

Research Report LOSI-2001-01

Competitive Memetic Algorithms for Arc Routing Problems

Philippe LACOMME Christian PRINS Wahiba RAMDANE-CHERIF

First version: 07/11/2001 – Revised: 21/04/2002 Submitted for publication to Annals of Operations Research

LOSI, Université de Technologie de Troyes, BP 2060, 10010 Troyes Cedex, France Phone: +33 3 25 71 56 26 – Fax: +33 3 25 71 56 49 – Web: http://www-losi.utt.fr

Competitive Memetic Algorithms for Arc Routing Problems

Philippe LACOMME

LIMOS, Université Blaise Pascal Campus Universitaire des Cézeaux 63177 Aubière Cedex, France e-mail: lacomme@sp.isima.fr

Christian PRINS (corresponding author)

LOSI, Université de Technologie de Troyes 12 Rue Marie Curie, BP 2060 10010 Troyes Cedex, France e-mail: prins@utt.fr, phone (33) 3 25 71 56 41, fax (33) 3 25 71 56 49

Wahiba RAMDANE-CHERIF

LOSI, Université de Technologie de Troyes 12 Rue Marie Curie, BP 2060 10010 Troyes Cedex, France ramdane@utt.fr

Abstract

The Capacitated Arc Routing Problem or CARP arises in applications like waste collection or winter gritting. Metaheuristics are tools of choice for solving large instances of this NP-hard problem. The paper presents basic components that can be combined into powerful memetic algorithms (MAs) for solving an extended version of the CARP (ECARP). The best resulting MA outperforms all known heuristics on three sets of benchmark files containing in total 81 instances with up to 140 nodes and 190 edges. In particular, one open instance is broken by reaching a tight lower bound designed by Belenguer and Benavent, 26 best-known solutions are improved, and all other best-known solutions are retrieved.

Keywords: Capacitated Arc Routing Problem, CARP, metaheuristic, memetic algorithm.

1. INTRODUCTION

Contrary to the well-known *Vehicle Routing Problem* (VRP), in which goods must be delivered to client nodes in a network, the *Capacitated Arc Routing Problem* (CARP) consists of visiting a subset of edges. CARP applications include for instance urban waste collection, winter gritting and inspection of power lines. From now on, to make the paper more concrete without loss of generality, examples are inspired by municipal refuse collection.

The basic CARP of literature tackles undirected networks. Each edge models a two-way street whose both sides are treated in parallel and in any direction (*bilateral collection*), a common practice in residential areas with narrow streets. A fleet of identical vehicles of limited capacity is based at a depot node. Each edge can be traversed any number of times, with a known traversal cost. Some edges are required, i.e., they have a non-zero demand (amount of waste) to be collected by a vehicle. The CARP consists of determining a set of vehicle trips of minimum total cost, such that each trip starts and ends at the depot, each required edge is serviced by one single trip, and the total demand processed by a trip fits vehicle capacity.

The CARP is NP-hard, even in the single-vehicle case called Rural Postman Problem (RPP). Since exact methods are still limited to 20-30 edges (Hirabayashi *et al.*, 1992), heuristics are required for solving large instances, e.g. Augment-Merge (Golden and Wong, 1981), Path-Scanning (Golden *et al.*, 1983), Construct-and-strike (Pearn's improved version, 1989), Augment-Insert (Pearn, 1991) and Ulusoy's tour splitting algorithm (1985).

The first metaheuristic for the CARP, a simulated annealing procedure, was designed by Eglese in 1994 for solving a winter gritting problem. Several tabu search (TS) algorithms are also available, both for particular cases like the undirected RPP (Hertz *et al.*, 1999) or the mixed RPP (Corberan *et al.*, 2000) and for the CARP itself (Eglese, 1996; Hertz *et al.*, 2000). All these metaheuristics and classical heuristics may be evaluated thanks to lower bounds, generally based on linear programming formulations, see Benavent *et al.* (1992), Belenguer and Benavent (1998), Amberg and Vo β (2001). On most instances, the best-known lower bound is obtained by a cutting-plane algorithm (Belenguer and Benavent, to appear).

Compared to the VRP, the CARP has been relatively neglected for a long time but it attracts more and more researchers: successful applications are reported (Mourão and Almeida, 2000) and extensions are now investigated, for instance the directed RPP with turn penalties (Benavent and Soler, 1999), the multi-depot CARP (Amberg *et al.*, 2000) and the CARP with intermediate facilities (Ghianni *et al.*, 2001).

This paper presents powerful memetic algorithms (MAs) for an extended CARP. Compared to an earlier GA for the mixed CARP with forbidden turns (Lacomme *et al.*, 2001), they handle other objectives, like the makespan or the number of vehicles used, and extensions like parallel arcs, turn penalties, a maximum trip length and a limited fleet. Several possible bricks for each MA step are designed with a low complexity and tested, e.g. a generational approach and a partial replacement procedure. The best resulting MA is twice faster, it improves 26 best-known solutions and tackles large instances with 140 nodes and 190 edges.

The extended problem (ECARP) is presented in section 2. Three classical constructive heuristics are extended to the ECARP in section 3 to provide good initial solutions. Section 4 describes possible components for each step of memetic algorithms. Section 5 is devoted to computational evaluations: the best MA structure is defined after a preliminary testing and results are reported for three sets of benchmark instances.

2. EXTENDED CARP MODEL (ECARP)

2.1 Extensions considered and street modelling

For the sake of clarity, this subsection presents without mathematical symbols our extended problem and the modelling technique for the streets of a real network. Subsections 2.2 to 2.4 are respectively devoted to the required notation, to some complications raised by forbidden turns, and to the representation of solutions. The ECARP tackles the following extensions:

- a) mixed multigraph with two kinds of links (edges and arcs) and parallel links,
- b) two distinct costs per link (deadheading and collecting),
- c) *prohibited turns* (e.g., U-turns) and *turn penalties* (e.g., to penalize left turns)
- d) *maximum trip length* (an upper limit on the cost of any trip).

Like in the basic CARP, the depot is unique, the fleet is homogeneous, and no split collection is allowed. The number of vehicles is a decision variable. To ensure the existence of feasible solutions, the maximum trip length allows a vehicle to reach any required link, collect it, and return to the depot. The cost of a trip comprises collecting costs (for each link collected) and deadheading costs (for each link traversed without collection), see 2.4 for a formula. The goal is to find a set of trips of minimum total cost, covering all required links.

A mixed graph allows to model non-required streets and three kinds of required streets. A non-required street is modelled either as one arc (one-way street) or two opposite arcs (two-way streets). The three types of required streets are: i) two-way streets collectable in any direction (giving one edge), ii) two-way streets with sides collected separately (giving two opposite arcs) and iii) one-way streets (modelled as one arc). We use a *mixed multigraph* to handle more complicated cases: for instance, two parallel arcs can model a one-way street too wide for bilateral collection and requiring two traversals, one for each side.

To ease algorithmic design, the mixed multigraph is coded as a fully directed graph in which each edge is replaced by two arcs with opposite directions. Only one of these arcs must be collected in any feasible solution. To ensure this, both arcs are linked by a pointer variable: when an algorithm selects one direction, both arcs can be marked "collected".

2.2 Reference list of mathematical symbols

Table 1 provides a quick reference for the remainder of the paper. The mixed multigraph is coded as a fully directed graph G = (N, A) with *m* arcs indexed from 1 to *m* (pairs of nodes are ambiguous for parallel arcs). The required arcs are the ones with a non-zero demand q(u) (amount of waste). They have a service cost w(u), generally greater than the deadheading cost c(u) in waste management applications. By convention, w(u) = 0 if *u* is not required. All costs and demands are non-negative integers.

As explained in 2.1, a pointer *inv* is used to link two arcs *u* and *v* coding an edge. In that case, inv(u) = v, inv(v) = u and edge data are copied on each arc: q(u) = q(v), c(u) = c(v) and w(u) = w(v). If an arc *u* is required but does not code an edge, or if it is not required, then inv(u) = 0. We call *tasks* the τ required links in the mixed multigraph. They comprise ε *edge*-*tasks* and α *arc-tasks*. Since each edge-task is coded as two arcs in *A*, the number of required arcs in *A* is $\rho = 2\varepsilon + \alpha$. τ and ρ have an impact on the complexity of our algorithms.

Mixed multigraph	Data for each arc u	Miscellaneous
G = (N, A) directed encoding	b(u) begin node	s depot node
n no of nodes in N	e(u) end node	<i>K</i> fleet size (variable)
<i>m</i> no of arcs in <i>A</i>	q(u) demand	W vehicle capacity
τ no of tasks (required links)	c(u) deadheading cost	<i>L</i> maximum trip length
ε no of edge-tasks	w(u) service cost	pen(u,v) penalty for turn (u,v)
α no of arc-tasks	<i>inv</i> (<i>u</i>) pointer to opposite arc	$D m \times m$ distance matrix
ρ no of required arcs in A	<i>suc</i> (<i>u</i>) set of successor-arcs	$P m \times m$ predecessor matrix

 Table 1. Glossary of mathematical symbols

2.3 Forbidden turns, turn penalties and distance matrix

This subsection shows how to make forbidden turns transparent. Each arc *u* has a set suc(u) of allowed successor-arcs, i.e. $v \in suc(u)$ if e(u) = b(v) and the turn (u,v) is allowed. Given two arcs *u* and *v*, we define a *feasible deadheading path* from *u* to *v* as a sequence of arcs $\mu = (u = u_1, u_2, ..., u_k = v)$, such that $u_{i+1} \in suc(u_i)$ for i = 1, ..., k-1. Its deadheading cost $c(\mu)$ is defined by *Equation 1*. By convention, the costs of *u* and *v* are not counted, to ease some trip operations like arc insertions and deletions.

