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Abstract. In this paper, dynamics of the n-species competitive system with migration
is studied. It is proved that if the Jacobian matrix of the system is irreducible at every
point in Int R

2n
+ , then there is a defined countable family of invariant (2n − 1)-cells

which attract all nonconvergent persistent trajectories. Moreover, it is proved that the
Poincaré-Bendixson theorem holds for 2-species competitive systems with migration.

1. Introduction. Monotone and competitive dynamical systems have been exten-
sively investigated after a remarkable series of papers by Hirsch (see [1, 2, 3]). A system
of ordinary differential equations on the domain Ω ⊂ R

m is called a monotone or co-
operative system if the off-diagonal elements of the Jacobian matrix of the vector field
at every point x ∈ Ω are nonnegative, and it is called a competitive system if the off-
diagonal elements of the Jacobian matrix at every point x ∈ Ω are nonpositive. Smale
[11] showed that any vector field on the standard (m−1)-dimensional simplex in R

m
+ can

be imbedded in a smooth competitive Kolmogorov vector field

ẋi = Fi(x) = xifi(x), 1 ≤ i ≤ m, xi ≥ 0, (1.1)

on R
m
+ for which the simplex is an attractor. On the positive side, in papers [1, 2, 3]

Hirsch established that the limit sets of competitive systems can be no more complicated
than those of general systems in one fewer dimension. Precisely, under the conditions
of competition, irreducibility, and dissipation, Hirsch [3] proved that for the competitive
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Kolmogorov system there is a canonically defined countable (generically finite) family of
disjoint invariant (m − 1)-cells which attract all nonconvergent persistent trajectories,
where a trajectory is said to be persistent if its omega limit set is included in Int R

m
+ =

{x = (x1, · · · , xm) ∈ R
m, xi > 0, i = 1, 2, · · · , m}. In particular, if the origin is a repeller

and the community matrices are strictly negative, then there is a unique closed invariant
(m − 1)-cell attracting all nontrivial trajectories. In this sense, we say the dynamics
of competitive systems is 1-codimensional. Wang and Jiang [21] and [22] have verified
that the same results hold for the periodic Kolmogorov competitive systems via Poincaré
mappings.

Besides, the series of papers by Hirsch are especially important for introducing some
powerful techniques for treating monotone flows. Smith [13] developed Hirsch’s idea
and studied the so-called type-K monotone systems. A system of differential equations
ẋ = f(x) on R

m
+ is called a type-K monotone system if the Jacobian Df(x) of f is type-K

monotone at any x ∈ R
m
+ ; that is, there is some k with 1 ≤ k ≤ m such that Df(x) has

the form (
A1 −A2

−A3 A4

)
, (1.2)

in which A1 is a k × k matrix, A2 is a k × (m − k) matrix, A3 is an (m − k) × k

matrix, A4 is an (m − k) × (m − k) matrix, each off-diagonal element of A1 and A4

is nonnegative, and A2 and A3 are nonnegative matrices. Smith showed that the flow
ϕt(x) generated by the type-K monotone system is type-K monotone corresponding to
the cone K = {x ∈ R

m : xi ≥ 0 for 1 ≤ i ≤ k and xj ≤ 0 for k + 1 ≤ j ≤ m}; that is, if
x, y ∈ R

m
+ with xi ≤ yi for 1 ≤ i ≤ k and xj ≥ yj for k + 1 ≤ j ≤ m, then for any t > 0,

(ϕt(x))i ≤ (ϕt(y))i for 1 ≤ i ≤ k and (ϕt(x))j ≥ (ϕt(y))j for k + 1 ≤ j ≤ m. For type-K
monotone Kolmogorov systems he gave the sufficient conditions for the permanence of
the systems, where permanence means there is a compact invariant set S ⊂ Int R

m
+ which

attracts all orbits in Int R
m
+ . Afterwards, many researchers continued to investigate the

type-K monotone dynamical systems. We refer to Hsu et al. [4], Smith and Thieme [14],
Tu and Jiang [19, 18, 20], and Liang and Jiang [6, 7, 8].

The system ẋ = f(x) on Ω ⊂ R
m is called a type-K competitive system if −Df(x) is

a type-K monotone matrix at any x ∈ Ω. Many systems, such as the Field-Noyes mod-
els of Belousov-Zhabotinski reaction, due to Murray [10], and all kinds of competitor-
competitor-mutualist models (see [9] and references therein) are type-K competitive Kol-
mogorov systems according to our definition. We can easily see that the system obtained
from the type-K competitive system by time reversal is type-K monotone, and hence the
flow generated by the type-K competitive system is backward type-K monotone.

In our papers [7, 9], we considered type-K monotone and type-K competitive Kol-
mogorov systems, respectively. We showed that many conclusions in Hirsch [3] for com-
petitive Kolmogorov systems also hold for type-K monotone and type-K competitive Kol-
mogorov systems. We proved the existence of the invariant (m−1)-manifolds. Moreover,
for type-K competitive Kolmogorov systems we proved that all persistent trajectories not
converging are attracted by countably many invariant (m − 1)-manifolds, and we gave
conditions to guarantee that all orbits in Int R

m
+ are attracted by the closure of the same
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invariant (m− 1)-manifold. The above results mean that the dynamics of type-K mono-
tone and competitive systems is also 1-codimensional. We also gave the classification of
the dynamical behavior of the 3-dimensional type-K monotone and type-K competitive
Lotka-Volterra systems.

In mathematical biology, particularly in theoretical ecology, it is always a significant
and essential problem to understand the mechanism for the evolution of amounts of bi-
ological species affecting each other. The theory of cooperative, competitive, type-K
monotone, and type-K competitive Kolmogorov ordinary differential equation systems is
a very powerful method for studying such problems in many cases. On the other hand,
it is well known that spatial heterogeneities occur at all scales of the environment and
all species migrate or diffuse in the environment. It becomes important to understand
dispersal within the environment. When the continuous environment is considered, re-
action diffusion system models are often established to describe such phenomena. When
the discrete environment is considered, the models of Kolmogorov ordinary differential
equation systems with migration forms can be established to describe the migration of
the species between the patches. In particular, Takeuchi [16], Takeuchi and Lu [17], and
Smith [12] considered the following 2-species competitive Lotka-Volterra system with
migration:

dx1
dt = ε(x2 − x1) + r1x1(1 − x1K

−1
1 − a1y1),

dx2
dt = ε(x1 − x2) + r2x2(1 − x2K

−1
2 − a2y2),

dy1
dt = δ(y2 − y1) + s1y1(1 − y1L

−1
1 − b1x1),

dy2
dt = δ(y1 − y2) + s2y2(1 − y2L

−1
2 − b2x2).

(1.3)

Here x1, x2, y1, y2 ≥ 0, x1, x2 are the amounts of the species 1 on the two distinct patches
A and B and y1, y2 are the amounts of the species 2 on these two patches, and all
parameters are positive numbers. They showed that such systems are type-K monotone
and gave conditions for the permanence of the systems.

