the 
problem very small, many draws may be required to generate each chromosome Π(k), 
k = 1, 2, …, nc. In practice, we try a fixed number of times to generate each Π(k) and truncate 
Π to nc = k-1 if all draws fail. It is also possible to include in Π a few good heuristic 
solutions, for instance computed by EPS, EAM or EUH (cf. section 3). These solutions must 
be converted into chromosomes, as explained in 4.1.  
 



Competitive memetic algorithms for arc routing problems – P. Lacomme et al. 
 

 
 

RR LOSI-2001-01 – Page 13 

4.6 Incremental memetic algorithms 
 
The basic iteration of an incremental GA selects two chromosomes to undergo crossover and 
mutation. The resulting children immediately replace some existing chromosomes in Π. In a  
generational GA (4.7), the basic iteration (called generation) performs a massive reproduction 
involving all chromosomes. The children are either stored in another population array used for 
the next generation, or added to Π before a selection reducing the size from 2⋅nc to nc. 
 
We designed incremental versions with two types of selection. The first type (Reeves, 1995) 
selects the rank i of P1 with probability 2.(nc-i+1)/(nc.(nc+1)). Since Π is sorted in increasing 
cost order (4.5), the probability of drawing an individual with median cost is roughly 1/nc, the 
probability of drawing the fittest Π1 is doubled (2/(nc+1), while the probability of drawing the 
worst individual Π(nc) is only 2/(nc.(nc+1)). The rank of P2 is drawn uniformly with a 
probability 1/nc. The second type is binary tournament. Two chromosomes are randomly 
selected and the least-cost one is kept for P1. The process is repeated to get P2.  
 
An OX or LOX crossover (4.3) is applied to (P1,P2). One child C is selected at random and 
undergoes a mutation by local search (4.4) with a given probability. Two replacement 
strategies were tested: C replaces either the worst individual Π(nc) or one Π(k) above the 
median cost, i.e., with  ( )2/nck Π≥ . Note that both methods preserve the best solution. If 

no duplicate cost appears, the child mutated or not enters Π and one productive iteration is 
counted. If not, the child is rejected and the iteration is unproductive. 
 
Our incremental MAs perform a main phase stopped after a given number of productive 
crossovers, after a given number of productive crossovers without improving Π1, or when 
reaching a lower bound LB (in that case, Π1 is of course optimal). More instances are solved 
by adding a fixed number of short restarts, based on a partial replacement procedure (Cheung 
et al., 2001). Each restart stops after a fixed number of crossovers or by reaching LB. In 
section 5, the same number of restarts and the same length per restart are allocated to all 
instances. Since LB is reached in the main phase for a majority of standard instances, restarts 
are not always used. Section 5 clearly indicates the number of allowed restarts, the number of 
crossovers allowed per restart, and the numbers of restarts and crossovers actually performed. 
 
In Algorithm 5, we adapt the partial replacement procedure to our populations with distinct 
costs. Input data include the population Π with nc chromosomes sorted in increasing cost 
order and nrep, the number of chromosomes to be replaced (e.g., nc/4). Compared to a blind 
replacement, the procedure preserves the best solution and never degrades the worst cost. 
According to its authors, it gives better final solutions for a given CPU time. 
 
4.7 Generational memetic algorithms 
 
We also designed generational MAs inspired by a GA for the Resource-Constrained Project 
Scheduling Problem (Hartmann, 1998). Each generation randomly partitions Π into pairs. 
Each pair undergoes a crossover. All children are added to Π, giving 2⋅nc chromosomes, and 
Π is reduced by keeping the nc best solutions. Hartmann's method must be adapted as follows 
for populations with distinct costs. The enlarged population is sorted in increasing cost order, 
and one representative is kept for the nc smallest cost values. When several chromosomes 
have the same cost, better diversity is achieved by selecting the most recent one. 
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done := 0 //number of solutions actually replaced 
repeat 

   generate a population Ω with nrep distinct costs not present in Π 
   sort Ω in increasing cost order 
   k := 0 
   repeat 
      k := k + 1 
      if F(Ω(k)) < F(Π(nc)) then  
         Π(nc) := Ω(k); done := done+1; re-sort Π 
      else 

         cross Ω(k) with each individual of Π∪Ω 
         C := best child with a cost not present in Π 
         if F(C) < F(Π(nc)) then 
            Π(nc) := C; done := done+1; re-sort Π 
         endif 
      endif 
   until (done = nrep) or (k = nrep) 
until done = nrep 
 

Algorithm 5. Partial replacement procedure used in restarts 
 
 
5. COMPUTATIONAL EVALUATION 
 
5.1 Implementation and benchmarks used 
 
All algorithmic components are implemented in the Pascal-like language Delphi 5 and tested 
on a 1 GHz Pentium-3 PC under Windows 98. The computational evaluation uses three sets 
of benchmark problems downloadable at http://www.uv.es/~belengue/carp.html. 
 
