
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Competitive tests and estimators for properties of distributions

Permalink
https://escholarship.org/uc/item/08h189bs

Author
Das, Hirakendu

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08h189bs
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Competitive Tests and Estimators for Properties of Distributions

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Communication Theory and Systems)

by

Hirakendu Das

Committee in charge:

Professor Alon Orlitsky, Chair
Professor Ery Arias-Castro
Professor Sanjoy Dasgupta
Professor Young-Han Kim
Professor Paul Siegel

2012



Copyright

Hirakendu Das, 2012

All rights reserved.



The dissertation of Hirakendu Das is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2012

iii



DEDICATION

To my family.

iv



EPIGRAPH

What has been seen cannot be unseen.

— Unknown

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Closeness testing and classification . . . . . . . . . . . . 4
1.2 Distribution multiset estimation and related problems . . 7

Chapter 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Standard notation . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Sequences, types and their likelihoods . . . . . . . . . . . 10

2.2.1 Sequence tuples and joint types . . . . . . . . . . 12
2.3 Symmetric properties of distributions . . . . . . . . . . . 14
2.4 Patterns, profiles and their likelihoods . . . . . . . . . . . 15

2.4.1 Joint patterns and profiles . . . . . . . . . . . . . 19
2.5 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Poissonization and tail bounds . . . . . . . . . . . . . . . 28

Chapter 3 Closeness Testing . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 A closeness test based on profile maximum likelihood . . 33
3.2 A distinguishability based distance criterion . . . . . . . 35

3.2.1 Symmetric and profile-based tests . . . . . . . . . 35
3.2.2 Distinguishable distribution pairs . . . . . . . . . 37

3.3 Competitivity of GLRT for composite hypothesis testing 38
3.4 A closeness test based on pattern counts of profiles . . . 45
3.5 Sample complexity implications . . . . . . . . . . . . . . 51
3.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1 Sequences of unequal lengths . . . . . . . . . . . . 52
3.6.2 Other problems of testing symmetric properties . 52

vi



Chapter 4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1 Closeness testing and classification . . . . . . . . . . . . 56
4.2 Classifiers based on direct GLRT on profiles . . . . . . . 57
4.3 Text classification experiments . . . . . . . . . . . . . . . 59

4.3.1 Synthetic data sets . . . . . . . . . . . . . . . . . 60
4.3.2 Real world data sets . . . . . . . . . . . . . . . . 61

Chapter 5 Distribution Multiset Estimation . . . . . . . . . . . . . . . . 63
5.1 Competitivity of the PML estimator . . . . . . . . . . . . 67

5.1.1 Competitivity of ML for distribution estimation . 67
5.1.2 PML for distribution multiset estimation . . . . . 68
5.1.3 Valiants’ estimator for superlinear alphabets . . . 71

5.2 Other approaches to distribution estimation . . . . . . . 76
5.3 Exact calculation of PML by algebraic elimination . . . . 81

Chapter 6 Bernoulli and Poisson Multiset Estimation . . . . . . . . . . . 88
6.1 Poisson Multiset Estimation . . . . . . . . . . . . . . . . 89
6.2 Bernoulli Multiset Estimation . . . . . . . . . . . . . . . 96

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



LIST OF TABLES

Table 4.1: Accuracy of different classifiers on synthetic datasets. . . . . . . 61
Table 4.2: Accuracy of different classifiers for real data sets. . . . . . . . . . 62

Table 5.1: PML of patterns of length ≤ 10, under assumptions. . . . . . . . 86

viii



ACKNOWLEDGEMENTS

I am grateful to my advisor, colleagues, friends and family for their support

and contribution in the making of this dissertation. My sincerest thanks go to my

advisor Alon Orlitsky for the deep and fruitful interaction we had over the years.

His unending list of qualities have always amazed and inspired me. In particular,

I firmly believe that if there is a person who thinks differently, it is Alon. His

deep, yet simple insights on many of the research problems we have worked on

have been very helpful. In addition, I have always admired his approachability,

frugality, and never ending pursuit for elegant solutions to both research and recre-

ational problems. I am very thankful to my committee members Ery Arias-Castro,

Sanjoy Dasgupta, Young-Han Kim and Paul Siegel for taking active interest in my

research. I fondly remember attending the graduate courses taught by Young-Han

Kim and Paul Siegel. I have also enjoyed taking many other courses at UCSD,

especially those taught by Larry Milstein, Ramamohan Paturi and Alex Vardy.

I thank my colleagues Jayadev Acharya, Ashkan Jafarpour, Shengjun Pan,

Ananda Theertha Suresh for the many technical and non-technical discussions.

I am also thankful to Alon’s former students and postdocs, Anand Dhulipala,

Narayana Prasad Santhanam and Anand Sarwate, with whom I had brief but

enlightening discussions. There is a long list of friends at UCSD and outside,

which cannot fit into this page. I am happy and thankful to have come across

them and to have enjoyed their company during the time of my PhD.

I am indebted to my parents and to my sister Sucheta, for their tireless love

and support. They have done everything in their capacity, and beyond, to help

me achieve whatever I have. Simply put, I am nothing without them.

Chapter 3 is adapted from Jayadev Acharya, Hirakendu Das, Ashkan Ja-

farpour, Alon Orlitsky, Shengjun Pan, “Competitive closeness testing”, Journal of

Machine Learning Research - Proceedings Track (COLT 2011), 2011.

Chapter 4 is adapted from Jayadev Acharya, Hirakendu Das, Alon Orlitsky,

Shengjun Pan, Narayana Prasad Santhanam, “Classification using pattern maxi-

mum likelihood”, Proceedings of IEEE Symposium on Information Theory (ISIT),

2010.

ix



Chapter 5 is adapted from Jayadev Acharya, Hirakendu Das, Alon Orlit-

sky, Shengjun Pan, “Algebraic computation of pattern maximum likelihood”, Pro-

ceedings of IEEE Symposium on Information Theory (ISIT), 2011; and Jayadev

Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan, Ananda

Theertha Suresh, “Competitive estimation of discrete probability distributions”,

In Preparation, 2012.

Chapter 6 is adapted from Jayadev Acharya, Hirakendu Das, Ashkan Jafar-

pour, Alon Orlitsky, Shengjun Pan, “Estimating multisets of Bernoulli processes”,

Submitted to IEEE Symposium on Information Theory (ISIT), 2012; and Jayadev

Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan, “Esti-

mating multiple processes”, In preparation, 2012.

The dissertation author is a primary researcher and author of all of the

above papers.

x



VITA

2006 B. Tech. in Electrical Engineering, Indian Institute of Tech-
nology Madras

2006-2012 Graduate Student Researcher, University of California, San
Diego

2008 M. S. in Electrical Engineering (Communication Theory and
Systems), University of California, San Diego

2012 Ph. D. in Electrical Engineering (Communication Theory and
Systems), University of California, San Diego

PUBLICATIONS

Hirakendu Das, Alon Orlitsky, Narayana Prasad Santhanam, Junan Zhang, “Fur-
ther results on relative redundancy”, Proceedings of IEEE Symposium on Infor-
mation Theory (ISIT), 1940 -1943, 2008.

Hirakendu Das, Alexander Vardy, “Multiplicity assignments for algebraic soft de-
coding”, Proceedings of IEEE Symposium on Information Theory (ISIT), 1248-
1252, 2009.

Jayadev Acharya, Hirakendu Das, Olgica Milenkovic, Alon Orlitsky, Shengjun
Pan, “String reconstruction using substring compositions”, Proceedings of IEEE
Symposium on Information Theory (ISIT), 1238-1242, 2010.

Jayadev Acharya, Hirakendu Das, Alon Orlitsky, Shengjun Pan, Narayana Prasad
Santhanam, “Classification using pattern maximum likelihood”, Proceedings of
IEEE Symposium on Information Theory (ISIT), 1493-1497, 2010.

Jayadev Acharya, Hirakendu Das, Alon Orlitsky, Shengjun Pan, “Exact calculation
of pattern probabilities”, Proceedings of IEEE Symposium on Information Theory
(ISIT), 1498-1502, 2010.

Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan,
“Competitive closeness testing”, Journal of Machine Learning Research - Proceed-
ings Track (COLT 2011), 47-68, 2011.

Jayadev Acharya, Hirakendu Das, Alon Orlitsky, Shengjun Pan, “Algebraic com-
putation of pattern maximum likelihood”, Proceedings of IEEE Symposium on
Information Theory (ISIT), 400-404, 2011.

xi



Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan,
“Estimating multisets of Bernoulli processes”, Submitted to IEEE Symposium on
Information Theory (ISIT), 2012.

Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan,
Ananda Theertha Suresh, “Competitive classification and closeness testing”, Sub-
mitted to Conference on Learning Theory (COLT), 2012.

Jayadev Acharya, Hirakendu Das, Alon Orlitsky, “On redundancy and distin-
guishability of label-invariant distributions”, Submitted to Conference on Learning
Theory (COLT), 2012.

Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan,
Ananda Theertha Suresh, “Competitive estimation of discrete probability distri-
butions”, In Preparation, 2012.

xii



ABSTRACT OF THE DISSERTATION

Competitive Tests and Estimators for Properties of Distributions

by

Hirakendu Das

Doctor of Philosophy in Electrical Engineering (Communication Theory and
Systems)

University of California, San Diego, 2012

Professor Alon Orlitsky, Chair

We derive competitive tests and estimators for several properties of discrete

distributions, based on their i.i.d. sequences. We focus on symmetric properties

that depend only on the multiset of probability values in the distributions and not

on specific symbols of the alphabet that assume these values. Many applications

of probability estimation, statistics and machine learning involve such properties.

Our method of probability estimation, called profile maximum likelihood

(PML), involves maximizing the likelihood of observing the profile of the given

sequences, i.e., the multiset of symbol counts in the sequences. It has been used

successfully for universal compression of large alphabet data sources, and has been

shown empirically to perform well for other probability estimation problems like
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classification and distribution multiset estimation. We provide competitive esti-

mation guarantees for the PML method for several such problems.

For testing closeness of distributions, i.e., finding whether two given i.i.d.

sequences of length n are generated by the same distribution or by two different

ones, our schemes have an error probability of at most
√
δ ·e7n2/3

whenever the best

possible error probability is δ ≤ e−14n2/3
. The running time of our scheme is O(n).

We do not make any assumptions on the distributions, including on their support

size. In terms of sample complexity, this implies that if there is a closeness test

which takes sequences of length n and has error probability at most δ, our tests

have the same error guarantee on sequences of length n′ = O
(

max{ n3

(log 1
4δ

)3 , n}
)
.

Similar results are implied for the related problem of classification.

For finding the probability multiset of a discrete distribution using a length-

n i.i.d. sequence drawn from it, we show the following guarantee for the PML-based

estimator. For any class of distributions and any distance metric on their proba-

bility multisets, if there is an estimator that approximates all distributions in this

class to within a distance of ε > 0 with error probability at most δ ≤ e−6n1/2
, then

the PML estimator is within a distance of 2ε with error probability at most δ ·e6n1/2
.

Equivalently, the PML estimator approximates distributions to within a distance

of 2ε with error probability δ using sequences of length n′ = O
(

max{ n2

(log 1
4δ

)2 , n}
)
.

Thus, this estimator is competitive with other estimators, including the one by

Valiant et al. [68] that approximates distributions of superlinear support size

k = O(ε2.1n log(n)) to within a relative earthmover distance of ε and whose error

probability can be shown to be at most e−n
0.9

. However, unlike the case of closeness

testing, we do not yet have efficient schemes for computing the PML distribution.

We extend the results for PML for distribution multiset estimation to two

related problems of estimating the parameter multiset of multiple distributions or

processes. These include the problems of estimating the multiset of success prob-

abilities of Bernoulli processes, and the multiset of means of Poisson distributions.
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Chapter 1

Introduction

The increasing use of computers and internet means that more data, e.g.,

text, pictures, music, video, is being produced than ever before. Despite faster

computers and more efficient algorithms for analyzing and inferring from this large

amount of data, there is much room for improvement, especially from the algo-

rithms side. In most such data, the underlying alphabet is large, e.g., the number

of possible different words encountered in text data. Furthermore, the underly-

ing distributions that produce this data often have a long “tail” and are therefore

difficult to estimate. These problems have received a great amount of attention

recently from researchers in the fields of machine learning, information theory,

statistics, probability estimation, and more recently and prominently, from the

property testing community in computer science. The work in this thesis aims to

be a part of the larger effort for studying large alphabet data.

Many discrete data sources can be modeled as being independent and iden-

tically distributed (i.i.d.), i.e., the atoms or symbols of the data are independent

samples from an unknown discrete distribution. Although this is arguably one of

the simplest models for probability estimation, our understanding of many basic

inference tasks in this model is somewhat unsatisfactory, especially when it in-

volves large alphabet distributions. We consider several problems of testing and

estimating properties of distributions, given i.i.d. sequences generated by them.

Our focus is on symmetric properties that depend only on the multiset of proba-

bility values in the distributions and not on the specific symbols of the alphabet

1
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that assume these values. For example, the entropy and L2 norm of a distribution

are symmetric properties, since they do not depend on how the probability values

of the distribution are mapped to the alphabet. Similarly, the L1 distance between

two distributions is an example of a symmetric property of two distributions.

It is natural that for testing or estimating symmetric properties of distri-

butions from i.i.d. sequences, we should rely on the profile of the given sequences,

also known as fingerprint or histogram of histograms, that conveys the multiset of

counts of various symbols in them, without referring to the symbols themselves.

The profile of a sequence is different from type, that also conveys the counts of sym-

bols in the sequence, but attaches these counts to the symbols’ identities. Thus,

the sequences abac and cabb have the same profile, since the multiset of symbol

counts in both sequences is {2, 1, 1}, but not the same type, since the count of the

symbol a in the two sequences is different.

The main technique we use for our tests and estimators is that of profile

maximum likelihood (PML). As the name suggests, we consider the distribution

that maximizes the likelihood of observing the given profile, i.e., the profile of the

given sequence, as the estimate of the underlying distribution. In general, this dis-

tribution is different from the one obtained by maximizing the sequence likelihood

or equivalently type likelihood, which simply yields the naive estimate of empirical

distribution, the normalized counts of symbols in the sequence. This technique,

also known as pattern maximum likelihood∗, has been used by Orlitsky et al. in

[49, 48] for probability estimation in the context of universal compression of large

alphabet data sources. Motivated by this success and the “maximum likelihood

principle” in general, it is natural to expect that this method would perform well

for other problems of probability multiset estimation as well. Indeed, empirical

results have shown that these techniques work very well for many instances of

distribution estimation applications, e.g., estimating the support size, total prob-

ability of unseen symbols (also known as “the missing mass problem”), properties

related to the shape of the underlying distribution in [50, 75] and for classification

of text documents in [58, 4].

∗We defer the definition and motivation of patterns to the next chapter, and will observe that
when considering i.i.d. sequences, maximum likelihood of profiles and patterns are equivalent
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The results in this thesis provide theoretical guarantees for several such

problems and show that the error performance of PML based methods is almost

as good as that of any other test or estimator. In the process, we show several

simple but powerful properties of maximum likelihood in general. These properties

are of a competitive flavor and can be stated informally as follows.

Suppose there is a class of distributions, all of which are on a common discrete

alphabet Z. Given a sample in Z produced by one of these distributions, we want to

estimate or test a property of these distributions. If there is an estimator or tester

for this property for all distributions in this class such that its error probability is

at most δ, then the error probability of the maximum likelihood tester or estimator

is at most δ · |Z|.

We treat the profile of the given sequences as our sample or observation, and thus,

Z is the set of all profiles, whose size is shown to be subexponential: |Z| ≤ e3n1/2

for profiles of length-n sequences and |Z| ≤ e6n2/3
for profiles of pairs of length-n

sequences. The class of distributions under consideration are those induced on

profiles by i.i.d. sequences. As is often the case, a small constant distance of ε > 0

in some metric between two distributions results in their profile distributions being

highly separated and distinguishable with exponentially or near exponentially small

error probabilities, implying the existence of estimators and testers with small error

probabilities, e.g., δ ≤ e−n
0.9

. As an easy example, also discussed in later chapters,

if the L1 distance between two distributions of support size k = O(ε2.1n) is ε > 0,

then their profiles, i.e., the profiles of the length-n i.i.d. sequences they produce,

are distinguishable with error probability ≤ e−nε
2/8. We note that this technique

is similar to the well known method of types, e.g., see [18, 19, 15], where Z can

be considered as the set of all length-n types on alphabet of size k, whose size

|Z| =
(
n+k−1
k−1

)
is polynomial in n, i.e., O(nk), when k is small compared to n.

A technical tool which we often find useful for analyzing distributions of

profiles of i.i.d. sequences, and for developing estimators is the well known tech-

nique of “Poissonization”, e.g., see [63, 7]. It relies mainly on two facts. The

counts of various symbols are distributed independently in an i.i.d. sequence of
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length n′, where n′ is Poisson distribution with mean n, denoted by poi(n). Sec-

ondly, the Poisson distribution sharply concentrates around its mean. Using these

facts, it can be shown that obtaining good distribution estimation guarantees us-

ing length-n i.i.d. sequences is almost equivalent to obtaining guarantees using

i.i.d. sequences of length n′ ∼ poi(n), e.g., see [68, 69]. Thus, it is convenient

to analyze and solve estimation problems given sequences of length poi(n) since

the independent symbol counts are often advantageous, while still implying similar

results when given length-n sequences.

1.1 Closeness testing and classification

The first problem we study is that of testing closeness between two distri-

butions. Given two length-n i.i.d. sequences from two unknown distributions, we

want to test whether the distributions are same or different. There is an extensive

amount of literature on this problem and several of its variants in the framework of

hypothesis testing [44, 77, 30, 38, 15], which primarily considers asymptotic error

performance when the sequence lengths tend to infinity. In such scenarios, it fol-

lows by Chernoff bounds that the empirical distributions of the sequences can be

used as good estimates for the underlying distributions. Such tests can be shown

to have low error probability when the alphabet size is k = o(n). When alphabet

size k = Ω(n), it is easy to show examples where two sequences generated by same

distribution have very different empirical distributions with high probability.

For larger alphabets, Batu et al [8] developed a closeness test that distin-

guishes pairs of distributions that are same from those whose L1 distance is at

least ε > 0, with error probability δ and using sequences of length n, whenever the

alphabet size of the distributions is k = O
(
n3/2 · ε4

log n
δ

)
. They also show matching

upper bounds that there exist two pairs of distributions on an alphabet of size

k = n3/2, one of which is a same pair and the other pair has a L1 distance of 1,

such that the distribution of the profiles of the sequences they generate are almost

identical and hence cannot be distinguished with error probability less than 1
4
.

Similar results have been shown for other distances like f -divergences by Guha
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et al. in [29]. Paul Valiant in [70] showed upper bounds on alphabet size for a

related problem, that distinguishing between distribution pairs whose L1 distance

is ≤ α from those distance is ≥ β, for some 0 < α < β < 2, may be performed

on all such distributions of support size at most k with low error probability, only

when k = n · 2O(
√

log(n)). This upper bound has been improved by Valiant et al. in

[69], along with a linear estimator that finds the L1 distance between two distri-

butions using two length-n sequences within an additive error of ε and low error

probability, whenever k = O(ε2n log(n)). A common strategy used in all these

works is to rely on the empirical estimate, i.e., normalized symbol counts, for high

probability symbols, whereas the multiset of low probabilities symbols or their

contribution to distances is estimated reliably by other statistics that concentrate,

e.g., collisions/coincidences in [7, 29] and profiles in [69]. For the related problem

of classification on large alphabets, Kelly et al. in [35] show tests for distinguish-

ing between distributions that are separated by a constant L1 distance of ε > 0

whose error probability is low whenever the k = o(n2) and all probabilities are

Θ( 1
nα

) = Θ( 1
k
), for some α < 2. We note that it is easy to see that there cannot

be a test for all distributions of alphabet size k = Θ(n2) by the Birthday problem.

Most of these previous works consider closeness testing in terms of a suitable

distance measure and characterize the minimum number of samples required n as

a function of the alphabet size k. These results have been equivalently stated

above as characterization of the maximum range of alphabet size k in terms of n,

for which all distributions can be tested for closeness, given sequences of length

n. Clearly, the applicability of these results is restricted by upper bounds on

k and moreover the algorithms require prior knowledge of k. For example, in

spite of the example shown in [7] where a particular pair of distributions whose

alphabet size is k = n3/2 cannot be tested for closeness, there are many distribution

pairs that have k � n3/2 but can be distinguished trivially using sequences of

length n. On a similar note, the separation in distances like L1 together with the

alphabet size bounds may not accurately reflect the number of samples required

to distinguish these distributions. For example, consider a pair of distributions on

a large alphabet k, one of which is a singleton, and the other has probability 1/2
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on the same symbol as first one, and remaining mass of 1/2 equally spread over

the other k−1 symbols. The L1 distance of this pair is 1, but can be distinguished

from all same pairs of distributions with error probability δ > 0 whenever n is

bigger than a constant multiple of log(1
δ
), unlike the limiting example in [7] that

requires sample sequences of length n = Ω(k2/3).

Instead we consider a notion of distance between distributions that is more

natural for the problem of closeness testing. Informally, we say that a pair of

distributions (n, δ)-different if it can be distinguished from all pairs of same distri-

butions (possibly using different tests for various same pairs) using sequence pairs

of length n and error probability δ. Note that following [7, 9], we only consider

symmetric tests that depend on the pattern of the sequence pairs, and perform

well regardless of how the symbols of the alphabet are mapped to the probability

multiset of the two distributions. Clearly, the distribution pairs that are (n, δ)-

different are the only ones we can possibly hope to distinguish from same pairs

of distributions with error probability δ, using a single common test on length-n

sequence pairs. We show closeness tests that that can distinguish between all same

pairs of distributions and all pairs of (n, δ)-different distributions using sequence

pairs of length-n and error probability
√
δ · e7n2/3

. Thus, our tests are near optimal

when δ ≤ e−16n2/3
. Stated in terms of sample complexity, our tests can distinguish

between (n, δ)-different and same pairs of distributions using sequences of length

n′ = O
(

max{ n3

(log 1
4δ

)3 , n}
)
. Most importantly, we do not make any assumptions on

the alphabet size or shape of the underlying pair of distributions, other than the

fact that they are either same or (n, δ)-different.

Our tests have a rather simple and well known form. We note that the

closeness testing problem and any property testing problem in general can be con-

sidered as what is known in statistics literature as composite hypothesis testing,

e.g., see [44, 54], for which the likelihood ratio test (LRT) is a commonly used

method. Applied to closeness testing, and considering the profiles as the obser-

vations, our tests are LRTs on profiles. They compare the maximum likelihood

of the profile of the given sequences under all same pairs of distributions to that

under all possible pairs of distributions. If the ratio between these two maximum



7

likelihoods is not too small, i.e., ≥ e−7n2/3
, we declare the distribution pairs to be

“same”, else we declare them “different”. The error guarantees for this test, follow

from a similar result applicable to LRTs in general.

Since the computation of profile maximum likelihoods appears to be difficult

in general, e.g., see [50, 3], instead of directly using them in LRTs, we use one of

their known approximations in terms of a combinatorial quantity which we refer to

as the pattern counts of profiles and thus obtain a computationally efficient test.

This test also offers similar performance guarantees.

In Chapter 3, we consider the closeness testing problem in detail. Implica-

tions to other property testing problems like testing uniformity are also discussed

briefly. In Chapter 4, we show an application of our closeness testing results for

classification. We also consider several direct approaches to this problem and show

experimental results for various classifiers for text categorization.

1.2 Distribution multiset estimation and related

problems

The next problem we study is that of estimating the probability multiset

of a discrete distribution given an i.i.d. sequence of length n generated by it. Dis-

tribution estimation, both in terms of its multiset and the probabilities of specific

observed symbols, has been studied for a long time. It dates back to the early

famous works of Laplace [36], Fisher [24] and that of Good and Turing during

World War II [26, 28, 27], followed by a long line of work by many researchers for

a wide variety of applications, most prominently for finding abundance of species

and language modeling [33, 25, 14, 61], and for the general problems of estimating

probability of unseen elements [57, 34, 41, 42] and number of distinct elements in

the underlying distribution [66, 13, 60, 74]. See Bunge and Fitzpatrick [11] for an

overview of many applications and different approaches to this problem. Other

recent interesting approaches to this problem include that of Jedynak and Khu-

danpur [32] and Wagner et al. [72]. Most of these works make certain assumptions

on the underlying distributions, e.g., a given prior or a restricted class of possible
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underlying distributions.