However, consider the more general n-species competitive system with migration

dxi

dt = hi(yi − xi) + xifi(x),
dyi

dt = −hi(yi − xi) + yigi(y),
(1.4)

where x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn), xi, yi are the amounts of the same
species i on two distinct patches, xi, yi ≥ 0 (1 ≤ i ≤ n); for any 1 ≤ i ≤ n, hi : R → R

is a C1 function with hi(0) = 0 and h′(z) > 0, z ∈ R; for any 1 ≤ i, j ≤ n, i �= j,
∂fi

∂xj
, ∂gi

∂yj
≤ 0. Smith [12] pointed out: “Little is known about the case of more than two

competitors. The resulting system is no longer monotone in this case.” In this paper,
we study the dynamical behavior of (1.4) with more than two species. It is easy to see
that such a system is type-K competitive when we let m = 2n, k = n in (1.2). Hence
the flow generated by (1.4) is backward type-K monotone. Moreover, we can prove
that almost all conclusions for type-K competitive Kolmogorov systems also hold for n-
species competitive systems with migration; however the proofs are more difficult since
the system (1.4) has the migration forms. Mainly, if the Jacobian matrix of the system is
irreducible at every point in Int R

2n
+ , then there is a defined countable family of invariant

(2n − 1)-cells which attract all nonconvergent persistent trajectories.
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In the second part of this paper, we focus on the 2-species competitive system with
migration which is a 4-dimensional system. It is well known that for the planar ordinary
differential equation systems the Poincaré-Bendixson theorem holds; that is, any limit
set without equilibrium is one periodic orbit. However when the dimension of the phase
space is more than 2, the dynamics of the ODE system is very complicated. We can only
prove the Poincaré-Bendixson theorem for a few classes of systems such as 3-dimensional
monotone or competitive systems (see Smith [12]). It is interesting that we show that
2-species competitive systems with migration are not only type-K monotone but also
type-K competitive in the second part of this paper. Since the dynamics of both type-K
monotone and type-K competitive systems is essentially 1-codimensional, the dynamics of
2-species competitive systems with migration is 2-dimensional. Moreover, we prove that
the Poincaré-Bendixson theorem holds for 2-species competitive systems with migration.

2. n-species competitive systems with migration. In this section, we consider
the n-species competitive system with migration, which is modelled by the following
group of 2n ordinary differential equations:

dxi

dt = hi(yi − xi) + xifi(x),
dyi

dt = −hi(yi − xi) + yigi(y).
(2.1)

Here, x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn); xi, yi ≥ 0 (1 ≤ i ≤ n); for any 1 ≤ i ≤ n,
hi : R → R is a C1 function with hi(0) = 0 and h′(z) > 0, z ∈ R; for any 1 ≤ i, j ≤ n, i �= j

and any x, y with xi, yi ≥ 0, i = 1, · · · , n, ∂fi

∂xj
, ∂gi

∂yj
≤ 0. In the following paragraphs, we

will give the definition of the general type-K competitive flow and show that the flow ψ

generated by (2.1) is just type-K competitive.
Let R

m
+ = {x ∈ R

m : xi ≥ 0 for 1 ≤ i ≤ m} and Int R
m
+ = {x ∈ R

m : xi > 0 for
1 ≤ i ≤ m}. For an integer k with 1 ≤ k ≤ m define the set K = {x ∈ R

m : xi ≥ 0 for
1 ≤ i ≤ k and xj ≤ 0 for k + 1 ≤ j ≤ m}. Let Int K be the interior of K in R

m. We
know that both R

m
+ and K are cones in R

m. For any two points x, y ∈ R
m
+ , we write

x ≤K y and y ≥K x whenever y − x ∈ K, x <K y, y >K x whenever x ≤K y and x �= y,
and x �K y and y �K x whenever y − x ∈Int K. For two sets S1, S2 ⊂ R

m
+ , S1 ≤K S2

provided that for any z1 ∈ S1, z2 ∈ S2, z1 ≤K z2. Here S1 <K S2, S1 �K S2 can be
similarly defined. Define [x, +∞)K = {y ∈ R

m
+ : y ≥K x} and (−∞, x]K = {y ∈ R

m
+ :

y ≤K x}. If x, y ∈ R
m
+ and x ≤K (�K)y, define [x, y]K = {z ∈ R

m
+ : x ≤K z ≤K y},

((x, y)K = {z ∈ R
m
+ : x �K z �K y}). Similarly, we can define the notation (x, +∞)K

and (−∞, x)K .
Define M = {1, 2, . . . , m}. Let L be a subset of M , and let L = M\L be its com-

plement in M . We define the set H+
L = {x ∈ R

m
+ : xp = 0 for p ∈ L} and the set

Int H+
L = {x ∈ H+

L : xp > 0 for p ∈ L}.
An m×m matrix A is called a monotone matrix provided all off-diagonal elements of

A are nonnegative, and it is called a type-K monotone matrix provided A has the form(
A1 −A2

−A3 A4

)
, (2.2)

in which A1 is a k × k monotone matrix, A2 is a k × (m − k) positive matrix, A3 is
an (m − k) × k positive matrix, and A4 is an (m − k) × (m − k) monotone matrix.
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Here A is said to be competitive (type-K competitive) provided −A is monotone (type-K
monotone).

Let ψ be a (local) flow on R
m
+ . For any x ∈ R

m
+ denote by Ix the interval in which

ψt(x) exists and belongs to R
m
+ and let Tx = inf Ix; that is, for any t ∈ Ix, ψt(x)

exists and belongs to R
m
+ . Here ψ is said to be type-K competitive or backward type-

K monotone provided for any x, y ∈ R
m
+ with x ≤K y, ψt(x) ≤K ψt(y) for any t with

max(Tx, Ty) < t < 0, and it is said to be strongly type-K competitive on some open subset
Ω ⊂ R

m
+ provided for any x, y ∈ Ω with x <K y and any t < 0 with ψt(x), ψt(y) ∈ Ω,

ψt(x) �K ψt(y) . Consider the m-dimensional system ẋ = f(x) on R
m
+ . By the Kamke

Theorem (see [5]), if Df(x) is type-K competitive at any x ∈ R
m
+ , then the flow generated

by this system is also type-K competitive. Furthermore if Df(x) is irreducible in some
open subset Ω ⊂ R

m
+ , then the flow is strongly type-K competitive on Ω. Obviously, the

(strongly) forward type-K monotone flow can be defined similarly.
Hence when we consider the cone K = {(x, y) ∈ R

2n : xi ≥ 0, yi ≤ 0}, the flow of
the system (2.1) is type-K competitive in R

2n
+ . Furthermore, in this paper we suppose

that the system (2.1) is dissipative and Γ is the attractor of the system and the Jacobian
matrix of the vector field is irreducible in Int R

2n
+ . Thus by the Kamke Theorem we can

easily obtain that the system is strongly type-K competitive in Int R
2n
+ .