$$c(\mu) = pen(u, u_2) + \sum_{i=2}^{k-1} (c(u_i) + pen(u_i, u_{i+1}))$$
(1)

Dijkstra's algorithm (Cormen, 1990) can be adapted to pre-compute a shortest feasible path between all pairs of nodes, in two $m \times m$ matrices D and P. D(u,v) is the cost of the shortest path found from arc u to arc v, P(u,v) is the predecessor of v on this path. Paths from / to the depot s are handled by putting in A one fictitious loop σ with $b(\sigma) = e(\sigma) = s$. Algorithm 1 computes row u of D and P. It must be called m times with u = 1, 2, ..., m to fill the matrices. An arc v is said *fixed* when a shortest path from u to v is obtained. At the beginning, no arc is fixed and all paths from u have an infinite cost. Each iteration of the third *for* loop determines the destination arc v with the smallest path cost, among the arcs not yet fixed. This arc is fixed and each successor-arc z is checked to see if the provisional path from u to z can be improved.

```
for v := 1 to m do D(u,v) := \infty; fix(v) := false endfor
for each v in suc(u) do D(u,v) := pen(u,v); P(v) := u endfor
for count := 1 to m do
v := argmin{D(u,z):fix(z)=false}
fix(v) := true
for each z in suc(v) with D(u,v) + c(v) + pen(v,z) < D(u,z) do
D(u,z) := D(u,v) + c(v) + pen(v,z)
P(u,z) := v
endfor
endfor</pre>
```

Algorithm 1. Algorithm for shortest paths from one given arc *u* to all other arcs.

Algorithm 1 runs in $O(m^2)$. A heap data structure (Cormen *et al.*, 1990) allows an $O(h \log m)$ version, with *h* the total number of allowed turns in *G*. So, *D* and *P* can be computed in $O(mh \log m)$ by calling the algorithm *m* times. For real street networks with $m \approx 4n$ and $h \approx 4m \approx 16n$, *D* and *P* are computed very quickly, in $O(n^2 \log n)$.

2.4 Implementation of trips and solutions

A trip θ is a list $(\theta_1, \theta_2, ..., \theta_{|\theta|})$ of required arcs, with a total demand $load(\theta) \le W$ and a total cost $cost(\theta) \le L$ defined by *Equations 2-3*. Implicitly, θ starts and ends at the depot and shortest feasible paths are assumed between two tasks and between one task and the depot loop σ (cf 2.3). A solution *T* is a list $(T_1, ..., T_K)$ of *K* vehicle trips (*K* is a decision variable). Its cost is the sum of its trip costs. Each arc-task appears once in *T* and each edge-task occurs as one of its two opposite arcs. So, *T* requires a space proportional to the number of tasks τ .

$$load(\theta) = \sum_{i=1,|\theta|} q(\theta_i)$$
(2)

$$cost(\theta) = D(\sigma, \theta_1) + \sum_{i=1, |\theta|-1} \left(w(\theta_i) + D(\theta_i, \theta_{i+1}) \right) + w(\theta_{|\theta|}) + D(\theta_{|\theta|}, \sigma)$$
(3)

3. CONSTRUCTIVE HEURISTICS FOR THE ECARP

This section extends three classical CARP heuristics to the ECARP: Path-Scanning (Golden *et al.*, 1983), Augment-Merge (idem, 1981) and Ulusoy's heuristic (1985). The extended versions are used in 4.5 to initialize the population of our memetic algorithms. The main difference with classical versions is to use D, the arc-to-arc distance matrix described in 2.3, instead of a node-to-node matrix. This allows a simple treatment of forbidden turns.

3.1 Extended Path-Scanning (EPS)

This heuristic builds one trip at a time. In constructing each trip, the sequence of tasks is extended by joining the task looking most promising, until capacity W or maximum trip length L are exhausted. For a sequence ending at a required arc u, the extension step determines the set M of required arcs closest to u, not yet collected, and feasible for W and L. Five rules are used to select the next arc v in M: 1) maximize the distance $D(v,\sigma)$ to the depot loop σ (cf. 2.3), 2) minimize $D(v,\sigma)$, 3) maximize the yield q(v) / w(v), 4) minimize this yield, 5) use rule 1 if the vehicle is less than half-full, else use rule 2.

Once selected, *v* must be flagged as "collected", to avoid reselection in subsequent iterations. If *v* belongs to an edge-task, inv(v) must be flagged too. EPS builds one solution per criterion and returns the best one. It can be implemented in $O(\tau^2)$, i.e., $O(n^2)$ for a real street network with $\tau \le \rho \le m \approx 4n$. In spite of its great simplicity, EPS gives good results in practice, thanks to compensation effects among criteria: the five solutions are never simultaneously bad.

3.2 Extended Augment-Merge (EAM)

The original version is illustrated in *Figure 1*. τ trips are built (one per task) and sorted in decreasing cost order. For each trip T_i ($i = 1, 2, ..., \tau$ -1), the *augment phase* scans each smaller trip T_j ($j = i+1, i+2, ..., \tau$). If the required edge u of T_j is on a deadheading path of T_i and if $load(T_i) + q(u) \le W$, T_j is absorbed. The cost of T_i does not vary because deadheading and service costs are equal in the basic CARP. However, the total cost decreases by $cost(T_j)$. Then, the *merge phase* evaluates the concatenation of any two trips, subject to W: e.g, in the figure, concatenating T_i then T_j yields a saving of 4. *Merge* concatenates the two trips with the largest positive saving. The process is repeated until no such concatenation is possible.

Figure 1. Principle of *augment* (left) and *merge* (right) *Thick lines correspond to edge-tasks, thin lines to shortest deadheading paths*

In the ECARP, each required arc *u* has two distinct costs c(u) and w(u). In *augment*, if trip T_i absorbs trip T_j with its required arc *u*, the total saving is now $cost(T_j) + c(u) - w(u)$ and is not always positive like in the basic CARP. In fact, some testing shows that *augment* can be suppressed without affecting average solution costs. So, we actually removed it. Moreover, matrix *D* is generally asymmetric for mixed networks and a trip is no longer equivalent to its mirror trip obtained by inverting the sequence of tasks. This gives up to 8 ways of concatenating two trips T_i and T_j : T_i then T_j or T_j then T_i , with each trip inverted or not. Note that a trip cannot be inverted if it contains arc-tasks, non-invertible. The extended heuristic EAM can be implemented in $O(\tau^2 \log \tau)$, i.e. $O(n^2 \log n)$ for real street networks.

3.3 Extended Ulusoy's heuristic (EUH)

The original heuristic for the basic CARP temporarily relaxes vehicle capacity W to compute a least-cost giant tour S covering the τ edge-tasks. If all edges are required, this sub-problem is an easy undirected Chinese postman problem. If not, it is a NP-hard rural postman problem that can be solved heuristically. Then, this tour is optimally split into capacity-feasible trips.

Figure 2 depicts the splitting procedure (*Split* in the sequel) for a giant tour S = (a,b,c,d,e) with demands in brackets and deadheading costs, assuming W = 9. *Split* builds an auxiliary graph H with τ +1 nodes indexed from 0 onward. Each subsequence ($S_i, ..., S_j$) corresponding to a feasible trip is modeled by one arc (*i*-1, *j*), weighted by the trip cost. A shortest path from node 0 to node τ in H (bold) indicates the optimal splitting: 3 trips and a total cost 141. Note that H is an artificial construction having nothing to see with the CARP graph G.

b) Auxiliary graph and shortest path (labels in each node)

Figure 2. Principle of Split

In the ECARP version EUH, W but also the maximum trip cost L are relaxed to compute a good giant tour S in a mixed multigraph with forbidden turns and turn penalties, modelled by the directed multigraph G. We solve this mixed rural postman problem approximately, by running EPS (cf. 3.1) with a big value of W and L. For better results, we keep the 5 tours obtained by the 5 criteria of EPS, split them, and return the best solution. *Split* computes the load and cost of $(S_i, ..., S_j)$ using equations 2 and 3 and creates (i-1, j) only if W and L are respected. Forbidden turns are entirely hidden in the arc-to-arc matrix D used in equation 3.

We now analyze complexity, missing in Ulusoy's paper. Path-Scanning (cf. 3.1) returns an initial giant tour in $O(\tau^2)$. Then, by construction, *H* is topologically sorted and contains $O(\tau^2)$ arcs. Bellman's algorithm (Cormen *et al.*, 1990) can compute the shortest path in $O(\tau^2)$. The global complexity is then $O(\tau^2)$, i.e. $O(n^2)$ for a real street network with $\tau \le \rho \le m \approx 4n$. If the minimal demand q_{min} is large enough, a trip contains at most $\omega = \lfloor W / q_{min} \rfloor$ tasks, *H* contains $O(\omega\tau)$ arcs and *Split* becomes faster, in $O(\omega\tau)$.

4. COMPONENTS FOR MEMETIC ALGORITHMS

This section describes the main features of our memetic algorithms: chromosome structure, chromosome evaluation, crossover operators, mutation by local search, population structure and initialization, population management. It describes several possible implementations for certain features. No computational evaluation is performed here: the best assembly of components is determined in section 5.

4.1 Chromosomes: representation, evaluation and generation

Most genetic algorithms for routing problems use quasi-direct representations of solutions, as sequences of tasks. A natural idea for the multi-vehicle case is to use sub-chromosomes (one per trip), separated by special symbols called *trip delimiters*. In that case, crossovers generally require a repair operator because children may contain overloaded trips. This technique is used for instance by Potvin and Bengio for the VRP with Time Windows (1996). In our MAs, a chromosome *S* simply is a sequence of τ required arcs (one per task), *without trip delimiters*, and with implicit shortest paths between consecutive tasks (see *Figure 3*, presented later).