Moving away from such assumptions, there have been a number of recent

works by the “property testing” community about distribution multiset estimation,

which arises in the context of estimating symmetric properties of one or several

distributions. Before looking at some of these results, we note that the empirical

distribution is a good estimate of the underlying distribution with respect to most

distances and suffices for accurately determining many properties when the alpha-

bet size k is smaller than the sample sequence length n, i.e., k = o(n). Also, if

we want the complete distribution, i.e., the probabilities of specific symbols and

not just the multiset, we cannot hope to estimate all distributions of support size

k when k = Ω(n), e.g., see [52]. The estimation guarantees that follow, hold with

high probability over the given i.i.d. sequence. Batu et al. [9, 10] showed that

the entropy of all distributions whose support size is k = Õ(n(1−ε)γ2
) can be esti-

mated to within a factor of γ > 1 using a length-n sample sequence, for arbitrarily

small ε > 0. They also showed a similar upper bound (equivalently, lower bound

on sample complexity) of k = o(n2γ2
), by using the simple but illustrative exam-

ple of uniform distributions on n2γ2
and n2 symbols. For estimating the support

size (number of probabilities ≥ 1
k
) to within an additive error of εk, while it is

easy to do so when k = o(n), Raskhodnikova et al. [55] showed upper bounds of

k = o(n1+o(1)). Paul Valiant in [70] improved the upper bounds for γ-multiplicative

approximation of entropy to k = o(nγ
2
) and an upper bound of k = n · 2Θ(

√
log(n))

for εk-additive approximation of support size. Valiant et al. in [68] show estima-

tors for approximating the distribution multiset to within a relative earthmover

distance of ε, and hence for ε-additive approximation of entropy and εk-additive

approximation of support size, when k = O(ε2.1n log(n)). They also show match-

ing upper bounds of k = o(ε2n log(n)). Augmenting these results, Valiant et al. in

[68] show linear estimators of the form
∑n

µ=1 αµϕµ (where the αµ’s depend only on

n and ε) for entropy and support size with similar estimation guarantees, and is re-

lated to the entropy estimator in [51]. Related results are also shown by Paninski,

e.g., for approximating entropy [51], approximating distributions in KL-divergence

[52] and for testing uniformity [53].
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We show that the profile maximum likelihood distribution, i.e., the one that

maximizes the probability of observing the same profile as that of the observed

sequence, is as good as any other estimator in the following sense. For any class

of distributions and any distance metric on their probability multisets, if there is

an estimator that approximates all distributions in this class to within a distance

of ε > 0 with error probability at most δ ≤ e−6n1/2
, then our estimator is within

a distance of 2ε with error probability at most δ · e6n1/2
. Similar to the case of

closeness testing, we show this via a general result about maximum likelihood for

distribution estimation. In terms of sample complexity, the estimator approximates

distributions to within a distance of 2ε with error probability δ using sequences of

length n′ = O
(

max{ n2

(log 1
4δ

)2 , n}
)
. As an application of this result, we consider the

estimator by Valiant et al. in [68] that approximates distributions of support size

k = O(ε2.1n log(n)) to within a relative earthmover distance of ε and whose error

probability is e−n
0.9

.

Despite the attractive estimation properties of the PML distribution, com-

puting it efficiently appears to be difficult in general. We consider exact calculation

of PML for short patterns using elimination methods from algebra. We also con-

sider alternative approaches to distribution estimation, that are motivated by both

computational efficiency and other criteria for measuring the quality of distribution

estimates. Distribution multiset estimation is studied in Chapter 5.

In Chapter 6, we consider two problems of estimating the parameter multi-

set of distributions from a parametric family, which are related to the distribution

multiset estimation problem. They are the problems of estimating the multiset

of success probabilities of multiple independent Bernoulli processes, and that of

estimating the multiset of means of a product of Poissons. We show that the PML

estimator for the respective problems are as good as any other estimator. Further-

more, good distribution estimators can be used to construct good estimators for

these problems and vice versa. The Poissonization technique mentioned previously

is used at various points to connect the different problems.



Chapter 2

Preliminaries

2.1 Standard notation

We use the following standard notation throughout the thesis. For any

positive integer z, the set [z]
def
= {1, 2, . . . , z}. For any set Z, its size or cardinality is

denoted by |Z|. For any set Z and nonnegative integer n, unless defined otherwise,

Zn denotes the cross product Z × Z × · · · (n times), and Z∗ def
= ∪∞n=0 Zn.

For two integers k ≥ m ≥ 0, [k]m is the set of all mappings (or permutations)

σ : [m] → [k] and km
def
= |[k]m| = k · (k − 1) · · · (k −m + 1) = k!

(k−m)!
is the falling

power m of k. In particular Sk
def
= [k]k is the symmetric group consisting of all

permutations σ : [k]→ [k] and |Sk| = k!.

2.2 Sequences, types and their likelihoods

Let A def
= {a1, a2, . . . , ak} denote a discrete alphabet of size k

def
= |A|. Let

x
def
= x1x2 . . . xn be a sequence of length n with symbols in A. The set An consists

of all length-n sequences on A and A∗ consists of all sequences.

The count or number of appearances of a symbol a ∈ A in x is

µ(a)
def
= µx(a)

def
= |{i : xi = a}| =

n∑
i=1

1[xi=a],

10
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and is also called the multiplicity of a. The vector of counts or multiplicities is

µ(x)
def
= (µ(a1), µ(a2), . . . , µ(ak)).

The type or empirical distribution of x is

τ(x)
def
=

µ(x)

n
def
=
(µ(a1)

n
,
µ(a2)

n
, . . . ,

µ(ak)

n

)
.

As such, the count vector and type convey the same information and are often used

synonymously. In general, for any list of k nonnegative integers µ(a1), . . . , µ(ak)

such that
∑k

i=1 µ(ai) = n, vectors µ = (µ(a1), . . . , µ(ak)) and τ = µ
n

are a valid

count vector and type of some length-n sequence respectively. The number of

sequences with the same type τ is

N(τ)
def
= |{x : τ(x) = τ}| =

(
n

µ(a1), µ(a2), . . . , µ(ak)

)
The set of all possible different types of length-n sequences, also called n-types, is

denoted by

T n def
=
{
τ : τ =

µ

n
and

k∑
i=1

µ(ai) = n
}
.

Hence, by a well known combinatorial fact, the number of distinct n-types is

|T n| =
(
n+ k − 1

k − 1

)
.

Let P
def
= (P (a1), P (a2), . . . , P (ak)) be a probability distribution on A. Let

X
def
= X1X2 · · ·Xn be a sequence of n random variables (r.v.’s) drawn i.i.d. ac-

cording to P . We also say that X is a length-n i.i.d. sequence generated by P and

X ∼ P n with the same meaning. Then, for all x ∈ An, the likelihood of x is

P (x)
def
= P n(x)

def
= P (X = x)

def
= Pr{X = x} =

n∏
i=1

P (xi) =
k∏
i=1

P (ai)
µ(ai),

the probability of observing x when X ∼ P n. The distribution P n on An is the

distribution of X.

The sequence maximum likelihood of x is its maximum likelihood (ML)

under all distributions on A and denoted by

P̂ (x)
def
= max

P
P (x).
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The maximizing distribution is denoted by P̂x
def
= arg maxP P (x) and it is an easy

and well known fact that it is the empirical distribution, i.e.,

P̂x = τ(x),

and therefore

P̂ (x) = P̂x(x) =
k∏
i=1

(µ(ai)

n

)µ(ai)

.

The probability or likelihood of a type τ ∈ T n under P is

P (τ)
def
= P (τ(X) = τ) =

∑
x:τ(x)=τ

P (x)

= N(τ)
k∏
i=1

P (ai)
µ(ai).

Similar to maximum likelihood of sequences x, we can define maximum likelihood

of types τ , but the maximizing distribution is trivially the same when τ = τ(x).

2.2.1 Sequence tuples and joint types

Pairs and tuples of sequences are considered for closeness testing and prob-

lems to testing and estimating properties of multiple distributions. We mostly

consider pairs of sequences here, although the definitions are easily extended to

tuples. For pairs of sequences (x1, x2) ∈ An1 × An2 whose lengths are n1 and n2,

their vector of count pairs is

µ(x1, x2)
def
=
(
(µx1(a1), µx2(a1)), . . . , (µx1(ak), µx2(ak))

)
,

and their joint type is

τ(x1, x2)
def
=
((µx1(a1)

n1

,
µx2(a1)

n2

)
, . . . ,

(µx1(ak)

n1

,
µx2(ak)

n2

))
.

We note that the definition of joint-type used here is different from that used

usually in information theory, e.g., [15], but is more natural for our problem since

we consider sequence pairs or tuples that are generated independently (and i.i.d.)

by different distributions (and thus conveys the same information as the usual

definition in information theory).
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Let µ1 = (µ1(a1), . . . , µ1(ak)) and µ2 = (µ2(a1), . . . , µ2(ak)) be any two

count vectors such that
∑k

i=1 µ1(ai) = n1 and
∑k

i=1 µ2(ai) = n2. Then, the asso-

ciated vector of pairs τ
def
=
(
(µ1(a1)

n1
, µ2(a1)

n2
), . . . (µ1(ak)

n1
, µ2(ak)

n2
)
)

is a valid joint type.

Let τ 1 and τ 2 be the projections, i.e., first and second components of τ , and there-

fore a valid n1-type and n2-type respectively. The number of sequence pairs with

joint type τ is

N(τ)
def
= |{(x1, x2) : τ(x1, x2) = τ}| = N(τ 1) ·N(τ 2)

=

(
n1

µ1(a1), . . . , µ1(ak)

)(
n2

µ2(a1), . . . , µ2(ak)

)
.

The set of all possible joint types of sequences of length (n1, n2) is denoted by

T n1,n2 = T n1 × T n2 . Thus,

|T n1,n2| = |T n1| · |T n2| =
(
n1 + k − 1

k − 1

)(
n2 + k − 1

k − 1

)
.

Let (P1, P2) be a pair of distributions on A, i.e., P1
def
= (P1(a1), . . . , P1(ak))

and P2
def
= (P2(a1), . . . , P2(ak)). Let X1

def
= X1,1 · · ·X1,n and X2

def
= X2,1 · · ·X2,n be

two sequences drawn i.i.d. according to P1 and P2 respectively, i.e., X1 ∼ P n1
1 and

X2 ∼ P n2
2 , also denoted as (X1, X2) ∼ P n1

1 × P n2
2 . For all (x1, x2) ∈ An1 × An2 ,

its likelihood under (P1, P2) is

P1,2(x1, x2)
def
= Pr{(X1, X2) = (x1, x2)}

= P1(x1)P2(x2) =
k∏
i=1

P1(ai)
µ1(ai)P2(ai)

µ2(ai),

the probability of observing x when X ∼ P n. The distribution P n1
1 × P n2

2 on

An1 ×An2 is simply the distribution of (X1, X2).

The maximum likelihood of (x1, x2) is

P̂1,2(x1, x2)
def
= max

P1,P2

P1,2(x1, x2).

The maximizing distribution is P̂x1,x2

def
= arg maxP1,P2 P1,2(x1, x2). It is easy to see

that P̂x1,x2 = (P̂x1 , P̂x1) = (τ(x1), τ(x2)) and

P̂1,2(x1, x2) = P̂x1(x1)P̂x2(x2) =
k∏
i=1

(µ1(ai)

n2

)µ1(ai)(µ2(ai)

n2

)µ2(ai)

.
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The probability or likelihood of a joint type τ ∈ T n1,n2 under (P1, P2) is

P1,2(τ)
def
= P1,2(τ(X1, X2) = τ) =

∑
x1,x2:τ(x1,x2)=τ

P1(x1)P2(x2)

= N(τ 1)N(τ 2)
k∏
i=1

P (ai)
µ(ai).

The maximum likelihood of joint types τ is defined similarly to that of (x1, x2) and

the maximizing distributions are same if τ = τ(x1, x2).

For closeness testing, it is useful to consider likelihood of (x1, x2) under same

pair of distributions P1 = P2. By a generalization and abuse of various notations,

it is easy to see that if P3 = P1 = P2,

P3,3(x1, x2) = P3(x1x2) =
k∏
i=1

P3(ai)
µ1(ai)+µ2(ai)

where the sequence x1x2 denotes the catenation of x1 and x2. We also conveniently

define

P̂3,3(x1, x2)
def
= max

P3

P3,3(x1, x2) =
k∏
i=1

(µ1(ai) + µ2(ai)

n1 + n2

)µ1(ai)+µ2(ai)

.

It follows that arg maxP3 P3,3(x1, x2) = P̂x1x2 = τ(x1x2).

2.3 Symmetric properties of distributions

The probability multiset of a distribution P = (P (a1), . . . , P (ak)) on alpha-

bet A = {a1, . . . , k} is the collection of its probability values

M(P )
def
= (p1, . . . , pk)

def
=
{
P (a1), . . . , P (ak)

}
,

where p1 ≥ p2 ≥ · · · ≥ pk. Similarly, the probability multiset of two distributions

P1 = (P1(a1), . . . , P1(ak)) and P2 = (P2(a1), . . . , P2(ak)) is the collection of pairs

of probability values for the different symbols under the two distributions,

M(P1, P2)
def
=
{

(p1,1, p2,1), . . . , (p1,k, p2,k)
} def

=
{

(P1(ai), P2(ai)) : i = 1, 2, . . . , k
}
.
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Note that M(P1, P2) is different from (M(P1),M(P2)) which does not convey

the relationship between symbols of the two distributions (although is useful for

testing symmetric properties of distribution multisets, like entropy). The multiset

of d ≥ 3 distributions P1, . . . , Pd is defined similarly.

A property π of d distributions is a function that maps each (P1, P2, . . . , Pd)

to a range of values. The range can be arbitrary – reals, integers, real vectors etc.

with a distance measure D(·, ·) defined on the range. A property π is symmetric if

it depends on (P1, . . . , Pd) only through their probability multiset M(P1, . . . , Pd).

For example, entropy H(P ) =
∑k

i=1−P (ai) log(P (ai)) is a symmetric property of

P and the L1 distance |P1−P2| =
∑k

i=1 |P1(ai)−P2(ai)| is a symmetric property of

(P1, P2). The probability multisetM(P ) = (p1, . . . , pk) in itself can be considered

as an example of a vector valued symmetric property of P with D defined e.g., as

the sorted L1 distance on distributions, |P − P ′|1
def
=
∑∞

i=1 |pi − p′i|.
In general, the goal of a property testing problem, i.e., testing a property π,

is to find whether π(P1, . . . , Pd) ∈ P1 or P2 given (X1, . . . , Xd) ∼ P n1
1 × · · · ×P

nd
d ,

where P1 and P2 are (disjoint) subsets of the range of π and given π(P1, . . . , Pd) ∈
P1 ∪ P2. A test ∆ = ∆(X1, . . . , Xd) outputs 1 or 2 to indicate whether π ∈ P1

or π ∈ P2. Likewise, in a property estimation problem, given (X1, . . . , Xd), we

want to find an estimator φ = φ(X1, . . . , Xd) of π(P1, . . . , Pd) such such that

D(φ, π(P1, . . . , Pd)) ≤ ε. The error probability of a test ∆ or estimator φ is the

maximum over all (P1, . . . , Pd) of the probability that the output is incorrect when

(X1, . . . , Xd) ∼ (P1, . . . , Pd).

For testing and estimating symmetric properties from i.i.d. sequences, it is

natural to look at the multiset of counts of various symbols under each distribution.

This information is conveyed by profiles and are considered in the next section.

2.4 Patterns, profiles and their likelihoods

It is useful to consider patterns and profiles of sequences when they are

generated i.i.d. and we are interested in symmetric or label-invariant properties of

distributions that depend on the probability multiset of the distribution. Techni-
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cally, it suffices to look at profiles when we consider i.i.d. sequences but patterns

are useful for analyzing symmetric properties even under other classes of distribu-

tions e.g., Markov, exchangeable. Patterns make the analysis and intuition of some

of our schemes clearer. A combinatorial quantity that we call as pattern count of

profiles comes in handy for approximating profile maximum likelihoods, which are

difficult to compute in general. Using patterns, it easier to relate our methods to se-

quences, types, and schemes based on sequence maximum likelihood. Patterns are

natural to consider for compressing sequences. They have been studied extensively

in the context of universal compression of large alphabet sources in [49, 48], and

most of the tests and estimators are motivated by the pattern maximum likelihood

methods used there, suitably extended to tuples of sequences.

The pattern of a sequence x is defined as follows. For any sequence z, let

A(z) denote the set of symbols that appear in z. The index ıx(a) of a symbol

a ∈ A(x) is

ıx(a)
def
= min{|A(x1x2 · · · xi)| : 1 ≤ i ≤ n and xi = a},

i.e., one more than the number of distinct symbols that have appeared before the

first appearance of a in x. The pattern of x is the sequence

Ψ(x)
def
= ıx(x1)ıx(x2) · · · ıx(xn)

obtained by replacing the symbols in x by their respective indices, and thus

in the order of their first appearances. Notice that pattern is a way of rep-

resenting sequences without referring to the symbol identities. For example, if

x = abracadabra, then ıx(a) = 1, ıx(b) = 2, ıx(r) = 3, ıx(c) = 4 and ıx(d) = 5.

Hence, Ψ(abracadabra) = 12314151231. The set of all possible patterns of dif-

ferent length-n sequences (on all alphabets) is represented by Ψn. For example,

Ψ1 = {1}, Ψ2 = {11, 12} and Ψ3 = {111, 112, 121, 122, 123}.
The profile of x conveys the multiset of counts of various symbols in x and

equivalently conveys the number of symbols appearing a given number of times in

it. We represent the profile as

ϕ(x)
def
= ϕ

def
= (ϕ1, ϕ2, . . . , ϕn),
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where

ϕµ
def
= ϕµ(x)

def
= |{a : µx(a) = µ}| =

k∑
i=1

1[µ(ai)=µ]

is the prevalence of µ and is the number of symbols that appear µ times, for

µ = 1, 2, . . . , n. An equivalent way of representing ϕ(x) is using the collection of

counts of symbols that have appeared in x. Let m
def
= m(x)

def
=
∑n

i=1 ϕµ be the

number of symbols that appear in x, and µ1 ≥ µ2 ≥ · · ·µm > 0 be the counts of

the symbols that appeared in x. The multiplicity vector of x is

µ(x)
def
= µ

def
= {µ1, µ2 . . . , µm}

def
= {µ(a) : µ(a) > 0, a ∈ A}.

{µ1, . . . , µm}. (Curly braces are used to avoid confusion with the prevalence vector

representation.)

Any valid profile of a length n sequence, ϕ = (ϕ1, . . . , ϕn) has a corre-

sponding unique µ in which the number of µ is ϕµ for µ = 1, 2, . . . , n. Likewise,

any µ has a corresponding ϕ, and thus we use ϕ and its µ with the same mean-

ing. Furthermore, any such ϕ corresponds to an integer partition of n, since∑n
µ=1 µϕµ =

∑m
i=1 µi = n. Thus, the set of all profiles of length-n sequences, de-

noted by Φn is in 1-1 correspondence with the (unordered) integer partitions of n.

The following bound on |Φn| is due to a well known fact about partition number

p(n), the number of integer partitions of n, e.g., see [31, 71, 49], and often useful

for analyzing estimation properties of profile maximum likelihood.

Lemma 1. For all n > 2,

|Φn| = p(n) ≤ exp
(
π

√
2

3

√
n
)
. �

The profile of a pattern ψ ∈ Ψn is defined similarly as that of any other

sequence x. The pattern count of a profile ϕ is the number of patterns which have

the same profile ϕ and is denoted by

N(ϕ)
def
= |{ϕ : ϕ(ψ) = ϕ}| = n!∏n

µ=1(µ!)ϕµϕµ!
.

While the above combinatorial equality is easy to see by counting arguments [49],

we show a more general result later on for joint profiles of multiple sequences.
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As an example of some of the definitions above, the profile of abdb is

ϕ(abdb) = (ϕ1, ϕ2, ϕ3, ϕ4) = (2, 1, 0, 0), indicating that there are 2 symbols (a, d)

that appear once in abdb and 1 symbol (b) that appears 2 times and 0 symbols

that appear 3 and 4 times. In terms of multiset of counts, ϕ(abdb) = {2, 1, 1}. The

sequences abdb and dcca for example have the same profile, though their patterns

are different.

Let P be a distribution on alphabet A. The likelihood of a pattern ψ ∈ Ψn

under P is the probability that a sequence X ∼ P n has pattern ψ, given by

P (ψ)
def
= P (Ψ(X) = ψ) =

∑
x:Ψ(x)=ψ

P (x)

=
1

(k −m)!
·
∑
σ∈Sk

k∏
i=1

pµiσ(i) =
∑
σ∈[k]m

m∏
i=1

pµiσ(i),

where µ(ψ) = {µ1, µ2, . . . , µm} and µm+1 = · · · = µk = 0. Notice that P (ψ)

depends only on M(P ) and ϕ(ψ), and patterns with the same profile have the

same probability under any given distribution. For example, if A = {a, b, c, d}
and P = (pa, pb, pc, pd), then the probability of the pattern 1213 is

P (1213) = P (abac) + P (abad) + P (acab) + · · · = p2
apbpc + p2

apbpd + p2
apcpb + · · · .

The maximum likelihood of ψ is its maximum likelihood under all possible

distributions on all alphabets (i.e., over all k ∈ {1, 2, . . .}),

P̂ (ψ)
def
= max

P
P (ψ).

The maximizing distribution is denoted by P̂ψ
def
= arg maxP P (ψ). We note that

P̂ψ need not be its empirical distribution τ(ψ). For example, P (112) = 2
9

when

P = (2
3
, 1

3
), whereas P̂ (112) = 1

4
and P̂112 = (1

2
, 1

2
), e.g., see [49].

Similarly, the likelihood of a profile ϕ ∈ Φn under P is the probability that

X ∼ P n has profile ϕ, i.e.,

P (ϕ)
def
= P

(
ϕ(X) = ϕ

)
=

∑
x:ϕ(x)=ϕ

P (x).
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As noted earlier, patterns with same profile ϕ have the same probability, hence

P (ϕ) = N(ϕ)P (ψ) =
n!

n∏
µ=1

(µ!)ϕµϕµ!

∑
σ∈[k]m

m∏
i=1

pµiσ(i),

where ψ is any pattern such that ϕ(ψ) = ϕ. We use P (Φn) to denote the distri-

bution of ϕ(X) when X ∼ P n, i.e., the distribution that assigns probability P (ϕ)

to each ϕ ∈ Φn.

The maximum likelihood of ϕ is

P̂ (ϕ)
def
= P̂ϕ(ϕ)

def
= max

P
P (ϕ),

its maximum likelihood under all possible distributions P on all alphabets, and

the maximizing distribution is

P̂ϕ
def
= arg max

P
P (ϕ).

From the above discussion, it is clear that if a pattern ψ has profile ϕ = ϕ(ψ),

then P̂ϕ = P̂ψ. So without loss of generality, we usually consider profile maximum

likelihood since profiles are more natural to consider in the context of probability

multiset estimation from i.i.d. sequences.

2.4.1 Joint patterns and profiles

Joint patterns

We extend the definition of patterns to two or more sequences for the pur-

pose of closeness testing and in general, testing symmetric properties of several

distributions. The joint pattern, or simply pattern, of a pair of sequences (x1, x2) ∈
An1 × An2 is Ψ(x1, x2)

def
= (ψ1, ψ2), where ψ1 = Ψ(x1) and ψ1ψ2 = Ψ(x1x2).

For example, for bab and abca, the first pattern is Ψ(bab) = 121 and that of

the concatenated sequence is Ψ(bababca) = 1212132, hence the joint pattern is

Ψ(bab, abca) = (121, 2132). Clearly, the joint pattern conveys the patterns of the

individual sequences and the association between the symbols of the sequences.

The joint pattern of a tuple or list of three or more sequences is defined similarly.

We use Ψn1,n2 to denote the set of all possible joint patterns of pairs of sequences

of length (n1, n2). For example, Ψ2,1 = {(11, 1), (11, 2), (12, 1), (12, 2), (12, 3)}.
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Joint profiles

The joint profile, or profile, of x1, x2 conveys the multiset of count pairs

(µx1(a), µx2(a)) of various symbols that appear in x1, x2. Equivalently, it conveys

the prevalences

ϕµ1,µ2

def
= ϕµ1,µ2(x1, x2)

def
= |{a : µx1(a) = µ1, µx2(a) = µ2}|,

i.e., the number of symbols that have appeared µ1 times in x1 and µ2 times in

x2 for all (µ1, µ2) ∈ {0, 1, . . . , n1} × {0, 1, . . . , n2} and ϕ0,0 ≡ 0. We represent the

profile of (x1, x2) as

ϕ(x1, x2)
def
= ϕ

def
=
[
ϕµ1,µ2

]
.

An equivalent way of representing the profile of x1, x2 is using the multiset of

pairs of counts of each symbol that has appeared in the two sequences. The joint

multiplicity vector of x1, x2 is

µ(x1, x2)
def
= µ

def
=
{

(µx1(a), µx2(a)) : a ∈ A and µx1(a) > 0 or µx2(a) > 0}
def
= {(µ1,i, µ2,i) : i = 1, 2, . . . ,m}.

Every joint profile ϕ has a corresponding multiplicity vector ϕ and vice versa.

The profile of a joint pattern (ψ1, ψ2) ∈ Ψn1,n2 is defined similarly to that of any

sequence pair. For example,

ϕ(dac, adbda) = ϕ(123, 21412) =

0 1 2

0 0 1 0

1 1 0 2

,

where the prevalences ϕµ1,µ2 are arranged in a matrix with the rows indexed with

µ1 and columns with µ2. As we see above, ϕ1,2 = 2, since there are 2 symbols, d

and a, that appear µ1 = 1 times in dac and µ2 = 2 times in adbda.

Number of profiles of a given length

We use |Φn1,n2 | to denote the set of all profiles of sequence pairs of length

(n1, n2). Similar to the case of |Φn|, each profile ϕ ∈ Φn1,n2 corresponds to a
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(unordered) partition of (n1, n2), i.e.,

n1∑
µ1=0

n2∑
µ2=0

ϕµ1,µ2 · (µ1, µ2) =
m∑
i=1

(µ1,i, µ2,i) = (n1, n2),

where the summation is performed componentwise. Similar to |Φn| ≤ e3
√
n, we

show that |Φn1,n2 | ≤ e3(n
2/3
1 +n

2/3
2 ). We show the result in general for |Φn1,...,nd| =

p(n1, . . . , nd), the number of different profiles of all d-tuples of sequences (x1, . . . , xd)

of length (n1, . . . , nd). Here, p(n1, . . . , nd) is the number of integer partitions of

(n1, . . . , nd), i.e., the number of multisets of integer d-tuples {(µ1,i, µ2,i, . . . , µd,i)}mi=1

such that
∑m

i=1 µj,i = nj for j = 1, 2, . . . , d. As an example, p(2, 1) = 4, since

(2, 1) = (1, 0) + (1, 1) = (2, 0) + (0, 1) = 2 · (1, 0) + (0, 1).

Also see [21] for similar bounds on a related combinatorial structure called multi-

dimensional partitions, where for each partition, the sum of all components of all

parts is n, i.e.,
∑m

i=1

∑d
j=1 µi,j = n. We note that |Φn1,n2| does not factorize unlike

the the number of joint types |T n1,n2| = |T n1||T n2|.