Now, we define some sets which play important roles in this paper. We say that a
point z is in the lower boundary ∂−S of a set S ⊂ R

2n provided there is some sequence
{zi} in S converging to z with z �K zi but no sequence {zi} in S converging to z with
zi �K z, and we can define the upper boundary ∂+S analogously. Denote by E the
equilibria set of (2.1). For each equilibrium p ∈ E , we define the following sets in R

2n
+ :

R(p) = the basin of repulsion of p = {z ∈ R
2n
+ : lim

t→−∞
ψt(x) = p},

R−(p) = the basin of lower repulsion = {z ∈ R(p) : ψt(x) �K p for some t ∈ R},
R+(p) = the basin of upper repulsion = {z ∈ R(p) : ψt(x) �K p for some t ∈ R},

V−(p) = the lower repulsion boundary = ∂−R−(p),

V+(p) = the upper repulsion boundary = ∂+R+(p).

Notice that we have defined the same sets in our paper [9] for type-K competitive Kol-
mogorov systems. In fact, in this paper we will prove that n-species competitive systems
with migration, particularly the persistent trajectories of the system, have almost the
same properties as those of type-K competitive Kolmogorov systems. In the rest of this
section, we will present these properties and leave all the proofs for the appendix.

First, we have

Theorem 2.1. Consider the n-species competitive system with migration. Let p, q ∈ E .
Then we have the following.

(a) R−(p), V−(p) are invariant; moreover, they are bounded subsets of Int R
2n.

(b) R−(p) is order-convex with respect to the order ≤K and open in R
2n
+ .

(c) R−(p) ∩ R−(q) and V−(p) ∩ V−(q) are empty if p �= q.
(d) V−(p) is unordered with respect to <K .
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(e) Let PE : R
2n → E be an orthogonal projection onto a hyperplane E orthogonal

to a vector v �K 0. Then PE |V−(p) is a homeomorphism gE : V−(p) → U onto an open
subset U ⊂ E; gE and (gE)−1 are Lipschitz.

(f) If R−(p) is nonempty, then R−(p) is an open 2n-cell and V−(p) is an open (2n−1)-
cell.

(g) If z ∈ clos V−(p) and z <K p, then z ∈ V−(p), where clos V−(p) means the closure
of V−(p) in R

2n
+ .

(h) Analogous results hold for R+(p) and V+(p).
Here, S is an open m-cell means that S is homeomorphic to R

m.

Remark 2.2. In Theorem 2.1, we prove the (total) invariance of the sets R−(p), R+(p),
V−(p), and V+(p) in a strong sense; that is, a set Ω is invariant means that if z ∈ Ω,
then for any t ∈ (−∞, +∞), ψt(z) exists and belongs to Ω. However since the system is
dissipative and only the set R

2n
+ is positively invariant, an orbit not belonging to Γ may

not extend to t = −∞. We use invariance in a weak sense in the rest of this paper; that
is, a set Ω is invariant means that if z ∈ Ω, then for any t ∈ (Tz, +∞), ψt(z) ∈ Ω.

To understand more fully the dynamics of the system (2.1), we still need to consider
the case of “∞”. Moreover, since ±∞ with respect to ≤K in R

2n
+ are different, we need

to define the basin of lower (upper) repulsion of ∞ and its lower (upper) boundary.

R(∞) = R
2n
+ \Γ,

R̃−(∞) = {z ∈ R(∞) ∩ Int R
2n
+ : either Tz > −∞, (ψTz

(z))k > 0, k = 1, · · · , n,

and (ψTz
(z))i = 0 for some n + 1 ≤ i ≤ 2n, or sup

t∈(Tz,0)

(ψt(z))k < +∞,

k = n + 1, · · · , 2n and sup
t∈(Tz,0)

(ψt(z))i = +∞ for some 1 ≤ i ≤ n},

R̃+(∞) = {z ∈ R(∞) ∩ Int R
2n
+ : either Tz > −∞, (ψTz

(z))k > 0, k = n + 1, · · · , 2n,

and (ψTz
(z))i = 0 for some 1 ≤ i ≤ n, or sup

t∈(Tz ,0)

(ψt(z))k < +∞,

k = 1, · · · , n and sup
t∈(Tz ,0)

(ψt(z))i = +∞ for some n + 1 ≤ i ≤ 2n},

R−(∞) = the interior of R̃−(∞) in R
2n
+ ,

R+(∞) = the interior of R̃+(∞) in R
2n
+ ,

V−(∞) = Int R
2n
+ ∩ ∂−R−(∞),

V+(∞) = Int R
2n
+ ∩ ∂+R+(∞).

Proposition 2.3. R̃−(∞) and R̃+(∞) are nonempty and ordered convex. If z = (x, y) ∈
R̃−(∞), then for any t ∈ (Tz, +∞), ψt(z) ∈ R̃−(∞). Moreover, z = (x, y) ∈ R̃−(∞)
implies [z, +∞)K ∩ Int R

2n
+ ⊂ R̃−(∞); z = (x, y) ∈ R̃+(∞) implies (−∞, z]K ∩ Int R

2n
+ ⊂

R̃+(∞). Moreover, R−(∞) also has the above properties and is open in Int R
2n
+ . Here

V−(∞) is invariant and unordered by <K . For R̃+(∞), R+(∞), V+(∞), the analogous
conclusions hold.
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Proposition 2.4. R−(∞) and R+(∞) are homeomorphic to R
2n; V−(∞) and V+(∞)

are homeomorphic to R
2n−1.

To know more about the properties of the limit sets, we will extend the limit set
dichotomy of the strongly monotone system (see [2]) to the competitive system with
migration.

Proposition 2.5 (α-limit set dichotomy of the competitive system with migration).
Suppose that z, z′ ∈ R

2n
+ with z <K z′, and suppose that α(z), α(z′) exist and at least

one of them is contained in Int R
2n
+ . Then either α(z) �K α(z′) or α(z) = α(z′) ⊂ E .

Moreover, both α(z) and α(z′) are contained in Int R
2n
+ .

Based on Proposition 2.5, we can obtain the following theorem about the limit sets of
the persistent trajectories.

Theorem 2.6. Suppose that K ⊂ Int R
2n
+ is an α- or ω-limit set which is not a singleton.

Then there are p, q ∈ E ∪ {∞} such that

K ⊂ V−(q), K ⊂ V+(p).

Remark 2.7. In Theorem 2.6, V−(q) is nonempty and so is R−(q). For each q with
nonempty R−(q), there is a set (a, q)K such that there is no equilibrium in (a, q)K . This
implies that the number of the equilibria with the nonempty basin of lower repulsion is
countable.