The first set (gdb files) contains 25 instances built by DeArmon (1981), with 7 to 27 nodes 
and 11 to 55 edges. Instances 8, 9 are never used because they contain inconsistencies. The 
second set (val files) contains 34 instances designed by Belenguer and Benavent (to appear) to 
evaluate a cutting plane algorithm. These files have 24 to 50 nodes and 34 to 97 edges. In 
these two first sets, all edges are required: each instance is in fact a UCPP (Undirected 
Capacitated Chinese Postman Problem), a special case of the CARP.  
 
The third set (egl files) provides 24 instances built by Belenguer and Benavent (to appear). 
They are called Eglese instances by these authors, because they are based on the road network 
of the county of Lancashire (UK), used by Eglese and Li (1994) for a winter gritting problem. 
Belenguer and Benavent have generated 12 files per area, by varying the vehicle capacity W 
and the percentage of required edges These instances are very interesting for their realism, 
their large size (77 to 140 nodes, 98 to 190 edges), and also because they contain true CARPs 
and not only UCPPs like in gdb and val sets.   
 
5.2 Best components, standard setting of parameters and stopping criteria 
 
The best selection of components has been determined during a preliminary testing phase on 
gdb files. We started from an embryonic incremental MA, with a population of nc = 50 
random chromosomes without clones, the Reeves selection, the LOX crossover, a local search 
rate pm = 0.02, and the replacement at each iteration of two chromosomes randomly selected 
above the median cost. This MA stops when a lower bound is reached or after 5000 
crossovers. The list of experiments and resulting decisions are summarized in Table 2. 
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Table 2. Experiments for selecting best components 
No Experiment Impact on solution costs Decision 
1 inhibit local search LS increase keep LS 
2 allow clones increase forbid clones 
3 test combinations (nc,pm) best one is nc = 30,  pm = 0.1 nc = 30, pm = 0.1 
4 switch to a generational MA slight increase keep incremental MA 
5 tournament selection slight decrease use tournament 
6 OX crossover slight  decrease use OX 
7 keep one child, not two slight decrease keep one child 
8 replace worst solution increase not adopted 
9 EPS, EAM, EUH in initial Π slight decrease use EPS, EAM, EUH 
10 apply LS to initial Π increase no LS on initial Π 
11 add restarts decrease restarts added 
 

As pointed out by Barr et al. (1995), an acceptable testing of metaheuristics must distinguish 
"standard" results, reported for one setting of parameters, and "best results" found using 
various combinations of parameters. The standard setting is important for comparisons with 
other methods and to give an idea about performance in operational conditions, e.g., when an 
executable file with frozen parameters is used or when it is too long to try different settings. 
Our standard setting (Table 3) has also been found during the preliminary testing. It is the one 
giving the best average solution values when applied to all gdb instances. The size of used 
(see 4.5), UB = 50000, corresponds to the largest cost found in the initial populations of all 
instances (around 33000 for some egl files), multiplied by a security factor 1.5.  
 
Table 3. Standard setting of parameters 
Name Role Value 
nc population size    30  
mnt max no of attempts to get each initial random chromosome    50  
UB largest cost used (dimension of vector used defined in 4.5) 50000  
pm local search rate in main phase   0.1  
mnpi max no of productive Xovers in main phase 20000  
mnwi max no of productive Xovers without changing Π(1), in main phase  6000  
mnrs max no of restarts    20  
nrep no of solutions replaced in each restart (partial replacement procedure)     8  
rnpi max no of productive Xovers per restart  2000  
rnwi max no of productive Xovers without changing Π(1), per restart  2000  
pr local search rate in restarts   0.2  
 