Lemma 2. For all positive integers d and all n1, . . . , nd ≥ 2d+1,

|Φn1,...,nd| = p(n1, . . . , nd) ≤ exp
(

2
(

1 +
1

d

) d∑
j=1

n
d/(d+1)
j

)
.

Proof. The proof is similar to that for p(n) in [71]. The (ordinary) generating

function of p(n1, . . . , nd) is

G(x1, . . . , xd) =
∞∑

n1=0

· · ·
∞∑

nd=0

p(n1, . . . , nd)x
n1
1 x

n2
2 · · · x

nd
d

=
∏

(µ1,...,µd)

∈Nd\(0,...,0)

1

1− xµ1

1 x
µ2

2 · · · x
µd
d

,
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where N = {0, 1, 2, · · · } and 0 < x1, . . . , xd < 1. Hence,

logG(x1, . . . , xd) =
∑

(µ1,...,µd)

∈Nd\(0,...,0)

− log
(

1−
d∏
j=1

x
µj
j

)

=
∑

(µ1,...,µd)

∈Nd\(0,...,0)

∞∑
l=1

1

l

( d∏
j=1

x
µj
j

)l

=
∞∑
l=1

1

l

∑
(µ1,...,µd)

∈Nd\(0,...,0)

d∏
j=1

(xlj)
µj

=
∞∑
l=1

1

l

(
1∏d

j=1(1− xlj)
− 1

)

=
∞∑
l=1

1

l

1−
∏d

j=1(1− xlj)∏d
j=1

(
(1− xj)

(∑l−1
i=0 x

i
j

))
<
∞∑
l=1

1

l

1−
∏d

j=1(1− xlj)(∏d
j=1(1− xj)

)(
1 +

∑d
j=1

∑l−1
i=1 x

i
j

)
(a)
<

1∏d
j=1(1− xj)

(
1 +

∞∑
l=2

1

l(l − 1)

)
=

2∏d
j=1(1− xj)

.

In the Inequality (a), we consider the cases l = 1 and l > 1 separately. When

l > 1, we have in the denominator,
(

1 +
∑d

j=1

∑l−1
i=1 x

i
j

)
> (l − 1)

∑d
j=1 x

i
j >

(l − 1)
(

1−
∏d

j=1(1− xlj)
)

. Since G(x1, . . . , xd) > p(n1, . . . , nd)x
n1xn2 · · · xnd ,

log p(n1, . . . , nd) < logG(x1, . . . , xd)−
d∑
j=1

nj log xj

<
2∏d

j=1(1− xj)
−

d∑
j=1

nj log xj.
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Substituting xj = 1− n−1/(d+1)
j for j = 1, . . . , d, we get

log p(n1, . . . , nd) < 2
d∏
j=1

n
1/(d+1)
j +

d∑
j=1

nj log
(

1− n−1/(d+1)
j

)
≤ 2

(
1 +

1

d

) d∑
j=1

n
d/(d+1)
j .

In the last step, we used AM-GM inequality, i.e.,
∏d

j=1 n
1/(d+1)
j =

(∏d
j=1 n

d/(d+1)
j

)1/d

≤ 1
d

∑d
j=1 n

d/(d+1)
j , and log(1 − ε) < 2ε for ε ≤ 1

2
, and therefore we have that

log
(
1− n−1/(d+1)

j

)
≤ 2n

−1/(d+1)
j for nj > 2d+1 and j = 1, . . . , d. �

Pattern counts of profiles

The pattern count of a joint profile ϕ ∈ Φn1,n2 is the number of joint patterns

which have the same profile ϕ and is denoted by

N(ϕ)
def
= |{(ψ1, ψ2) : ϕ(ψ1, ψ2) = ϕ}|.

For example, consider the profile ϕ = Φ(1232, 13) which has ϕ1,1 = 2, ϕ2,0 = 1 and

all other ϕµ1,µ2 = 0. Then, N(ϕ) = 12 since the set of all joint patterns that have

this profile is {(1123, 23), (1123, 32), (1213, 23), (1213, 32), (1223, 13), (1223, 31),

(1231, 23), (1231, 32), (1232, 13), (1232, 31), (1233, 13), (1233, 21)}. Pattern counts

of joint profiles, N(ϕ) do not factorize unlike sequence counts of joint types N(τ) =

N(τ 1)N(τ 2). The next lemma shows an explicit combinatorial expression for N(ϕ)

for the general case of ϕ ∈ Φn1,...,nd as mentioned previously.

Lemma 3. For all positive integers d and all ϕ = [ϕµ1,...,µd ] ∈ Φn1,...,nd,

N(ϕ) =

d∏
j=1

nd!

n1∏
µ1=0

· · ·
nd∏
µd=0

(µ1!µ2! · · ·µd!)ϕµ1,...,µdϕµ1,...,µd !

.

Proof. We show the lemma for d = 2, and the proof is similar for any d ≥ 1. Let

ϕ ∈ Φn1,n2 . Any joint pattern (ψ1, ψ2) that has profile ϕ is a pair of sequences with

symbols from {1, 2, . . . ,m}, where m =
∑n1

µ1=0

∑n2

µ2=0 ϕµ1,µ2 is the total number
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of symbols in ψ1ψ2. Let {µ1(i)}mi=1 and {µ2(i)}mi=1 be non-negative integers such

that
∑m

i=1 µ1(i) = n1 and
∑m

i=1 µ2(i) = n2. The number of sequence pairs whose

alphabet is {1, 2, . . . ,m}, and the number of appearances of i in first sequence is

µ1(i) and in second sequence is µ2(i), for i = 1, 2, . . . ,m, is(
n1

µ1(1), µ1(2), . . . , µ1(m)

)(
n2

µ2(1), µ2(2), . . . , µ2(m)

)
=

n1!n2!
m∏
i=1

µ1(i)!µ2(i)!
.

The number of different ways of choosing {µ1(i)}mi=1 and {µ2(i)}mi=1 such it conforms

to profile is ϕ is (
m

ϕ0,0, ϕ0,1, . . . , ϕn1,n2

)
=

m!
n1∏
µ1=0

n2∏
µ2=0

ϕµ1,µ2 !
.

Thus, the number of sequence pairs whose alphabet is {1, 2, . . . ,m} and profile is

ϕ is

N∗(ϕ) =
n1!n2!

m∏
i=1

µ1(i)!µ2(i)!

m!
n1∏
µ1=0

n2∏
µ2=0

ϕµ1,µ2 !
=

n1!n2!m!
n1∏
µ1=0

n2∏
µ2=0

(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2 !
.

Clearly, N∗(ϕ) = m! ·N(ϕ), since

≥: For each joint pattern having profile ϕ, the labels {1, 2, . . . ,m} can be per-

muted in m! ways to generate m! different sequence pairs whose alphabet is

{1, 2, . . . ,m} and profile is ϕ. Furthermore, the sets of sequence pairs gener-

ated in this way by different joint patterns are disjoint. So N∗(ϕ) ≥ m!·N(ϕ).

≤: Given any pair of sequences (x1, x2) having alphabet {1, 2, . . . ,m} and profile

ϕ, their symbols can be permuted keeping the positions same to obtain a

joint pattern with profile ϕ, which is in fact Ψ(x1, x2). There are exactly

m! sequence pairs having alphabet {1, 2, . . . ,m} and profile ϕ that have the

same joint pattern. Hence, N∗(ϕ) ≤ m! ·N(ϕ).

Thus,

N(ϕ) =
N∗(ϕ)

m!
=

n1!n2!
n1∏
µ1=0

n2∏
µ2=0

(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2 !
.

�
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Likelihoods of joint profiles and patterns

Let (P1, P2) be a pair of distributions onA, where P1
def
= (P1(a1), . . . , P1(ak))

and P2
def
= (P2(a1), . . . , P2(ak)). The probability of a joint pattern (ψ1, ψ2) ∈ Ψn1,n2

under (P1, P2) is the probability that (X1, X2) ∼ P n1
1 × P n2

2 has joint pattern

(ψ1, ψ2), and is denoted by

P1,2(ψ1, ψ2) = P1,2

(
Ψ(X1, X2) = (ψ1, ψ2)

)
=

∑
(x1,x2):

Ψ(x1,x2)=(ψ1,ψ2)

P1(x1)P2(x2)

=
∑
σ∈[k]m

m∏
i=1

p
µ1,i

1,σ(i)p
µ2,i

2,σ(i),

where ϕ(ψ1, ψ2) = {(µ1,i, µ2,i) : i = 1, . . . ,m}. Clearly, P1,2(ψ1, ψ2) depends only

on M(P1, P2) and ϕ(ψ1, ψ2). For example, if A = {a, b, c, d}, P1 = (pa, pb, pc, pd)

and P2 = (p′a, p
′
b, p
′
c, p
′
d), and (ψ1, ψ2) = (12, 13), then

P1,2(12, 13) = P1,2(ab, ac) + P1,2(ab, ad) + P1,2(ba, bc) + · · ·

= papbp
′
ap
′
c + papbp

′
ap
′
d + pbpap

′
bp
′
c + · · · .

The probability of a joint profile ϕ ∈ Φn1,n2 under (P1, P2) is

P1,2(ϕ)
def
= P1,2

(
ϕ(X1, X2) = ϕ

)
=

∑
x1,x2:ϕ(x1,x2)=ϕ

P1(x1)P2(x2).

Joint patterns with same profile ϕ have the same probability, hence

P1,2(ϕ) = N(ϕ)P (ψ1, ψ2),

where (ψ1, ψ2) is any joint pattern such that ϕ(ψ1, ψ2) = ϕ.

We use P1,2(Φn,n) to denote the distribution of ϕ(X1, X2) when X1, X2 ∼
P n

1 × P n
2 , i.e., the distribution that assigns probability P1,2(ϕ) to each ϕ ∈ Φn,n.

The probabilities of joint patterns and profiles do not factorize unlike the

probabilities of sequence pairs P1,2(x1, x2) = P1(x1)P2(x2) and joint types P1,2(τ) =

P1(τ 1)P2(τ 2).

The maximum likelihood of a joint pattern (ψ1, ψ2) is its maximum likeli-

hood under all possible distributions on all alphabets (i.e., over all k ∈ {1, 2, . . .}),

P̂ (ψ1, ψ2)
def
= P̂1,2(ψ1, ψ2)

def
= max

P1,P2

P (ψ1, ψ2).
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Likewise, the maximum likelihood of a joint profile ϕ is

P̂ (ϕ)
def
= P̂1,2(ϕ)

def
= max

P1,P2

P (ϕ).

Clearly, if ϕ(ψ2, ψ2), then P̂1,2(ϕ) = N(ϕ)P̂1,2(ψ2, ψ2) and both can be maximized

by the same (P1, P2).

The following observation follows from the various definitions above and is

relevant for closeness testing.

Observation 4. If (ψ1, ψ2) ∈ Ψn1,n2, then ψ1ψ2 ∈ Ψn1+n2. If P3 = P1 = P2, then

(by an abuse of notation),

P3,3(ψ1, ψ2) = P3(ψ1ψ2),

and hence

P3,3(ϕ(ψ1, ψ2)) =
N(ϕ(ψ1, ψ2))

N(ϕ(ψ1ψ2))
P3(ϕ(ψ1ψ2)).

In particular, for two sequences (x1, x2) ∈ An ×An, P3,3(ϕ(x1, x2)) 6= P3(ϕ(x1x2))

in general. �

2.5 Hypothesis testing

The following facts about hypothesis testing are well known, e.g., see [44,

54]. Let P and Q be two distributions on a discrete alphabet Z. In a simple

hypothesis testing problem, a random variable Z is generated either ∼ P or ∼ Q

with probability (1
2
, 1

2
). A test ∆ labels Z as either P or Q to indicate whether its

generated by P or by Q respectively. The error probability of ∆ is the probability

that it labels Z incorrectly, i.e.,

Pe(∆)
def
= Pe(∆, P,Q)

def
=

1

2
P (∆(Z) = Q ) +

1

2
Q(∆(Z) = P ).

The L1 distance between P and Q is

|P −Q| def
=
∑
z∈Z

|P (z)−Q(z)|
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and the testing affinity [37] or affinity is

|P ∧Q| def
=
∑
z∈Z

min{P (z), Q(z)} = 1− 1

2
|P −Q|.

Fact 5. The test ∆∗ given by P (Z)
P

Q

>< Q(Z) has the minimum error probability

and thus

P ∗e (P,Q) =
1

2

∑
z∈Z

min{P (z), Q(z)} =
1

2
|P ∧Q| = 1

2
− 1

4
|P −Q|. �

Equivalently, no test can distinguish P and Q with error probability <

1
2
|P ∧Q| = 1

2
− 1

4
|P −Q|. Hence, in general, we say P and Q are distinguishable or

indistinguishable to imply that |P ∧Q| is close to 0 or 1, or equivalently |P −Q|
is close to 2 or 0 respectively.

Instead of considering Z being generated from P or Q with equal probability

or prior (1
2
, 1

2
), we also consider the worst error probability under both cases,

P̂e(∆, P,Q)
def
= max{P (∆(Z) = Q ), Q(∆(Z) = P )}.

We notice that

P̂e

∗
(P,Q) = min

∆
P̂e(∆)

is such that
1

2
|P ∧Q| ≤ P̂e

∗
(P,Q) ≤ |P ∧Q|.

Since we mostly consider small error probabilities (and the error probabilities di-

minish rapidly in sequence lengths), the tests we consider have similar error guaran-

tees in both worst case and average case (equal prior). We define distinguishability

of two distributions P and Q based on their P̂e

∗
.

Definition 6. Two distributions P and Q are δ-distinguishable if P̂e

∗
(P,Q) ≤ δ,

i.e., if there is a test that can distinguish between them with worst error probability

at most δ. In particular, P and Q are δ∗-distinguishable, where δ∗ = P̂e
∗
(P,Q). �
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In composite hypothesis testing problems, instead of two distributions P

and Q, there are two classes of distributions P and Q. Given Z that is generated

randomly according to some P ∈ P or some Q ∈ Q, we want to find which class

it is. Notice that if P and Q are chosen according to some known priors on P or

Q, the problem reduces to simple hypothesis testing. In general, it is not easy to

find the best test for such problems or even find accurate bounds on the least error

probability. However, it is easy to see that the worst error probability of any test

over P and Q is at least maxP∈P,Q∈Q P̂e

∗
(P,Q) ≥ 1

2
maxP∈P,Q∈Q |P ∧Q|. Thus, a

reasonable goal for these problems can be to find tests whose error probabilities

are not much larger than this. This may not always be possible and the minimum

error probability between P and Q can be much higher than this lower bound.

Better lower bounds can be obtained by considering maximum over priors on P
and/or Q, e.g., see [37, 56, 22], but are harder to analyze.

A commonly used test for composite hypothesis testing is the generalized

likelihood ratio test (GLRT) P̂ (Z)
P

Q

>< Q̂(Z), where the maximum likelihoods under

each of the classes, P̂ (Z)
def
= maxP∈P P (Z) and Q̂(Z)

def
= maxQ∈QQ(Z) are used as

“plug-in” estimates of actual likelihoods, similar to the case of simple hypothesis

testing. In Section 3.3, several variants and approximations of the GLRT are

considered and shown to have an error probability of at most
√
δ · |Z|, where

δ = maxP∈P,Q∈Q P̂e

∗
(P,Q), and this is often sufficient for our purposes.

2.6 Poissonization and tail bounds

It is evident from previous sections that we want to analyze the distri-

butions of profiles of i.i.d. sequences. However, from Section 2.4, we observe

that profile probabilities do not have a simple structure and are unwieldy sym-

metric polynomials in the probabilities of the distribution multiset. One widely

used “trick” to help in the analysis to a large extent is to consider the follow-

ing Poisson model. Let poi(λ) denote the Poisson distribution with mean λ and

poi(λ, i)
def
= Pr(Z = i)

def
= λie−λ

i!
where Z ∼ poi(λ). Unlike the usual multinomial

model where the given i.i.d. sequences X are of length n, in the Poisson model,
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the length n′ is distributed according to poi(n). Thus, we use X ∼ P poi(n) to

imply that we generate n′ ∼ poi(n) and X is a sequence of n′ independent samples

distributed ∼ P .

The key advantage in the Poisson model is the fact that the distributions of

symbol counts are independent, i.e., µ(a) ∼ poi(nP (a)) and independent of other

µ(a′), for a, a′ ∈ A. At the same time, finding good tests and estimators that

have low error probability and use n samples is equivalent to finding good tests

and estimators that use poi(n) samples, which is due to the sharp concentration

of poi(λ) around its mean λ, and is implied in the following tail bounds [68, 69].

Observation 7. (Also [68, Corollary 32].) For any α ∈ (0.5, 1) and sufficiently

large λ > f(α), if X ∼ poi(λ),

Pr
(
|X − λ| ≥ λα

)
≤ 2 exp

(
− 3

8
λ2α−1

)
≤ exp

(
− λ0.99(2α−1)

)
.

For all ε ∈ (0, 1] and λ > 1
ε2(1−ε) , if X ∼ poi(λ),

Pr
(
|X − λ| ≥ ελ

)
≤ 2 exp(−ε2λ/3).

For α ≥ 2, and sufficiently large λ ≥ 2, if X ∼ poi(λ),

Pr
(
X ≥ αλ

)
≤ exp(−αλ/6). �

The well known Chernoff bounds that we use in the thesis are given below.

Fact 8. (Chernoff bounds.) Let X =
∑n

i=1 Yi be a sum of independent 0,1 random

variables Y1, . . . , Yn such that Pr(Yi = 1) = pi. Let µ = E[X] =
∑

i pi . Then,

• For ε ∈ (0, 1], Pr(X ≤ (1− ε)µ) ≤ exp(−µε2/2).

• For ε ∈ [0, 1], Pr(X > (1 + ε)µ) ≤ exp(−µε2/3) and for ε > 1, Pr(X ≥
(1 + ε)µ) ≤ exp(−µε/3). �



Chapter 3

Closeness Testing

The first problem of testing symmetric properties of distributions that we

study in detail is that of testing closeness between two distributions. As before, let

A def
= {a1, . . . , ak} be an alphabet of size k. And let P1 = (P1(a1), . . . , P1(ak)) and

P2 = (P2(a1), . . . , P2(ak)) be two unknown distributions on A. Given two length-

n sequences X1 and X2 generated i.i.d. according to P1 and P2 respectively,

we want to find whether P1 and P2 are same or different. A closeness test ∆

labels the given sequences (X1, X2) as either same or diff to indicate whether

the distributions that generated them are believed to be same or different, i.e.,

∆ : An ×An → {same , diff }. The error probability of ∆ for any (P1, P2) is the

probability that it labels a sequence pair they generate incorrectly, i.e.,

Pe(∆, P1, P2)
def
=

Pr(∆(X1, X2) = diff ) if P1, P2 are same,

Pr(∆(X1, X2) = same ) if P1, P2 are different.

The goal is to design a test ∆ that uses few samples and yet has a low error

probability, both when (P1, P2) are same, i.e., P1 = P2, and when (P1, P2) are

sufficiently different. To characterize the performance of closeness tests, one de-

fines two classes of pairs of distributions Psame and Pdiff consisting of pairs of

distributions that are considered to be same and different respectively. The error

performance of a test ∆ is then specified in terms of the maximum error probability

30
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over all (P1, P2) ∈ Psame ∪ Pdiff and (X1, X2) ∼ P n
1 × P n

2 , i.e.,

Pe(∆,Psame ,Pdiff )
def
= max

(P1,P2)∈Psame ,Pdiff
Pe(∆, P1, P2).

No guarantees are provided for other distributions, i.e., (P1, P2) /∈ Psame ∪ Pdiff .

A common way of parametrizing the performance of tests is to define

Psame ,Pdiff using a suitable distance D(·, ·) defined on distribution pairs, say

Psame = {(P1, P2) : P1 = P2} and Pdiff = {(P1, P2) : D(P1, P2) ≥ ε} for some

ε > 0, and then specify the sample complexity, i.e., length of sequences n needed,

in terms of the alphabet size k of the distributions being considered, to guarantee

a small error probability, say Pe(∆,Psame ,Pdiff ) ≤ δ ≤ 1
4
. Better tests thus require

smaller n = f(k). Note that if a test guarantees an error probability 1
4

using n

samples, then it it can be improved to any δ < 1
4

using n′ = O(n log(1
δ
)) samples

(by taking majority decision on the outputs of ∆ on O(log 1
δ
) instances of length-n

sequence pairs). We can equivalently parametrize the performance by specifying

the size of classes Psame and Pdiff , say in terms of k, on which ∆ has low error

probability, say Pe(∆,Psame ,Pdiff ) ≤ δ ≤ 1
4
, using a pair of sequences of a given

length n.

For example, Batu et al. in [8] provide a closeness test that can distinguish

between all pairs of same distributions Psame = {P1 = P2} and those that are

separated in L1 distance, Pdiff = {|P1 − P2| ≥ ε}, when the alphabet size is at

most k, using a pair of sequences of length n = O(k2/3 · ε−4 · log k
δ
). Equivalently,

their test guarantees low error probability δ using sequences of length n whenever

P1 = P2 or |P1 − P2| ≥ ε and k = O(n3/2 · ε4 · log n
δ
). Other recent results of a

similar flavor by various researchers [70, 29, 35, 69] for large alphabet distributions

that were mentioned in Section 1.1 and can be stated in the above manner.

A commonly used distance D(·, ·) is the L1 distance between distributions

|P1 − P2|
def
=
∑

a∈A |P1(a) − P2(a)|. The is mainly because of the relationship of

L1 distance to other common distances like Hellinger, L2, Jenson-Shannon Diver-

gence, and strong implications for these distances. The L1 distance is bigger than

functions of most distances and thus, suitable for testing if two distributions are

different. For example, if the alphabet size k = Ω(n), it is easy to find examples

where L1 = Ω(1) but L2 = o(1).
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Before we go on to describe our choice of Psame and Pdiff , followed by

our tests and their error guarantees, we consider the following simple well known

closeness test that helps motivate the form of our tests.

A closeness test based on sequence maximum likelihood

It is easy to see that the closeness testing problem as described above is a

composite hypothesis testing problem, briefly discussed in Section 2.5. We there-

fore consider a generalized likelihood ratio test on the given sequences. The likeli-

hood ratio is
maxP1=P2 P (X1, X2)

maxP1,P2 P (X1, X2)
=

P̂ (X1X2)

P̂ (X2)P̂ (X2)
.

This ratio is always less than 1 (since the domain of maximization is smaller in

numerator compared to the denominator). However, it is easy to see using the

arguments we show later, or otherwise, that when P1 = P2, this ratio is larger than

t = 1

n(n+k−1
k−1 )

2 , i.e., not too small, with high probability 1 − o(1). Furthermore, if

|P1−P2| ≥ ε, this ratio is at most 2−nε
2/8 � t with probability 1−o(1) if k = o(n).

Hence, the test ∆emp given by

P̂ (X1X2)

P̂ (X1)P̂ (X2)

same

diff

>< t

has low error probability whenever P1 = P2 or |P1 − P2| ≥ ε, and k = o(n). Also

see [35] for details of the arguments above.

But when k = Ω(n), empirical distribution may not be a good estimate of

the underlying distribution to use a plug-in estimates for actual likelihoods in the

likelihood ratio test. Thus, ∆emp may not have low error probability, as shown in

an example in [35] and in the following, simpler, example.

Example 9. For large n and k = n3, let P1, P2 be such that P1(a1) = 1 and

P1(a2) = · · · = P1(ak) = 0, and P2(a1) = 1/2 and P2(a2) = · · · = P2(ak) =

1/(2(k− 1)). The two distributions are clearly very different and |P1−P2| = 1. If

X1 ∼ P n
1 and X2 ∼ P n

2 , then consider two typical sequences X1 = an1 and X2 =

a
n
2
1 a2a3 · · · an

2
+1. In particular, by the Birthday problem, with high probability no
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symbol in {a2, a3, . . . , ak} appears more than once in X2. It follows that

P̂ (X1X2)

P̂ (X1)P̂ (X2)
=

P̂ (a
3n
2

1 a2a3 · · · an
2

+1)

P̂ (an1 )P̂ (a
n
2
1 a2a3 · · · an

2
+1)

=
(3

4
)

3n
2 ( 1

2n
)
n
2

1n × (1
2
)
n
2 ( 1

n
)
n
2

=

(
3

4

) 3n
2

≈ 0.65n,

suggesting as it should that the sequences were generated by different distributions.

However, when both X1 and X2 are generated according to the same

distribution, P2, then a typical pair of sequences is X1 = a
n
2
1 a2a3 · · · an

2
+1 and

X2 = a
n
2
1 an2 +2 · · · an+1 where no symbol in {a2, a3, . . . , ak} appears more than once

in X1X2. Then,

P̂ (X1X2)

P̂ (X1)P̂ (X2)
=

P̂ (an1a2a3 · · · an+1)

P̂ (a
n
2
1 a2a3 · · · an

2
+1)P̂ (a

n
2
1 an2 +2 · · · an+1)

=
(1

2
)n( 1

2n
)n

(1
2
)
n
2 ( 1

n
)
n
2 × (1

2
)
n
2 ( 1

n
)
n
2

= 2−n,

an even lower ratio than when the distributions were different.

Thus, the GLRT test P̂ (X1X2)

P̂ (X1)P̂ (X2)

same

diff

>< t cannot have low error probability for

both (P1, P2) and (P2, P2) for any choice of the threshold t. Furthermore, note

that if X1, X2 are both generated according to P2, then X1, X2 have very differ-

ent empirical distribution estimates than X1X2, breaking the intuition for small

alphabets that their types or empirical distribution estimates should be similar,

given that they are generated by the same distribution. �

3.1 A closeness test based on profile maximum

likelihood

The empirical distribution and equivalently, maximum likelihood of se-

quences or types is a natural choice when we want to estimate the probabilities

of specific symbols, i.e., the complete distribution that includes the probability

multiset and their mapping to the underlying alphabet. However, as we notice,

the notion of closeness between (P1, P2) is a symmetric property of P1, P2 since it

depends only on M(P1, P2). Thus, for estimating the (joint) probability multiset,
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it is natural to consider the joint pattern and profiles of sequences as our obser-

vations. We therefore consider the pattern- or profile-based likelihood ratio test

∆P̂ (ϕ) defined as

maxP1=P2 P (ϕ(X1, X2))

maxP1,P2 P (ϕ(X1, X2))
=
P̂3,3(ϕ(X1, X2))

P̂1,2(ϕ(X1, X2))

same

diff

>< t,

where by an abuse of notation, P̂3,3(ϕ(X1, X2))
def
= maxP3=P1=P2 P1,2(ϕ(X1, X2))

and the threshold t ≤ 1 is a parameter and its choice will be revealed later on.