Theorem 2.8. Suppose that ω(z) ⊂ V−(q) for some q ∈ E ∪ {∞}. Then there is some
z′ ∈ V−(q) such that ‖ψt(z′) − ψt(z)‖ → 0 as t → ∞.

Corollary 2.9. Suppose that ∂fi

∂xi
< 0 and ∂gi

∂yi
< 0 hold for any z ∈ R

2n
+ and i =

1, 2, · · · , n. Then for any limit set K ⊂ Int R
2n
+ , we have

K ⊂ V−(∞), K ⊂ V+(∞).

Furthermore, if K = ω(z), then there are some z′ ∈ V−(∞) with ‖ψt(z′) − ψt(z)‖ → 0
and some z′′ ∈ V+(∞) with ‖ψt(z′′) − ψt(z)‖ → 0 as t → ∞.

3. 2-Species competitive systems with migration. In this section, we consider
2-species competitive systems with migration. We will prove that the dynamical behavior
of such a system is 2-codimensional and therefore the Poincaré-Bendixson theorem holds
for this system.

Rewrite the 2-species competitive systems with migration in the following form:
dx1
dt = ε(x2 − x1) + r1x1(1 − x1K

−1
1 − a1y1),

dx2
dt = ε(x1 − x2) + r2x2(1 − x2K

−1
2 − a2y2),

dy1
dt = δ(y2 − y1) + s1y1(1 − y1L

−1
1 − b1x1),

dy2
dt = δ(y1 − y2) + s2y2(1 − y2L

−1
2 − b2x2).

(3.1)

Here x1, x2, y1, y2 ≥ 0, x1, x2 are the amounts of the species 1 on the two isolated domains
A and B and y1, y2 are the amounts of the species 2 on A and B, and all parameters are
positive numbers. Notice that the sense of the symbols x1, x2, y1, y2 is a little different
from those in the previous section.
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Smith [12] shows that when we consider the type-K cone K1 = {(x1, x2, y1, y2) ∈ R
4 :

x1, x2 ≥ 0, y1, y2 ≤ 0}, the system is type-K monotone. He also gives the conditions
for the permanence of the system. It is interesting that we find that when we consider
the cone K2 = {(x1, x2, y1, y2) ∈ R

4 : x1, y1 ≥ 0, x2, y2 ≤ 0}, the system is also type-K
competitive. Since the dynamics of both the type-K monotone systems and the type-K
competitive systems is 1-codimensional, the dynamics of 2-species competitive systems
with migration is 2-dimensional. Precisely, we have

Theorem 3.1. The flow on a compact limit set of the system (3.1) in Int R
4
+ is topolog-

ically equivalent to a flow on a compact invariant set of a Lipschitz system of differential
equations in R

2.

Proof. We only consider the ω-limit set. The α-limit set is similar. We use K to
denote the ω-limit set of z. Because the system is type-K monotone with respect to ≤K1

and type-K competitive with respect to ≤K2 and the Jacobian matrix of the vector field
is irreducible in Int R

4
+, we know that K is an unordered set by both <K1 and <K2 .

Let

v1 = (
1
2
,
1
2
,−1

2
,−1

2
), and v2 = (

1
2
,−1

2
,
1
2
,−1

2
).

It is easy to see that the subspace {av1 + bv2 = (a+b
2 , a−b

2 , b−a
2 ,−a+b

2 ), a, b ∈ R} is
included in ±K1 ∪±K2. Let H be the 2-dimensional plane orthogonal to v1, v2, and let
Q be the orthogonal projection from R

4 to H; that is, Qz = z − (z · v1)v1 − (z · v2)v2.
We claim that the restriction of Q to K, Q = Q|K, is one to one. Otherwise, there are
z, z′ ∈ K such that Q(z − z′) = 0; that is,

z − z′ = (z · v1)v1 + (z · v2)v2 − (z′ · v1)v1 − (z′ · v2)v2.

Simply denote z − z′ = av1 + bv2 where at least one of a, b is not zero. This contradicts
that K is unordered. In what follows, we want to prove that Q is a homeomorphism. We
only need to prove that Q−1 is continuous. In fact, we will prove that Q−1 is Lipschitz
continuous. Suppose not. Then there are two sequences {zn}, {z′n} ⊂ K, zn �= z′n, for
n = 1, 2, · · · , such that |Q(zn)−Q(z′

n)|
|zn−z′

n| → 0. Equivalently,

|(zn − z′n) − (v1 · (zn − z′n))v1 − (v2 · (zn − z′n))v2|/|zn − z′n| → 0.

Let wn = (zn − z′n)/|zn − z′n|. Then |wn − (v1 · wn)v1 − (v2 · wn)v2| → 0. Passing to
subsequences, we suppose that wn → w, zn → z, z′n → z′. If z �= z′, we have (z − z′)/
|z − z′| = w = (v1 · w)v1 + (v2 · w)v2 and |w| = 1. This contradicts that K is unordered.
Consider the case where z = z′ and suppose that w ∈ K1 without loss of generality.
Denote by ψ the flow generated by the system and by ψ1 the time-1 mapping. Because
Dzψ1(z) is a strongly positive linear mapping with respect to K1, Dzψ1(z)w ∈ IntK1.
Moreover, by the smoothness of the vector field, there is some ε such that for any points
z′′, w′′ if |z − z′′| ≤ ε and |w − w′′| ≤ ε, then Dzψ1(z′′)w′′ ∈ IntK1. Since wn =
(zn − z′n)/|zn − z′n| → w and zn → z, z′n → z′, there is some n such that |wn − w| ≤ ε

and

ψ1(zn) − ψ1(z′n) = |zn − z′n|
∫ 1

0

Dzψ1(τzn + (1 − τ )z′n)dτ · wn �K1 0,
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contradicting that K is unordered with respect to <K1 . For the case where w ∈ K2, we
only need to consider the time-(−1) mapping ψ−1. A similar conclusion holds.

Hence, we have proved that Q is a Lipschitz homeomorphism between K and Q(K).
For any z̄ ∈ Q(K), there is a unique z ∈ K such that z̄ = Q(z). Let F be the vector field
of the system (3.1), G(z̄) = Q(F (Q−1(z̄))) be the vector field on Q(K), and let ψ be the
flow generated by the system (3.1). Then θt(z̄) = Q(ψt(z)), z ∈ K, is the flow generated
by the vector field G. Moreover, G can be extended to a Lipschitz vector field on H since
G is Lipschitz. �

Theorem 3.2. A compact limit set of the system (3.1) that contains no equilibrium is
one periodic orbit.

Proof. We still use K to denote the ω-limit set of z. We only need to consider the case
that z ∈ Int R

4
+ and K ⊂ Int R

4
+ since if K �⊂ Int R

4
+, then K contains an equilibrium. By

Theorem 3.1 the flow ψ generated by the system (3.1) on K is topologically equivalent to
the flow θ on Q(K). Because K contains no equilibria, neither does Q(K). The Poincaré-
Bendixson theorem implies that Q(K) consists of periodic orbits and, possibly, entire
orbits whose ω- and α-limit sets are periodic orbits in Q(K). Furthermore, Q(K) consists
entirely of periodic orbits by chain recurrence of Q(K) with respect to the flow θ (see
Smith [12]).