Algorithm 6 illustrates the structure of the best resulting MA and the stopping criteria. The 
procedure initialize builds the initial population. The main phase is a call to the procedure 
search (MA basic loop) with a local search rate pm. This phase ends after mnpi productive 
iterations (crossovers), after mnwi non-improving crossovers, or when a lower bound LB is 
reached. The MA stops there if F(Π(1)) = LB. If not, it executes a restart loop limited to mnrs 
iterations. Each restart calls the replacement procedure of Algorithm 5 and the procedure 
search, but this time with the stronger local search rate pr and the reduced numbers of 
crossovers rnpi and rnwi. Search and the restart loop may stop at any time by reaching LB.  
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main program                                            

   initialize (Π,nc,used,UB,mnt)                       //initialize population 
   if F(Π(1)) > LB then begin                          //if LB not reached 
      search (Π,nc,used,LB,pm,mnpi,mnwi)               //perform main phase 
      restarts := 0                                    //initialize restart counter 
      while (restarts < mnrs) and (F(Π(1)) > LB) do    //perform restarts 
         restarts := restarts + 1                      //count one restart 
         partial_replacement (Π,nc,nrep)               //cf. algorithm 5 
         search (Π,nc,LB,pr,rnpi,rnwi)                 //intensive short phase 
      endwhile 
   endif 
endmain 
 
procedure initialize (Π,nc,used,UB,mnt)                       
   for k := 1 to UB do used(k) := false endfor         //cost values used, cf. 4.5 
   k := 0                                              //no of chromosomes built 
   get solutions of EPS,EAM and EUH as H(1),H(2),H(3)  //heuristics of section 3 
   for i := 1 to 3 do                                  //try to put solutions in Π 
      convert H(i) into a chromosome S; split(S)       //reevaluate,see why in 4.1 
      if not used(F(S)) then                           //if cost not duplicated 

         k := k + 1; Π(k) = S; used(F(S)) := true      //add S to Π 
      endif 
   endfor  
   repeat                                              //generate random solutions 
      try  := 0                                        //initialize no of attempts 
      repeat                                           //loop on attempts 
         try := try + 1                                //count one attempt 
         generate S at random; split(S)                //build a random chromosome 
      until (not used(F(S))) or (try = mnt)            //until OK or failed 
      if not used(F(S)) then                           //if cost not duplicated 

         k := k + 1; Π(k) = S; used(F(S)) := true      //add S to Π 
      endif 
   until (k = nc) or (used(F(S))                       //Π filled or fail 
   if used(F(S)) then nc := k - 1 endif                //actual population size 

   sort Π in increasing cost order                     //sort for replacements 
endproc 
 
//pls: LS rate, mpi: max. no of productive Xovers, mwi: idem, without improvement 
procedure search (Π,nc,used,LB,pls,mpi,mwi)           
   npi := 0                                            //productive crossovers 
   nwi := 0                                            //idem, without improvement  
   repeat                                              //MA search loop 
      select parents P1,P2 by binary tournament        //selection, cf. 4.6 
      apply OX to P1,P2; select one child C at random  //crossover, cf. 4.3 
      split(C)                                         //evaluation (algorithm 2) 
      select k at random in [nc/2,nc]                 //Π(k) to be killed, cf. 4.6 
      if random < pls then                             //local search LS required? 
         M := LS(C)                                    //apply LS, cf. 4.4 
         split(M)                                      //reevaluate,see why in 4.1   
         //if M can be kept, we replace C by M: the replacement will be tried with 
         //the child before mutation when the mutated child has a duplicate cost 
         if (not used(F(M))) or (F(M) = F(Π(k))) then C := M endif 
      endif 
      if (not used(F(C))) or (F(C) = F(Π(k))) then     //accept replacement 
        npi := npi + 1                                 //count one productive xover  
        if F(C) < F(Π(1)) then nwi := 0 else nwi := nwi + 1 endif 
        used(Π(k)) := false; used(C) := true           //update costs in use 
        Π(k) := C                                      //perform replacement 
        shift Π(k) to re-sort Π                       //keep Π sorted 
      endif 
   until (npi = mpi) or (nwi = mwi) or (F(Π(1)) = LB) 
endproc 
 

Algorithm 6. Best MA structure with initialization and search procedures 
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5.3 Results for gdb files 
 