The likelihood ratio can be also written in terms of pattern probabilities as

P̂3,3(ϕ(X1, X2))

P̂1,2(ϕ(X1, X2))
=

P̂3,3(Ψ(X1, X2))

P̂1,2(Ψ(X1, X2))
=

P̂ (Ψ(X1X2))

P̂ (Ψ(X1, X2))
.

Similar to sequence-based GLRT, the main idea behind the profile-based

GLRT is that when P1 = P2, the likelihood ratio is not too small and when

P1, P2 are very different, the ratio is exponentially or near exponentially small.

This is shown in Theorem 12 further along – the ratio is ≥ e−7n2/3
with high

probability when P1 = P2 and� e−7n2/3
when P1, P2 are very different. Revisiting

Example 9, in the case when (X1, X2) ∼ (P1, P2), consider the typical sequence

pair (X1, X2) = (an1 , a
n
2
1 a2a3 · · · an

2
+1). Then, P̂ (Ψ(X1, X2)) = P̂ (1n, 1

n
2 23 · · · (n

2
+

1)) ≥ 1 · (1
2
)
n
2 (1

2
)
n
2 = (1

2
)n, since the distributions (P ′1, P

′
2) assign Ψ(X1, X2) such

a likelihood, where P ′1(a1) = 1, P ′2(a1) = 1
2
, and the remaining probability 1

2
of P ′2

is spread over a continuous alphabet or a large tail, similar to P2. Also, using the

result for PML of “skewed patterns” in [45], P̂ (Ψ(X1X2)) = P̂ (1
3n
2 23 · · · (n

2
+1)) =

(3
4
)

3n
2 (1

4
)
n
2 , which is attained by the distribution P such that P (a1) = 3

4
and has

the remaining probability 1
4

spread over a continuous alphabet. Hence,

P̂ (Ψ(X1X2))

P̂ (Ψ(X1, X2))
≤

(3
4
)

3n
2 (1

4
)
n
2

(1
2
)n

=

(
3

4

) 3n
2

< 0.65n.

When (X1, X2) ∼ (P2, P2), consider the pair of typical sequences (X1, X2) =

(a
n
2
1 a2a3 · · · an

2
+1, a

n
2
1 an2 +2 · · · an+1). Again using the results in [45], we have that

P̂ (Ψ(X1, X2)) ≤ P̂ (Ψ(X1)P̂ (Ψ(X2)) = P̂ (1
n
2 23 · · · (n

2
+ 1))2 =

(
(1

2
)
n
2 (1

2
)
n
2

)2
=

(1
2
)2n, and P̂ (Ψ(X1X2)) = P̂ (1n23 · · · (n + 1)) = (1

2
)n(1

2
)n = (1

2
)2n. Hence, in this

case (along with the fact that this ratio is ≤ 1),

P̂ (Ψ(X1X2))

P̂ (Ψ(X1, X2))
= 1,
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as we wanted before. Moreover, the maximum likelihood distributions of Ψ(X1, X2)

and of Ψ(X1X2) are consistent, i.e., same, unlike in the case of ∆emp.

To analyze the error of ∆P̂ (ϕ), we define and motivate the following choice

of Psame and Pdiff .

3.2 A distinguishability based distance criterion

Our choice of Psame is the class that contains all same pairs of distributions,

on all alphabet sizes k ∈ {1, 2, . . .}, i.e.,

Psame
def
= {(P3, P3)} def

= {(P1, P2) : P1 = P2}.

Clearly, this is a very natural choice. Our choice of Pdiff is motivated as follows.

3.2.1 Symmetric and profile-based tests

We argue that without loss of generality, we only need to consider tests that

depend only on (X1, X2) through its profile ϕ(X1, X2). Similar arguments were

used in [7],[9, Section 3.1.3]. Since closeness is a symmetric property of (P1, P2), we

want tests that have low error probability for all (P1, P2) with the same multiset

M(P1, P2), regardless of the specific wayM(P1, P2) is mapped to A and the actual

symbols we observe. Accordingly, we define the symmetric error probability of a

test ∆ for (P1, P2) as its worst case error probability over all possible permutations

of the alphabet, i.e.,

Pe,sym(∆, P1, P2)
def
= max

σ∈Sk
Pe(∆, P

σ
1 , P

σ
2 ),

where for any σ ∈ Sk, P σ
1 , P

σ
2 are obtained from P1, P2 by the permutation σ of

the alphabet so that P σ
1 (ai) = P1(aσ(i)) and P σ

2 (ai) = P2(aσ(i)) for i = 1, . . . , k.

A symmetric closeness test is one whose output does not change when the

alphabet is permuted and gives the same output for all sequence pairs which have

the same joint pattern, i.e., ∆(x1, x2) = ∆̃(Ψ(x1, x2)) for all (x1, x2), where ∆̃ :

Ψn,n → {same , diff }. Hence, a symmetric test depends only the joint pattern of

the sequences. Note that for a symmetric test ∆, Pe,sym(∆, P1, P2) = Pe(∆, P1, P2)
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for all distribution pairs (P1, P2). The following observation shows that without

loss of generality, we may limit ourselves to considering only symmetric closeness

tests since they increase the error probability by a factor of at most 2 (which is a

limitation of the fact that we consider only deterministic tests ∆).

Observation 10. Let ∆ : An×An → {same, diff} be any closeness test, possibly

not symmetric. Then, there exists a symmetric test ∆̃ : An ×An → {same, diff}
such that for all pairs of distributions (P1, P2) over A,

P n
e,sym(∆̃, P1, P2) ≤ 2 · Pe,sym(∆, P1, P2).

Proof. Let ∆̃ be the test whose output for a sequence pair is same as that made by

∆ for the majority of sequence pairs with the same joint pattern, i.e., ∆̃(x1, x2) =

majority{∆(x′1, x
′
2) : Ψ(x′1, x

′
2) = Ψ(x1, x2)}. Clearly, Pe(∆̃, P

σ
1,2) is same for all

permutations σ of A. Thus, if P1, P2 are considered same,

Pe,sym(∆̃, P1, P2) = Pe(∆̃, P1, P2)

=
1

k!

∑
σ∈Sk

P n
e (∆̃, P σ

1 , P
σ
2 )

=
1

k!

∑
σ∈Sk

∑
(x1,x2):

∆̃(x1,x2)=diff

P σ
1 (x1)P σ

2 (x2)

=
∑

(x1,x2):

∆̃(x1,x2)=diff

1

k!

∑
σ∈Sk

P σ
1 (x1)P σ

2 (x2)

(a)

≤ 2
∑

(x1,x2):
∆(x1,x2)=diff

1

k!

∑
σ∈Sk

P σ
1 (x1)P σ

2 (x2)

= 2 · 1

k!

∑
σ∈Sk

∑
(x1,x2):

∆(x1,x2)=diff

P σ
1 (x1)P σ

2 (x2)

≤ 2 ·max
σ∈Sk

∑
(x1,x2):

∆(x1,x2)=diff

P σ
1 (x1)P σ

2 (x2)

= 2 · Pe,sym(∆, P1, P2),

where in (a), we note that all (x1, x2) having the same joint pattern have the same

probability 1
k!

∑
σ∈Sk P

σ
1 (x1)P σ

2 (x2). A similar argument can be shown for the case
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when P1 6= P2 are considered different. �

Similar to symmetric or pattern-based tests, we also define profile-based

tests as those whose output depends only on the profile of the given sequences,

i.e., ∆(x1, x2) = ∆̃(ϕ(x1, x2)) for all (x1, x2), where ˜̃∆ : Φn,n → {same , diff }. By

a similar argument as that in Observation 10, (considering permutations σ1, σ2 :

[n] → [n] of positions in the sequences instead of the alphabet symbols), we can

consider only profile-based tests.

3.2.2 Distinguishable distribution pairs

Definition 11. Two distributions (P1, P2) are said to be (n, δ)-different for some

n and 0 ≤ δ ≤ 1, if for all P3, there exists a profile-based test ∆ = ∆(P1, P2, P3)

such that

Pe(∆, P1, P2) ≤ δ and Pe(∆, P3, P3) ≤ δ,

using sequence pairs of length n and while considering (P1, P2) as different and

(P3, P3) as same. �

Following the discussion in Section 2.5, (P1, P2) is (n, δ)-different is same

as saying P1,2(Φn,n) is δ-distinguishable from all P3,3(Φn,n). Notice that we allow

different tests ∆ for each P1, P2, P3 to achieve an error probability of ≤ δ. We

choose our Pdiff to contain all (n, δ)-different pairs (P1, P2), i.e.,

Pdiff
def
= {(P1, P2) : (P1, P2) is (n, δ)-different}.

Again, by the discussion in Section 2.5, Pdiff is the largest class of (P1, P2) for

which we can hope for a profile-based test ∆ to exist such that Pe(∆,Psame ,Pdiff ) ≤
δ. That is, if a pair (P1, P2) is not (n, δ)-different, there is some (P3, P3) such that

for all profile-based tests ∆, either Pe(∆, P3, P3) > δ or Pe(∆, P1, P2) > δ and

hence cannot be included in Pdiff . While this Pdiff is the largest one could hope

for, we expect Pe(∆,Psame ,Pdiff ) to be much larger than δ for any profile-based

test ∆, since δ is the error bound when one is allowed to use different tests for

different (P1, P2, P3).



38

Our first main result is that the error probability of the profile-based GLRT

∆P̂ (ϕ) is Pe(∆
P̂ (ϕ), P1, P2) ≤

√
δ · e6n2/3

, which is small when δ ≤ e−14n2/3
. Along

with the above discussion, this implies that the ∆N(ϕ) is competitive against any

other test whose error probability is δ ≤ e−14n2/3
. That is, if there is a profile-

based test ∆ such that Pe(∆, P1, P2) ≤ e−14n2/3
when (P1, P2) ∈ Psame ∪P ′diff , then

P ′diff ⊂ Pdiff that consists of (n, δ)-different distributions where δ ≤ e−14n2/3
and

hence Pe(∆
P̂ (ϕ), P1, P2) ≤ e−n

2/3
when (P1, P2) ∈ Psame ∪ Pdiff .

Theorem 12. For all n ≥ 8, all 0 < δ ≤ exp(−12n2/3), and all pairs distributions

(P1, P2) that are either same or (n, δ)-different, the error probability of the test

∆P̂ (ϕ) using threshold parameter t =
√
δ, i.e., P̂3,3(ϕ(X1,X2))

P̂1,2(ϕ(X1,X2))

same

diff

><
√
δ is

Pe(∆
P̂ (ϕ), P1, P2) ≤

√
δ · e6n2/3

.

The theorem is proved in the next section by using a general result about

the competitive properties of several tests that are variants of GLRT. Results of a

similar flavor can be found in [23]. We also show a simpler test ∆P̂1(ϕ) in the next

section, that involves computing the PML of only a single pattern, P̂ (Ψ(X1X2)),

and offers similar error guarantee as ∆P̂ (ϕ).

3.3 Competitivity of GLRT for composite hy-

pothesis testing

We recall the general composite hypothesis testing problem considered in

Section 2.5. Let Z be a discrete alphabet of size |Z|. Let P and Q be two

collections of probability distributions, all of which are on alphabet Z. Given a

random variable Z distributed according a distribution that belongs to either P
or Q, we want to find out which of them it is, with minimum error. A test ∆

outputs ∆(Z) = P or Q to indicate the collection P or Q respectively, and is

therefore a mapping ∆ : Z → {P , Q }. The error probability of ∆ with respect to

a distribution P ∈ P is

Pe(∆, P )
def
= P (∆(Z) = Q ) =

∑
z∈Z:∆(z)=Q

P (z),
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where Z ∼ P . Similarly, for Q ∈ Q,

Pe(∆, Q)
def
= Q(∆(Z) = P ),

where Z ∼ Q.The error probability of ∆ with respect to P and Q is its maximum

error probability over all distributions in P and Q,

Pe(∆)
def
= Pe(∆,P ,Q)

def
= max

R∈P∪Q
Pe(∆, R) = max{max

P∈P
Pe(∆, P ),max

Q∈Q
Pe(∆, Q)}.

A commonly used test for this problem is the generalized likelihood ratio

test (GLRT), also called simply the likelihood ratio test, which assigns Z to the

class under which it has higher maximum likelihood. Let P̂ (z)
def
= maxP∈P P (z),

Q̂(z)
def
= maxQ∈QQ(z) and R̂(z)

def
= maxR∈RR(z) denote the maximum likelihood

of each symbol z ∈ Z under P , Q, and R def
= P ∪Q, respectively. Two versions of

GLRT are commonly used in the literature, defined as follows.

Definition 13. The test GLRT-1 or G1 is given by

∆
G1

(a)
def
=

P , if P̂ (z)/Q̂(z) > 1

Q , if P̂ (z)/Q̂(z) ≤ 1,

for all a ∈ A, and denoted in short as P̂ (Z)
P

Q

>< Q̂(Z). �

The test is motivated by the well known simple fact that for the problem

of simple hypothesis testing where we want to find whether a sample X has been

generated by a distribution P or a distribution Q (and both cases are equally

likely), the test that minimizes the error probability is P (Z)
P

Q

>< Q(Z). For compos-

ite hypothesis testing, since we do not know which distribution to consider from

each class, it is natural to plug-in the maximum likelihood estimates in place of

the actual likelihoods. Another commonly used test is the following one [44].

Definition 14 (GLRT-2). The test GLRT-2 or G2 is given by

∆
G2,t

(a)
def
=

P , if P̂ (z)/R̂(z) > t

Q , if P̂ (z)/R̂(z) ≤ t,

for some real threshold 0 < t < 1. �
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The ratio P̂ (z)/R̂(z) ≤ 1, i.e., P̂ (z) ≤ R̂(z), since the maximization in

P̂ (a) is performed on a smaller set P ⊂ R. Hence, we need t < 1, otherwise

∆
G2,t

(z) ≡ Q for all z ∈ Z. A possible advantage of the test GLRT-2 is that it may

be easier to compute R̂(z) as opposed to Q̂(z). As shown later in the analysis of

the error probability of these tests, we may consider any R′ ⊃ P ∪ Q instead of

R. In particular, we can consider the degenerate case of R′ being the set of all

distributions on Z which leads to the test below.

Definition 15. The test GLRT-3 or G3 is

∆
G3,t

(z)
def
=

P , if P̂ (z) > t

Q , if P̂ (z) ≤ t,

for some t < 1. �

Sometimes, it may not be easy to find P̂ (z) or Q̂(z) for all a ∈ A, but we

may have approximate estimates of them. We consider three such tests.

Definition 16. Let f : Z → R be such that for some reals c1 ≤ c2,

c1 · P̂ (z) ≤ f(z) ≤ c2 · P̂ (z)

for all z ∈ Z. The test GLRT-4 or G4 is

∆
G4,t

(z)
def
=

P , if f(z) > t

Q , if f(z) ≤ t,

for some t < c2. �

Definition 17. Let g : Z → R be such that for some reals c3 ≤ c4,

c3 · P̂ (z) ≤ g(z) ≤ c4 ·
P̂ (z)

R̂(z)

for all z ∈ Z. The test GLRT-5 or G5 is

∆
G5,t

(z)
def
=

P , if g(z) > t

Q , if g(z) ≤ t,
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for some t < c4. �

In GLRT-5, we can consider any R′ ⊃ P ∪ Q instead of R. The extreme

case of R̂(z) ≡ 1 for all z ∈ Z results in GLRT-4.

Definition 18. Let g : Z → R be such that for some reals c5 ≤ c6,

c5 ·
P̂ (z)

Q̂(z)
≤ h(z) ≤ c6 ·

P̂ (z)

Q̂(z)

for all z ∈ Z. The test GLRT-6 or G6 is

∆
G6,t

(z)
def
=

P , if h(z) > t

Q , if h(z) ≤ t,

for some t > 0. �

The following lemma shows a competitive property about the error proba-

bility of the above six tests.

Lemma 19. Let P and Q be such that for some δ ∈ [0, 1], all (P,Q) ∈ P × Q
are δ-distinguishable. In other words, for all P ∈ P and Q ∈ Q, supp there is a

∆ = ∆(P,Q) such that Pe(∆, P ) ≤ δ and Pe(∆, Q) ≤ δ. Then

P1 Pe(∆
G1

) ≤ δ · |Z|.

P2 Pe(∆
G2,
√
δ
) ≤
√
δ · |Z|.

P3 Pe(∆
G3,δ

) ≤ δ · |Z|.

P4 Pe(∆
G4,c2δ) ≤ c2

c1
δ · |Z|.

P5 Pe(∆
G5,
√
c3c4δ) ≤

√
c4
c3

√
δ · |Z|.

P6 Pe(∆
G6,
√
c5c6δ) ≤

√
c6
c5
· δ · |Z|.
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Proof. The specific values of t for various tests can be derived by using the ar-

guments below for general t and then choosing t to minimize error both when

Z ∼ P ∈ P or Z ∼ Q ∈ Q.

P1: For any P ∈ P , when Z ∼ P ,

Pe(∆
G1

, P ) = P
( P̂ (Z)

Q̂(Z)
≤ 1
)

= P
(( P̂ (Z)

Q̂(Z)
≤ 1
)
∧ (P (Z) > δ)

)
+ P

(( P̂ (Z)

Q̂(Z)
≤ 1
)
∧ (P (Z) ≤ δ)

)
(a)

≤ 0 + P
(
P (Z) ≤ δ

)
=

∑
z:P (z)≤δ

P (z)

≤ |Z| · δ

where in (a), for the first term, we use that if P (Z) > δ, since P is δ-distinguishable

from all Q ∈ Q, Q(Z) ≤ δ for all Q and this Z, and hence Q̂(Z) ≤ δ. Thus,
P̂ (Z)

Q̂(Z)
≥ P (Z)

Q̂(Z)
> δ

δ
= 1 and there is no error in this case.

For the case when Z ∼ Q ∈ Q, Pe(∆
G1
, Q) ≤ δ · |Z| by a similar argument

and symmetry.

P2: If Z ∼ P ∈ P , then

Pe(∆
G2,
√
δ

, P ) = P
( P̂ (Z)

R̂(Z)
≤
√
δ
) (a)

≤ P (P (Z) ≤
√
δ) ≤ |Z| ·

√
δ,

where in (a), P̂ (Z)

R̂(Z)
≤
√
δ ⇒ P (Z) ≤ P̂ (Z) ≤

√
δ · R̂(Z) ≤

√
δ.

If Z ∼ Q ∈ Q, then

Pe(∆
G2,
√
δ

, Q) = Q
( P̂ (Z)

R̂(Z)
>
√
δ
) (a)

≤ Q(Q(Z) ≤
√
δ) ≤ |Z| ·

√
δ,

where in (a), P̂ (Z)

R̂(Z)
>
√
δ ⇒ Q(Z) ≤

√
δ. Otherwise, if Q(Z) >

√
δ ≥ δ, then

P̂ (Z) >
√
δ · R̂(Z) ≥

√
δ ·Q(Z) > δ. Thus, there is a P = P̂Z ∈ P such that both

P (Z) and Q(Z) are > δ, contradicting that P,Q are δ-distinguishable.

P3: If Z ∼ P ∈ P , then

Pe(∆
G3,δ

, P ) = P (P̂ (Z) ≤ δ) ≤ P (P (Z) ≤ δ) ≤ |Z| · δ.
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If Z ∼ Q ∈ Q, then

Pe(∆
G3,δ

, Q) = Q(P̂ (Z) > δ)
(a)

≤ Q(Q(Z) ≤ δ) ≤ |Z| · δ,

where in (a), P̂ (Z) > δ ⇒ Q(Z) ≤ δ. Otherwise if Q(Z) > δ, then P = P̂Z ∈ P
and Q are not δ-distinguishable leading to a contradiction.

P4: This is similar to P3. If Z ∼ P ∈ P , then

Pe(∆
G4,c2δ , P ) = P (f(Z) ≤ c2δ)

(a)

≤ P
(
P (Z) ≤ c2

c1

δ
)
≤ |Z| · c2

c1

δ,

since in (a), f(Z) ≤ c2δ ⇒ P (Z) ≤ P̂ (Z) ≤ f(Z)
c1
≤ c2δ

c1
.

If Z ∼ Q ∈ Q, then

Pe(∆
G4,c2δ , Q) = Q(f(Z) > c2δ)

(a)

≤ Q
(
Q(Z) ≤ c2

c1

δ
)
≤ |Z| · c2

c1

δ,

where in (a), f(Z) > c2δ ⇒ Q(Z) ≤ c2
c1
δ. Otherwise, Q(Z) > c2

c1
δ ≥ δ and P̂ (Z) ≥

f(Z)
c2

> δ, leading to a contradiction that P̂Z and Q are not δ-distinguishable.

P5: This is similar to P2. If Z ∼ P ∈ P , then

Pe(∆
G5,
√
c3c4δ

, P ) = P
(
g(Z) ≤

√
c3c4δ

) (a)

≤ P
(
P (Z) ≤

√
c4

c3

√
δ
)
≤ |Z|·

√
c3

c4

√
δ,

since in (a), g(Z) ≤
√
c3c4δ ⇒ P (Z) ≤ P̂ (Z) ≤ g(Z)

c3
≤
√

c4
c3
δ.

If Z ∼ Q ∈ Q, then

Pe(∆
G5,
√
c3c4δ

, Q) = Q
(
g(Z) >

√
c3c4δ

) (a)

≤ Q
(
Q(Z) ≤

√
c4

c3

√
δ
)
≤ |Z| ·

√
c3

c4

√
δ,

where in (a), g(Z) >
√
c3c4δ ⇒ Q(Z) ≤

√
c4
c3
δ. Otherwise, Q(Z) >

√
c4
c3
δ ≥ δ and

P̂ (Z) ≥ g(Z)R̂(Z)
c4

≥ g(Z)Q(Z)
c4

>
√
c3c4δ

√
δ

c4
= δ, leading to a contradiction that P̂Z and

Q are not δ-distinguishable.
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P6: This is similar to P1. When Z ∼ P ∈ P ,

Pe(∆
G6,
√
c5c6

, P ) = P
(
h(Z) ≤

√
c5c6

) (a)

≤ P
( P̂ (Z)

Q̂(Z)
≤
√
c6

c5

)
= P

(( P̂ (Z)

Q̂(Z)
≤
√
c6

c5

)
∧
(
P (Z) >

√
c6

c5

δ
))

+ P
(( P̂ (Z)

Q̂(Z)
≤
√
c6

c5

)
∧
(
P (Z) ≤

√
c6

c5

δ
))

(b)

≤ 0 + P
(
P (Z) ≤

√
c6

c5

δ
)

≤ |Z| ·
√
c6

c5

δ

where in (a), we use that c5
P̂ (Z)

Q̂(Z)
≤ h(Z). In (b), for the first term, we use that if

P (Z) >
√

c6
c5
δ > δ, then Q̂(Z) ≤ δ. Thus, P̂ (Z)

Q̂(Z)
≥ P (Z)

Q̂(Z)
>

√
c6
c5
δ

δ
=
√

c6
c5

and there is

no error in this case.

The case when Z ∼ Q ∈ Q is similar:

Pe(∆
G6,
√
c5c6

, Q) = P
(
h(Z) >

√
c5c6

)
≤ Q

( P̂ (Z)

Q̂(Z)
>

√
c5

c6

)
= Q

(( P̂ (Z)

Q̂(Z)
>

√
c5

c6

)
∧
(
Q(Z) >

√
c6

c5

δ
))

+Q
(( P̂ (Z)

Q̂(Z)
>

√
c5

c6

)
∧
(
Q(Z) ≤

√
c6

c5

δ
))

≤ 0 +Q
(
Q(Z) ≤

√
c6

c5

δ
)

≤ |Z| ·
√
c6

c5

δ. �

Clearly, the above lemma also holds when there is a single test ∆ such that

Pe(∆, R) ≤ δ for all R ∈ P ∪ Q, since it is implied that all (P,Q) ∈ P × Q are

δ-distinguishable.

Using the above general lemma, we prove Theorem 12.

Proof of Theorem 12. We observe that Psame = {(P3, P3)} and Pdiff =

{(P1, P2) : (P1, P2) are (n, δ)-different} satisfy the conditions of Lemma 19, i.e.,
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since we consider only profile-based tests, we consider Φn,n as Z. Likewise, the dis-

tributions induced by (P3, P3) ∈ Psame on Φn,n (i.e., the distribution of ϕ(X1, X2)

where (X1, X2) ∼ P n
3 ×P n

3 ) can be considered as P and those induced by (P1, P2) ∈
Pdiff can be considered as Q. Together with Lemma 2 that implies |Z| = |Φn,n| ≤
e6n2/3

, the theorem follows from P2 of Lemma 19. �

By using P3 of Lemma 19 for GLRT-3 of Definition 15 we see that the

following simplified GLRT ∆P̂1(ϕ) also has similar error guarantees as ∆P̂ (ϕ).

Corollary 20. For all n ≥ 8, all 0 < δ < exp(−12n2/3), the test ∆P̂1(ϕ) given by

P̂3,3(ϕ(X1, X2))
same

diff

>< δ has error probability Pe(∆
P̂1(ϕ),Psame,Pdiff) ≤ δ · e6n2/3

.