Clearly, S does not directly represent an ECARP solution but can be viewed as a giant trip ignoring capacity W and maximum trip cost L. The Split procedure described for Ulusoy's heuristic (cf. 3.3) is applied to S to get an ECARP solution. The fitness F(S) of S is the total cost of this solution. Two good properties hold: 1) chromosomes are optimally evaluated with respect to their sequence, 2) there exists at least one optimal chromosome, i.e., one giving an optimal solution after evaluation (consider one optimal solution and concatenate its trips). These properties, yet trivial, are rarely respected in published GAs.

A chromosome is created either by random generation (initial population), by crossover, or by converting an existing ECARP solution $T = (T_1, ..., T_K)$. In the third case, the trips are concatenated from left to right and the fitness is recomputed with *Split*, i.e. we forget *cost*(*T*). There are two main reasons for this policy. First, the solution computed by *Split* is at least as good as *T*. Second, reproduction is based on a fitness-biased selection of parents (cf. 4.6): to be coherent, all chromosomes must be evaluated in the same way.

Compared to traditional local search, a genetic algorithm works on a population of solutions and its crossovers based on two solutions define larger neighbourhoods. This gives a spatial dimension to the search, often called *intrinsic parallelism*. Thanks to the two properties of our chromosome system, this parallelism is expected to find one optimal ECARP solution.

Figure 3 shows a basic CARP with W = 5, 22 edges, and $\tau = 11$ edge-tasks with unit demands (bold) and costs (in brackets). The underlying directed graph *G* with m = 44 is not shown but each edge [i, j] is given with the arc index (i, j) such that i < j, e.g., 7 for (2,4). The index for (j,i), not shown, is by convention 22 + u, e.g., 29 for (4,2). Three chromosomes P1, P2 and C1 are given, for the LOX crossover explained in 4.3. The three last lines give the trips and solution costs found by *Split*. Note that some tasks are treated in two different directions by P1 and P2, e.g. edge [3,4] is collected as (3,4) in P2 (arc index 9) but as (4,3) in P1 (index 31).

Rank :	1	2	3	4	5	6	7	8	9	10	11 =	τ
Cut at :						p=6		q=8				
						\downarrow		\downarrow				
Parent P1:	31	21	20	17	15	07	03	12	23	19	26	
Parent P2:	34	09	29	20	41	26	43	25	15	39	23	
Child C1:	09	20	41	26	43	07	03	12	15	39	23	
P1 split :	(31,	21,	20,	17,	15),	(07),	(03,	12,	23,	19,	26),	F(P1) = 318
P2 split :	(34,	09,	29),	(20,	41,	26),	(43,	25,	15,	39,	23),	F(P2) = 324
C1 split :	(09,	20,	41,	26),	(43,	07),	(03,	12,	15,	39,	23),	F(C1) = 311

Figure 3. A basic CARP instance with 11 tasks and an example of LOX crossover Each edge is given with the arc index *u* for direction (i,j), i < j. The opposite arc is inv(u) = 22 + u.

4.2 Efficient splitting procedures for two objective functions

Algorithm 2 is an $O(\tau^2)$ version of *Split* minimizing total cost and, as a secondary objective, the number of vehicles. It runs in $O(\tau)$ space only, by avoiding an explicit generation of the auxiliary graph *H*. Two labels are used for each node *i* of *H*: V_i (cost of the shortest path from 0 to *i* in *H*) and N_i (number of arcs on that path, i.e., number of trips in ECARP solution).

Given one chromosome *S*, the algorithm enumerates all feasible trips $(S_i, ..., S_j)$ and compute their loads and costs using equations 2 and 3. Instead of creating one arc (i-1, j) for each trip $(S_i, ..., S_j)$ like in 3.3, the labels of *j* are immediately updated. At the end, the total cost F(S) and the minimum number of vehicles *K* for that cost can be read in V_{τ} and N_{τ} . If required, the corresponding ECARP solution can be extracted by tracing the shortest path back.


```
V(0), N(0) := 0
for i := 1 to \tau do V(i) := \infty endfor
for i := 1 to \tau-1 do
   load, cost := 0; j := i
   repeat
      load := load + q(S(j))
      if i = j then
         cost := D(\sigma, S(i)) + w(S(i)) + D(S(i), \sigma)
      else
         cost := cost - D(S(j-1), \sigma) + D(S(j-1), S(j)) + w(S(j)) + D(S(j), \sigma)
      endif
      if (load \leq W) and (cost \leq L) then
          VNew := V(i-1) + cost
          if (VNew < V(j)) or ((VNew = V(j)) and (N(i-1) + 1 < N(j)) then
             V(j) := VNew
            N(j) := N(i-1) + 1
          endif
          j := j + 1
      endif
   until (j > \tau) or (load > W) or (cost > L)
endfor
```

Algorithm 2. Split procedure minimizing total cost and number of vehicles

Algorithm 3 implements Split for an interesting ECARP version, discovered during visits to waste management companies. The fleet is limited. The number of trips K is still free but cannot exceed the fleet size K_{max} . All costs are times and the goal is to minimize makespan (longest trip duration). Note that the problem is trivially solved without K_{max} , by collecting each task by a separate trip. The algorithm uses the same labels as Algorithm 2. It computes a min-max path from node 0 to node τ in the auxiliary graph H, which must be constructed before. Z_{ij} is the weight of arc (i,j) in H.

Algorithm 3. Split procedure minimizing makespan subject to a limited fleet

Each iteration of the *repeat* loop computes in $O(\tau^2)$ shortest paths in H with at most K arcs. It scans the arcs of H and stores the improved label values in V2 and N2. V2 and N2 are copied into V and N at the end of the iteration. The algorithm stops when all labels are stable (this is checked with the boolean *stable*) or when $K = K_{max}$. The chromosome S is *infeasible* if $V_{\tau} = \infty$. If not, the minimal makespan for S and the number of trips actually used are given by V_{τ} and N_{τ} . Since a shortest path from node 0 to node τ in H may have up to τ arcs, the algorithm runs in $O(\min(\tau, K_{max}) \cdot \tau^2)$. Note that the algorithm can be simply adapted to minimize total cost instead of makespan, by replacing $max(V_i, Z_{ij})$ by $V_i + Z_{ij}$.

4.3 Crossovers

Our chromosomes without trip delimiters can undergo classical crossovers for permutation chromosomes. The resulting children are immediately evaluated with *Split*. We tried LOX (linear order crossover) and OX (order crossover). LOX is designed for linear chromosomes (chromosomes coding objects that clearly have one begin and one end, like hamiltonian paths), while OX rather concerns circular permutations (like TSP tours). Intuitively, the best choice that will be confirmed in section 5 should be OX, because the chromosome before splitting may be viewed as a circular object (giant trip).

Given two parents P1 and P2 with τ tasks, both crossovers draw two cutting sites *p* and *q* with $1 \le p \le q \le \tau$. To get the first child C1, LOX copies P1(*p*)...P1(*q*) into C1(*p*)...C1(*q*). P2 is then swept from left to right and the tasks missing in C1 are used to fill C1(1)...C1(*p*-1) then C1(*q*+1)...C1(τ). In OX, the sequence for C1 is P1(*p*)...P1(*q*) followed by P2(*q*+1)...P2(τ), P2(1),...,P2(*p*-1), with restriction that tasks from P2 are taken only if missing in C1. However, C1 is interpreted as a circular list and the result stored such that C1(*p*) = P1(*p*). For both crossovers, the other child C2 is obtained by exchanging the roles of P1 and P2.

In the ECARP, a required arc *u* is "missing" in C1 if both *u* and *inv(u)* are not yet in C1. Algorithm 4 shows an ad-hoc version of LOX for C1. An $O(\tau)$ complexity is achieved thanks to a table *pack* mapping the indexes of required arcs (in 1...*m*) into 1... τ . *Pack* is built once for all in O(m), when initializing the MAs. The boolean vector *miss* records the required arcs missing in C1. The algorithm avoids p = 1 and q = nt at the same time, to ensure C1 \neq P1.

```
for u := 1 to \tau do miss(pack(u)) := true endfor
draw p in [1,\tau]
if p = 1 then draw q in [1, \tau] else draw q in [p, \tau] endif
for i := p to q do
   C1(i) := P1(i)
   miss(pack(P1(i))) := false
   if inv(P1(i)) ≠ 0 then miss(pack(inv(P1(i)))) := false
endfor
j := 0
for i := 1 to \tau do
   if miss(pack(P2(i))) then
      j := j + 1
      if j = p then j := q + 1 endif
      C1(j) := P2(i)
      miss(pack(P2(i))) := false
      if inv(P2(i)) ≠ 0 then miss(pack(inv(P2(i)))) := false
   endif
endfor
```

Algorithm 4. LOX crossover in $O(\tau)$ for the ECARP

4.4 Mutation by local search

In combinatorial optimization, it is well-known that the basic GA (Holland, 1975) with simple mutations cannot compete with simulated annealing (SA) and tabu search (TS). To be effective, the generic GA must be hybridized with a local search, giving a *hybrid GA* or *memetic algorithm* (MA) (Moscato, 1999). With a given probability, each child in our MAs is converted into an ECARP solution to undergo a local search LS. LS performs successive *phases* that scan in $O(\tau^2)$ all pairs of tasks (u,v) to try the following moves, in which x (resp. y) is the task serviced after u (resp. v) in the trip of u (resp. v).

Each phase ends by performing the first improving move detected or when all pairs (u,v) are examined. LS stops when a phase reports no improvement. The final ECARP solution is converted into a chromosome, as explained in 4.1. Here are the types of moves examined:

- N_1 : invert task *u* in its trip if it is an edge-task, i.e., replace *u* by *inv(u)* in the trip,
- N_2 : move task *u* after task *v*, or before *v* if *v* is the first task of its trip,
- N_3 : move adjacent tasks (*u*,*x*) after task *v*, or before *v* if *v* is the first task of its trip,
- N_4 : swap tasks u and v,
- *N*₅: two-opt moves (explained in *Figure 4*).