Finally, we prove that Q(K) only consists of a periodic orbit. Otherwise Q(K) consists
of an annulus of uncountably many periodic orbits. Let the periodic orbit C ⊂ K, and
let Q(C) be contained in the interior of Q(K) in R

2. Fix a, b ∈ K\C such that Q(a), Q(b)
belong to different components of Q(K)\Q(C). It is easy to see that Q(ψt(z)) must cross
Q(C) at a sequence of times tk → +∞. Therefore, there is a sequence {zk}+∞

1 ⊂ C such
that

(1) zk <K1 ψtk
(z) or

(2) zk >K1 ψtk
(z) or

(3) zk <K2 ψtk
(z) or

(4) zk >K2 ψtk
(z).

Passing to a subsequence, we can suppose that (1) always holds or (2) always holds
or (3) always holds or (4) always holds for all k. When (1) always holds, we can assume
zk �K1 ψtk

(z) since z ∈ Int R
4
+. Then zk ∈ K implies that there is some sufficiently large

number t such that ψt(z) and zk are sufficiently close, and hence ψt(z) �K1 ψtk
(z) and

moreover, K is an equilibrium, a contradiction. Hence (1) cannot hold for any sufficiently
large integer k. Similarly, (2) cannot hold. When (3) always holds, since z ∈ Int R

4
+, we

can assume zk �K2 ψtk
(z). Since the system is backward type-K monotone under the

order K2, for any t > 0 there is tk > t such that w = ψt−tk
(zk) <K ψt−tk

(ψtk
(z)) = ψt(z).

This means that any point in the ω-limit set K is larger than one point in C by <K2 .
Similarly, if (4) always holds, then any point in K is less than one point in C by <K2 .
Choose the periodic orbits C1, C2, C3 as we chose C above. Then any point in K and the
points in two of C1, C2, C3 (suppose C1, C2) have the same order relation by <K2 . Let
y1 ∈ C1 ⊂ K. Then there is some y2 ∈ C2 such that y1 <K2 y2. Similarly, there is some
y3 ∈ C1 such that y2 <K2 y3. Hence y1 <K2 y3. It contradicts that the periodic orbit C1

is unordered by <K2 . �
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4. Appendix.
Proof of Theorem 2.1. (a) First, we claim that R−(p) �= ∅ implies p ∈ IntR2n

+ . In
fact, suppose that p = (p1, · · · , pn, pn+1, · · · , p2n). For the sake of contradiction, let
pi = 0, 1 ≤ i ≤ n. The case n + 1 ≤ i ≤ 2n is similar. If pi+n > 0, then for any t > 0,
the ith element of ψt(p) is larger than 0 by the form of the equations. So p cannot be an
equilibrium. Otherwise, if pi+n = 0, then we cannot find any point z ∈ R

2n with z �K p

or z �K p. Hence R−(p) is empty. This shows our claim.
Next, suppose that z ∈ R−(p). It is easy to see that for any t < 0 with |t| sufficiently

large ψt(z) ∈ Int R
2n
+ since p ∈ Int R

2n
+ . This means that Tz = −∞. Hence, R−(p) is

invariant by the definition and the backward type-K monotonicity. Moreover, R−(p) ⊂
Int R

2n
+ .

Consider z ∈ V−(p). Let zk ∈ R−(p), zk → z as k → +∞. We know Tzk
= −∞,

so Tz = −∞ also. By the definition and the strong backward monotonicity there is
some t ∈ R such that ψt(z) �K p. Without loss of generality, assume z �K p. Then
(z, p)K ⊂ R−(p). For any t > 0 to prove ψt(z) ∈ V−(p), suppose that zk → ψt(z) as
k → +∞ and zk �K ψt(z). Then ψ−t(zk) �K z and ψ−t(zk) → z. This means that
ψ−t(zk) ∈ (z, p)K ⊂ R−(p) and hence zk ∈ R−(p) for any sufficiently large integer k

since R−(p) is invariant. Furthermore, we show that there is no sequence {zk}∞k=1 ⊂
R−(p), zk → ψt(z) as k → +∞ and zk �K ψt(z). Otherwise, the strong backward
monotonicity implies ψ−t(zk) �K z and ψ−t(zk) → z. But z ∈ V−(p), a contradiction.
Hence, V−(p) is invariant.

Moreover, suppose that z = (z1, · · · , zn, zn+1, · · · , z2n). We claim that zi > 0 for
1 ≤ i ≤ 2n. For the sake of contradiction, let zi = 0, 1 ≤ i ≤ n. The case n + 1 ≤ i ≤ 2n

is similar. If zi+n > 0, then for any t < 0 with |t| sufficiently small, the ith element
of ψt(z) is smaller than 0 by the form of the equations, contradicting the invariance of
V−(p). Otherwise, if zi+n = 0, then we cannot find any point z′ ∈ R

2n
+ with z′ �K p.

Hence V−(p) ⊂ Int R
2n
+ . Last, since the system is dissipative, R−(p) is bounded and so

is V−(p).
(b) First, if z ∈ R−(p) and z �K p, then [z, p)K ⊂ R−(p) by the backward monotonic-

ity. Suppose that z1 <K z2 <K z3 and z1, z3 ∈ R−(p). Then the backward monotonicity
implies there is some t ∈ R such that ψt(z1) <K ψt(z2) <K ψt(z3) �K p. This means
that ψt(z2) ∈ R−(p) and so is z2.

(c) It is obvious that R−(p) ∩ R−(q) = ∅. Consider V−(p) ∩ V−(q). For the sake
of contradiction, let z ∈ V−(p) ∩ V−(q). There are zk ∈ R−(p), z′k ∈ R−(q) such that
zk, z′k �K z for k = 1, 2, · · · and zk, z′k → z as k → +∞. Hence, passing to subsequences,
we can obtain zk+1 �K z′k �K zk for k = 1, 2, · · · . This implies z′k ∈ R−(p) by the order
convexity of R−(p), contradicting R−(p) ∩ R−(q) = ∅.

(d) Suppose, for the sake of contradiction, that there are z, z′ ∈ V−(p) with z <K z′.
Since z, z′ ∈ Int R

2n
+ , ψt(z) �K ψt(z′) for t < 0 by the strong backward monotonicity.

Without loss of generality, assume z �K z′. There are zk, z′k ∈ R−(p) such that zk �K

z, z′k �K z′ for k = 1, 2, · · · and zk → z, z′k → z′ as k → +∞. Hence it is easy to find
some sufficiently large integer k such that zk < z′ < z′k and then z′ ∈ R−(p). But R−(p)
is open and then R−(p) ∩ V−(p) = ∅. This is a contradiction.
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(e) Actually, Proposition 2.6 of Hirsch [3] implies (e). To complete this paper, we
repeat the proof here.