Proof Sketch. Similar to Theorem 12 and using P3 of Lemma 19. �

3.4 A closeness test based on pattern counts of

profiles

We have noted earlier that computing maximum likelihood of patterns of

even single sequences is difficult in general. We also saw this while applying ∆P̂ (ϕ)

to the simple cases in Example 9. By Observation 4, the maximum likelihood

(ratio) in ∆P̂1(ϕ) is

P̂3,3(ϕ(X1, X2)) = N(Φ(X1, X2))P̂ (Ψ(X1X2)) =
N(Φ(X1, X2))

N(Φ(X1X2))
P̂3,3(ϕ(X1, X2)),

and involves the maximum likelihood of a pattern or profile of the single sequence

X1X2, compared to computing the PML of both the joint pattern Ψ(X1, X2) and

of the single pattern Ψ(X1X2) in ∆P̂ (ϕ). Nevertheless, it still requires computing

the PML of the single pattern Ψ(X1X2), which may not be easy.

We therefore try to approximate the maximum likelihoods of patterns and

profiles with the aim of using GLRT-5 of Definition 18 along with P5 of Lemma

19. In [49], it was shown that the probability estimator Q for ψ ∈ Ψn, given by

Q(ψ)
def
=

1

|Φn|
1

N(ϕ(ψ))
,
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which assigns equal probability estimate to all profiles and equal estimate to all

patterns within a profile, is a good estimate for patten maximum likelihood. Specif-

ically, since

P̂ (ψ) =
P̂ (ϕ(ψ))

N(ϕ(ψ))
≤ 1

N(ϕ(ψ))
= |Φn| ·Q(ψ),

it follows that

Q(ψ) ≥ P̂ (ψ) · 1

|Φn|
≥ P̂ (ψ) · exp

(
− π

√
2

3

√
n
)
.

By a similar argument, it follows that for all joint patterns (ψ1, ψ2) ∈ Ψn,n,

the “inverse pattern count” estimator

Q(ψ1, ψ2)
def
=

1

|Φn,n|
1

N(Φ(ψ1, ψ2))

is a good estimate of P̂ (ψ1, ψ2), i.e.,

Q(ψ1, ψ2) ≥ P̂ (ψ1, ψ2) · e−6n2/3

.

Thus, to approximate the likelihood ratio

L
def
= L(ψ1, ψ2)

def
= L(ϕ(ψ1, ψ2))

def
=

P̂ (ψ1ψ2)

P̂ (ψ1, ψ2)
=
P̂3,3(ϕ(ψ1, ψ2))

P̂1,2(ϕ(ψ1, ψ2))

in ∆P̂ (ϕ), where (ψ1, ψ2) = Ψ(X1, X2), we use the combinatorial quantity

L′
def
= L′(ψ1, ψ2)

def
= L′(ϕ(ψ1, ψ2))

def
=

N(ϕ(ψ1, ψ2))

N(ϕ(ψ1ψ2))

by replacing the maximum likelihood of patterns with the inverse pattern counts

of their respective profiles. Note that (ψ1, ψ2) ∈ Ψn,n and ϕ(ψ1, ψ2) ∈ Φn,n are a

joint pattern and profile respectively, whereas ψ1ψ2 ∈ Ψ2n and ϕ(ψ1ψ2) ∈ Φ2n are

a single pattern and profile of length 2n respectively. Observe that Q(ψ1, ψ2) and

Q(ψ1ψ2) are good upper bounds (within a subexponential factor) for P̂ (ψ1, ψ2)

and P̂ (ψ1ψ2), so it is not immediate how L′ approximates L. For using GLRT-5

of Definition 18, we require both an upper bound and lower bound on L′. We also

keep in mind that to relate with the general composite hypothesis testing problem,

we use the correspondence Z ↔ Φn,n. With these considerations, we first observe

the following lower bound on L′.
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Observation 21. For all (ψ1, ψ2) ∈ Ψn,n,

P̂3,3(ϕ(ψ1, ψ2)) ≤ L′(ϕ(ψ1, ψ2)).

Proof. We have

L′ =
N(ϕ(ψ1, ψ2))

N(ϕ(ψ1ψ2))
=
N(ϕ(ψ1, ψ2))

N(ϕ(ψ1ψ2))

P̂3,3(ψ1, ψ2)

P̂3,3(ψ1, ψ2)

=
P̂3,3(ϕ(ψ1, ψ2))

P̂ (ϕ(ψ1ψ2))
≥ P̂3,3(ϕ(ψ1, ψ2)),

where in the second last equality, we use P3,3(ψ1, ψ2) = P3(ψ1ψ2) from Observation

4, and in the last inequality, P̂ (ϕ(ψ1ψ2)) ≤ 1. �

Hence, it remains to show an upper bound on L′ of the form suitable for

using GLRT-5. We show the following upper bound on L′ for using GLRT-5.

Lemma 22. For all joint patterns (ψ1, ψ2) ∈ Ψn,n,

L′(ϕ(ψ1, ψ2)) =
N(ϕ(ψ1, ψ2))

N(ϕ(ψ1ψ2))
≤ P̂3,3(ϕ(ψ1, ψ2))

P̂1,2(ϕ(ψ1, ψ2))

(n!)222n

(2n)!

<
P̂3,3(ϕ(ψ1, ψ2))

P̂1,2(ϕ(ψ1, ψ2))
·
√
πne

1
6n .

Before proceeding with the proof of above lemma, we immediately see that

this lemma and Observation 21 imply that GLRT-5 of Definition 18 can be used

along with P4 of Lemma 19 to obtain the following closeness test and show error

guarantees similar to that for ∆P̂ (ϕ) in Theorem 12 and ∆P̂1(ϕ) in Corollary 20.

Theorem 23. For all n ≥ 8, all 0 < δ < 1
4πne1/3n

exp(−12n2/3), and all pairs

distributions (P1, P2) that are either same or (n, δ)-different, the closeness test

∆N(ϕ) given by
N(ϕ(X1, X2))

N(ϕ(X1X2))

same

diff

><
√
δ · 4
√
πne

1
12n

has error guarantee

Pe(∆
N(ϕ), P1, P2) <

√
δ · e6n2/3√

πne
1

6n .

Thus, Pe(∆
N(ϕ),Psame,Pdiff) <

√
δ · e6n2/3√

πne
1

6n .
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Proof. The proof is along the lines of Theorem 12 by correspondence with the

general composite hypothesis testing problem. The test ∆N(ϕ) can be seen to be

of the form of GLRT-5 in Definition 18, with g = L′, c3 = 1 by Observation 21

and c4 = (n!)222n

(2n)!
<
√
πne

1
6n by Lemma 22. Thus, the result follows by using P4 of

Lemma 19. �

The rest of this section is devoted to proving Lemma 22. We begin with

a related result on the probabilities of joint types of i.i.d. sequence pairs. We

use the notation introduced for types in Section 2.2. We define the sum type

of a joint type τ =
(
(µ1(ai), µ2(ai))

)k
i=1
∈ T n,n as τs(τ)

def
=
(
µ(ai)

)k
i=1
∈ T 2n,

where µ(ai)
def
= µ1(ai) + µ2(ai) for i = 1, 2, . . . , k. The probability of a (sum) type

τ ∈ T 2n under a pair of distributions (P1, P2) is the probability of the set of all

types τ ∈ T n,n such that τs(τ) = τ , i.e.,

P1,2(τ)
def
=

∑
τ∈T n,n:
τs(τ)=τ

P1,2(τ).

For any pair of distributions (P1, P2) over K×K, P1/2
def
= (P1 + P2)/2 denotes the

distribution over K such that P1/2(ai) = (P1(ai) + P2(ai))/2 for i = 1, 2, . . . , k.

Observation 24. For all types τ ∈ T 2n and all (p1, p2),∑
τ∈T n,n:
τs(τ)=τ

P1,2(τ) = P1,2(τ) ≤ P1/2(τ)
(n!)222n

(2n)!
< P1/2(τ)

√
πne

1
6n .

Proof. Let τ =
(
µ(ai)

)k
i=1

. Then,

P1,2(τ) =
∑

τ∈T n,n:
τs(τ)=τ

P1,2(τ)

=
∑

(µ1(a1),...,µ1(ak)):
0≤µ1(ai)≤µ(ai) for i=1,...,k,

and µ1(a1)+···+µ1(ak)=n

n!n!
k∏
i=1

1

µ1(ai)!(µ(ai)− µ1(ai))!
P1(ai)

µ1(ai)P2(ai)
µ(ai)−µ1(ai)

=
n!n!∏k

i=1 µ(ai)!

∑
(µ1(a1),...,µ1(ak)):

0≤µ1(ai)≤µ(ai) for i=1,...,k,
and µ1(a1)+···+µ1(ak)=n

k∏
i=1

(
µ(ai)

µ1(ai)

)
P1(ai)

µ1(ai)P2(ai)
µ(ai)−µ1(ai)



49

≤ n!n!∏k
i=1 µ(ai)!

∑
(µ1(a1),...,µ1(ak)):

0≤µ1(ai)≤µ(ai) for i=1,...,k

k∏
i=1

(
µ(ai)

µ1(ai)

)
P1(ai)

µ1(ai)P2(ai)
µ(ai)−µ1(ai)

=
n!n!∏k

i=1 µ(ai)!

k∏
i=1

( µ(ai)∑
µ1(ai)=0

(
µ(ai)

µ1(ai)

)
P1(ai)

µ1(ai)P2(ai)
µ(ai)−µ1(ai)

)

=
n!n!∏k

i=1 µ(ai)!

k∏
i=1

(P1(ai) + P2(ai))
µ(ai)

=
(n!)222n

(2n)!

(
2n

µ(a1), µ(a2), . . . , µ(ak)

) k∏
i=1

(P1(ai) + P2(ai)

2

)µ(ai)

=
(n!)222n

(2n)!
P1/2(τ ′). �

The profile of a type τ ∈ T n is ϕ(τ)
def
= ϕ(x), where x is any sequence whose

type is τ(x) = τ . Similarly, for any τ ∈ T n1,n2 , ϕ(τ)
def
= ϕ(x1, x2), where (x1, x2) is

any sequence pair such that τ(x1, x2) = τ .

Observation 25. For all profiles ϕ ∈ Φn and all distributions P ,

P (ϕ) =
∑

τ∈T n:ϕ(τ)=ϕ

P (τ).

Likewise, for all profiles ϕ ∈ Φn1,n2 and all pairs of distributions (P1, P2),

P1,2(ϕ) =
∑

τ∈T n1,n2 :ϕ(τ)=ϕ

P1,2(τ). �

The sum profile of a profile ϕ ∈ Φn,n is ϕs(ϕ)
def
= ϕ(x1x2) ∈ Φ2n where

(x1, x2) is any sequence pair whose profile is ϕ(ψ1, ψ2) = ϕ. Hence, if ϕ = [ϕµ1,µ2 ],

where µ1 = 0, 1, . . . , n and µ2 = 0, 1, . . . , n, then ϕs(ϕ) = (ϕ1, ϕ2, . . . , ϕ2n) is given

by ϕµ =
∑

µ1+µ2=µ ϕµ1,µ2 . The probability of a (sum) profile ϕ ∈ Φ2n under a

pair of distributions (P1, P2) is the probability P1,2 assigns to the set of all profiles

ϕ ∈ Φn,n such that ϕs(ϕ) = ϕ, i.e.,

P1,2(ϕ)
def
=

∑
ϕ∈Φn,n:
ϕs(ϕ)=ϕ

P1,2(ϕ).

The following lemma on profile probabilities is analogous to the convexity

of KL-divergence.
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Lemma 26. For all ϕ ∈ Φ2n and all (P1, P2),∑
ϕ∈Φn,n:
ϕs(ϕ)=ϕ

P1,2(ϕ) = P1,2(ϕ) ≤ P1/2(ϕ)
(n!)222n

2n!
< P1/2(ϕ)

√
πne

1
6n .

Proof. Using Observations 24 and 25,

P1,2(ϕ) =
∑

ϕ∈Φn,n:
ϕs(ϕ)=ϕ

P1,2(ϕ)

=
∑

τ∈T n,n:
ϕs(ϕ(τ))=ϕ(τs(τ))=ϕ

P1,2(τ)

=
∑
τ∈T 2n:
ϕ(τ)=ϕ

P1,2(τ)

≤
∑
τ∈T 2n:
ϕ(τ)=ϕ

(n!)222n

(2n)!
P1/2(τ)

= P1/2(ϕ)
(n!)222n

(2n)!
. �

And we are ready to prove Lemma 22.

Proof of Lemma 22. Let (P1, P2) be a pair of distributions that maximizes

P1,2(ψ1, ψ2), i.e., P̂ (ψ1, ψ2) = P1,2(ψ1, ψ2). Note that ϕs(ϕ(ψ1, ψ2)) = ϕ(ψ1ψ2).

Using Lemma 26, we have

N(ϕ(ψ1, ψ2))P̂ (ψ1, ψ2) = N(ϕ(ψ1, ψ2))P1,2(ψ1, ψ2)

= P1,2(ϕ(ψ1, ψ2))

≤ P1,2(ϕs(ϕ(ψ1, ψ2)))

≤ P1/2(ϕs(ϕ(ψ1, ψ2)))
(n!)222n

(2n)!

= P1/2(ϕ(ψ1ψ2))
(n!)222n

(2n)!

≤ P̂ (ϕ(ψ1ψ2))
(n!)222n

(2n)!

= N(ϕ(ψ1ψ2))P̂ (ψ1ψ2)
(n!)222n

(2n)!
.
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Thus,

N(ϕ(ψ1, ψ2))

N(ϕ(ψ1ψ2))
≤ P̂ (ψ1ψ2)

P̂ (ψ1ψ2)

(n!)222n

(2n)!
=
P̂3,3(ϕ(ψ1, ψ2))

P̂1,2(ϕ(ψ1, ψ2))

(n!)222n

(2n)!
. �

3.5 Sample complexity implications

The error analysis results of Theorems 12 and 23 can be rephrased in terms

of sample complexity. While Theorems 12 and 23 are applicable only when δ ≤
exp(−14n2/3), this section partially addresses the general case when δ < 1

2
.

Observation 27. If (P1, P2) are (n, δ)-different distributions for some 0 < δ < 1
2
,

then they are also (n′, δ′)-different, where

n′ = min
{

20n,
15000n3

D(1
2
||δ)3

}
and δ′ ≤ δ2 · e−14n′2/3 ,

where D(δ1||δ2)
def
= δ1 log δ1

δ2
+ (1− δ1) log 1−δ1

1−δ2 .

Proof sketch Since (P1, P2) are (n, δ)-different, for any P3 there is a test that

can distinguish (P1, P2) and (P3, P3) with error probability ≤ δ. We can obtain

another test for sequences of length n′ = (2r + 1)n such that the error proba-

bility of this test is δ′ =
∑2r+1

i=r+1 δ
i
(

2r+1
i

)
(1 − δ)2r+1−i by using the original test

on (2r + 1) pairs of length-n sequences and outputting the majority decision.

It can be verified that (2r + 1) ≥ min{19, 15000n2

D( 1
2
||δ)3} suffices to guarantee that∑2r+1

i=r+1 δ
i
(

2r+1
i

)
(1− δ)2r+1−i ≤ δ2 · e−14((2r+1)n)2/3

. �

Corollary 28. If (P1, P2) are (n, δ)-different for some 0 < δ < 1
4
, then they

are also (n′, δ′)-different where δ′ ≤ δ2 · e−14n′2/3 and n′ = max
{

19n, 120000n3

(log2
1
4δ

)3

}
.

Furthermore if δ < e−19n2/3
, then n′ = 19n.

Hence, for such (P1, P2), the closeness test ∆N(ϕ) guarantees an error prob-

ability Pe(∆
N(ϕ), P1, P2) ≤ δ using sequences of length n′.

Proof Sketch. Follows from Observation 27 and Theorem 23. �
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3.6 Remarks

3.6.1 Sequences of unequal lengths

The results in this chapter are also valid when (X1, X2) have unequal

lengths n1, n2. The definition of (n, δ)-different distributions (P1, P2) can be ex-

tended to (n1, n2, δ)-different distributions by their distinguishability on Φn1,n2 .

The tests ∆P̂ (ϕ), ∆P̂1(ϕ) and ∆N(ϕ) remain unchanged, with error guarantees now

having the factor e3(n
2/3
1 +n

2/3
2 ) instead of e6n2/3

earlier. In the proofs of ∆N(ϕ),

i.e., Lemma 22 and its sublemmas, instead of P1/2 = (P1 + P2)/2, one uses

Pη = ηP1 + (1− η)P2 = n1

n1+n2
P1 + n2

n1+n2
P2 where η = n1

n1+n2
to make the Binomial

theorem pass through in Lemma 24 and thus incurs a factor of n1!n2!
(n1+n2)!

(n1+n2)n1+n2

n
n1
1 n

n2
2

=

O(
√

n1n2

n1+n2
) instead of O(

√
n) earlier.

3.6.2 Other problems of testing symmetric properties

It is easy to see that the PML-based GLRT for closeness testing can be

generalized for other problems of testing symmetric properties, as given by the

following lemma. We use the notation from Section 2.3.

Lemma 29. Let π be a symmetric property of lists of d distributions (P1, . . . , Pd).

Let R be a subset of the range of π and let P1
def
= {(P1, . . . , Pd) : π(P1, . . . , Pd) ∈

R}. A list of distributions (P ′1, . . . , P
′
d) is (n1, . . . , nd, δ)-different if P ′1,...,d(Φ

n1,...,nd)

is δ-distinguishable from all P1,...,d(Φ
n1,...,nd) where (P1, . . . , Pd) ∈ P1, i.e., for each

(P1, . . . , Pd) ∈ P1, there is a test that can distinguish between (P ′1, . . . , P
′
d) and

(P1, . . . , Pd) when given ϕ(X1, . . . , Xd) where (X1, . . . , Xd) ∼ (P n1
1 , . . . , P n

d ) or

∼ (P ′n1
1 , . . . , P

′nd
d ) with error probability δ. Let P2 consists of all (n1, . . . , nd, δ)-

different lists of distributions.

Then, given (X1, . . . , Xd) ∼ (P1, . . . , Pd) ∈ P1 ∪ P2, the PML-based GLRT

max(P1,...,Pd)∈P1 P1,...,d(ϕ(X1, . . . , Xd))
1

2

>< δ has an error probability that is at most

δ · |Φn1,...,nd| ≤ δ · e2(1+ 1
d

)
∑d
j=1 n

d
d+1
j .

In terms of sample complexity, when n1 = n2 = · · · = nd = n, i.e., P2

consists of (n, . . . , n, δ)-different distributions and δ < 1
4
, the PML-based GLRT has
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error probability at most δ using sequences of length n′ = O(max
{
n, nd+1

logd+1( 1
4δ

)

}
).

Proof Sketch. Follows from P3 of Lemma 19 and Lemma 2. The sample com-

plexity argument is similar to that for Observation 27 and Corollary 28. �

The above lemma and the PML-based GLRT are therefore useful when-

ever the maximum likelihood in the GLRT, max(P1,...,Pd)∈P1 P1,...,d(ϕ(X1, . . . , Xd))

can be computed or approximated efficiently. In several problems, both these

conditions are satisfied. For example, consider the following corollary for testing

uniformity of distributions.

Corollary 30. Let U [k] denote the uniform distribution on k symbols. Let P1 =

{U [k] : k = 1, 2, . . . , } be the set of all uniform distributions. Suppose we are

given X ∼ P n where P is either a uniform distribution or a distribution that

is very different from uniform so that it can be distinguished from any uniform

distribution with error probability at most δ ≤ e−4n1/2
. The test

max
P∈P1

P (ϕ(X)) = N(ϕ(X)) max
k

km(X)

kn
1

2

>< δ

(where output 1 indicates uniform and 2 indicates non-uniform) has error proba-

bility at most δ · e3n1/2 ≤ e−n
1/2

. �

Note that the quantity f(n,m)
def
= maxk(k

m/kn) in the above corollary can

be computed easily. In other property testing problems, computing the PML under

P1 in Lemma 29 may not be easy, e.g., for testing whether entropy H(P ) is < α

or > β given alphabet size bounds.
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Chapter 4

Classification

In this chapter, we consider the problem of classification which is related

to closeness testing and has a very wide range of applications. The goal here is

to classify test data into one among several classes characterized by training data

belonging to them. For simplicity, we consider here the case of binary classification,

where there are two classes, although most results extend to multiple classes as

well. Let P1 and P2 be two unknown distributions on alphabet A. We are given

two length-n training sequences X1 ∼ P n
1 and X2 ∼ P n

2 . Given a third test

sequence Y of length n, distributed either ∼ P n
1 or ∼ P n

2 , we want to find which

one of them generated it. A classifier Γ : An × An × An → {1, 2} outputs either

Γ(X1, X2, Y ) = 1 or 2 to indicate whether Y is generated by P1 or P2. The error

probability of the classifier is the probability that it classifies Y incorrectly. We

consider the worst error probability over both cases Y ∼ P n
1 and Y ∼ P n

2 , i.e.,

Pe(Γ, P1, P2)
def
= max

{
P1,2,1

(
Γ(X1, X2, Y ) = 2

)
, P1,2,2

(
Γ(X1, X2, Y ) = 1

)}
,

where, by an abuse of notation as in earlier chapters, P1,2,1 denotes the distribution

(X1, X2, Y ) ∼ P n
1 × P n

2 × P n
1 and P1,2,2 is defined similarly.

Since it is natural to require that classifiers have the same error perfor-

mance for all (P1, P2) that have the same multiset M(P1, P2), regardless of the

specific way they M(P1, P2) is associated with the alphabet, we only consider

symmetric classifiers that depend on X1, X2, Y only through their joint pattern

Ψ(X1, X2, Y ). Furthermore, since sequences are generated i.i.d., we only consider
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profile-based classifiers that depend on the given sequences through their joint pro-

file ϕ(X1, X2, Y ). This follows from arguments similar to that in Subsection 3.2.1

or that in [9, Section 3.1.3].

Following the notation in Section 2.5, classification can therefore be con-

sidered as a composite hypothesis testing problem on the alphabet Z = Φn,n,n =

{ϕ(X1, X2, Y )} where the classes of distributions on Φn,n,n are

P1
def
= {P1,2,1(Φn,n,n)} and P2

def
= {P1,2,2(Φn,n,n)},

i.e., the distributions induced on Φn,n,n by ϕ(X1, X2, Y ) when (X1, X2, Y ) ∼
P n

1 ×P n
2 ×P n

1 and (X1, X2, Y ) ∼ P n
1 ×P n

2 ×P n
2 respectively, by various P1, P2. Fol-

lowing the discussion in Section 2.5 and similar to the definition of (n, δ)-different

distribution pairs considered in Subsection 3.2.2, we define (n, δ)-classifiable dis-

tributions as follows.

Definition 31. Two distributions P1 and P2 are said to be (n, δ)-classifiable

if P1,2,1(Φn,n,n) is δ-distinguishable from all P3,4,4(Φn,n,n) and P1,2,2(Φn,n,n) is δ-

distinguishable from P3,4,3(Φn,n,n).

In other words, for all P3, P4 there is a profile-based test that can distinguish

between ϕ(X1, X2, Y ) where (X1, X2, Y ) ∼ P n
1 ×P n

2 ×P n
2 or ∼ P n

3 ×P n
4 ×P n

4 with

error probability at most δ. Similarly, for all P3, P4 there is a profile-based test

that can distinguish between ϕ(X1, X2, Y ) where (X1, X2, Y ) ∼ P n
1 × P n

2 × P n
2 or

∼ P n
3 × P n

4 × P n
2 with error probability at most δ. �

The motivation is the same as in Section 2.5 and Subsection 3.2.2. If two

distributions P1, P2 are not (n, δ)-classifiable, then for some P3, P4, say P1,2,1(Φn,n,n)

is not δ-distinguishable from P3,4,4(Φn,n,n). Hence, when given (X1, X2, Y ) ∼ P1,2,1

one cannot say reliably with error probability ≤ δ whether Y was generated by the

same distribution as X1, e.g., by P1,2,1 or by the same distribution as X2, e.g., by

P3,4,4. Thus, (n, δ)-classifiable distribution pairs are the only pairs for which one

can hope to have classification error probability of at most δ. And we want to find

classifiers whose error probability is not much larger than δ for (n, δ)-classifiable

distribution pairs.



56

4.1 Closeness testing and classification

It is easy to see the relationship between classification and closeness testing.

One can simply test whether X1, Y are generated by the same distribution or

not using a closeness test and output 1 or 2 respectively. We therefore have the

following observations.

Observation 32. If two distributions (P1, P2) are (n, δ)-different, they are also

(n, δ)-classifiable.

Proof Sketch. Clearly P1,2,1(Φn,n,n) is δ-distinguishable from all P3,4,4(Φn,n,n),

since they can be distinguished using the second and third components of their

profiles with error probability at most δ which is in turn because P2,1(Φn,n) is

δ-distinguishable from P4,4(Φn,n) due to the fact that (P1, P2) are (n, δ)-different.

Similarly, P1,2,2(Φn,n,n) is δ-distinguishable from all P3,4,3(Φn,n,n) using the first and

third components of ϕ ∈ Φn,n,n. �

Observation 33. For all distribution pairs P1, P2 that are (n, δ)-different, the

classifier Γ∆N(ϕ)
based on the closeness test ∆N(ϕ) given by

N(ϕ(X1, Y ))

N(ϕ(X1Y ))

1

2

><
N(ϕ(X2, Y ))

N(ϕ(X2Y ))

has error probability Pe(Γ
∆N(ϕ)

, P1, P2) ≤
√
δ · e7n2/3

.

Proof Sketch. When X1, X2, Y ∼ P n
1 ×P n

2 ×P n
1 , since (P1, P2) are (n, δ)-different,

by Theorem 23,

Pr
(N(ϕ(X1, Y ))

N(ϕ(X1Y ))
≤
√
δ · 4
√
πne

1
12n

)
≤
√
δ · e6n2/3√

πne
1

6n

and

Pr
(N(ϕ(X2, Y ))

N(ϕ(X2Y ))
>
√
δ · 4
√
πne

1
12n

)
≤
√
δ · e6n2/3√

πne
1

6n .