Each move type involves *one trip* or *two distinct trips*. Moreover, when moving an edge-task in N_1 to N_4 , its service direction may be inverted or not. For instance, N_4 comprises in fact four swapping cases: *u* and *v* may be replaced by *v* and *u*, *inv*(*v*) and *u*, *v* and *inv*(*u*), or *inv*(*v*) and *inv*(*u*). In N_5 , some moves may require the inversion of a substring of tasks (cf. Figure 4): they are discarded if the substring contains arc-tasks (not invertible).

Figure 4. 2-opt moves on one trip (left) and two trips (right) *Thick lines correspond to edge-tasks, thin lines to shortest deadheading paths*

4.5 Population structure and initialization

The population is implemented as an array Π of *nc* chromosomes, kept sorted in increasing cost order to ease the selection process described in 4.6. In traditional GAs, identical solutions or *clones* may appear, leading to a premature convergence. The phenomenon worsens in MAs because the local search quickly compresses Π in a reduced cost interval.

A possible remedy is to forbid clones. Exact clone detection can be performed efficiently, e.g. using hashing techniques (Cormen *et al.*, 1990). We adopted an approximate but faster system in which all individuals have *distinct costs*. Let *UB* be an upper bound on solution costs and *used* a boolean vector, indexed from 0 to *UB*, such that used(c) = true iff Π contains an individual of cost *c*. We know in *O*(1) if a new chromosome *S* can be added to Π by checking that used(F(S)) = false. A crossover is said *unproductive* if its children cannot be kept because of duplicate costs. This concerns a minority of crossovers if *nc* is not too large (cf. section 5).

 Π is initialized with random chromosomes. Because of clones, when *nc* is too large or the problem very small, many draws may be required to generate each chromosome $\Pi(k)$, k = 1, 2, ..., nc. In practice, we try a fixed number of times to generate each $\Pi(k)$ and truncate Π to nc = k-1 if all draws fail. It is also possible to include in Π a few good heuristic solutions, for instance computed by EPS, EAM or EUH (cf. section 3). These solutions must be converted into chromosomes, as explained in 4.1.

4.6 Incremental memetic algorithms

The basic iteration of an *incremental GA* selects two chromosomes to undergo crossover and mutation. The resulting children immediately replace some existing chromosomes in Π . In a *generational GA* (4.7), the basic iteration (called *generation*) performs a massive reproduction involving all chromosomes. The children are either stored in another population array used for the next generation, or added to Π before a selection reducing the size from 2·*nc* to *nc*.

We designed incremental versions with two types of selection. The first type (Reeves, 1995) selects the rank *i* of P1 with probability 2.(nc-i+1)/(nc.(nc+1)). Since Π is sorted in increasing cost order (4.5), the probability of drawing an individual with median cost is roughly 1/nc, the probability of drawing the fittest Π_1 is doubled (2/(nc+1)), while the probability of drawing the worst individual $\Pi(nc)$ is only 2/(nc.(nc+1)). The rank of P2 is drawn uniformly with a probability 1/nc. The second type is *binary tournament*. Two chromosomes are randomly selected and the least-cost one is kept for P1. The process is repeated to get P2.

An OX or LOX crossover (4.3) is applied to (P1,P2). One child *C* is selected at random and undergoes a mutation by local search (4.4) with a given probability. Two replacement strategies were tested: *C* replaces either the worst individual $\Pi(nc)$ or one $\Pi(k)$ above the median cost, i.e., with $k \ge \Pi(\lfloor nc/2 \rfloor)$. Note that both methods preserve the best solution. If no duplicate cost appears, the child mutated or not enters Π and one productive iteration is counted. If not, the child is rejected and the iteration is unproductive.

Our incremental MAs perform a main phase stopped after a given number of productive crossovers, after a given number of productive crossovers without improving Π_1 , or when reaching a lower bound LB (in that case, Π_1 is of course optimal). More instances are solved by adding a fixed number of short restarts, based on a *partial replacement procedure* (Cheung *et al.*, 2001). Each restart stops after a fixed number of crossovers or by reaching LB. In section 5, the same number of restarts and the same length per restart are allocated to all instances. Since LB is reached in the main phase for a majority of standard instances, restarts are not always used. Section 5 clearly indicates the number of allowed restarts, the number of crossovers allowed per restart, and the numbers of restarts and crossovers actually performed.

In *Algorithm 5*, we adapt the partial replacement procedure to our populations with distinct costs. Input data include the population Π with *nc* chromosomes sorted in increasing cost order and *nrep*, the number of chromosomes to be replaced (e.g., *nc*/4). Compared to a blind replacement, the procedure preserves the best solution and never degrades the worst cost. According to its authors, it gives better final solutions for a given CPU time.

4.7 Generational memetic algorithms

We also designed generational MAs inspired by a GA for the Resource-Constrained Project Scheduling Problem (Hartmann, 1998). Each generation randomly partitions Π into pairs. Each pair undergoes a crossover. All children are added to Π , giving 2·*nc* chromosomes, and Π is reduced by keeping the *nc* best solutions. Hartmann's method must be adapted as follows for populations with distinct costs. The enlarged population is sorted in increasing cost order, and one representative is kept for the *nc* smallest cost values. When several chromosomes have the same cost, better diversity is achieved by selecting the most recent one.


```
done := 0 //number of solutions actually replaced
repeat
   generate a population \Omega with nrep distinct costs not present in \Pi
   sort \Omega in increasing cost order
   k := 0
   repeat
       k := k + 1
       if F\left(\Omega\left(k\right)\right) < F\left(\Pi\left(nc\right)\right) then
           \Pi(nc) := \Omega(k); done := done+1; re-sort \Pi
       else
           cross \Omega(\mathbf{k}) with each individual of \Pi \cup \Omega
           C := best child with a cost not present in \boldsymbol{\Pi}
           if F(C) < F(\Pi(nc)) then
               \Pi(nc) := C; done := done+1; re-sort \Pi
           endif
       endif
    until (done = nrep) or (k = nrep)
until done = nrep
```

Algorithm 5. Partial replacement procedure used in restarts

5. COMPUTATIONAL EVALUATION

5.1 Implementation and benchmarks used

All algorithmic components are implemented in the Pascal-like language Delphi 5 and tested on a 1 GHz Pentium-3 PC under Windows 98. The computational evaluation uses three sets of benchmark problems downloadable at *http://www.uv.es/~belengue/carp.html*.

The first set (*gdb* files) contains 25 instances built by DeArmon (1981), with 7 to 27 nodes and 11 to 55 edges. Instances 8, 9 are never used because they contain inconsistencies. The second set (*val* files) contains 34 instances designed by Belenguer and Benavent (to appear) to evaluate a cutting plane algorithm. These files have 24 to 50 nodes and 34 to 97 edges. In these two first sets, all edges are required: each instance is in fact a UCPP (*Undirected Capacitated Chinese Postman Problem*), a special case of the CARP.

The third set (*egl* files) provides 24 instances built by Belenguer and Benavent (to appear). They are called Eglese instances by these authors, because they are based on the road network of the county of Lancashire (UK), used by Eglese and Li (1994) for a winter gritting problem. Belenguer and Benavent have generated 12 files per area, by varying the vehicle capacity W and the percentage of required edges These instances are very interesting for their realism, their large size (77 to 140 nodes, 98 to 190 edges), and also because they contain true CARPs and not only UCPPs like in *gdb* and *val* sets.

5.2 Best components, standard setting of parameters and stopping criteria

The best selection of components has been determined during a preliminary testing phase on *gdb* files. We started from an embryonic incremental MA, with a population of nc = 50 random chromosomes without clones, the Reeves selection, the LOX crossover, a local search rate $p_m = 0.02$, and the replacement at each iteration of two chromosomes randomly selected above the median cost. This MA stops when a lower bound is reached or after 5000 crossovers. The list of experiments and resulting decisions are summarized in *Table* 2.

No	Experiment	Impact on solution costs	Decision
1	inhibit local search LS	increase	keep LS
2	allow clones	increase	forbid clones
3	test combinations (nc,p_m)	best one is $nc = 30$, $p_m = 0.1$	$nc = 30, p_m = 0.1$
4	switch to a generational MA	slight increase	keep incremental MA
5	tournament selection	slight decrease	use tournament
6	OX crossover	slight decrease	use OX
7	keep one child, not two	slight decrease	keep one child
8	replace worst solution	increase	not adopted
9	EPS, EAM, EUH in initial Π	slight decrease	use EPS, EAM, EUH
10	apply LS to initial Π	increase	no LS on initial Π
11	add restarts	decrease	restarts added

 Table 2. Experiments for selecting best components

As pointed out by Barr et *al.* (1995), an acceptable testing of metaheuristics must distinguish "standard" results, reported for one setting of parameters, and "best results" found using various combinations of parameters. The standard setting is important for comparisons with other methods and to give an idea about performance in operational conditions, e.g., when an executable file with frozen parameters is used or when it is too long to try different settings. Our *standard setting* (*Table 3*) has also been found during the preliminary testing. It is the one giving the best average solution values when applied to all *gdb* instances. The size of *used* (see 4.5), UB = 50000, corresponds to the largest cost found in the initial populations of all instances (around 33000 for some *egl* files), multiplied by a security factor 1.5.