To see that g is injective, suppose g(z) = g(z′). Then z = z′ + λv for some λ ∈ R.
Since v �K 0 and no two points of V−(p) can be related by <K , it follows that λ = 0;
therefore g is injective. The image of g is open in E and g−1 is continuous. To see this,
fix a ∈ V−(p) and set g(a) = b ∈ E. Choose c �K a so that (a, c)K ⊂ R−(p). It is
easy to show that PE((a, c)K) is a neighborhood in E of b. For any z ∈ PE((a, c)K)
let Lz denote the line through z parallel to u. Then Lz ∩ B−(p) has the greatest lower
bound w ∈ Lz because R−(p) is bounded below, v ∈ IntK, and Lz meets (a, c)K . It is
not hard to see that w ∈ V−(p) and g(w) = z. Thus g(V−(p)) is open in E. From this
construction of w as g−1(z) it is easy to see that g−1 is continuous. This proves g is a
homeomorphism onto an open set in E.

Since PE has Lipschitz constant 1, so does g. We show that g−1 has a Lipschitz
constant which depends only on v. Denote by SE the set of all unit vectors in the linear
subspace E. It is easy to see that SE is disjoint from K and that there exists some
number µ > 0 with the following property. If z ∈ SE , λ ∈ R, and z + λv /∈ K, then
|λ| < µ.

We show that 1 + µ is a Lipschitz constant for g−1. Fix two points a, b ∈ E. Set
a − b = w ∈ E and g−1(a) − g−1(b) = u. Then u = w + ρv for some ρ ∈ R. Notice that
u /∈ K. Consider the identity u/|w| = w/|w| + (ρ/|w|)v. Since u/|w| /∈ K, we find that
ρ/|w| < µ. By the triangle inequality we therefore get |u|/|w| < 1 + µ.

(f) Suppose that R−(p) is nonempty. Then there is some a ∈ R−(p) such that a �K p;
fix this a. By the order convexity of R−(p) and the strong backward monotonicity we have
[a, p]\p ⊂ R−(p) ⊂ Int R

2n
+ . Moreover, for any b ∈ R−(p), there is some τb < 0 such that

for any t ∈ (−∞, τb], ψt(b) ∈ (a, p)K . In particular, there is some positive integer m such
that ψmτa

(b) ∈ (a, p)K . Moreover, the backward monotonicity implies ψτa
((a, p)K) ⊂

(a, p)K . Let Um = ψ−mτa
((a, p)K), m = 0, 1, · · · . Then R−(p) =

⋃∞
m=0 Um and Uk ⊂ Um

if k ≤ m. Moreover, Um = ψ−mTa
((a, p)K) is an open 2n cell since it is homeomorphic

to (a, p)K . A theorem of Brown (1961) implies that such a union is also an open n-cell
(see [3]).

To prove the second statement, fix a number δ in the range 0 < δ < min{|pi − ai|, i =
1, 2, · · · , 2n} and define the set

Sδ(p) = {z ∈ R
2n, z ≤K p and |z − p| = δ}

where | · | is the Euclidean norm, and let Lδ(p) = {z ∈ Sδ(p), z �K p}. It is easy to see
that Sδ(p) is a closed (2n − 1)-cell and Lδ(p) is an open (2n − 1)-cell.

Consider for each z ∈ Sδ(p) the ray Rz through z emanating from p. Since R−(p) is
order convex and bounded, Rz ∩R−(p) is a bounded open interval with one endpoint at
p. It is easy to see that the other endpoint, denoted by g(z), belongs to V−(p) and that
the resulting map g : Sδ(p) → V−(p) sends Sδ(p) homeomorphically onto the set

D(p) = {z ∈ V−(p) : x <K p}
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while g maps Lδ(p) homeomorphically onto the set

D0(p) = {z ∈ D(p) : x �K p}.

Therefore D0(p) is an open (2n − 1)-cell.
Now observe that for any z ∈ V−(p) there is a number tz < 0 such that ψt(z) ∈ D0(p)

for all t < tz. This means V−(p) =
⋃

t≥0 ψt(D0(p)). Furthermore, D0(p) ⊂ ψt(D0(p))
for any t > 0. This implies ψt(D0(p)) ⊂ ψt′(D0(p)) if t < t′. By Brown’s theorem, V−(p)
is an open (2n − 1)-cell.

(g) First, p, z ∈ Int R
2n
+ . Without loss of generality, by the strong backward monotonic-

ity and invariance of V−(p), suppose that z �K p. By the proof of (f), z ∈ V−(p). �
Proof of Proposition 2.3. We can easily see that R̃−(∞) is nonempty since for any

t > 0 and any z = (x1, · · · , xn, 0, · · · , 0) with xi �= 0, 1 ≤ i ≤ n, we have ψt(z) ∈ R̃−(∞).
Next, we will prove that if z ∈ R̃−(∞), then [z, +∞)K ∩ Int R

2n
+ ⊂ R̃−(∞). Suppose

that z′ ∈ [z, +∞)K , by the backward monotonicity, Tz ≤ Tz′ , and for any t ∈ [Tz′ , 0),
ψt(z) ≤K ψt(z′); that is, (ψt(z))i ≤ (ψt(z′))i for 1 ≤ i ≤ n and (ψt(z))i ≥ (ψt(z′))i

for n + 1 ≤ i ≤ 2n. Obviously, this means z′ ∈ R̃−(∞). This also implies R̃−(∞) is
order-convex. The invariance of R̃−(∞) can be obtained from the definition directly.

Since R̃−(∞) is nonempty and for any z ∈ R̃−(∞), [z, +∞)K ∩ Int R
2n
+ ⊂ R̃−(∞),

R̃−(∞) has nonempty interior. This also means R−(∞) is nonempty. If z ∈ R−(∞),
then there is a neighborhood U of z with U ⊂ R−(∞). In particular, there is some
z′ �K z with z′ ∈ U ⊂ R−(∞) and hence [z′, +∞)K ⊂ R̃−(∞). Therefore [z, +∞)K ⊂
(z′, +∞)K ⊂ the interior of R̃−(∞) = R−(∞). The invariance of R−(∞) comes from
the fact that the interior of an invariant set is also invariant.

Similar to the proof of (d) of Theorem 2.1, to prove the V−(∞) is unordered, suppose
that there are z, z′ ∈ V−(∞) with z <K z′. Since z, z′ ∈ Int R

2n
+ , ψt(z) �K ψt(z′)

for t < 0 by the strong backward monotonicity. Without loss of generality, assume
z �K z′. There are zk, z′k ∈ R−(∞) such that zk �K z, z′k �K z′ for k = 1, 2, · · · and
zk → z, z′k → z′ as k → +∞. Hence it is easy to find a sufficiently large integer k such that
zk < z′ < z′k and then z′ ∈ R−(∞). But R−(∞) is open and then R−(∞) ∩ V−(∞) = ∅.
This is a contradiction.