Hence, by union bound,

P1,2,1

(
Γ∆N(ϕ)

(X1, X2, Y ) = 2
)

= Pr
(N(ϕ(X1, Y ))

N(ϕ(X1Y ))
≤ N(ϕ(X2, Y ))

N(ϕ(X2Y ))

)
≤ 2
√
δ · e6n2/3√

πne
1

6n .
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Similar is the case when Y ∼ P n
2 and the result follows. �

It is also worth noting that most of the known classifiers are essentially

based on relative tests for closeness between (X1, Y ) and (X2, Y ). In the next

section we consider a direct approach to classification.

4.2 Classifiers based on direct GLRT on profiles

Since classification is a composite hypothesis testing problem between the

classes P1 and P2 defined earlier, it is natural to consider GLRTs based on these

classes. We thus have the following GLRTs and their error guarantees.

Lemma 34. For all distribution pairs P1, P2 that are (n, δ)-classifiable, the clas-

sifier ΓP̂ (ϕ) given by

P̂1,2,1(ϕ(X1, X2, Y ))
1

2

>< P̂1,2,2(ϕ(X1, X2, Y ))

has error probability Pe(Γ
P̂ (ϕ), P1, P2) ≤ δ · e8n3/4

. Here P̂1,2,1 corresponds to the

maximum likelihood over P1 and P̂1,2,2 over P2.

Proof Sketch. Let P ′1
def
= {P3,4,3(Φn,n,n) : P3, P4 are (n, δ)-classifiable} and sim-

ilarly P ′2
def
= {P3,4,4(Φn,n,n) : P3, P4 are (n, δ)-classifiable} be the (n, δ)-classifiable

subsets of P1 and P2. Also let P̂ ′1,2,1(ϕ) and P̂ ′1,2,2(ϕ) denote the maximum likeli-

hood of ϕ under P ′1 and P ′2 respectively. Let ϕ(X1, X2, Y ) = ϕ. If Y ∼ P n
1 , by

using P1 of Lemma 19, and the fact that P1, P2 is (n, δ)-classifiable, P̂ ′1,2,1(ϕ) >

P̂1,2,2(ϕ) with error probability at most δ · |Φn,n,n|. Since P̂1,2,2(ϕ) ≥ P̂ ′1,2,1(ϕ), it

follows that P1,2,1

(
Γ∆N(ϕ)

(X1, X2, Y ) = 2
)
≤ δ · |Φn,n,n|. Similar is the case when

Y ∼ P n
2 . Thus, the result follows using the bound on |Φn,n,n| from Lemma 2. �

Similar to the problem of closeness testing, by replacing the maximum likeli-

hoods of the profiles in the GLRT with their approximations based on their inverse

pattern counts, we obtain the following classifier and along with its error guarantee.
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Theorem 35. For all distribution pairs P1, P2 that are (n, δ)-classifiable, the clas-

sifier ΓN(ϕ) given by

N(ϕ(X1, X2Y ))
1

2

>< N(ϕ(X1Y ,X2))

has error probability Pe(Γ
N(ϕ), P1, P2) ≤

√
δ · e18n3/4

+ e−n
3/4

.

Proof Sketch. Along the lines of Observation 21 and Lemma 22, it can be shown

that

P̂1,2,1(ϕ(X1, X2, Y )) ≤ N(ϕ(X1, X2, Y ))

N(ϕ(X1Y ,X2))
≤ P̂1,2,1(ϕ(X1, X2, Y ))

P̂1,2,3(ϕ(X1, X2, Y ))
·
√
πne

1
6n

and

P̂1,2,2(ϕ(X1, X2, Y )) ≤ N(ϕ(X1, X2, Y ))

N(ϕ(X1, X2Y ))
≤ P̂1,2,2(ϕ(X1, X2, Y ))

P̂1,2,3(ϕ(X1, X2, Y ))
·
√
πne

1
6n .

Hence, we have

P̂1,2,3(ϕ(X1, X2, Y ))
√
πne

1
6n

P̂1,2,1(ϕ(X1, X2, Y ))

P̂1,2,2(ϕ(X1, X2, Y ))

≤ N(ϕ(X1, X2Y ))

N(ϕ(X1Y ,X2))
≤

P̂1,2,1(ϕ(X1, X2, Y ))

P̂1,2,2(ϕ(X1, X2, Y ))

√
πne

1
6n

P̂1,2,3(ϕ(X1, X2, Y ))
.

Let ϕ = ϕ(X1, X2, Y ). When Y ∼ P n
1 ,

P1,2,1

(
P̂1,2,3(ϕ)) ≤ e−9n3/4) ≤ P1,2,1

(
P1,2,1(ϕ(X1, X2, Y )

)
≤ |Φn,n,n| · e−9n3/4)
≤ e−n

3/4

.

Thus, with high probability ≥ 1 − e−n3/4
,
√
πne

1
6n/P̂1,2,3(ϕ) ≤ e10n3/4

. When this

bound holds, using P6 of Lemma 19, (and considering P ′1 and P ′2 similar to Theo-

rem 34), it follows that the error probability is
√
δ · e18n2/3

. Using union bound on

the error probabilities, and performing a similar analysis for Y ∼ P n
2 , the result

follows. �
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Variants of a different but simple classifier ΓQ(Ψ) obtained as a straightfor-

ward application of the pattern probability estimators in [49] were considered in

[58, 4]. It is motivated by the fact that if a classifier has access only toM(P1) and

M(P2) (but not M(P1, P2)), the test obtained by assuming a uniform prior over

all possible mappings ofM(P1) andM(P2) to the underlying alphabet A is given

by
1

(k −m1)∆m1

P1(Ψ(X1Y ))

P1(Ψ(X1))

1

2

><
1

(k −m2)∆m2

P2(Ψ(X2Y ))

P2(Ψ(X2))
,

where m1 = m(X1), ∆m1 = m(X1Y ) − m(X1), and m2 and ∆m2 are defined

similarly. This is followed by replacing the pattern probabilities by their maxi-

mum likelihood counterparts, and thereafter by their approximations using pattern

counts of their profiles. In the next section, experimental results for text catego-

rization are shown for a smoothed version of this estimator, which is based on

the computationally efficient sequential pattern probability estimator in [49]. It is

referred to as the single pattern (SP) classifier in the experiments. Experimental

results are also shown for a similarly smoothed version of ΓN(ϕ), and is referred to

as the joint pattern (JP) classifier. The classifier Γ∆N(ϕ)
is similar to ΓQ(Ψ) and is

not considered in the experiments.

4.3 Text classification experiments

We show experimental results for text classification to demonstrate the

performance of pattern based classifiers. In this application, one is given a data

set consisting of documents, for example, electronic messages from newsgroups,

along with their pre-assigned labels, for example, their topic, and the task is to

label new documents.

One of the techniques that works reasonably well in practice is Naive Bayes

[39], which assumes a Bag of Words model, i.e., the words in each document are

generated i.i.d. according to the distribution of the class to which it belongs.

Naive Bayes classifiers are LRT’s that use one of the several well known prob-

ability estimators, for example, Laplace or Good-Turing estimators, to estimate

the underlying distributions of the classes from the training documents. Our ex-
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periments show that pattern based classifiers, which are essentially Naive Bayes

classifiers that use pattern probability estimators, can perform as good as the

state-of-the-art techniques like Support Vector Machine (SVM).

We use the rainbow toolkit [43] for classification, with additional support

for pattern based classifiers and optimal classifiers that use actual distributions for

synthetic data sets. We compare between Laplace (lap), SVM with linear kernel

(svm), and the classifiers based on single patterns (sp) and joint patterns (jp)

described at the end of Section 4.2. We note that the SVM with linear kernel

with word counts as features is equivalent to the classifier analyzed in [35] that

looks at the L2 distance between the empirical distributions of the training and

test sequences.

4.3.1 Synthetic data sets

These experiments are intended to demonstrate that pattern based classi-

fiers work well when the data sets indeed confirm to the Bag of words model. The

data sets, which try to resemble actual data sets, were generated as follows. For

simplicity we consider data sets with 2 classes. The distributions corresponding to

both classes have the same monotone distribution, i.e., probability multiset, which

is a Zipf distribution [76]:

pi =
c

(i0 + i)e
,

for i = 1, 2, . . . , k. The exponent e is usually 1 or close to 1. The normalizing

constant is c and the initial offset is i0. In the experimental results shown in

Table 4.1, k = 30, 000, i0 = 500 and exponent e takes values 1 or 0.8. The actual

distributions P1 and P2 is obtained by permuting the monotone distribution, and

ensuring that the two distributions are not too different so that they are non-trivial

to classify, similar to real data sets. This is achieved by permuting the probabilities

randomly such that the final index of each probability is within a range that is

grows with the original index. Specifically, if a word has rank i1, i.e., probability

pi1 in P1, then its rank in P2 is i2 = rank(i1 + R · ix1) (and probability in P2 is

pi2) where R is a uniform random number in the range [0, 1] and the power x,

typically between 1 and 2, determines how far the indices can get permuted from
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their original values. Thus, smaller probabilities at the tail of the distribution

are permuted within a farther range. There are 1000 documents per class and

75 words per document and the documents are split 50-50 into training and test.

Thus, the length of training sequences is 1000 × 75 × 0.5 = 37500. And there

are 500 test sequences of length 75 from each class. The error probability is the

average over these 1000 test sequences. We also average over multiple random splits

and multiple random index permutations. It can be seen from the results shown

in Table 4.1, that pattern based classifiers, particularly joint patterns, perform

favorably.

Table 4.1: Accuracy of different classifiers on synthetic datasets.

e x lap svm sp jp

1.0 1.0 86.6 88.0 86.0 87.2

1.0 1.3 93.5 90.7 94.0 94.1

1.0 1.6 88.8 82.5 89.1 90.0

0.8 1.2 85.8 86.8 88.7 87.2

0.8 1.5 90.7 89.9 92.5 92.6

0.8 1.8 93.8 92.1 94.9 94.9

4.3.2 Real world data sets

These experiments demonstrate the favorable performance of pattern based

classifiers on some of the well known actual data sets. The collection Newsgroups,

i.e., 20ng, is a list of 1000 articles collected from 20 newsgroups. It contains several

closely related subgroups, for example, comp.*, sci.* and talk.*. The Reuters

21758 data sets, i.e., r52 and a subset r8, have 52 and 8 classes respectively and

the number of documents per class vary sharply between few thousands to just one

or two. The CADE dataset, i.e., cade, is a collection of Portuguese web documents

consisting of 12 classes. It is a fairly large and uneven data set with documents per

class ranging between few hundreds to few thousands and is generally difficult to

classify. The data set World Wide Knowledge Base, i.e., webkb, is a small data set
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of 4 classes of variable number of documents per class. These data sets, along with

their training-test split can be obtained from [12]. The results are shown in Table

4.2. While results in general are in favor of SVM, they also show the favorable

performance of pattern based classifiers.

Table 4.2: Accuracy of different classifiers for real data sets.

Data set
Classification method

lap svm sp jp

webkb 83.30 87.94 83.37 83.41

20ng 80.76 80.80 82.68 83.31

r52 80.53 92.04 85.59 89.18

cade 53.10 52.09 57.01 55.96
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Chapter 5

Distribution Multiset Estimation

In this chapter, we consider the problem of explicitly estimating the mul-

tiset of probability values of a discrete distribution given i.i.d. samples from

it. Specifically, let A def
= {a1, . . . , ak} denote the alphabet as earlier and P =

(P (a1), . . . , P (ak)) be a probability distribution on A. We recall from Section 2.3

that the probability multiset of P is the collection of probability values in P and

denoted byM(P )
def
= (p1, . . . , pk)

def
= {P (a1), . . . , P (ak)} where p1 ≥ p2 ≥ · · · ≥ pk.

Given a length-n i.i.d. sequence X ∼ P n we want to estimate the probability mul-

tiset M(P ). An estimator Q
def
= QX = (q1, . . . , qk) outputs a probability multiset

corresponding to each input sequence X ∈ An. The estimator need not provide

estimates Q(a) for the probabilities of specific symbols a ∈ A. We want to ob-

tain Q such that for some suitable distance metric D(·, ·) defined on distribution

multisets and some ε > 0, D(P,Q) ≤ ε with high probability 1− on(1).

One such distance that is commonly considered is the (sorted) L1 distance

L1(P,Q) =
∑k

i=1 |pi − qi| where p1 ≥ p2 ≥ · · · pk and q1 ≥ q2 ≥ · · · qk. We use

|P −Q|1 to specifically denote the L1 distance on probability multisets instead of

|P − Q|, which is used in earlier chapters with the definition
∑

i |P (ai) − Q(ai)|.
Note that among all permutations σ : [k]→ [k], |P −Q|1 = minσ∈Sk |P − σ(Q)| =
minσ

∑
i |P (ai) − Q(aσ(i))|. Another distance that has been used recently in [68]

is the relative earthmover distance R(P,Q). In can be described as the minimum

cost of moving the probability mass of P to make it equal to Q, where the per unit

cost of moving mass from pi to qj is | log pi
qj
|. The following fact relating R(P,Q)

63
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and |P −Q|1 is useful.

Fact 36. For all P and Q, 1
2
|P −Q|1 ≤ R(P,Q). �

These distances can be motivated by their relevance to property estimation

and testing, e.g., as shown in [70, 68], due to a (ε, δ)-continuity relationship between

various properties π and these distances D(·, ·) of the form given by “D(P,Q) ≤ ε

implies |π(P )−π(Q)| ≤ δ”. For example, for the case of entropy, |H(P )−H(Q)| ≤
|P −Q|1 log2( k

|P−Q|1 ) and |H(P )−H(Q)| ≤ R(P,Q). Thus, obtaining an estimate

Q such that D(P,Q) ≤ ε automatically implies φ = π(Q) satisfies |φ− π(P )| ≤ δ.

(We assumed here that the properties are real. As such we can consider the multiset

itself as the property and thus consider continuity between distances. For example,

R(P,Q) ≤ ε implies |P −Q|1 ≤ ε.)

We further observe that if an estimator Q approximates P to within a small

distance with error probability < 1
2
, then it can be improved to any δ > 0 using

sequences of length n = O(log(1
δ
)). This is shown in the Observation below.

Observation 37. Let D(·, ·) be a distance metric on distributions, and let Q

be an estimator for a collection of distributions P such that for all P ∈ P,

Pr(D(P,QX) ≥ ε) ≤ δ ≤ 1
4

when given a length-n sequence X ∼ P n. Then, for all

positive integers r, there is an estimator Q′ that for all P ∈ P, Pr(D(P,Q′
X
′) ≥

3ε) ≤ (4δ)r when given a length-n′ sequence X
′ ∼ P n′ where n′ = (2r + 1)n.

Proof. For any P ∈ P , given a sequence ofX
′ ∼ P n′ of length n′ = (2r+1)n, divide

it into (2r+1) equal parts of length n. Let {Q1, Q2, . . . , Q2r+1} be the output of Q

on each of these (2r+1) sequences of length n. (Note that all the 2r+1 instances are

independent.) Then, the probability that at least r+ 1 of these Q′is are more than

a distance of ε from Q is δ′ =
∑n

j=2r+1

(
2r+1
j

)
δj(1 − δ)2r+1−j ≤ r

(
2r+1
r

)
δr ≤ (4δ)r.

Hence with high probability 1 − (4δ)r, there are at least (2r + 1) Qi’s within a

distance of ε from P , and therefore at a distance of within 2ε from each other by

triangle inequality. Therefore, with error probability (4δ)r, there exists at least

one “clique” of more than (2r+ 1) Qi’s that are within a distance of 2ε from each

other. We find one such set of Qi’s and output any Qi in that group as the estimate

Q′
X
′ . Notice that there may be several such sets of which at least one set has all
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Qi’s that are within 2ε from P . Furthermore, any two sets of size r + 1 have one

Qi in common, and thus by triangle inequality, Q′ is within 2ε+ ε = 3ε away from

P . (The distance between Q′ and a common “correct” Qi is 2ε, and this correct

Qi is within ε from P .) �

Similar to the case of closeness testing, it is worthwhile to consider the em-

pirical distribution estimator, Qemp

X

def
= τ(X), i.e., {µi

n
: i = 1, 2, . . . ,m}, following

the notation in Section 2.2. We consider its estimation properties in terms of L1

distance. While this result can also be shown using simple applications of Chernoff

bounds, we take a different approach with some more insights.

Lemma 38. For all sufficiently large n and ε > 0, for all distributions P whose

support size is k = O(ε2.1n), given X ∼ P n, Pr(|P − Qemp

X
|1 ≥ ε) ≤ e−nε

2/8.

Furthermore, Pr(|P − Qemp

X
| ≥ ε) ≤ e−nε

2/8 and Pr(D(Qemp

X
||P ) ≥ ε) ≤ e−nε,

where D(P ||P ′) def
=
∑

a∈A P (a) log( P (a)
P ′(a)

).

Proof. For all sequences X ∈ An, we have

P (X)

Qemp

X
(X)

=

∏
a∈A P (a)µ(a)∏
a∈A(µ(a)

n
)µ(a)

= e−nD(Qemp

X
||P ).

If |P −Q|1 ≥ ε, then D(Q||P ) ≥ 1
2
|P −Q|2 ≥ 1

2
|P −Q|21 ≥ 1

2
ε2. Thus,

Pr(|P −Qemp

X
| ≥ ε) =

∑
x:|P−Qemp

x |≥ε

P (x)

=
∑

x:|P−Qemp
x |≥ε

Qemp
x (x) · e−nD(Qemp

x ||P )

≤
∑

x:|P−Qemp
x |≥ε

Qemp
x (x) · e−

1
2
nε2

≤ e−
1
2
nε2
∑
x

Qemp
x (x).

The quantity A(n, k)
def
=
∑

xQ
emp
x (x) =

∑
µ1+···+µk=n

(
n

µ1,...,µk

)∏k
i=1 (µi

n
)µi (where

the summation is over ordered k-tuples (µ1, . . . , µk)), known as Shtarkov sum for

i.i.d. sequences of length-n and alphabet size k has been analyzed extensively in

the context of universal compression [20, 59, 62, 73]. It has been shown in [47] that

when k = o(n), then log(A(n, k)) = k−1
2

log n
k
(1+o(1)) = o(n), and when k = Θ(n),
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log(A(n, k)) = Θ(n). The precise asymptotics have been considered recently in

[64, 65] and it has been shown that for α → 0, and k = αn, log(A(n, k)) ≈
(α

2
log 1

α
)n. Hence, for small ε, setting α = ε2.1

2
, we get the desired result. The

result in terms of the other two distances follow similarly. �

Since Qemp guarantees that |Qemp

X
− P | is small and not just |Qemp

X
− P |1,

this can be used for the closeness testing problem considered in Chapter 3.

Observation 39. For all sufficiently large n and any ε > 0, given (X1, X2) ∼
P n

1 × P n
2 , the closeness test |τ(X1) − τ(X2)|

same

diff

><
ε
2

has error probability at most

2e−nε
2/8 whenever P1 = P2 or |P1 − P2| > ε. �

For examples where k = Θ(n) and this estimator does not perform well,

i.e., |P − Qemp

X
| is large with high probability and cannot be used for closeness

testing or classification, see [35]. It is evident from the above lemma and obser-

vation that Qemp not only estimates M(P ) but also the probabilities of specific

symbols. Indeed it is well known that estimators Q for distributions P (not just

the multiset) such that |P − Q| = on(1) are possible only when k = o(n). The

problem of estimating M(P ) has a much weaker requirement (say in terms of

sorted vs. unsorted L1 distance, because |P − Q|1 ≤ |P − Q|), so intuitively, we

should be able to estimate well for even larger k, although the exact limits are not

clear. It has however been shown in [70] that estimatingM(P ) in L1 distance still

requires n ≥ k/2Θ(
√

log(k)) samples, or equivalently distributions of support size

k ≤ n ·2Θ(
√

log(n)) (which is o(n1+ε) for any ε > 0). Valiant et al. in [68] strengthen

these bounds. They show a computationally efficient estimator that approximates

the distributions to within an earthmover distance of ε using n samples, whenever

the alphabet size is k = O(ε2.1n log(n)), and show matching upper bounds (i.e.,

lower bounds in terms of sample complexity).

In the next section, we analyze the estimation properties of the profile max-

imum likelihood estimator QPML
X

def
= P̂ϕ(X) = arg maxP P (ϕ(X)). We show that

they are competitive with respect to any estimator in any distance metric. Fur-

thermore, in its most general form, it does not assume any bounds on the alphabet

size. We again do this via a general competitive property of ML distribution esti-
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mator which is similar in flavor to the result we showed for composite hypothesis

testing in Section 3.3.

5.1 Competitivity of the PML estimator

5.1.1 Competitivity of ML for distribution estimation

We show a general fact about the competitive optimality of maximum like-

lihood estimators. Let Z be a discrete alphabet of size |Z| and P be a collection

of probability distributions on A. Given a sample Z generated according to an

unknown distribution P ∈ P , we want to estimate P . An estimator Q : Z → P ,

outputs a distribution Qz ∈ P corresponding to a given sample z ∈ Z. The maxi-

mum likelihood (ML) estimator outputs a distribution P̂z ∈ P that maximizes the

likelihood of observing z, i.e.,

P̂z
def
= P̂P,z

def
= arg max

P∈P
P (z).

We also use

P̂ (z)
def
= P̂P (z)

def
= max

P∈P
P (z) (5.1)

to denote the maximum likelihood of z under any distribution in P .

To measure how good an estimate is, let D : P × P → R≥0 be a distance

defined on distributions in P that is a metric, in particular, nonnegative, symmetric

and satisfies the triangle inequality, i.e., D(P, P ′) = D(P ′, P ) and D(P, P ′) ≤
D(P, P ′′)+D(P ′′, P ′) for all distributions P, P ′, P ′′ ∈ P . We say that an estimator

Q is a (ε, δ)-good estimator of a distribution P with respect to distance D(·, ·) for

some δ ∈ [0, 1] and ε ≥ 0, if given Z ∼ P ,

Pr(D(P,QZ) ≥ ε) =
∑

z∈Z:D(P,Qz)≥ε

P (z) ≤ δ.

The next lemma shows that P̂Z is as good as any other estimator.

Lemma 40. Let Q be an estimator such that for all P ∈ P, given Z ∼ P ,

Pr
(
D(P,QX) ≥ ε

)
≤ δ (5.2)
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for some fixed ε ≥ 0 and δ ∈ [0, 1]. Then,

Pr
(
D(P, P̂X) ≥ 2ε

)
≤ δ · |Z|.

In other words, if there exists an (ε, δ)-good estimator Q for all distributions P ∈ P,

then the ML estimator P̂ is also a (2ε, δ|Z|)-good estimator.

Proof. We consider separately the cases when the generated symbol Z = z is such

that P (z) > δ and when P (z) ≤ δ. When P (z) > δ, we make an easy claim that

D(P, P̂z) ≤ 2ε. To see this, we observe that clearly D(P,Qz) ≤ ε, otherwise, if

D(P,Qz) ≥ ε, then

Pr
(
D(P,QZ) ≥ ε

)
=

∑
z∈Z:D(p,qz)≥2ε

P (z) ≥ P (z) > δ,

contradicting that Q is a (ε, δ)-good estimator of P . By a similar reasoning,

D(P̂z, Qz) ≤ ε, since Q is a (ε, δ)-good estimator of P ′ = P̂z ∈ P and P ′(z) =

P̂ (z) ≥ P (z) > δ as well. Hence, D(P, P̂z) ≤ D(P,Qz) + D(Qz, P̂z) ≤ 2ε, proving

the claim.

For the case when P (z) ≤ δ, we note that

Pr
(
P (Z) ≤ δ

)
=

∑
z∈Z:P (z)≤δ

P (z) ≤ δ · |Z|.

Combining the two cases,

Pr
(
D(P, P̂Z) ≥ 2ε

)
= Pr

(
(D(P, P̂Z) ≥ 2ε) ∧ (P (Z) > δ)

)
+ Pr

(
(D(P, P̂Z) ≥ 2ε) ∧ (P (Z) ≤ δ)

)
≤ 0 + Pr(P (Z) ≤ δ)

≤ δ|Z|. �

5.1.2 PML for distribution multiset estimation

Clearly, the probability multiset estimation problem is a special case of the

above general distribution estimation. Since we want to estimateM(P ) using X ∼
P n, without loss of generality, we restrict ourselves to profile-based estimators that
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depend on X through its ϕ(X), e.g., see [9, Section 3.1.3] for a simple argument

or by using a similar argument provided for closeness testing in Subsection 3.2.1.

Then, we have the correspondence with the general distribution estimation problem

that Z ↔ Φn, P consists of all i.i.d. profile distributions P (Φn), and D(·, ·) is any

distance defined on probability multisets. For distribution estimation, we say that

an estimator Q is an (n, ε, δ)-good estimator for a class of distributions P if for all

P ∈ P , Pr(|P − QX | ≥ ε) ≤ δ given X ∼ P n. For a class of distributions P and

for all profiles ϕ ∈ Φn, we denote the class restricted PML distribution and the

corresponding likelihood as

P̂P,ϕ
def
= arg max

P∈P
P (ϕ) and P̂P(ϕ)

def
= max

P∈P
P (ϕ) = P̂P,ϕ(ϕ).

In particular, we use the notation Pk to denote the class of all distributions of

support size k. We use P̂k(ϕ) and P̂k,ϕ to denote the maximum likelihood of ϕ and

maximizing distribution under Pk.

Lemma 41. Let P be a class of distributions for which there exists a profile-based

probability multiset estimator Qϕ(X) such that for some distance D(·, ·) defined on

distribution multisets, and some ε, δ and for all P ∈ P, when X ∼ P n,

Pr
(
D(P,Qϕ(X)) ≥ ε

)
≤ δ.

Then, the PML distribution multiset estimator has error

Pr
(
D(P, P̂P,ϕ(vecX)) ≥ 2ε

)
≤ δ · |Φn| ≤ δ · e3n1/2

.

In other words, if there is a (n, ε, δ)-good estimator Qϕ(X) for distributions in P,

then P̂P,ϕ is a (n, 2ε, δ|Φn|)-good and hence (n, 2ε, δ · e3
√
n)-good estimator for P.

