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A radically new approach to statistical modelling,which combines mathematical tech-
niques of Bayesian statistics with the philosophy of the theory of competitive on-line algorithms,
has arisen over the last decade in computer science (to a large degree,under the in
uence of
Dawid's prequential statistics). In this approach, which we call \competitive on-line statistics",
it is not assumed that data are generated by some stochastic mechanism; the bounds derived
for the performance of competitive on-line statistical procedures are guaranteed to hold (and
not just hold with high probability or on the average).

Problem

Making rational decisions is a central problem in science and everyday life. (Polynomials
of which degree should I use to �t my data sets? Should I take my umbrella today,tomorrow,
etc.? Which stocks should I buy and sell this year?) Only rarely we can readily choose the
best course of action; more often we will have a more or less extensive (maybe in�nite) family
of potentially successful decision strategies. (Whether a decision strategy is successful will
depend not only on the merits of this strategy but also on the future events which we do not
know yet.) However,at the end of the day we must choose one speci�c decision strategy,so
we naturally arrive at this problem: given a family of decision strategies, �nd a new
decision strategy which will perform, under any circumstances, almost as well as
the best (under those circumstances) decision strategy in the family.

At �rst, this task might appear hopeless for even moderately interesting families of decision
strategies. (Recall that we want the constructed decision strategy to perform almost as well
as the best strategy in the family always; we do not make any stochastic assumptions about
the generation of the future events.) However,for one speci�c loss function a good merging
algorithm has been known for a long time (the Bayesian mixture) and for many more loss
functions good merging algorithms have been found in recent years.

The usual statistical model is a family of probability distributions re
ecting our knowledge
or our assumptions about some piece of the world. The Bayesian framework involves another
element,the prior distribution on the parameter set,which allows the Bayesian to replace the
statistical model by a single probability distribution: the statistical model fQ� j � 2 �g with
the prior distribution P (d�) in � is replaced by the Bayesian mixture Q =

R
�
Q�P (d�). This

formula, reinterpreted and generalized,lies at the heart of competitive on-line statistics.
In competitive on-line statistics the statistical model is replaced by the decision pool,

which is a family of decision strategies; the statistician's goal is to replace this family with a
single decision strategy. Recall that the competitive on-line statistician is agnostic: she does
not assume anything about the stochastic mechanism generating the data; she does not even
assume the existence of such a mechanism.



Aggregating Algorithm

Let 
 be some sample space � be a decision space and � be a parameter space (the
decision strategies in our decision pool will be indexed by � 2 �). We consider the following
perfect-information game between three players Statistician Decision Pool and Nature: at
each trial t = 1; 2; : : :

� Decision Pool makes a prediction �t : � ! �; �t(�) is interpreted as the decision recom-
mended by the decision strategy � 2 �;

� Statistician makes her own decision 
t 2 �;

� Nature chooses some outcome !t 2 
.

There is some �xed loss function � : 
 � � ! [0;1]; Statistician's goal is to ensure that her
cumulative loss LT =

PT
t=1 �(!t; 
t) is almost as good as the loss LT (�) =

PT
t=1 �(!t; �t(�)) of

all or most of the decision strategies � 2 �. Assuming that the number n = j�j of decision
strategies in the pool is �nite it is possible to prove for a wide class of games (
;�; �) that
Statistician can ensure that for allT and �

LT � cLT (�) + a lnn; (1)

where c and a are some constants. For a wide class of games the Aggregating Algorithm (de-
scribed in eg Vovk 1998a) ensures that (1) holds with optimal c and a. Since it is possible
to improve c at the expense of deteriorating a and vice versa the algorithm involves a learning

rate � 2 (0;1) and theoptimal constants c = c(�) and a = a(�) in (1) depend on �.
The constants c(�) and a(�) have been found for many games (the constants mentioned

below were found by DeSantis Haussler Kivinen Littlestone Markowsky Vovk Warmuth
and Wegman); especially important are the perfectly mixable games for which c(�) = 1 for
some �. The most important for statistics games are perhaps the log-loss games; assuming for
simplicity that 
 is �nite in the log-loss game with the sample space 
 the decision space �
is the set of all probability distribution in 
 and the loss function is �(!; 
) = � ln 
f!g. For
this game the Aggregating Algorithm with learning rate � = 1 coincides with the Bayesian
mixture (assuming the uniform prior); the constants are c(1) = a(1) = 1. Also important
especially in the problems of regression is the following square-loss game: 
 = � = [�1; 1] and
�(!; 
) = (!�
)2. (We assume that the outcomes never exceed some known bound C; without
loss of generality we take C = 1.) In the case of the square-loss game c(�) = 1 and a(�) = 2
for some �. In general a game is perfectly mixable if its loss function is \strictly convex" in
some sense.

Some important games are not perfectly mixable such as the simple prediction game

 = � = f0; 1g �(!; 
) = j! � 
j where c(�) = �= ln 2

1+exp(��)
and a(�) = 1= ln 2

1+exp(��)
.

When we take � = [0; 1] instead (the absolute loss game) c(�) and a(�) are halved and the
game becomes \almost perfectly mixable" in the sense that c(�) ! 1 as � ! 0 (this is also
true if 
 = [0; 1]).