Last, we prove the invariance of V−(∞). Suppose that z ∈ V−(∞). For any t > 0 it is
obvious that Tψt(z) < −t and hence for any point z′ sufficiently close to ψt(z), Tz′ < −t

too. Suppose that zk → ψt(z) as k → +∞ and zk �K ψt(z). Then ψ−t(zk) �K z

and ψ−t(zk) → z. This means that ψ−t(zk) ∈ (z, +∞)K ∩ Int R
2n
+ ⊂ R−(∞) and hence

zk ∈ R−(∞) for any sufficiently large integer k since R−(∞) is invariant. Furthermore, we
show that there is no sequence {zk} ⊂ R−(∞), zk → ψt(z) as k → +∞ and zk �K ψt(z).
Otherwise, the strong backward monotonicity implies ψ−t(zk) �K z and ψ−t(zk) → z.
But z ∈ V−(∞), a contradiction. Hence, V−(∞) is invariant.

The proofs for R̃+(∞), R+(∞), and V+(∞) are similar. �
Proof of Proposition 2.4. We can prove this proposition just as we did for 2n-dimen-

sional type-K competitive Kolmogorov systems in [9].
Let z̄ ∈ R̃−(∞) and z̃ ∈ R̃+(∞). For any z = (z1, · · · , z2n) ∈ Int R

2n
+ , define

Z = (Z1, · · · , Z2n) with Zi = ln zi. Then H : Int R
2n
+ → R

2n with H(z) = Z is
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a homeomorphism from Int R
2n
+ to R

2n. Obviously, H(R−(∞)) is open in R
2n, and

Z ∈ H(R−(∞)) for any Z >K H(z̄).
Let u be a vector in Int K, E ⊂ R

2n be its orthogonal hyperplane, and H be the
closed halfspace of R

2n comprising all vectors with the form y + λu, y ∈ E, λ ≥ 0. For
each y ∈ E denote by µy the infimum of the number µ such that y + µu ∈ H(R−(∞)),
which exists because for any sufficiently large positive number µ, y + µu >K H(z̄), and
for a sufficiently small negative number µ, y + µu <K H(z̃), where we use the fact that
R̃−(∞) and R̃+(∞) are disjoint. It is easy to see that we obtain a homeomorphism
h : H → clos H(R−(∞)) by defining h(y + λu) = y + λu + µyu.

It follows from h(E) = H(V−(∞)) that H(V−(∞)) is homeomorphic to R
2n−1, and so

is V−(∞). Since h(H\E) = H(R−(∞)), it follows that H(R−(∞)) is homeomorphic to
R

2n, and so is R−(∞). The closeness of V−(∞) can be deduced from the homeomorphic
properties of h and H easily. This completes the proof of the proposition for R−(∞) and
V−(∞). The proof for the case of R+(∞) and V+(∞) is similar. �

Proof of Proposition 2.5. First, we recall that the flow of the type-K competitive sys-
tem in Theorem 2.1 is backward type-K monotone and strongly backward type-K mono-
tone Int R

2n
+ . Then ψt(a) �K ψt(b) for t < 0. Without loss of generality, suppose

α(z) ⊂ Int R
2n
+ .

The proof can be divided into the following two cases:
(i) α(z) �⊂ α(z′);
(ii) α(z) ⊂ α(z′).
Case (i). Let a ∈ α(z) ⊂ Int R

2n
+ , but a /∈ α(z′). Then there is some b ∈ α(z′) such

that a <K b. By the strong backward monotonicity of the system, we may assume that
a �K b. Define

ζ(a, b) = inf{r ∈ R : a <K ψt(b), t ∈ [r, 0]}.
By the result of Hirsch (see [2], [12]), ζ(a, b) = −∞; that is, a <K ψt(b) for all t ≤ 0.
Hence, a ≤K α(b). But a /∈ α(b) ⊂ α(z′). So a <K α(b). Since α(b) is invariant and
a ∈ Int R

2n
+ , ψ−1(a) �K α(b). Therefore for some t < 0, ψt(z) �K α(b). Using the

strong backward monotonicity and the invariance of α(b) again, we get that α(z) ≤K

α(b). We claim that there is some c ∈ α(b) ⊂ α(z′) such that α(z) <K c. Otherwise,
α(b) ⊂ α(z). If there is some d ∈ α(z) with d /∈ α(b), then d <K α(b), contradicting that
α(z) is unordered in the type-K order. Hence α(z) = α(b) ⊂ α(z′), contradicting our
assumption. Our claim holds. Furthermore, α(z) ⊂ Int R

2n
+ . By the strong backward

type-K monotonicity of the system, let α(z) �K c without loss of generality. This implies
there is some t ∈ R such that α(z) �K ψt(z′) and α(z) ≤K α(z′). If there is some point
d ∈ α(z) ∩ α(z′), then α(z) ≤K d ≤K α(z′). But the nonordering of α(z) and α(z′)
implies that α(z) = d = α(z′), a contradiction. Therefore, α(z) <K α(z′). Moreover,
the strong backward type-K monotonicity of the system and the invariance of α(z) and
α(z′) imply α(z) �K α(z′).

Case (ii). We want to prove α(z) = α(z′). In fact, if there is some c ∈ α(z′) but
c /∈ α(z), then there is some d ∈ α(z) with d <K c. But d ∈ α(y)∩ Int R

2n
+ , contradicting

the nonordering of the α-limit set. Hence α(z) = α(z′). Moreover, α(z) = α(z′) ⊂ E (see
[2] or [12]).

The last conclusion is obvious. �
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Proof of Theorem 2.6. We divide the proof into the following four parts.
Part 1. We want to prove that if α(z) ⊂ Int R

2n
+ for some z ∈ Int R

2n
+ , then every

neighborhood of z contains two points z1, z2 with z2 <K z <K z1 such that either
z1 ∈ R−(∞) or α(z1) ⊂ E , and either z2 ∈ R+(∞) or α(z2) ⊂ E .

Only consider z1; z2 is similar. We check the following two cases:
(i) (z, +∞)K ∩ Γ = ∅;
(ii) there is some z′ >K z such that [z, z′]K ⊂ Γ.
Case (i). We claim that (z, +∞)K ∩ Int R

2n
+ ⊂ R−(∞). In fact, for any z′ ∈

(z, +∞)K ∩ Int R
2n
+ and t ∈ (Tz′ , 0), ψt(z) �K ψt(z′). This means that (ψt(z′))i >

(ψt(z))i for i = 1, · · · , n and (ψt(z′))i < (ψt(z))i for i = n + 1, · · · , 2n. Moreover, we
have inf{(ψt(z′))i, t ∈ (Tz′ , 0)} > 0 for i = 1, · · · , n and sup{(ψt(z′))i, t ∈ (Tz′ , 0)} < +∞
for i = n + 1, · · · , 2n. Hence z′ ∈ R−(∞).