Proof. Using the correspondence with the general distribution estimation prob-

lem, the result follows from Lemma 40 along with Lemma 1, which states that

|Φn| ≤ eπ
√

2
3

√
n < e3

√
n. �

This along with Observation 37 implies the following estimation guarantee

for PML estimator in terms of sample complexity.
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Corollary 42. Following the setup in Lemma 41, i.e., if there is an estimator

Qϕ(X) for P such that for all P ∈ P, when X ∼ P n,

Pr
(
D(P,Qϕ(X)) ≥ ε

)
≤ δ <

1

4
,

then there is an estimator Q′
ϕ(X

′
)

such that when given a sequence X ∼ P n′ of

length n′,

Pr
(
D(P,Q′

ϕ(X
′
)
) ≥ 3ε

)
≤ δ2 · e−6n′1/2 ,

where n′ = O
(

max{n, n2

log2( 1
4δ

)
}
)
. Thus, when given sequences X

′
of length n′, the

error probability of the PML estimator is

Pr
(
D(P, P̂P,ϕ(X

′
)) ≥ 6ε

)
≤ δ.

Proof Sketch. Using Observation 37, r = O
(

max{1, n
log2( 1

4δ
)
}
)

suffices to guaran-

tee the existence of an estimator Q′ whose error probability is δ′ = (4δ)r ≤ δ2e−6
√
n′

using X
′ ∼ P n′ where n′ = (2r + 1)n. Hence, by Lemma 41, the error probability

of PML estimator is at most δ when given X
′ ∼ P n′ . �

Although the above sample complexity observation holds even when δ >

e−3
√
n, Lemma 41 is largely useful when δ < e−3

√
n. Intuitively for most dis-

tances D, if D(P,Q) = ε > 0, the affinity or overlap of their length-n profiles is

|P (Φn)∧Q(Φn)| < e−n·f(ε) which essentially allows for existence of estimators with

δ < e−n·f(ε). This is indeed the case we see for sequence maximum likelihood in

Lemma 38, and thus PML estimator P̂k,ϕ(X) is also within L1 distance of ε with

high probability when k = O(ε2.1n). For stronger estimation guarantees, we con-

sider the estimator by Valiant et al. in [68] which approximates distributions to

within a relative earthmover distance of ε whenever k = O(ε2.1n log(n)) with low

error probability e−n
0.03

. We show that the error probability can be improved to

arbitrarily close to exponential, say e−n
0.9

, by minor modifications to the various

constant parameters of their estimator (at the cost of much smaller constants in

k = O(ε2.1n log(n)), thus again implying similar error guarantees for the PML

(when restricted to Pk). We briefly describe the modified estimator, which we

henceforth refer to as Q
VV

, and provide its error guarantee in the next subsection.
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5.1.3 Valiants’ estimator for superlinear alphabets

The following estimator, which we refer to as Q
VV

, is considered in [68]. The

version provided here only differs in the various constant parameters to improve

upon the error probability.

The main ideas behind the estimator Q
VV

are as follows. It is easier to

motivate the estimator in the Poisson model where we are given sequences of length

n′ ∼ poi(n) instead of length n. See Section 2.6 for some of the preliminaries about

the Poissonization technique. As noted in [68, 69] and in the following observation,

both models are almost equivalent.

Observation 43. For sufficiently large n and any ε > 0 and any distance measure

D(·, ·) on distributions, let Q be a distribution estimator for a class of distributions

P such that for all P ∈ P, when given input X ∼ P n, Pr
(
D(P,QX) ≥ ε

)
≤ δ.

Then there is an estimator Q′ that takes as input X
′ ∼ P poi(n+n0.95), and has error

Pr
(
D(P,Q′

X
′) ≥ ε

)
≤ δ + e−n

0.91
.

Similarly, if there is an estimator Q′ that takes as input X
′ ∼ P poi(n) and

has error Pr
(
D(P,Q′

X
′) ≥ ε

)
≤ δ, then there is an estimator Q′ that takes as input

X ∼ P n+n0.95
and has error Pr

(
D(P,QX) ≥ ε

)
≤ δ + e−n

0.91
.

Proof. In the first case, consider a Q′ outputs QX
′′ where X

′′
consists of first n

samples of X
′

if length of X
′

is n′ ≥ n. By Poisson tail bounds of Observation 7,

this happens with probability ≥ 1− e−n0.91
. If n′ ≤ n, Q′ outputs error, and thus

has the stated error. A similar argument can be used for the second case. �

Suppose we are given a sequence X
′ ∼ P poi(n) where P is the unknown

distribution we want to estimate. We immediately notice that probabilities in

M(P ) that are sufficiently high can be estimated accurately with their empirical

frequencies. For any symbol a such that P (a) ≥ nb

n
, where b = 0.05 is a small

constant, since µ(a) ∼ poi(nP (a)), by Poisson tail bounds, µ(a) concentrates

around its mean nP (a) with high probability and thus µ(a)
n

is a good estimate of

P (a). (This is similarly true when X ∼ P n by a simple application of Chernoff

bounds.)
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For estimating the low probabilities of M(P ), i.e., Mlow = {p : p ∈
M(P ), p ≤ nb

n
}, we see that any such low probability symbol appears at most

2nb times with high probability and thus contributes to the portion of the profile

consisting of low multiplicity prevalences (ϕ1, ϕ2, . . . , ϕ2nb). We thus need to esti-

mate Mlow only from these prevalences. To this end, we observe that prevalences

closely concentrate around its mean as follows. Note that for any P ,

EP [ϕµ] = EP [
k∑
i=1

1[µ(ai)=µ]] =
k∑
i=1

poi(npi, µ).

Observation 44. (Also [67, Corollary 22].) For all P , if X ∼ P poi(n) and ϕ(X) =

(ϕ1, . . . , ϕn), then for µ = 1, 2, . . . , n and for all 0.5 < α < 1,

Pr
(
|ϕµ − EP [ϕµ]| ≥ nα

)
≤ 2e−n

2α−1/3.

In particular, Pr
(
|ϕµ − EP [ϕµ]| ≥ n0.99

)
≤ e−n

0.97
.

Proof Sketch. In the Poisson model, ϕµ =
∑

a∈A 1[µ(a)=µ] is a sum of independent

0-1 random variables, and thus the observation follows by Chernoff bounds. �

Hence, one would hope that if we find a Q such that EQ[ϕµ] ≈ ϕµ, then

EQ[ϕµ] ≈ ϕµ ≈ EP [ϕµ], and hence Q(Φn) and P (Φn) would be similar and that

M(Q) and M(P ) would also be similar. We would further hope that Mlow can

be approximated well by a Q whose probabilities take values among a fine enough

grid {x1, x2, . . . , x`}, say xi = i/n2 for i = 1, 2, . . . , 2n1+b. Let hi ≥ 0 be the counts

of xi in a distribution Q. Then,

EQ[ϕµ] =
∑̀
i=1

hi · poi(nxi, µ)

is linear in (h1, . . . , h`), for µ = 1, 2, . . . , n. Thus, such a Q that satisfies EQ[ϕµ] ≈
ϕµ, say |EQ[ϕµ]−ϕµ| ≤ 2n0.99, for µ = 1, . . . , 2nb, can be found by linear (integer)

programming.

Combining the low probability estimates obtained from such a linear pro-

gram along with the empirical estimates for high probabilities would result in

an estimator for M(P ). This is a basic reasoning for the estimator shown by
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Valiant and Valiant in [67, 68]. Before proceeding to state the estimator, we define

histograms hP of distributions P , which are a convenient and equivalent way of

representing M(P ), just as profiles ϕ and multiplicity vectors µ convey the same

information.

Definition 45. (Also [67, Definition 4].) The histogram h
def
= hP of a distribution

P is a mapping h : (0, 1] → R, where h(x) = |{i : p(i) = x, i ∈ A}|. Generalized

histograms are also allowed, that do not necessarily take integral values. �

The estimator Q
VV

is defined as follows. Let X be the input sequence of

length n and let ϕ = ϕ(X) ∈ Φn. Let a
def
= 0.001 be a small constant. One can

always find c
def
= cϕ ∈ [1, 2] such that

dcna+4n0.6ae∑
µ=dcnae

µϕµ ≤ 4n1−0.4a.

Clearly, such a c must exist, otherwise
∑2na

µ=na µϕµ =
∑n0.4a/4

j=1

∑na+4jn0.6a

na+4(j−1)n0.6a µϕµ >

(n0.4a/4) · (4n1−0.4a) = n, which would contradict that
∑

µ µϕµ = n.

Let A
def
= AΦ

def
= cn−1+a = cna/n and B

def
= 4n−1+0.6a = 4n0.6a/n. Then,

let γ
def
= n−1.5 and let X def

= {γ, 22γ, 32γ, . . . , A + B/2} = {x` = `2n−1.5 : ` =

1, 2, . . . , |X |}, where clearly, |X | =
√

(A+B/2)n1.5 = O(n0.25+0.5a).

A linear program corresponding to ϕ is defined as follows.

Definition 46. (Also [67, Definition 18].) Consider a linear program consisting of

variables vx ≥ 0 for all x ∈ X satisfying the following three constraints:

C1.
∑

x∈X :A≤x≤A+B/2

xvx ≤ 16n−0.4a.

C2.
∑
x∈X

xvx +
∑

µ>(A+B)n

µ
n
ϕµ = 1.

C3. For all µ ∈ {1, 2, . . . , (A+B/4)n},∑
x∈X

vxpoi(nx, µ) ∈ [ϕµ − 4n0.99+a, ϕµ + 4n0.99+a].
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Any solution v to the linear program is extended to obtain a corresponding

histogram hv as follows. We create a generalized histogram h′ whose lower part

consists of v and upper part consists of empirical frequencies (as indicated in C2).

However, since the heights of a proper histogram can only be integers, the vx’s are

rounded down to their nearest integers, and the entire support is scaled suitably

by (1 + ε) so that the mass adds up to 1.

Definition 47. (Also [67, Definition 19].) Any solution solution v of the linear

program is extended to a proper histogram as follows.

S1. Set h′(x) = 0 and hv(x) = 0 for all x.

S2. For all x ∈ X , set h′(x) = vx, and for all µ ≥ (A+B)n, set h′(µ/n) = ϕµ.

S3. For all x ∈ (0, 1] such that h′(x) 6= 0, set hv((1 + ε)x) = bh′(x)c, where

ε =
∑
x∈X x(vx−bvxc)

1−
∑
x∈X x(vx−bvxc) . �

Note that h′ is the generalized histogram such that h′(x) = vx for x ∈ X
and h′(µ/k) = ϕµ for µ ≥ (A + B)n. In Step S3, the choice of ε is such that∑

y yh
v(y) = 1. The estimator is thus defined as follows.

Definition 48. (Also [67, Algorithm].) Given X whose profile is ϕ(X) = ϕ, the

estimator Q
VV

outputs a distribution multiset, i.e., equivalently its histogram, by

the following steps.

T1 Construct the linear program of Definition 46 corresponding to ϕ.

T2 Find a solution v to the linear program. If no solution exists, output fail .

T3 Output the histogram hv corresponding to v, as given by Definition 47.

The correctness of this estimator is shown by the following result.

Theorem 49. (Also [67, Theorem 3].) For any constant δ ∈ (0, 1], and suffi-

ciently large n (as a function of δ), in particular n at least exp(1/δ), given n

i.i.d. samples from any distribution h of support size k ≤ δn log n, with probability
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≥ 1− exp(−n0.94), the VV estimator outputs a histogram hv such that the relative

earthmover distance between h and hv is

R(h, hv) ≤ 70000
√
δ ·max{1, | log(δ)|}. �

Corollary 50. For all sufficiently large n, ε > 0, and all distributions P of sup-

port size k = O(ε2.1n log(n)), if X ∼ P n, then Pr(R(P,Q
VV

X
) > ε) ≤ e−n

0.91
. Since

R(P, P ′) ≥ 1
2
|P − P ′|1, it follows that Pr(|P −QVV

X
|
1
> 2ε) ≤ e−n

0.91
. �

The detailed proof of Theorem 49 can be found in [67]. While an error

probability of e−n
0.03

is shown in [67], it can be shown similarly that the modified

estimator Q
VV

has error probability e−n
0.94

as stated here. Most steps in the proof

are straightforward to extend so as to ensure that the error probabilities at various

steps is at most e−n
0.98

. But we do mention that [67, Lemma 25] and [67, Propo-

sition 17] require additional care. Specifically, in [67, Lemma 25], it involves the

step that shows the relative earthmover distance contributed by low probability

symbols that appear high number of times (and hence estimated by empirical fre-

quencies) is small, on(1), with high probability ≥ 1 − e−n0.98
. In [67, Proposition

17], it involves showing that when high probabilities are approximated by empir-

ical estimates, the earthmover distance incurred is on(1) w.p. ≥ 1 − e−n0.98
. The

former requires dividing the range of observed counts and latter requires dividing

the range of probabilities, followed by application of Chernoff bounds and union

bound over each of these parts.

We also mention that the most difficult parts of the proof, [67, Lemma 24]

and [67, Appendix C.2], that involve showing that any two solutions to the linear

program of the estimator are close in earthmover distance, are straightforward to

extend (by tweaking various constants), mainly because they are purely analytical

and do not involve any probability calculations. It essentially captures the earlier

motivation that EQ[ϕ] ≈ ϕ ≈ EP [ϕ] implies M(P ) ≈ M(Q), i.e., R(P,Q) ≤ ε.

On that note, we make the following observation.
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Lemma 51. For two distributions P and P ′, the expected length-n profiles are

same iff their distributions on length n profiles are the same, i.e.,

EP [ϕ] = EP ′ [ϕ] ⇔ P (Φn) = P ′(Φn).

Proof Sketch. We show the forward direction. It is easy to see by induction that

if EP [ϕµ] = EP ′ [ϕµ], i.e.,

k∑
i=1

(
n

µ

)
pµi (1− pi)n−µ =

k∑
i=1

(
n

µ

)
p′i
µ
(1− p′i)n−µ,

for µ = 1, 2, . . . , n, then the power sums Sµ(P )
def
=
∑

i p
µ
i =

∑
i p
′
i
µ def

= Sµ(P ′) are

the same for µ = 1, 2, . . . , n. It is a well known fact in algebra, e.g., [17], that power

sums form a basis for symmetric polynomials of (total) degree at most n. Since

profile probabilities P (ϕ), P ′(ϕ), are monomial symmetric polynomials of degree n

as we saw in Section 2.4, it implies that P (Φn) = P ′(Φn). The other direction is

easy to show by probability or algebraic arguments. �

For a simple example, the distributions P = (1
2
, 1

2
) and P ′ = (2

3
, 1

6
, 1

6
) are

indistinguishable on profiles of length-2 sequences since
∑

i pi =
∑

i p
′
i = 1 and∑

i p
2
i =

∑
i p
′
i
2 = 1

2
. (Distributions of support size k ≤ 3 can be visualized on the

simplex p1 + p2 + p3 = 1. All distributions on the circles obtained by intersecting

spheres p2
1 + p2

2 + p2
3 = c with the simplex (plane) are indistinguishable on length-

2 sequences. Larger alphabet distributions and profiles of longer sequences, i.e.,

higher moments are harder to visualize.) In general, it is useful to find distributions

P and P ′ of support size k, which are very different, say their property values

π(P ) and π(P ′) are very different for some property π, but |P (Φn) − P ′(Φn)| is

small. In various works on testing and estimating properties of distributions, e.g.,

[7, 55, 70, 68], this is the technique used for showing lower bounds on sample

complexity n in terms of alphabet size k.

5.2 Other approaches to distribution estimation

Calculation and approximation of profile maximum likelihood appears to

be difficult in general, e.g., see [50]. Many results, i.e., support sizes and number
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of distinct probabilities of the PML distribution, are known for special kinds of

profiles, e.g., see [50, 45, 5, 6, 3]. Exact calculation of PML using such bounds for

profiles of smaller lengths using algebraic elimination methods, namely Groebner

bases and resultants, is discussed briefly in Section 5.3.

In this section, we consider alternative approaches to distribution estima-

tion, that are motivated by both computational efficiency and other criteria for

measuring the quality of distribution estimates. We consider a distinguishabil-

ity based criteria for evaluating the quality of estimators. It is natural to want an

estimator Q such that length-n i.i.d. sequences generated from it are indistinguish-

able from those generated by the actual distribution P . Following the discussion

in Section 2.5, if we can find an estimator Q such that

|P (Φn)−Q(Φn)| def
=

∑
ϕ∈Φn

|P (ϕ)−Q(ϕ)|,

is small and close to 0, or equivalently the affinity,

|P (Φn) ∧Q(Φn)| def
=

∑
ϕ∈Φn

min{P (ϕ), Q(ϕ)},

is large and close to 1, then P and Q cannot be distinguished on Φn by any test.

However, it is easy to see that we may not hope for such estimators, even

for distributions of small support. For example, if P = (3
4
, 1

4
) and n is large, the

empirical estimator outputs Q = (3
4
, 1

4
) + Ω( 1√

n
) with probability 1

10
. But length-n

sequences from P and such Q can be distinguished with error probability ≤ 1
4
, i.e.,

affinity |P (Φn)∧Q(Φn)| ≤ 1
2
. This is easier to see in the Poisson model where we are

given poi(n) samples using the fact that for large λ, |poi(λ)− poi(λ + Ω(
√
λ))| ≥

1. However, empirical estimator is essentially the best estimator in this case.

Equivalently, no estimator Q can have affinity close to 1 for both P = (3
4
, 1

4
) and

P ′ = (3
4
, 1

4
) + Ω( 1√

n
). We can similarly construct examples of distributions P

that have many large probabilities spaced far apart, and empirical estimator Q is

essentially the best one can do, yet |P (Φn) ∧Q(Φn)| is arbitrarily small.

We note that if |P (Φn) ∧ Q(Φn)| is small, say ≤ 1
2
, it does not necessarily

imply that Q is a bad estimate of P . This is because |P (Φn) ∧ Q(Φn)| is error

probability of distinguishing P and Q in a simple hypothesis testing problem. In
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general, we would like to compare against closeness tests that do not know about

P and Q. In such a closeness testing problem, one is given two sequences X ∼ P n

and X
′ ∼ P ′n and asked whetherM(P ),M(P ′) are same or different. However, it

is hard to analyze such closeness tests.

We also observe that if we can find an estimator Q such that |P (Φn) ∧
Q(Φn)| ≥ e−10

√
n, it still implies R(P,Q) ≤ 3ε when k = O(ε2.1n log(n)). Oth-

erwise, if R(P,Q) > 3ε, then the test R(P,Q
VV

ϕ(X)
)

P

Q

>< R(Q,Q
VV

ϕ(X)
) can distinguish

between P and Q with error probability e−n
0.9

, contradicting |P (Φn) ∧ Q(Φn)| =

e−10
√
n. We currently do not have any computationally efficient estimators that

have such error guarantees. Unsurprisingly, the PML estimator offers such guaran-

tees by the following simple reasoning. For any P , if X ∼ P n, then P (P (ϕ(X)) ≤
e−4
√
n) ≤ e−4

√
n|Φn| ≤ e−

√
n. Thus, with probability ≥ 1 − e−

√
n, the generated

X is such that QPML(ϕ(X)) = P̂ (ϕ(X)) ≥ P (ϕ(X)) ≥ e−4
√
n, implying that

|P (Φn) ∧QPML(Φn)| ≥ min{P (ϕ(X)), QPML(ϕ(X))} ≥ e−4
√
n.

Although it is difficult to construct an estimator that guarantees |P (Φn) ∧
Q(Φn)| ≥ e−10

√
n, we build upon Q

VV
and utilize several concentration properties of

profiles of i.i.d. sequences to construct an estimator Q that is harder to distinguish

from P compared to Q
VV

. We note that for many distributions P of alphabet size

k = o(n), Q
VV

can be easily distinguished from P , since it uses empirical estimates

for high probability symbols. This is shown in the following example.

Example 52. or sufficiently large n, let P = U [n0.9] be the uniform distribution

on k = n0.9 symbols. If X ∼ P poi(n), EP [ϕµ] = n0.9 · poi(n0.1, µ) for µ ∈ {1, 2, . . .}.
Since the prevalences concentrate around their mean, with high probability, the

empirical distribution Q, and hence Q
VV

, has roughly ϕµ ≈ EP [ϕµ] number of µ
n
.
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We then have

EQ[ϕn0.1 ] ≈
∞∑
µ=1

EP [ϕµ] · poi
(
n · µ

n
, n0.1

)
= n0.9

∞∑
µ=1

poi(n0.1, µ) · poi
(
µ, n0.1

)
≈ 1

2
n0.9poi(n0.1, n0.1)

=
1

2
EP [ϕn0.1 ],

using the fact that for large λ,
∑∞

µ=0 poi(λ, µ)poi(µ, λ) ≈ 1
2
poi(λ, λ). As EP [ϕn0.1 ] =

n0.9 ·poi(n0.1, n0.1) ≈ n0.9
√

2πn0.1
≥ n0.8. Hence, we conclude using Observation 44 that

P and Q can be distinguished by the test ϕn0.1

P

Q

><
3
4
EP [ϕn0.1 ] with error probability

at most e−n
0.6

. This also implies |P (Φn) ∧Q(Φn)| ≤ e−n
0.6

. �

In the above example, we see that if an estimator Q uses empirical estimates

for high probabilities, EQ[ϕµ] can be far from EP [ϕµ] and thus, P and Q are easily

distinguishable. We therefore attempt to improve upon empirical estimation of

high probabilities by making EQ[ϕµ] ≈ ϕµ, even for large µ. To do this, we observe

the following concentration properties of profiles that are similar to 44.

Observation 53. Let b ∈ (0, 1) be a small constant. For any P , let X ∼ P poi(n)

and ϕ(X) = (ϕ1, ϕ2, . . .). If E[ϕµ] ≥ nb, then

Pr
(
|ϕµ − E[ϕµ]| ≥ (E[ϕµ])0.6

)
≤ 2 exp(−n0.2b/4),

and if E[ϕµ] < nb, then

Pr
(
ϕµ ≥ 2nb

)
≤ exp(−nb/4).

Proof. Using Chernoff bounds on ϕµ =
∑k

i=1 1[µ(ai)=µ], which is a sum of indepen-

dent 0-1 random variables (in the Poisson model). �

Observation 54. Let b ∈ (0, 1) be a small constant. For any P , let X ∼ P poi(n).

For all a ∈ A, if nP (a) > nb, then

Pr
(
|µ(a)− nP (a)| ≥ (nP (a))0.6

)
≤ 2 exp(−n0.2b/4),
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and if nP (a) < nb, then

Pr
(
µ(a) ≥ 2nb

)
≤ exp(−nb/4).

Proof. Using Poisson tail bounds on µ(a) ∼ poi(nP (a)). �

Thus, we modify Q
VV

to solve for the following set of constraints, whose

solution we know exists with high probability by above observations.

Definition 55. Given a profile ϕ = (ϕ1, . . . , ϕn) = {µ1, µ2, . . . , µm} such that

µ1 ≥ µ2 ≥ · · · ≥ µm > 0. Let b1, b2 be small constants. Let ` = |{µi ≥ nb1}|
be the number of multiplicities larger than nb1 . Note that µ1, . . . , µ` are these

multiplicities. Let Q = {q1, q2, . . . , qk} be a distribution that satisfies the following

constraints:

C1 For i = 1, . . . , `, |nqi − µi| ≤ µ0.6
i .

C2 k ≤ n2.

C3 For i = `, `+ 1, . . . , k, nqi ≤ 2nb1 .

C4
∑

i qi = 1.

C5 For µ = 1, 2, . . . , n, if ϕµ ≥ nb2 , |EQ[ϕµ] − ϕµ| ≤ ϕ0.6
µ and if ϕµ < nb2 ,

EQ[ϕµ] < 2nb2 . �

We can find such a Q by linear programming similar to Q
VV

. For low prob-

abilities {q`, . . . , qk}, our program is similar. For large probabilities, {q1, . . . , q`},
satisfying C1 and C5 simultaneously is difficult. One possible way of solving for

the large qi, i ∈ {1, . . . , `} is as follows. Let each such qi be allowed to take values

only in the set {qi,j =
µi−µ0.6

i

n
+ j

n2 : j = 0, 1, . . . , 2nµ0.6
i }, i.e., one among a discrete

set of values in the range [
µi−µ0.6

i

n
,
µi+µ

0.6
i

n
]. This can be translated into an integer

program by creating 0-1 variables xi,j, i.e., by introducing integer variables xi,j

and constraints xi,j ≥ 0 and
∑

j xi,j = 1 corresponding to C1. Then C5 translates
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to the linear constraints

∑̀
i=1

2nµ0.6
i∑

j=0

xi,jpoi(nqi,j, µ) ∈ [ϕµ − ϕ0.6
µ , ϕµ − ϕ0.6

µ ] or ≤ 2nb2

depending on whether ϕµ >< nb2 . We can either solve these integer linear constraints

or solve for the relaxation that xi,j are real, instead of integers. If such a solution

is found, then a natural candidate for qi is qi =
∑

j xi,jqi,j. However, such an

estimate may not work since poi(nqi, µ) = poi
(
n
∑

j xi,jqi,j, µ
)

may not be a good

approximation of
∑

j xi,jpoi(nqi,j, µ) that was solved for in the constraints. (This

is because the derivative of Poisson function poi(x, µ) is too sharp to allow for good

linear approximation within x± x0.6.)

An alternative is to refine upon the estimates qi in multiple rounds, where

we start with qi = µi
n

in round 1, and in round r ∈ {1, 2, . . .}, we exponentially

narrow down our range of qi,j to [nqi
n
− 1

2r−1

(nqi)
0.6

n
, nqi
n

+ 1
2r−1

(nqi)
0.6

n
]. We terminate

the process in some round if the qi’s obtained are a solution to the constraints,

or the constraints have no solution, or if the number of rounds is O(log n). For

simplicity, instead of many xi,j and qi,j for each i, we may use two variables x−i

and x+
i corresponding to q∓i = nqi

n
∓ 1

2r−1

(nqi)
0.6

n
.