Name	Role	Value
пс	population size	30
mnt	max no of attempts to get each initial random chromosome	50
UB	largest cost used (dimension of vector used defined in 4.5)	50000
p_m	local search rate in main phase	0.1
mnpi	max no of productive Xovers in main phase	20000
mnwi	max no of productive Xovers without changing $\Pi(1)$, in main phase	6000
mnrs	max no of restarts	20
nrep	no of solutions replaced in each restart (partial replacement procedure)	8
rnpi	max no of productive Xovers per restart	2000
rnwi	max no of productive Xovers without changing $\Pi(1)$, per restart	2000
p_r	local search rate in restarts	0.2

Algorithm 6 illustrates the structure of the best resulting MA and the *stopping criteria*. The procedure *initialize* builds the initial population. The main phase is a call to the procedure *search* (MA basic loop) with a local search rate p_m . This phase ends after *mnpi* productive iterations (crossovers), after *mnwi* non-improving crossovers, or when a lower bound LB is reached. The MA stops there if $F(\Pi(1)) = LB$. If not, it executes a restart loop limited to *mnrs* iterations. Each restart calls the replacement procedure of Algorithm 5 and the procedure *search*, but this time with the stronger local search rate p_r and the reduced numbers of crossovers *rnpi* and *rnwi*. *Search* and the restart loop may stop at any time by reaching LB.


```
main program
   initialize (\Pi, nc, used, UB, mnt)
                                                           //initialize population
   if F(\Pi(1)) > LB then begin
                                                           //if LB not reached
      search (\Pi, nc, used, LB, pm, mnpi, mnwi)
                                                           //perform main phase
      restarts := 0
                                                           //initialize restart counter
      while (restarts < mnrs) and (F(\Pi(1)) > LB) do
                                                           //perform restarts
         restarts := restarts + 1
                                                           //count one restart
         partial_replacement (\Pi, nc, nrep)
                                                           //cf. algorithm 5
          search (Π,nc,LB,pr,rnpi,rnwi)
                                                           //intensive short phase
      endwhile
   endif
endmain
procedure initialize (\Pi, nc, used, UB, mnt)
   for k := 1 to UB do used(k) := false endfor
                                                           //cost values used, cf. 4.5
   k := 0
                                                           //no of chromosomes built
   get solutions of EPS, EAM and EUH as H(1), H(2), H(3)
                                                          //heuristics of section 3
                                                           //try to put solutions in \boldsymbol{\Pi}
   for i := 1 to 3 do
      convert H(i) into a chromosome S; split(S)
                                                           //reevaluate,see why in 4.1
      if not used(F(S)) then
                                                           //if cost not duplicated
         k := k + 1; \Pi(k) = S; used(F(S)) := true
                                                           //add S to \Pi
      endif
   endfor
   repeat
                                                           //generate random solutions
      try := 0
                                                           //initialize no of attempts
                                                           //loop on attempts
      repeat
         try := try + 1
                                                           //count one attempt
                                                           //build a random chromosome
          generate S at random; split(S)
      until (not used(F(S))) or (try = mnt)
                                                           //until OK or failed
      if not used(F(S)) then
                                                           //if cost not duplicated
         k := k + 1; \Pi(k) = S; used(F(S)) := true
                                                           //add S to \Pi
      endif
   until (k = nc) or (used(F(S)))
                                                           //\Pi filled or fail
   if used(F(S)) then nc := k - 1 endif
                                                           //actual population size
   sort \Pi in increasing cost order
                                                           //sort for replacements
endproc
//pls: LS rate, mpi: max. no of productive Xovers, mwi: idem, without improvement
procedure search (Π,nc,used,LB,pls,mpi,mwi)
   npi := 0
                                                           //productive crossovers
   nwi := 0
                                                           //idem, without improvement
   repeat
                                                           //MA search loop
      select parents P1,P2 by binary tournament //selection, cf. 4.6
apply OX to P1,P2; select one child C at random //crossover, cf. 4.3
      split(C)
                                                           //evaluation (algorithm 2)
      select k at random in [lnc/2], nc]
                                                           //\Pi(k) to be killed, cf. 4.6
      if random < pls then</pre>
                                                           //local search LS required?
         M := LS(C)
                                                           //apply LS, cf. 4.4
         split(M)
                                                           //reevaluate, see why in 4.1
          //if M can be kept, we replace C by M: the replacement will be tried with
          //the child before mutation when the mutated child has a duplicate cost
         if (not used(F(M))) or (F(M) = F(\Pi(k))) then C := M endif
      endif
      if (not used(F(C))) or (F(C) = F(\Pi(k))) then
                                                           //accept replacement
                                                           //count one productive xover
        npi := npi + 1
        if F(C) < F(\Pi(1)) then nwi := 0 else nwi := nwi + 1 endif
        used(\Pi(k)) := false; used(C) := true
                                                           //update costs in use
        \Pi(k) := C
                                                           //perform replacement
        shift \Pi\left(k\right) to re-sort \Pi
                                                           //keep \Pi sorted
      endif
   until (npi = mpi) or (nwi = mwi) or (F(\Pi(1)) = LB)
endproc
```

Algorithm 6. Best MA structure with initialization and search procedures

5.3 Results for *gdb* files

Table 5 gathers the results for *gdb* files. We describe first the table format, shared by the three sets of benchmarks. After the file name, the number of nodes *n* and the number of tasks τ , the 4th column gives the bound obtained by Belenguer and Benavent (to appear), except for *gdb14* where it is improved by Amberg and Vo β (2002). The two next columns *Carpet* and *Time* show the cost reached with standard parameters by Carpet, the best TS heuristic available for the CARP (Hertz *et al.*, 2000) and the running time in seconds, scaled for the 1 GHz Pentium-III PC used for the MAs. According to SPEC (2001), the power index for the 195 MHz SGI Indigo-2 workstation used by Carpet is 8.88 for integer computations. SPEC does not report benchmarks beyond 500 MHz for the Pentium-III, but we found 41.7 for a 866 MHz at *http://you.genie.co.uk/peterw/service/compare.htm*, corresponding approximately to 48.2 for 1 GHz. So, we have divided the original Carpet times by 48.2/8.88 = 5.43.

The best-known solutions before this paper are listed in column *Best-known*. The *EPS*, *EAM* and *EUH* columns report solution costs computed by the extended versions of Path-Scanning, Augment-Merge and Ulusoy's heuristic (cf. section 3). Note that this is the first evaluation of Ulusoy's method on standard benchmarks. Then, the table provides the costs obtained by the MA with standard parameters (*Std MA*), the number of restarts used *Rstrts*, the overall number of productive crossovers *Xovers*, the running time until last improvement *Time**, the overall running time *Time*, and the best cost found using various settings (*Best MA*).

Asterisks denote proven optima, grey cells signal solutions that are improved compared to the GA of Lacomme *et al.* GA (2001), and boldface indicate new best solutions. The last four rows indicate for each column: a) the average value, given as a deviation to LB in % when the column concerns solution costs (*Average*), b) the worst value (*Worst*), c) the number of proven optima (*Optima*) and d) the number of best-known solutions found (*Best*).

EUH outperforms the other basic heuristics EPS and EAM. The standard MA is at least as good as Carpet in all cases. Compared to Carpet, four instances are improved (10, 11, 15, 25), the average and worst deviations to LB are more than halved and the average running time is 40% smaller. Compared to our first GA (Lacomme *et al.*, 2001) needing 21 seconds at 500 MHz on average, the MA runs twice faster and improves two instances (15, 25). Instance *gdb15* is broken for the first time. Note that these excellent results are achieved without restarts for 18 out of 23 instances. Using several settings (*Best MA*), the MA improves only its solution to *gdb10* but finally finds all best solutions. These results show that *gdb* instances are no longer hard enough for testing CARP metaheuristics.

5.4 Results for *val* files

Table 6 reuses the format of Table 5 to present the results for *val* files. The best lower bounds are all obtained by Belenguer and Benavent (to appear). The bound 137 cited in Hertz *et al.* (2000) for instance *val3c* is now 138, after the correction of a bug in the lower bound. The *val* files seem empirically harder than *gdb* files: the average deviations to *LB* grow for all algorithms and 15 instances out of 34 require restarts. The average running time is now 38 seconds, but the last improvement is found in 18 seconds. Among the constructive heuristics, EUH better resist than EPS and EAM. Again, compared to Carpet, the standard MA provides identical or better solutions, divides by two the average and worst deviations to *LB* and runs 40% faster. Using several settings, the MA yields all best solutions, improves the preliminary GA of Lacomme *et al.* (2001) three times, and finds a new best solution for *val10d*.

5.5 Results for *egl* files

Table 7 shows the results for these files constructed by Belenguer and Benavent from Eglese's data. The number of edges m/2, often greater than τ , is now mentioned. The *Carpet* column reports unpublished results of Carpet, computed by Mittaz on behalf of Belenguer and Benavent. The running times are unknown. Since Carpet is here the only heuristic compared with the MA, the redundant *Best-known* column is removed.

The *egl* files seem much harder than the previous files: the average deviation to LB (never reached) augments for all algorithms. Of course, the reason is perhaps inherent to the bound and/or to the heuristics. For instance, according to Belenguer and Benavent, the partial graph of required edges is sometimes disconnected and their bound does not exploit this property. Nevertheless, EUH remains the best simple heuristic, the standard MA outperforms 19 times and the best MA improves all solution values, proving that Carpet finds no optimal solution. The price to pay is a larger average running time (9 minutes): the instances are bigger and, since LB is never reached, the MA performs the maximum number of allowed restarts (20).

5.6 Makespan minimization

The flexibility of the memetic algorithm is illustrated here by minimizing a different objective function for *gdb* files: the duration of the longest trip (*makespan*), subject to a limited number of vehicles. The two main changes in the MA are to replace Algorithm 2 by Algorithm 3 (see 4.2) in *Split* and to use the new objective function in the local search LS. Let q_{tot} be the total demand. The fleet size K_{max} (see 4.2) is set to the smallest possible value $\lceil q_{tot} / W \rceil$. This bound is tight for *gdb* files, since it is always reached by the MAs minimizing total cost.