Table 5 gathers the results for gdb files. We describe first the table format, shared by the three 
sets of benchmarks. After the file name, the number of nodes n and the number of tasks τ, the 
4th column gives the bound obtained by Belenguer and Benavent (to appear), except for gdb14 
where it is improved by Amberg and Voβ (2002). The two next columns Carpet and Time 
show the cost reached with standard parameters by Carpet, the best TS heuristic available for 
the CARP (Hertz et al., 2000) and the running time in seconds, scaled for the 1 GHz Pentium-
III PC used for the MAs. According to SPEC (2001), the power index for the 195 MHz SGI 
Indigo-2 workstation used by Carpet is 8.88 for integer computations. SPEC does not report 
benchmarks beyond 500 MHz for the Pentium-III, but we found 41.7 for a 866 MHz at 
http://you.genie.co.uk/peterw/service/compare.htm, corresponding approximately to 48.2 for 1 
GHz. So, we have divided the original Carpet times by 48.2/8.88 = 5.43. 
 
The best-known solutions before this paper are listed in column Best-known. The EPS, EAM 
and EUH columns report solution costs computed by the extended versions of Path-Scanning, 
Augment-Merge and Ulusoy's heuristic (cf. section 3). Note that this is the first evaluation of 
Ulusoy's method on standard benchmarks. Then, the table provides the costs obtained by the 
MA with standard parameters (Std MA), the number of restarts used Rstrts, the overall number 
of productive crossovers Xovers, the running time until last improvement Time*, the overall 
running time Time, and the best cost found using various settings (Best MA).  
 
Asterisks denote proven optima, grey cells signal solutions that are improved compared to the 
GA of Lacomme et al. GA (2001), and boldface indicate new best solutions. The last four 
rows indicate for each column: a) the average value, given as a deviation to LB in % when the 
column concerns solution costs (Average), b) the worst value (Worst), c) the number of 
proven optima (Optima) and d) the number of best-known solutions found (Best). 
 
EUH outperforms the other basic heuristics EPS and EAM. The standard MA is at least as 
good as Carpet in all cases. Compared to Carpet, four instances are improved (10, 11, 15, 25), 
the average and worst deviations to LB are more than halved and the average running time is 
40% smaller. Compared to our first GA (Lacomme et al., 2001) needing 21 seconds at 500 
MHz on average, the MA runs twice faster and improves two instances (15, 25). Instance 
gdb15 is broken for the first time. Note that these excellent results are achieved without 
restarts for 18 out of 23 instances. Using several settings (Best MA), the MA improves only its 
solution to gdb10 but finally finds all best solutions. These results show that gdb instances are 
no longer hard enough for testing CARP metaheuristics. 
 
5.4 Results for val files 
 
Table 6 reuses the format of Table 5 to present the results for val files. The best lower bounds 
are all obtained by Belenguer and Benavent (to appear). The bound 137 cited in Hertz et al. 
(2000) for instance val3c is now 138, after the correction of a bug in the lower bound. The val 
files seem empirically harder than gdb files: the average deviations to LB grow for all 
algorithms and 15 instances out of 34 require restarts. The average running time is now 38 
seconds, but the last improvement is found in 18 seconds. Among the constructive heuristics, 
EUH better resist than EPS and EAM. Again, compared to Carpet, the standard MA provides 
identical or better solutions, divides by two the average and worst deviations to LB and runs 
40% faster. Using several settings, the MA yields all best solutions, improves the preliminary 
GA of Lacomme et al. (2001) three times, and finds a new best solution for val10d.  
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5.5 Results for egl files 
 
Table 7 shows the results for these files constructed by Belenguer and Benavent from Eglese's 
data. The number of edges m/2, often greater than τ, is now mentioned. The Carpet column 
reports unpublished results of Carpet, computed by Mittaz on behalf of Belenguer and 
Benavent. The running times are unknown. Since Carpet is here the only heuristic compared 
with the MA, the redundant Best-known column is removed. 
 
The egl files seem much harder than the previous files: the average deviation to LB (never 
reached) augments for all algorithms. Of course, the reason is perhaps inherent to the bound 
and/or to the heuristics. For instance, according to Belenguer and Benavent, the partial graph 
of required edges is sometimes disconnected and their bound does not exploit this property. 
Nevertheless, EUH remains the best simple heuristic, the standard MA outperforms 19 times 
and the best MA improves all solution values, proving that Carpet finds no optimal solution. 
The price to pay is a larger average running time (9 minutes): the instances are bigger and, 
since LB is never reached, the MA performs the maximum number of allowed restarts (20). 
 