Notice that the philosophy of competitive on-line statistics only \works" when Nature
is oblivious to Statistician's decisions (!T does not depend on 
1; : : : ; 
T�1): if Nature is not
oblivious it is not longer possible to interpret inequality (1) as saying that Statistician performs
not much worse than the best of the decision strategies: if we had followed strategy � we
would perhaps have observed a di�erent sequence of outcomes. The assumption that Nature is



oblivious is always justi�ed when 
t are predictions (say the atmosphere does not care about
our predicting rain) but it can also be justi�ed for decisions di�erent from predictions such as
portfolio selection by a small investor: see the work on universal portfolio selection originated
by Cover (relevant references can be found in Vovk and Watkins 1998).

Linear regression

Even if the decision pool is in�nite in a surprisingly wide classof problems it is possible
to derive good bounds for competitive on-line procedures; in this note however we will only
consider the problem of linear regression with the square loss. There are several competitive on-
line algorithms for this problem: see eg the beautiful results in (Kivinen and Warmuth 1997)
about their Exponentiated Gradient algorithm. We will consider just one of those algorithms
(Vovk 1998b).

We have to extend slightly the protocol of the previous section: we will assume that at
the beginning of every trial t Nature outputs a \signal" xt to be used by Decision Pool and
Statistician in making their decisions. We assume that the signals are taken from the ball
fx 2 IRn j kxk � Xg of radius X; the decision pool is indexed by the ball � = f� 2 IRn j
k�k � Cg of radius C; the decision strategy � recommends prediction � � xt at trial t. Applying
the Aggregating Algorithm to this decision pool and a Gaussian prior the standard bounds for
that algorithm imply

LT � LT (�) + C2X2 + nC2X2 ln(T + 1); (2)

for all T and �. (For the proof of this inequality and its elaborations see (Vovk 1998b);
the assumptions that the signal and parameter spaces should be bounded were made only for
simplicity; the essential assumption is that the responses !t should be bounded by a known
constant. A similar inequality was proved earlier by Foster.) To see that bound (2) is tight
assume that n = 1 � 2 [�1; 1] xt = 1 for all t and!t are generated by the iid process with the
probability 1+�

2
of !t = 1 and the probability 1��

2
of !t = �1. It is easy to check (for details see

Vovk 1998b) that when Statistician uses the Maximum Likelihood estimator for computing

t and � = 0 theexpected value of the di�erence between the right-hand and left-hand sides
of (2) does not exceed the minute quantity of 1

T
.

Discussion and further research

It is not completely clear yet how far competitive on-line statistics can be developed;
some of its limitations are well understood and others still wait to be disclosed. One serious
limitation is that for some interesting games (especially those with non-compact 
 and �)
the constants c(�) and a(�) are in�nite; eg they become in�nite if we remove the assump-
tion that the response variable is bounded in the square-loss game. Another limitation is that
Nature is implicitly assumed to be oblivious. However the advantages of competitive on-line
statistics turned out to be clear enough to generate a lot of interesting research in compu-
tational learning community: see eg the work on tracking the best expert (Auer Herbster
Littlestone Vovk Warmuth) applications to �nancial theory (Blum Cover Helmbold Kalai
Ordentlich Schapire Singer Warmuth) pruning decision trees (Helmbold Hirai Maruoka
Pereira Schapire Singer Takimoto Vovk) boosting (Freund and Schapire) predictors that
specialize (Freund Schapire Singer Warmuth) etc.

An interesting application of the Aggregating Algorithm is to generalize the notion of



Kolmogorov complexity (see,eg,Li and Vitanyi,1997). The idea is to apply the Aggregating
Algorithm to the \universal decision pool" containing every computable decision strategy (such
a pool can be constructed from a universal Turing machine). The loss of the resulting \decision
strategy" (actually it will be a decision strategy only in a generalized sense) on a data sequence
x is called the predictive complexity of x. When applied to the log-loss game,this leads to a
variant of Kolmogorov complexity. As well as being a fundamental concept per se, the notion of
predictive complexity allows us to de�ne the notion of randomness for prediction games di�erent
from the log-loss game; for details, see (Vovk, 1999a).(Though even the standard notion of log-
loss randomness seems to be grossly under-used presently: see Vovk and Gammerman, 1999b.)
Another application is to generalizing the MDL principle to games di�erent from the log-loss
one: see (Vovk and Gammerman, 1999b).
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R�ESUM�E

Cet article d�ecrit une approche nouvelle �a modelage statistique combinant les techniques
mathematiques de statistique Bayesienne avec la philosophie de la theorie de algorithmes
comp�etitives en ligne. Dans cette approche, qui �emergeait durant le d�ecennie derni�ere dans
l'informatique, on ne suppose pas que les donn�ees sont produites par une m�ecanisme stochas-
tique ; au lieu de cela, il est prouv�e que les proc�edures statistiques comp�etitives en ligne at-
teignent toujours (et non, par exemple, avec haute probabilit�e) quelque but desirable (explicitant
la bonne performance sur les donn�ees r�eeles).