A relatively simple lower bound LB2 to the optimal makespan can be computed as follows. The duration of a trip containing only one required arc *u* is $cost(u) = D(\sigma, u) + w(u) + D(u, \sigma)$, according to Equation 3. So, the minimum duration $\delta(u)$ of a trip reduced to one task *u* is either cost(u), if *u* is an arc-task, or min(cost(u), cost(inv(u))), if *u* is an edge-task. A first bound to the makespan is obtained by computing the maximum of these costs for all tasks: $\beta = max \{\delta(u) | u \in A, q(u) > 0\}$. A second bound is $\gamma = \lfloor LB / K_{max} \rfloor$, where LB is the lower bound for the total cost whose values are listed in Table 5. Finally, LB2 = $max(\beta, \gamma)$.

The results are summarized in *Table 8*. All MA parameters are taken from Table 3, except the number of restarts *mnrs* now set to 10. The only heuristic used for the initial population is the extended version of Ulusoy's method (EUH, see 3.3). Path-Scanning and Augment-Merge are discarded because they often lead to infeasible solutions. Two optima are found and the average deviation to LB2 is nearly 6%. This gap probably comes from the weakness of the bound: the last improvement is obtained early (5.96 s on average) compared to the overall running time (27.76 s), indicating that other solutions could be optimal.

5.7 Performance overview

Table 4 compares performance criteria between the memetic algorithm and Carpet, executed with their respective standard parameters: the average and worst deviations to LB, the number of proven optima (when LB is reached), the number of best-known solutions retrieved, and the average running time on a 1 GHz Pentium-III PC. The standard setting of parameters seems *extremely robust*: it gives the best average results for the three sets of instances and its

solutions are improved only 8 times out of 81 by trying different settings. In fact, with several settings, the MA becomes the only algorithm able to find all best-known solutions.

The MA confirms the interest of a GA template already applied successfully to the open-shop scheduling problem by Prins (2000). Indeed, this earlier GA shares some common features with our MA for the ECARP: small population with distinct solutions, a few good solutions in the initial population, improvement procedure used as mutation operator. This shows that powerful genetic algorithms can be designed thanks to a synergic effect between several simple improvement ideas.

1			1			
Criterion	DeArmo	n 23 pbs	Benaven	nt 34 pbs	Eglese	24 pbs
	Carpet	MA	Carpet	MA	Carpet	MA
Avg. dev. to LB %	0.48	0.15	1.90	0.61	4.74	2.47
Max. dev. to LB %	4.62	1.78	8.57	4.26	8.61	4.46
No of proven optima	18	21	15	22	0	0
No of best solutions	19	22	17	32	0	19
Avg. running time (seconds)	9.02	5.29	63.87	38.35	?	526.99

Table 4. Comparison between the standard MA and Carpet

6. CONCLUSION

The best memetic algorithm for the CARP presented in this paper outperforms all known heuristics on three sets of benchmarks publicly available, even when it is executed with one single setting of parameters. This excellent performance results from a combination of several key-features. In spite of simple chromosomes (without trip delimiters) and crossovers, each child is optimally evaluated thanks to the *Split* procedure and strongly improved by local search. Small populations of distinct solutions avoid a possible premature convergence. A few good initial solutions are computed via classical heuristics. The incremental management of population and the partial replacement technique used for restarts accelerate the decrease of the objective function. The absence of complicated techniques must be underlined.

Moreover, the MA is already designed for tackling several extensions like mixed networks, parallel arcs and turn penalties. We just checked its correct execution on a few instances constructed by hand from a city map. It is too early to provide a computational evaluation for these extensions: more instances must be prepared, appropriate lower bounds must be developed, and no other algorithm is available for comparison. All these tasks are in progress, in particular a random generator of large-scale realistic street networks.

REFERENCES

Amberg A., W. Domschke and S. Vo β , 2000. Multiple center capacitated arc routing problems: a tabu search algorithm using capacitated trees. *European Journal of Operational Research*, 124, 360-376.

Amberg A. and S. Vo β , 2002. A hierarchical relaxations lower bound for the capacitated arc routing problem. In: R.H. Sprague (Hrsg.), *Proceedings of the 35th Annual Hawai International Conference on System Sciences*, IEEE, Piscataway, DTIST02: 1-10.

Barr R.S., B.L. Golden, J.P. Kelly, M.G.C. Resende and W.R. Stewart Jr., 1995. Designing

and reporting on computational experiments with heuristic methods. *Journal of Heuristics*, 1, 9-32.

Belenguer J.M., E. Benavent and F. Cognata, 1997. Un metaheuristico para el problema de rutas por arcos con capacidades, 23th national SEIO meeting, Valencia, Spain.

Belenguer J.M. and E. Benavent. A cutting plane algorithm for the capacitated arc routing problem. To appear in *Computers and Operations Research*.

Belenguer J.M. and E. Benavent, 1998. The capacitated arc routing problem: valid inequalities and facets. *Computational Optimization and Applications*, 10, 165-187.

Benavent E., V. Campos and A. Corberan, 1992. The capacitated arc routing problem : lower bounds. *Networks*, 22, 669-690.

Benavent E. and D. Soler, 1999. The directed rural postman problem with turn penalties. *Transportation Science*, 33(4), 408-418.

Cheung B. K. S., A. Langevin and B. Villeneuve, 2001. High performing evolutionary techniques for solving complex location problems in industrial system design. *Journal of Intelligent Manufacturing.*, 12(5-6), 455-466.

Corberan A., R. Marti and A. Romero, 2000. Heuristics for the mixed rural postman problem. *Computers and Operations Research*, 27, 183-203.

Cormen T.H, C.L. Leiserson et M.L. Rivest, 1990. Introduction to algorithms, MIT Press.

DeArmon J.S., 1981. A Comparison of Heuristics for the Capacitated Chinese Postman Problem. Master's Thesis, The University of Maryland at College Park, MD, USA.

Eglese R.W., 1994. Routing winter gritting vehicles. Discrete Appl. Math., 48(3), 231-244.

Eglese R.W. and L.Y.O Li, 1996. A tabu search based heuristic for arc routing with a capacity constraint and time deadline. In: I.H. Osman and J.P. Kelly (eds.), *Metaheuristics: theory and applications*, Kluwer, 633-650.

Ghianni G., G. Improta and G. Laporte, 2001. The Capacitated Arc Routing Problem with Intermediate Facilities. *Networks*, 37(3), 134-143.

Golden B.L. and R.T. Wong, 1981. Capacitated arc routing problems. Networks, 11, 305-315.

Golden B.L, J.S. DeArmon and E.K. Baker, 1983. Computational experiments with algorithms for a class of routing problems. *Computers and Operation Research*, 10(1), 47-59.

Hartmann S., 1998. A Competitive genetic algorithm for resource-constrained project scheduling. *Naval Research Logistics*, 45(7), 733-750.

Hertz A., G. Laporte and P. Nanchen-Hugo, 1999. Improvement procedures for the undirected rural postman problem. *INFORMS Journal on Computing*, 11(1), 53-62.

Hertz A., G. Laporte and M. Mittaz, 2000. A Tabu Search Heuristic for the Capacitated Arc Routing Problem. *Operations Research*, 48(1), 129-135.

Hirabayashi R., Y. Saruwatari and N. Nishida, 1992. Tour construction algorithm for the capacitated arc routing problem. *Asia-Pacific Journal of Operational Research*, 9, 155-175.

Holland J., 1975. Adaptation in natural and artificial systems, University of Michigan Press.

Lacomme P., C. Prins and W. Ramdane-Chérif, 2001. A genetic algorithm for the CARP and its extensions. In: E.J.W. Boers et al. (eds), *Applications of evolutionnary computing*, Lecture Notes in Computer Science 2037, Springer, 473-483.

Moscato P., 1999. Memetic algorithms: a short introduction. In: D. Corne, M. Dorigo and F. Glover (eds), *New ideas in optimization*, McGraw-Hill, 219-234.

Mourão M.C. and T. Almeida, 2000. Lower-bounding and heuristic methods for a refuse collection vehicle routing problem. *European Journal of Oper. Res.*, 121, 420-434.

Pearn W.L., 1989. Approximate solutions for the capacitated arc routing problem. *Computers and Operations Research*, 16(6), 589-600.

Pearn W.L., 1991. Augment-insert algorithms for the capacitated arc routing problem, *Computers and Operations Research*, 18(2), 189-198.

Potvin J-Y. and S. Bengio, 1996. The Vehicle Routing Problem with Time Windows - Part II: Genetic Search. *INFORMS Journal on Computing*, 8(2), 165-172.

Prins C., 2000. Competitive genetic algorithms for the open-shop scheduling problem. *Mathematical Methods of Operations Research*, 51, 540-564.

Reeves C.R., 1995. A genetic algorithm for flowshop sequencing. *Computers and Operations Research*, 22(1), 5-13.

SPEC, 2001. Standard Performance Evaluation Corporation. *http://www.spec.org*.

Ulusoy G., 1985. The Fleet Size and Mixed Problem for Capacitated Arc Routing. *European Journal of Operational Research*, 22, 329-337.