5.6 Makespan minimization 
 
The flexibility of the memetic algorithm is illustrated here by minimizing a different objective 
function for gdb files: the duration of the longest trip (makespan), subject to a limited number 
of vehicles. The two main changes in the MA are to replace Algorithm 2 by Algorithm 3 (see 
4.2) in Split and to use the new objective function in the local search LS. Let qtot be the total 
demand. The fleet size Kmax (see 4.2) is set to the smallest possible value qtot / W. This 
bound is tight for gdb files, since it is always reached by the MAs minimizing total cost. 
 
A relatively simple lower bound LB2 to the optimal makespan can be computed as follows. 
The duration of a trip containing only one required arc u is cost(u) = D(σ,u) + w(u) + D(u,σ), 
according to Equation 3. So, the minimum duration δ(u) of a trip reduced to one task u is 
either cost(u), if u is an arc-task, or min(cost(u),cost(inv(u)), if u is an edge-task. A first bound 
to the makespan is obtained by computing the maximum of these costs for all tasks: 
β = max{δ(u) | u∈A, q(u)>0}. A second bound is γ = LB / Kmax, where LB is the lower 
bound for the total cost whose values are listed in Table 5. Finally, LB2 = max(β,γ). 
 
The results are summarized in Table 8. All MA parameters are taken from Table 3, except the 
number of restarts mnrs now set to 10. The only heuristic used for the initial population is the 
extended version of Ulusoy's method (EUH, see 3.3). Path-Scanning and Augment-Merge are 
discarded because they often lead to infeasible solutions. Two optima are found and the 
average deviation to LB2 is nearly 6%. This gap probably comes from the weakness of the 
bound: the last improvement is obtained early (5.96 s on average) compared to the overall 
running time (27.76 s), indicating that other solutions could be optimal. 
 
5.7 Performance overview 
 
Table 4 compares performance criteria between the memetic algorithm and Carpet, executed 
with their respective standard parameters: the average and worst deviations to LB, the number 
of proven optima (when LB is reached), the number of best-known solutions retrieved, and 
the average running time on a 1 GHz Pentium-III PC. The standard setting of parameters 
seems extremely robust: it gives the best average results for the three sets of instances and its 
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solutions are improved only 8 times out of 81 by trying different settings. In fact, with several 
settings, the MA becomes the only algorithm able to find all best-known solutions. 
 
The MA confirms the interest of a GA template already applied successfully to the open-shop 
scheduling problem by Prins (2000). Indeed, this earlier GA shares some common features 
with our MA for the ECARP: small population with distinct solutions, a few good solutions in 
the initial population, improvement procedure used as mutation operator. This shows that 
powerful genetic algorithms can be designed thanks to a synergic effect between several 
simple improvement ideas. 
 
Table 4. Comparison between the standard MA and Carpet 
Criterion DeArmon 23 pbs Benavent 34 pbs Eglese 24 pbs 
 Carpet MA Carpet MA Carpet MA 
Avg. dev. to LB % 0.48   0.15   1.90   0.61   4.74   2.47   
Max. dev. to LB % 4.62   1.78   8.57   4.26   8.61   4.46   
No of proven optima 18   21   15   22   0   0   
No of best solutions 19   22   17   32   0   19   
Avg. running time (seconds) 9.02   5.29   63.87   38.35   ?   526.99   
 

 
6. CONCLUSION 
 
The best memetic algorithm for the CARP presented in this paper outperforms all known 
heuristics on three sets of benchmarks publicly available, even when it is executed with one 
single setting of parameters. This excellent performance results from a combination of several 
key-features. In spite of simple chromosomes (without trip delimiters) and crossovers, each 
child is optimally evaluated thanks to the Split procedure and strongly improved by local 
search. Small populations of distinct solutions avoid a possible premature convergence. A few 
good initial solutions are computed via classical heuristics. The incremental management of 
population and the partial replacement technique used for restarts accelerate the decrease of 
the objective function. The absence of complicated techniques must be underlined. 
 
Moreover, the MA is already designed for tackling several extensions like mixed networks, 
parallel arcs and turn penalties. We just checked its correct execution on a few instances 
constructed by hand from a city map. It is too early to provide a computational evaluation for 
these extensions: more instances must be prepared, appropriate lower bounds must be 
developed, and no other algorithm is available for comparison. All these tasks are in progress, 
in particular a random generator of large-scale realistic street networks. 
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