Case(ii). Using our Proposition 2.5 and the result in [2] for the type-K order interval
[z, z′]K , we can obtain that every neighborhood of z contains a point z1 with z ≤K z1

such that α(z1) ⊂ E .
Part 2. In this part, we want to prove that for any point z ∈ K, any neighborhood of

z contains two points z1, z2 with z2 �K z �K z1 such that either z1 ∈ R−(∞) or α(z1)
contains an equilibrium ≥K z and either z2 ∈ R+(∞) or α(z2) contains an equilibrium
≤K z.

We still only consider z1. Fix z ∈ K. Then ψ1(z) ∈ K by the invariance of K. Applying
the conclusion of Part 1 to ψ1(z), we obtain that there exists some w1 >K ψ1(z) such
that either w1 ∈ R−(∞) or α(w1) ⊂ E . Then, by the type-K monotonicity of ψ−1,
we have z �K ψ−1(w1) := z0 and either z0 ∈ R−(∞) or α(z0) ⊂ E . Because z is in
the limit set K, z is nonwandering; that is, there are convergent sequences zi → z and
ti → −∞ in R such that ψti

(zi) → z, and we can take ti < 0 and zi �K z0. Passing to a
subsequence, we assume ψti

(z0) converges as i → ∞ to a point q ∈ α(z0) ⊂ E . Since the
flow ψ is strongly backward type-K monotone in Int R

2n
+ , ψti

(zi) �K ψti
(z0). Therefore

z ≤K q.
Part 3. In this part, we want to prove that if q is an equilibrium and z <K q for some

z ∈ K, then K �K q.
By the strong backward type-K monotonicity, ψt(z) �K q for t < 0, so there are

points of K that are �K q. Suppose that K = ω(v). It follows that for any t ∈ R there
exists some s > t such that ψs(v) �K q. Therefore ψt(v) �K q for all t ∈ R by the strong
backward type-K monotonicity. Thus ω(v) ≤K q. In fact ω(v) <K q, since q ∈ ω(v)
would imply K = q; otherwise K would contain two points related by <K , contradicting
the nonordering of K. Therefore, by the invariance of K and q and the strong backward
type-K monotonicity, ω(v) �K q. A similar argument applies if K = α(v).

Part 4. Now, we complete the proof of the theorem.
Applying the conclusion of Part 2, we get that for any z ∈ K, its every neighborhood

contains a point vz �K z such that either vz ∈ R−(∞) or α(vz) contains an equilibrium
qz ≥K z. If for any z ∈ K and any neighborhood of z, vz ∈ R−(∞), then the theorem
obviously holds. In this case K ⊂ V−(∞). Otherwise, for some z ∈ K and some neigh-
borhood of z, vz �K z and qz ≥K z such that qz ∈ α(vz) ⊂ E by the conclusion of Part
2. We claim that z <K qz. Suppose not, i.e., qz = z �K vz. Then α(vz) = qz = z.
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But z ∈ K is not an isolated point in K. There is some z′ ∈ K with z′ �= z satisfying
z′ �K vz. Since z′ ∈ K, z′ is nonwandering. Thus there are convergent sequences zi → z′

and ti → −∞ in R such that ψti
(zi) → z′, and we can take ti < 0 and zi �K vz. By the

strong type-K monotonicity, we have ψti
(zi) �K ψti

(vz). Letting i → ∞, we obtain that
z′ ≤K z. The nonordering of K implies z = z′, a contradiction. Our claim holds. By the
conclusion of Part 3, K �K qz. But we cannot find a point a with K �K a �K qz and
a ∈ R−(∞). Hence, for any z ∈ K and any neighborhood Uz of z, we can pick vz ∈ Uz

with vz �K z and qz >K z with qz ∈ α(vz) ⊂ E .
It now follows from Part 3 that K �K qz for every z ∈ K. Let q ∈ E be the greatest

lower bound of the set of equilibria �K K in the type-K order. Then q ≥K K. In fact
q /∈ K. Otherwise K would equal q, contradicting the hypothesis. Moreover, by the
invariance of q and K and the strong backward type-K monotonicity, q �K K.

By choosing vz �K q, we see that qz ≤K q and therefore qz = q for all z ∈ K, which
implies that α(vz) = q for every z ∈ K. Since vz can also be taken arbitrarily near z, it
follows that K ⊂ V−(q).

Similarly we can prove the case that K is contained in the upper repulsion boundary
of some R+(p) for p ∈ E ∪ {∞}. �

Proof of Theorem 2.8. Suppose that z /∈ V−(q). Otherwise the theorem obviously
holds. Here ω(z) ⊂ V−(q) ∩ Int R

n
+ implies that the distance between ψt(z) and V−(q)

tends to 0 as t → ∞. It is easy to see that [ψt(z), +∞)K∩V−(q) and (−∞, ψt(z)]K∩V−(q)
are compact in R

2n
+ and just one of them is nonempty for any sufficiently large t. Without

loss of generality, we may suppose that [ψtn
(z), +∞)K∩V−(q) is nonempty for tn → +∞.

We also know that if [ψt(z), +∞)K ∩ V−(q) is nonempty, then by the backward type-K
monotonicity of ψ and the invariance of V−(q), [ψs(z), +∞)K ∩V−(q) is nonempty for all
s ∈ (Tz, t]. The above two arguments show that [ψt(z), +∞)K ∩ V−(q) is nonempty for
all t ∈ (Tz, +∞). For any t > 0, ψ−t([ψt(z), +∞)K ∩ V−(q)) ⊂ [z, +∞)K ∩ V−(q) since
ψ−t is a type-K monotone map and V−(q) is invariant.

⋂
t≥0

ψ−t([ψt(z), +∞)K ∩ V−(q))

is nonempty. Hence, there exists some z′ ∈ V−(q) such that ψt(z) ≤K ψt(z′) for any
t ∈ R

+. Furthermore, this type-K order relation holds for all t ∈ (Tx, +∞) by the
backward type-K monotonicity.

To see that ‖ψt(z′) − ψt(z)‖ → 0 as t → ∞, suppose that this is not so. Then there
is a sequence sj → ∞ such that ψsj

(z) → a ∈ ω(z) ⊂ V−(q) and ψsj
(z′) → b ∈ V−(q).

Then necessarily a <K b, contradicting (d) of Theorem 2.1. �
Proof of Corollary 2.9. In this case, for any equilibrium z, the trace of the Jacobian

matrix DF (z) of the vector field at z is less than 0. Hence DF (z) has an eigenvalue
s < 0. This means z cannot repulse any open set and the sets R−(z) and R+(z) are
empty. Hence, the conclusions of this corollary can be obtained by Theorems 2.6 and 2.8
directly. �
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