APPENDIX

Table 5. Computational results for gdb files

'I'IME Best	00 0.00 316*	0.44 3		.00		.11 3	1 0.11 37 7 0.17 29	1 0.11 37 7 0.17 29 5 0.05 32	1 0.11 37 7 0.17 29 5 0.05 32 6 39.82 34	1 0.111 37 7 0.17 29 5 0.05 32 6 39.82 34 9 7.09 30	1 0.111 37 7 0.117 29 6 39.82 34 9 7.09 30 6 0.06 27	1 0.111 37 5 0.177 29 6 39.82 34 9 7.09 30 6 0.066 30 6 1.26 39	1 0.11 37 5 0.17 29 6 39.82 34 9 7.09 30 6 1.26 39 6 0.06 27 6 1.26 39 6 9.78 34	0.11 0.17 0.17 0.17 0.05 0.05 0.29 0.20 0.29	1 0.11 37 5 0.117 29 6 39.82 342 7 0.06 342 6 1.26 39 6 1.26 39 6 1.26 39 7 45 39 6 0.05 30	0 0 111 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 3 0 0 0 0 1 1 1 3 0 0 0 0 0 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M M M M M M M M M M M M M M	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M M M M M M M M M M M M M M	м м м м м м м м м м м м м м м м м м м	0.11 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.11 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>1 5 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11 12 13 14 14 15 16 17 18 19 11 11 12 13 14 15 16 17 18 19 11 11 12 13 14 15 16 17 17 18</th>	1 5 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 11 12 13 14 14 15 16 17 18 19 11 11 12 13 14 15 16 17 18 19 11 11 12 13 14 15 16 17 17 18
9WT.T. 5	0.0	03 0.4	0.0	0.0	779 0.11		83 0.1	83 0.1 0.0	83 0.1 87 0.6		0 0 0 0 - 0 - 0	833 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							· · · · · · · · · · · · · · · · · · ·			моооооооолонолонолооооооооооооооооооооо	л	м		
strts	0	7		0	0		Ч	Ч	4 7 1	ооон	00040	000400	0001000	00040000	000400000	0001000000	00040000000	000400000000	0001000000000	000 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00010000000000000000000000000000000000	00000000000000000000000000000000000000		000000000000000000000000000000000000000		20000000000000000000000000000000000000	2000 200 2000 2
MA K	316*	339*	275*	287*	377*		298*	ഹാ	0 2 3	модю	20028	200000	00000000	0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ນ 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 0 0 0 0 0 0 0 0 0 0 0 0	2000 100 100 100 100 100 100 100	2000 000 000 000 000 000 000 000	2000 100 1000 1	2000 000 000 000 000 000 000 000	2000 100 1000 1	2000 2000 2000 2000 200 200 200 200 200	2000 2000 2000 2000 2000 2000 2000 200	298* 3255* 3255* 3255* 30350 3555* 458 458 458 458 458 458 458 1221 2334 2333* 2333* 2333* 2500* 2333* 2500* 2333* 2500 215%		
HO	С		297		407		318	чм	8 M H	1 0 0 J	ω ω ω H	Нююлюн	м Н ⊗ С ∞ м Н	л м в м м м н м м н	олмнокомн	полинов чест	чиолюнолон	с м ю п ю н м п о п м о	ЧФМЛОЛМНФЛ	о ч о м о о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м о и м	и малани по	огооловности в соста и по	оеголомностино солон	моброчовие и воловина и воловин	- мобиолимоголин •	· · MO6267949WD05941859891	
\triangleleft		\sim	319	302	423	•	4	4 N	мυ	5 2 7 0 7 2 0 7 2 0	40 25 93 00	40 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 7 9 7 0 4 9 9 0 0 0 7 8 8 7 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 7 6 6 6 4 9 0 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 7 6 7 6 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 7 6 G 0 4 9 9 0 0 7 6 7 7 7 9 9 0 0 7 9 0 7 0 0 7 9 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0	4 7 9 5 9 4 9 9 9 9 7 9 7 9 7 9 9 9 9 9 9 9 9 9	4	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 И Ф П О 4 Ф Ф О 0 И Ф И О 4 Ф Ф О 0 И Ф И 0 0 Ф Ф О 0 0 0 0 И 4 И Ф И 4 И 0 И 4 Г 4.	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ъ	ഥ	9	293	ω	438	324		9	9 9	000	0000	0000 4	000040	0000400	00007001	000040010	0000400H0M	0000400H000	0000400H000F	0000400400000	0000400H000P00	9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ж м м м м м м м м м м м м м	363 364 354 2955 581 114 60 1355 1933 1775 1775 208 251 251 251 251 251 251 251 251	мм4лГН 40 Л мГГ 70 00 H 4 0.	мм4лгнм40лмггд081 <mark>4</mark> ,01
280- -	16*	\sim		ω		σ	+ L C	< C 7	4 0 7 4 8 7	, 8 0 8 8 8 8 8	4 4 7 7 4 4 7 7 4 4 7 7 4 4 4 7 7 7 4 4 4 7	• * * * ഗയനഗഗ	0 0 0 0 4 8 9 0 0 0 3 8	4407000 9907000 8884	240702000 200702000 200722 200722 200722 2007 20072 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	いちつきちょう 4 v 4 v 4 v 4 v 4 v 4 v 4 v 4 v 4 v 4	~ 4 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	νφοΓουσουσοσ ηφοσοσοσοσο * * * * * * * * * * * * * * * * * * *	/ 4 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 4 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ 4 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	の	молилфаламалама молилфаламалама молилфаламалама молилфаламалама молилфаламалама молилфаламалама молилфаламалама молилфаламаламалама молилфаламаламаламаламаламалама молилфаламаламаламаламаламаламаламаламаламал	・ のののののののののののののののののののののののののののののののののののの	(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	2006 1
LIIE		Ч.	0.07	°.	5.59	Ω.	0.00		1.0	1.0 3.9	1.0 3.9 1.5	1.0 2.2 2.2	1.0 .0.9 .0.6 .0	1.0 3.9 2.2 2.4 2.4	$\begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	1.0 .9 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	H W H 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	н w н g g g g g g g g g g g g g g g g g	 н w н и 0 и 0 и 0 н 0 0 0 и 0 0 0 0 0 4 4 0 Г 0 0 и 0 0 и 	 н м н и о и о и о о н о о о и и и и о и о и	11.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	11.0 22.2 22.2 22.2 22.4 22.2 22.4 22.2 22.4 22.2 2 2.2 2 2.2 2 2.2 2 2.2 2 2 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.0 12.5	1.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0	11.0 10.0
	Ч	ω	275*	ω	377*	σ	\sim	1	ഹ	ЫЧ	7 H D	0 1 1 0	52 75 95 88	4 0 0 1 1 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы ы	ы ала 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 2 3 4 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	33 34 35 45 35 40 40 40 40 40 40 40 40 40 40 40 40 40	88 97 10 10 10 10 10 10 10 10 10 10 10 10 10	88 1 1 1 10 1 2 0 0 4 1 1 1 10 1 1 1 10 1 1 1 10 1 1 1 10 1 1	88 97 12 12 12 12 12 12 12 12 12 12 12 12 12	а а а а а а а а а а а а а а а а а а а	а а а а а а а а а а а а а а а а а а а а	3352 3417 2758 4558 3554 1004 11256 111 1556 48 235 235 0.48 88 0.48 88		2522 27555 2755 2755 2755 2755 2755 2755 2755 2755 2755 2755
д Т	316	339	275	287	377	298	325	VVC	044	0 4 4 3 0 3	044 303 275	л4 203 3975 3975	344 303 275 450	544 303 455 305 505 505 505 505 505 505 505 505 5	444 303 275 275 106 100	り 8 3 3 3 3 3 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 4 4 3 5 3 4 4 4 5 5 5 5	444 347 347 347 347 347 347 347 347 347	944 9495 100 1258 91 1258 91 1258 91 1258 91 1258 91	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ч 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ч 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	244 245 245 245 245 245 245 158 127 127 127 127 127 233 233	244 245 245 245 245 245 153 153 154 155 121 155 121 155 233 233	244 245 245 245 245 245 153 154 156 155 155 121 156 200 200 233
							22									111890011 111800110								* 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
11	12	12	12	11	13	12	12	2.7		27	12	8187	3 5 5 7 - 1 5 5 7 -	27 22 13 10	10 10 10 10 10		8 7 7 0 3 5 5 7 7 1 1 5 1 5 7 7	889770357 117777	- C U U U U U U U U O C C O O O C C O O O O	8 6 8 8 7 7 0 3 7 7 7 5 7 7 7 8 8 8 8 7 7 7 7 8 8 8 8 7 7 7 7	1 8 8 8 7 7 0 3 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11 11 11 11 11 11 11 11 11 11 11 11 11	111 111 111 111 111 111 111 111 111 11				
F'LLC	gdb1	gdb2	gdb3	gdb4	gdb5	gdb6	gdb7	gdb10		gdb11	gdb11 gdb12	gdb11 gdb12 gdb13	gdb11 gdb12 gdb13 gdb14	gdb11 gdb12 gdb13 gdb14 gdb15	gdb11 gdb12 gdb13 gdb14 gdb15 gdb15	gdb11 gdb12 gdb13 gdb14 gdb15 gdb16 gdb16	gdb11 gdb12 gdb13 gdb14 gdb15 gdb16 gdb17	gdb11 gdb12 gdb14 gdb15 gdb16 gdb16 gdb17 gdb19	gdb11 gdb12 gdb13 gdb14 gdb16 gdb16 gdb17 gdb19 gdb20	gdb11 gdb12 gdb13 gdb14 gdb16 gdb16 gdb18 gdb19 gdb20 gdb21	gdb11 gdb12 gdb13 gdb14 gdb16 gdb16 gdb19 gdb20 gdb220 gdb22	g db11 g db12 g db13 g db14 g db16 g db16 g db19 g db210 g db221 g db223	g db11 g db12 g db13 g db14 g db16 g db16 g db19 g db210 g db221 g db223 g db223	g db11 g db12 g db13 g db14 g db16 g db16 g db19 g db21 g db22 g db22 g db22 g db223	gdb11 gdb12 gdb13 gdb14 gdb15 gdb16 gdb19 gdb19 gdb21 gdb22 gdb22 gdb22 gdb22 gdb22	<u>لي</u>	

Lower bounds from Benavent and Belenguer (to appear), except for gdb14 (Amberg and Voβ, 2002). Heuristics cited for published best-known solutions: a) Belenguer *et al.* (1997), b) Hertz *et al.* (2000), c) Pearn (1989), d) Lacomme *et al.* (2001). Asterisks denote proven optima, grey cells indicate solutions improved compared to the preliminary GA of Lacomme *et al.* (2001), boldface show new best solutions. Running times in seconds on a 1 GHz Pentium-III PC. Original times for Carpet have been scaled. Improvement for gdb10 in "Best MA" column obtained by using LOX crossover instead of OX.

files
val
for val
results
Computational results f
6.
Table

۵ ۲-	2		ц. Ц	Carnet	ш; т	Best-known	ы С С	F.D.M	RITH	מא האמ	Ratrta	XOVATS	T:me⊀	Ч. Т	Rest MA
		ي ن		0		י כ ו מ עו	4 0	ς (D I	ן ו ל	ם ר ר ד ר				י נ עמי
	24	6 M	173		•	73* ab	ω	σ		73	0		•	•	
1	24	6 M	173		9. 2	73* a	0	σ	σ			0	•	0. 8	
11	24	96	235	4	~.	45 b	ω	σ	œ	4	20	655	~.	9.	4
\sim	24	34	227	\sim	Ч.	27*	ப	\sim	ഥ	\sim	0	128	•	•	\sim
\sim	24	34	259	260	3.0	259* abd					0	\sim	~	~	259*
\sim	24	34	455	σ	9.	S	Ч	\sim	Ч	Ы	20	50933	°.	۲.	S
ς	24	35	81	81*	0.7	, −					0		°.	°.	81*
val3b	24	35	87	87*	۲.	87* abd		96	66	r-	0	Ŋ	•	00.00	87*
val3c	24	35	137	\sim	1.6	\sim	Ы				20	σ	4.	~	
4	41	69	400	0	e.	0	ß	4		400*	0	235	۲.	0.72	0
val4b	41	69	412	Ч	5.6	Ч	ω				0	0	∿.	~.	412*
4	41	69	428	Ы	0.0	\sim	ω	ω	ω	428*	7	σ	Ч.	Ч.	428*
4	41	69	520	Ы	3.5	\sim	ம	Μ			20	074	e.	3.2	530
	34	65	423	\sim	°.	\sim		9	Ы	\sim	0	0	°.	Ω.	\sim
val5b	34	65	446	4	1.4	46*	0	ω	ω		0	\sim	°.	°.	4
ப	34	65	469		~.	74	4	0	0	\sim	20	619	4.	1.0	\sim
ப	34	65	571	0	4.1	ω	\sim	9	9	ω	20	Ч	ς.	•	ω
	31	50	223	\sim	3.8	\sim		4	4	\sim	0	89	Ч.	Ч.	223*
9	31	50	231	4	σ.	33	5	4	വ	Μ	20	0	4.	7.3	\sim
val6c	31	50	311	329	85.18	317 bd	381	365	367	317	20		52.23	52.23	317
val7a	40	99	279		<u>ں</u>	79*	\sim	0	σ	\sim	0	\sim	9.	6.	\sim
val7b	40	99	283	83	°.	α	Ы	Ч	σ	ω	0	\sim	4.	4	ω
	40	66	333	4	4.	\sim	S.	œ	α	Μ	20	\sim	₽.	Ч.	Ś
	30	63	386	ω	3.8	œ	ω	Ч	Μ	œ	0		9.	9.	œ
œ	30	63	395	0	1.4	σ	Ы	\sim	Μ	σ	0	03	б.	б.	395*
	30	63	517	\sim	7.4	\sim	σ	0	0	527	20	വ	2.8	1.4	\sim
val9a	50	92	323	\sim	₽.	\sim	Ы	348	4	\sim	0	15	~	18.29	323*
	50	92	326	\sim	9.8	\sim	LO.	ம	വ	\sim	0	83	9.3	9.3	Ň
val9c	50	92	332	∞	6.4	32*	σ	9	9	332*	4	Ч	1.1	1.1	332*
σ	50	92	382	0	3.2	σ	σ	Μ	9	σ	20	593	6.6	Ч.	σ
val10a	50	97	428	\sim	<u>،</u>	\sim	Ы		452	\sim	0	ω	4.	5.4	\sim
10	50	97	436	\sim	8.4	\sim	5	9			0		9.	•	С
val10c	50	97	446	Ы	3.4	46*	503	478	496	446*	0	20	17.30	17.30	446*
0	50	97	524	4	6.3	З	T-	σ	8	530	20	Ч	2.8	.0	2
Average				1.90%	э.	0.55%	16.8%	11.4%	10.9%	0.61%	7.3	56410	18.61	38.35	0.54%
Worst				8.57%	Э	.2	40.9%	25.1%	20.9%	4.26%	20	20179	182.85	215.04	4.26%
Optima				15		22	0	0	1	22					22
Best				17			0	0	Ч	32					34

RR LOSI-2001-01 – Page 23

Format explained under Table 5. "Best MA" column: 530 for val4d found by applying LS to each initial solution, 528 for val10d found by using an exact detection of clones.

files
egl
for e
results
res
nputational
ıtati
ndu
Co
5
ıble
$\mathbf{T}_{\mathbf{a}}$

Carpet E		1		
1115	-	625 411	1 3515 3625 411	8 51 3515 3625 411
5228	\sim	532 522	1 4436 4532 522	1 4436 4532 522
7240	4	663 724	5453 5663 724	8 51 5453 5663 724
5458	5233 6458	233 645	2 4994 5233 645	8 72 4994 5233 645
7964	10	422 796	6249 6422 796	8 72 6249 6422 796
0313 1	8603 10313 1	603 1031	8114 8603 1031	72 8114 8603 1031
7454	5907 7454	907 74	5869 5907 74	8 87 5869 5907 74
0066	7921 9900	1 99	7 7646 7921 99	8 87 7646 7921 99
2672 1	0805 12672	5 12672	7 10019 10805 12672	87 10019 10805 12672
7527	6489 7527	9 75	8 6372 6489 75	8 98 6372 6489 75
1946 1	46	6 10946	8809 9216 10946	8 8809 9216 10946
3828 1	1824 13828	11824 13828	8 11276 11824 13828	8 98 11276 11824 13828
5382 6	N	6382	4992 5149 6382	0 75 4992 5149 6382
3631	ς	1 863	6201 6641 863	5 6201 6641 863
0259 1	59	687 10259	8310 8687 10259	5 8310 8687 10259
2344 1	0373 12344	373 12344	9780 10373 12344	0 147 9780 10373 12344
5386 151'	3495 16386 1	95 16386 1	86 13495 16386 1	47 12886 13495 16386 1
0520 1	7121 20520	1 20520	21 17121 20520	47 16221 17121 20520
3041 1	0541 13041	41 13041	10025 10541 13041	59 10025 10541 13041
7377 1	4291 173	291 173	3554 14291 173	59 13554 14291 173
1071 1	7789 21071	89 21071	969 17789 21071	59 16969 17789 21071
5321 14	3036 15321 1	36 15321 1	027 13036 15321 1	90 12027 13036 15321 1
9860 1	6924 19860	4 19860	0 15933 16924 19860	90 15933 16924 19860
5921 2	21	1486 25921	0179 21486 25921	0 20179 21486 25921
5.4% 2	.74% 26.4%	74% 26.4%	.74% 26.4%	.74% 26.4%
9.2% 3	0/0	.61% 39.2%	.61% 39.2%	.61% 39.2%
0	0 0			

RR LOSI-2001-01 – Page 24

Ð	32	03	38	04	02	44	20	12	28	43	98	97	39	66	83	14	49	90	00	75	65	71	38	76	38
Tim€	•	7.	•	•	•	•	•	33.5	48.3	10.4	44.9	9.9	19.0	24.9	4.8	22.5	•	46.9	25.(16.7	30.6	٦.	117.3	27.76	117.3
Time*	.4	3.13	~.		8.85	0.22		4.	8.6	~	26.47	Ч.	1.37	0.16	4.83	0.94	0.49	3.90	0.06	1.15	0.38	17.13	21.59	5.96	28.67
Xovers	015	31479		26487	60	26476	σ	26791	26224	64	ഥ	9	78	26158	3626	27132	148	27915	26026	27860	9	30963	31342	25577	31479
Rstrts	10	10	10	10	10	10	10	10	10	10	10	10	10	10	0	10	0	10	10		10	10		9.1	10.0
Std MA	66	60	60	74	69	68	68	40	39	73	82	96	140	21	15*	27	19*	34	21	32	29	28	3 0	5.9%	25.0%
EUH	84	81	74	98	88	75	81	54	69	86	98	\sim	178	27	16	40	22	40	24	45	50	45	39	39.0%	92.3%
λ	64	57	55	72	63	60	65	35	31	69	79	64	90	20	15	26	19	33	19	31	26	25	24		
$q_{\rm tot}$ / W	.4	5.20	4.	∞.		4.40	4.40		9.56	3.70			5.98	4.24	3.03	4.83	4.10	4.14	2.44	ō.	5.70	<u>с</u>	9.85		
β	63	59		64	64	64		38	37				128		00	14	თ	19	17	20	15	12	13		
LB2	64	59	59	72	64	64	65	38	37	69	79	93	128	20	15	26	19	33	19	31	26	25	24		
ų	22	26	22	19	26	22	22	46	51	25	45	23	28	21	21	28	28	36	11	22	33	44	55		
и	12	12	12	11	13	12	12	27	27	12	22	13	10	7	7	ω	ω	σ	ω	11	11	11	11		
File	gdb1	gdb2	gdb3	gdb4	gdb5	gdb6	gdb7	gdb8	gdb9	gdb10	gdb11	gdb12	gdb13	gdb14	gdb15	gdb16	gdb17	gdb18	gdb19	gdb20	gdb21	gdb22	gdb23	Average	Worst

Table 8. Makespan optimization subject to a limited fleet for *gdb* files

See § 5.6 for comments.