5.3 Exact calculation of PML by algebraic elim-

ination

In this section, we consider exact calculation of PML using elimination

methods from algebra. Recall from Section 2.4 that pattern and profile probabili-

ties are symmetric polynomials in the probabilities M(P ) = {p1, . . . , pk}. Hence,

given an upper bound on the support size of the PML distribution, we maximize

the pattern probability by solving the system of multivariate polynomial equations

obtained by differentiating the pattern probability with respect to each variable.

As earlier, let

Pk
def
= {(p1, p2, . . . , pk) : pi ≥ 0,

k∑
i=1

pi = 1}
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be the class of distributions whose support size is at most k. The Kuhn-Tucker

conditions imply that if a distribution P ∈ Pk is a local maximum of P (ψ), then

for all i, j ∈ [k] such that pi, pj > 0,

∂P (ψ)

∂pi
=
∂P (ψ)

∂pj
.

To find P̂k,ψ
def
= arg maxP∈Pk P (ψ), we can therefore solve the system of equations

∂P (ψ)

∂pi
=
∂P (ψ)

∂pi+1

, i = 1, 2, . . . , κ− 1 (I)

p1 + p2 + · · ·+ pκ = 1, (II)

for each κ ∈ {m,m + 1, . . . , k}, and among all solutions, find the one maximizing

P (ψ). Note that since the Kuhn-Tucker equalities hold only for the nonzero prob-

abilities, it is not sufficient to consider solutions to system of equations (I) and (II)

for just κ = k.

As an example of this basic method and the need to solve the equations for

all κ ≤ k, consider P̂3,112. For κ = 2, the equations yield

p2
1 = p2

2,

p1 + p2 = 1,

whose unique solution is P = (p1, p2) = (1
2
, 1

2
) with P (112) = 1

4
. For κ = 3,

Equations (I) and (II), yield

p1(2− 3p1) = p2(2− 3p2) = p3(2− 3p3),

p1 + p2 + p3 = 1,

whose only solution is P ′ = (p1, p2, p3) = (1
3
, 1

3
, 1

3
). Furthermore, P ′(112) = 2

9
<

1
4

= P (112), hence P̂3,112 = (1
2
, 1

2
).

While such simple manipulations work for small patterns, for longer pat-

terns, we need a systematic approach for solving the set of polynomial equations

obtained. The natural approach for solving a system of polynomial equations

is to generalize the Gaussian-elimination method for linear equations to address

polynomial equations. There are two well-known approaches for doing that.
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The first uses Buchberger’s algorithm and its variations that yield a Groeb-

ner basis for the original polynomials. However, the degrees of the resulting poly-

nomials, and hence also the computation time of these algorithms may in general

be doubly exponential in the number of variables,e.g., see [17].

The second approach uses resultants, e.g., [16, 17]. While it too may require

doubly-exponential time, in our experiments it has performed more efficiently, and

we describe it here.

The resultant of a degree-u polynomial f = f0x
u + f1x

u−1 + · · · + fu and

a degree-v polynomial g = g0x
v + g1x

v−1 + · · · + gv is the determinant of a corre-

sponding (u+ v)× (u+ v) Sylvester matrix,

Res(f, g, x)
def
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 g0

f1 f0 g1 g0

... f1
. . . f0

... g1
. . . g0

fu
...

. . . f1 gv
...

. . . g1

fu
... gv

...

. . . fu
. . . gv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where v columns correspond to f , u columns to g, and blank spaces are zeros.

If f and g are multivariate polynomials with x as one of the variables,

then viewing f and g as polynomials in x whose coefficients are polynomials in

the other variables, Res(f, g, x) is a polynomial in the remaining variables. The

important property of resultants that makes them useful for elimination is that

Res(f, g, x) = a · f + b · g for two polynomials a and b. Hence solving the equations

f = g = 0 is equivalent to solving the system f = Res(f, g) = 0.

To eliminate variables p2, . . . , pκ−1 from Equations (I), we use resultants

to eliminate p2 from the κ − 1 equations in (I) to obtain κ − 2 equations in

p1, p3, . . . , pκ from which we eliminate p3 and obtain κ− 3 equations. We proceed

similarly to eliminate p4, . . . , pκ−1, until we are left with a single homogeneous

equation in p1 and pκ. We use this to solve for pκ
p1

and by backsubstitution, obtain

(pκ−1

p1
, pκ−2

p1
, . . . , p2

p1
). Finally, using Equation (II), we obtain all the probabilities

(p1, p2, . . . , pκ).

While the resultant of two polynomials can be obtained by explicitly com-
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puting the determinant of their Sylvester matrix or using other well known deter-

minantal formulae for resultants, a brute-force computation is challenging. Other

computationally efficient methods for computing resultants that use interpolation

techniques are discussed in [40, 16]. Nevertheless, it is easy to see that after elimi-

nating p2, . . . , pκ−1, the degree of the final polynomial in p1 and pκ can be O(n2κ).

This makes the resultant calculations intensive for even small values of n and κ.

The number of calculations is smaller when considering distributions with

at most ∆ distinct probabilities. For such distributions, it suffices to consider for

each d ∈ 1, 2, . . . ,∆, partitions of {p1, p2, . . . , pκ} into d parts where within each

part all probabilities are equal, and perform the elimination with d variables.

When evaluating resultants of two polynomials, we remove their common

factors, otherwise the resultant is zero. While we do not discuss mixed distributions

that have discrete probabilities as well as a continuous part, the method can be

easily extended to this case by adding an additional variable q for the probability

of the continuous part. The complete method is summarized in Algorithm 1, which

computes the PML distribution P̂k,∆,ψ , given as input a pattern ψ and bounds k

and ∆ on alphabet size and number of distinct probabilities.

We implemented Algorithm 1 in Mathematica. Due to computational

limitations, the program can be used to compute P̂k,∆,ψ for patterns of length

≤ 14 with k ≤ 17 and and ∆ ≤ 4. While we do not have good general upper

bounds on k̂ and ∆̂ two plausible assumptions are:

A1 ∆̂ is at most the number of distinct multiplicities in the pattern.

A2 P̂k(ψ) is strictly increasing for m ≤ k ≤ k̂.

One possible justification for A1 is that each of the probabilities may correspond

to an observed symbol and then symbols whose multiplicities are equal would be

assigned equal probability estimates. For A2, it may be plausible that if P1 and

P2 are two distributions whose alphabet sizes are k and k+ 2, and P1(ψ) > P2(ψ),

then there may exist a distribution P3 whose support size is k + 1 such that

P1(ψ) < P3(ψ) ≤ P2(ψ).

Under these assumptions, given a pattern ψ, we use Algorithm 1 with ∆ as
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the number of distinct multiplicities in ψ for k = m,m + 1, . . . until P̂k,∆,ψ(ψ) =

P̂k+1,∆,ψ(ψ).

For example, for the canonical pattern ψ = 15223245 of abracadabra, the

multiplicities of the symbols are (5, 2, 2, 1, 1) and there are 3 distinct multiplicities

5, 2 and 1. Assumption A1 implies that the number of distinct probabilities is at

most 3. Since m = 5, we run Algorithm 1 with ∆ = 3 and k = 5, 6, 7, . . ., and

observe that P̂5,3,15223245 = 3.241..×10−6, P̂6,3,15223245 = P̂7,3,15223245 = 4.073..×10−6.

Hence we stop and output P̂6,3,15223245 =
{

α
5+α

, ( 1
5+α

)5
}

= {0.4429.., 0.1114..5},
where α = 3.976.. is a root of 6x4 − 19x3 − 19x2 − x− 1 = 0.

Under these assumptions, we computed the PML of all patterns of length

≤ 14. For space considerations, Table 5.1 shows the PML only of patterns of

length ≤ 10. Furthermore, the PML of all binary, ternary, skewed, and quasi-

uniform patterns have been determined before, and the table shows the remaining

patterns. The PML distribution P̂ψ is represented in the form {p̃k1
1 , . . . , p̃

kd
d }, q

indicating that for i = 1, . . . , d it consists of ki symbols whose probability is p̃i,

and that the continuous part is q = 1−
∑d

i=1 kip̃i, shown only when nonzero. Note

that all numbers are algebraic, and are truncated to a few significant digits.
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Table 5.1: PML of patterns of length ≤ 10, under assumptions.

n ψ P̂ψ P̂ψ(ψ)

142234 {0.462.., 0.134..4} 4.08× 10−4

8 132334 {0.254} 3.66× 10−4

1322345 {0.156256, 0.0625} 4.38× 10−4

152234 {0.553.., 0.0893..5} 1.99× 10−4

142334 {0.389..2}, 0.222.. 1.33× 10−4

1422324 {0.254} 9.16× 10−5

9 1422345 {0.433.., 0.0708..8} 1.10× 10−4

1323324 {0.254} 9.16× 10−5

1323345 {0.333..2}, 0.333.. 1.02× 10−4

13223456 {0.138..6}, 0.171.. 1.57× 10−4

162234 {0.599.., 0.0800..5} 1.15× 10−4

152334 {0.42}, 0.2 5.24× 10−5

1522324 {0.461.., 0.180..3} 2.67× 10−5

1522345 {0.499.., 0.0626..5} 5.02× 10−5

142434 {0.42}, 0.2 5.24× 10−5

1423324 {0.254} 2.29× 10−5

10 1423345 {0.352}, 0.3 3.47× 10−5

14223245 {0.304.., 0.139..5} 1.23× 10−5

14223456 {0.32}, 0.4 3.73× 10−5

1323334 {0.254} 2.29× 10−5

13233245 {0.25} 1.23× 10−5

13233456 {0.32}, 0.4 3.73× 10−5

132234567 {0.157..4}, 0.371.. 7.16× 10−5
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Algorithm 1 Computation of P̂k,∆,ψ using resultants

Initialize solution set S = {}
for κ = m to k and d = 1 to max{∆, κ} do

for unordered partitions (K1, . . . ,Kd) of [κ] do

for i = 1 to d− 1 do

g1,i := ∂P (ψ)
∂pı
− ∂P (ψ)

∂p
for some ı ∈ Ki and  ∈ Ki+1

Set pı = zj for all ı ∈ Kj for all j

end for

G1 := {g1,1, g1,2, . . . , g1,d−1}
// Solve the system of equations G1 = 0

for j = 2 to d− 1 do

for i = 1 to d− j do

// Eliminate zj by taking resultants

gj,i = Res(gj−1,i, gj−1,i+1, zj)

Remove any monomial factors and trivial factors (zı − z) of gj,i

Return error for current k and d if gj,i is a constant polynomial

end for

end for

Set z1 = 1 and solve the triangular system of equations {G1,G2, . . . ,Gd−1}
for variables z2, z3, . . . , zd by backsubstitution

For solutions (z1, z2, . . . , zd) such that all zi are real and positive, find Z =∑d
i=1 zi|Ki|, find (p1, p2, . . . , pκ) such that pı = zj/Z where ı ∈ Kj and

S = S ∪ {sort(p1, p2, . . . , pκ)}
end for

end for

Output arg maxP∈S P (ψ)



Chapter 6

Bernoulli and Poisson Multiset

Estimation

Many problems of probability estimation involve parametric families of dis-

tributions. Often, one is interested in estimating the multiset of parameters of the

distribution, given samples generated by it. Some of these problems are related

to distribution multiset estimation problem considered in Chapter 5. We consider

two such problems here, which we call the Bernoulli multiset estimation and the

Poisson multiset estimation.

Both problems are motivated by applications of load estimation by service

providers, say a website or telephone company that wants to estimate the usage

pattern of its users. In the Bernoulli multiset estimation problem, we want to find

the multiset of success probabilities of multiple independent Bernoulli processes.

Each process corresponds to a user and takes values 0 or 1 at different times, in-

dicating whether the user is active or not at those times. In the Poisson multiset

case, we want to estimate the means of a collection of independent Poisson dis-

tributions given a sample from each of them. The activities of different users are

modeled as independent Poisson processes and observed over a fixed time period.

In the next two sections, we consider the problems in detail. We show that

the PML estimator for these problems is competitive with any other estimator

whose error probability is exponentially or near exponentially small. Furthermore,

their close relationship with the distribution estimation problem can be used to

88
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show constructively the existence of estimators with such small error probabilities.

Thus, good distribution estimators can be used to construct good Bernoulli and

Poisson multiset estimators as well. We first consider the Poisson multiset estima-

tion since it is easier to relate with distribution estimation and is related to the

Poissonization technique considered earlier.

6.1 Poisson Multiset Estimation

Let Λ be a list of k Poisson distributions, indexed i = 1, 2, . . . , k, whose

means are Λ
def
= (Λ(1),Λ(2), . . . ,Λ(k)). Let X = X(1), X(2), . . . , X(k) be samples

drawn independently according to Λ, i.e., X(i) ∼ poi(Λ(i)), for i = 1, 2, . . . , k. Let

the collection of nonzero samples in X be denoted by

µ(X)
def
= µ

def
= {µ1, µ2, . . . , µm}

def
= {X(i) : X(i) > 0, 1 ≤ i ≤ k},

where m
def
= m(X) is the number of nonzero samples and µ1 ≥ µ2 ≥ · · · ≥ µm.

The information in µ(X) is equivalently conveyed using prevalences

ϕµ
def
= ϕµ(X)

def
= ϕµ(µ)

def
= |{i : µi = µ, 1 ≤ i ≤ m}|,

the number of samples whose value is µ, for µ ∈ {1, 2, . . .}, and the profile of X,

given by

ϕ(X)
def
= ϕ(µ)

def
= ϕ

def
= (ϕ1, ϕ2, . . .).

In general, for every ϕ, we associate a unique µ = µ(ϕ) in which the number of µ is

ϕµ. Thus, there is a 1-1 correspondence between profiles ϕ and sample collections

µ, and we use both with the same meaning.

Given a sample collection µ ∼ Λ, we want to estimate the Poisson multiset

M(Λ)
def
= (λ1, λ2, . . . , λk)

def
= {Λ(1),Λ(2), . . . ,Λ(k)}

of the unknown distributions Λ. Without loss of generality, we assume λ1 ≥ λ2 ≥
· · · ≥ λk. We often use Λ to implyM(Λ) for brevity, whenever it is clear from the

context. In general, we are not given k or any other information about Λ.

A Poisson multiset estimator Q outputs a multiset of nonnegative reals

Qµ
def
= {q1, q2, . . . , qk′} as an estimate of M(Λ), given input µ ∼ Λ. In particular,
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the empirical or sequence maximum likelihood estimator Qemp outputs Qemp
µ = µ

due to the following reasoning. The probability that Λ produces x is

Λ(x)
def
= Pr

(
X = x

)
=

k∏
i=1

poi(Λ(i), x(i)),

where X ∼ Λ. Thus, the Λ that maximizes the probability of observing x such that

x(i) = µi for i = 1, . . . ,m and x(i) = 0 for m < i ≤ k is Λ̂X
def
= arg maxΛ Λ(x) =

(µ1, . . . , µm, 0, . . . , 0), and M(Λ̂x) = µ.

To measure the quality of estimators, one may consider any suitable distance

measure between the multisets M(Λ) and Q = Qµ. A natural choice for such a

distance, motivated by the related problem of distribution estimation, is the sorted

L1 distance, simply referred to as the L1 distance, between Λ and Q, and is given

by

|Λ−Q| def
= |M(Λ)−Q| def

=
∞∑
i=1

|λi − qi|,

where the means of Λ and Q are arranged in decreasing order, i.e., λ1 ≥ λ2 ≥
· · ·λk ≥ 0 and λi = 0 for i > k, and similarly for Q. The following is a simple

example of the various definitions above.

Example 56. Let Λ = (Λ(1),Λ(2),Λ(3),Λ(4)) = (3.5, 3, 1.1, 0.2). Let X(1) =

3, X(2) = 4, X(3) = 1, X(4) = 0 and thus, µ = 4, 3, 1. The empirical estimate is

therefore Q = Qµ = µ = {4, 3, 1}. And |Λ−Q| = 0.5 + 0 + 0.1 + 0.2 = 0.8. �

Unlike the empirical estimator that considers the likelihood of observing a

specific sequence x whose profile is µ(x) = µ, it is natural to consider the overall

likelihood of µ, i.e., the probability of observing any sequence whose sample col-

lection is µ. The likelihood of a sample collection µ, or equivalently its profile ϕ,

under Λ is

Λ(ϕ)
def
= Pr

(
ϕ(X) = ϕ

)
=

∑
x:ϕ(x)=ϕ

Λ(x)

def
= Pr

(
µ(X) = µ

)
=

∑
x:µ(x)=µ

Λ(x),
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where X ∼ Λ. A simple enumeration of all x that have the same profile ϕ leads

to an explicit expression for Λ(ϕ) as given in Observation 57. For all µ, let

Sµ
def
= Sϕ

def
=

m∑
i=1

µi
def
=

∞∑
µ=1

ϕµ · µ

denote the sum of its samples, also referred to as the length of the corresponding

profile ϕ. Following the notation in Section 2.4, notice that ϕ ∈ ΦSϕ . Similarly,

for all Λ, let

SΛ
def
=

k∑
i=1

λi

be the sum of its means.

Observation 57. For all Λ such that M(Λ) = (λ1, . . . , λk) and for all µ =

(µ1, . . . , µm) such that ϕ(µ) = ϕ = (ϕ1, ϕ2, . . .),

Λ(ϕ) = Λ(µ) =
1∏∞

µ=1 ϕµ!

∑
σ∈[k]m

m∏
i=1

poi
(
λσ(i), µ(i)

)
= poi(SΛ, Sϕ) · Sϕ!∏∞

µ=1 (µ!)ϕµϕµ!

∑
σ∈[k]m

m∏
i=1

(λσ(i)

SΛ

)µ(i)

. �

The maximum likelihood of a profile ϕ over all Λ is

Λ̂(ϕ)
def
= max

Λ
Λ(ϕ) = Λ̂ϕ(ϕ),

where

Λ̂ϕ = arg max
Λ

Λ(ϕ)

is the maximizing distribution. When restricted to a class of Poisson multisets L,

we define the corresponding maximum likelihoods and maximizing distributions

Λ̂L(ϕ)
def
= max

Λ∈L
Λ(ϕ) and Λ̂L,ϕ

def
= arg max

Λ∈L
Λ(ϕ).

The profile maximum likelihood (PML) estimatorQPML simply outputs the Poisson

multiset QPML
µ = Λ̂ϕ or Λ̂L,ϕ corresponding to input µ, i.e., ϕ = ϕ(µ).

Using the general result on the competitivity of ML for distribution esti-

mation in Lemma 40, we show that the PML estimator is competitive for Poisson
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multiset estimation in the next lemma. The additional ingredient needed to bound

|Z| in Lemma 40, other than the fact that |Φn| ≤ e3
√
n, is that Sµ concentrates

around SΛ as given by the following observation.

Observation 58. For all 0 < ε < 1 and all Λ such that SΛ ≥ 1
ε2(1−ε) , if µ ∼ Λ,

then

Pr
(
|Sµ − SΛ| ≥ εSΛ

)
≤ 2e−ε

2SΛ/3.

For all Λ such that SΛ ≥ 2,

Pr
(
Sµ > 2SΛ

)
≤ e−SΛ/6.

Proof. Since Sµ ∼ poi(SΛ), the result follows from Observation 7. �

Lemma 59. Let L be a collection of Poisson multisets Λ such that SΛ ≥ 2. Let

D(·, ·) be a distance measure on L × L. Suppose there exists an estimator Q such

that for some ε, δ > 0 and for all Λ ∈ L, when µ ∼ Λ,

Pr
(
D(Λ, Qµ) ≥ ε

)
≤ δ.

Then, the PML estimator Λ̂L,ϕ(µ) has error

Pr
(
D(Λ, Λ̂L,ϕ(µ)) ≥ 2ε

)
≤ δe4

√
SΛ + e−SΛ/6.

Proof. The proof is similar to that of Lemma 41 for distribution multiset estima-

tion. If µ ∼ Λ ∈ L, then the error probability of the PML estimator is

Pr
(
D(Λ,Λ̂L,ϕ(µ)) ≥ 2ε

)
≤ Pr

(
Sµ > 2SΛ) + Pr

((
D(Λ, Λ̂L,ϕ(µ)) ≥ 2ε

)
∧ (Sµ ≤ 2SΛ)

)
≤ e−SΛ/6 + δe4

√
SΛ .

In the last inequality, the bound on the first term follows from Observation 58.

For the second term, we notice that for the Q in the lemma’s statement which

has a small error Pr
((
D(Λ, Qµ) ≥ ε

)
∧ (Sµ ≤ 2SΛ)

)
≤ Pr

(
D(Λ, Qµ) ≥ ε

)
≤ δ.

Hence, the result follows from the general result for competitivity of ML in Lemma

40, along with the fact that the number of µ such that Sµ ≤ 2SΛ is at most
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2SΛ · |Φ2SΛ| ≤ e4
√
SΛ using Lemma 1. �

The above competitivity result is useful when δ < e−4
√
SΛ . We show the ex-

istence of such multiset estimators Q that approximate Λ to within an L1 distance

of εSΛ, where ε > 0, with error probability e−S
0.9
Λ , when the number of elements

in Λ is k = o(ε2.1n log(n)). We do this by showing that good distribution multiset

estimators can be used to construct good Poisson multiset estimators, both under

L1 distance estimation guarantees. Hence, we use the distribution estimator in

[68] to obtain a multiset estimator with the stated error guarantees. The simple

idea behind this is that estimating a Poisson multiset Λ to within an L1 distance

of εS is almost equivalent to estimating the distribution multiset

Λ

SΛ

def
=
(Λ(1)

SΛ

,
Λ(2)

SΛ

, · · · , Λ(k)

SΛ

)
to within a sorted L1 distance of ε. The construction and equivalence are given by

the following definition and lemma.

Definition 60. Let L be a class of Poisson multisets Λ and let P def
= {Λ/SΛ :

Λ ∈ L} be the collection of the class of corresponding normalized distributions.

Let Q̃
def
= Q̃ϕ be a profile-based distribution multiset estimator for P . Then, the

corresponding Poisson multiset estimator Qpoi, when given input µ outputs

Qpoi
µ

def
= Sµ · Q̃ϕ(µ),

where Q̃ϕ(µ) is the output of Q̃ corresponding to input ϕ = ϕ(µ) ∈ ΦSµ . �

Lemma 61. For ε ∈ (0, 2), let L be a class of Poisson multisets Λ such that

SΛ ≥ 8
ε2(2−ε) , and let P def

= {Λ/SΛ : Λ ∈ L}. Let Q̃ be a profile-based distribution

estimator such that for all P ∈ P, and all n ≥ min{SΛ/2 : Λ ∈ L}, when Y ∼ P n,

Pr
(
|P − Q̃ϕ(Y )|1 > ε

)
≤ δ(n),

where δ decreases monotonically in n. Then, the corresponding Poisson multiset

estimator Qpoi (in Definition 60) is such that for all Λ ∈ L, given µ ∼ Λ,

Pr
(
|Λ−Qpoi

µ | > 2εSΛ

)
≤ δ

(
SΛ/2

)
+ e−SΛ/12 + 2e−ε

2SΛ/3.
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Proof. Consider any Λ ∈ L and let µ ∼ Λ. Then,

Pr
(∣∣ Λ

SΛ

− Q̃ϕ(µ)| ≤ ε
)

≤ Pr
((
| Λ

SΛ

− Q̃ϕ(µ)| ≤ ε
)
∧
(
Sµ ≥

SΛ

2

))
+ Pr

(
Sµ ≤

SΛ

2

)
≤ δ
(
SΛ/2

)
+ e−SΛ/12,

where the last inequality is due to the following reasoning. The discussion on

Poissonization in Section 2.6 which implies that the distribution of ϕ(µ) ∈ ΦSµ

is equivalent to that of ϕ(Y ) where Y ∼ P n′ , P = Λ
SΛ

and n′ = Sµ ∼ poi(SΛ).

Hence, if n′ = Sµ ≥ SΛ

2
, since δ is monotonically decreasing Pr(| Λ

SΛ
− Q̃ϕ(µ)| ≥ ε) ≤

δ(SΛ/2), which explains the first term. The second term follows from the fact that

n′ = Sµ ≤ SΛ

2
with probability e−SΛ/12 by Poisson tail bounds of Observation 7.

By Observation 58, we also have that

Pr
(
|SΛ − Sµ| ≥ εSΛ) ≤ 2e−ε

2SΛ/3.

To combining both these observations, we note that if | Λ
SΛ
− Q̃ϕ(µ)| ≤ ε and |SΛ −

Sµ| ≤ εSΛ, then (by a trivial abuse of notation)

|Λ−Qpoi
µ | = |SΛ ·

Λ

SΛ

− Sµ · Q̃ϕ(µ)|

= |SΛ ·
Λ

SΛ

− SΛ · Q̃ϕ(µ) + SΛ · Q̃ϕ(µ) − Sµ · Q̃ϕ(µ)|

≤ SΛ|
Λ

SΛ

− Q̃ϕ(µ)|+ |SΛ − Sµ|

≤ 2εSΛ.

Hence, by union bound,

Pr
(
|Λ−Qpoi

µ | > 2εSΛ) ≤ Pr
(∣∣ Λ

SΛ

− Q̃ϕ(µ)| ≤ ε
)

+ Pr
(
|SΛ − Sµ| ≥ εSΛ)

≤ δ
(
SΛ/2

)
+ e−SΛ/12 + 2e−ε

2SΛ/3. �

We thus have the following corollaries.

Corollary 62. Let Qpoi,VV be the Poisson multiset estimator Qpoi corresponding to

the distribution estimator Q̃ = Q
VV

. For all ε > 0, and for all Λ with sufficiently
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large SΛ and k = O(ε2.1SΛ log(SΛ)), if µ ∼ Λ, then

Pr
(
|Λ−Qpoi,VV

µ | ≥ εSΛ

)
≤ e−S

0.85
Λ

and

Pr
(
|Λ− Λ̂ϕ(µ)| ≥ 2εSΛ

)
≤ e−S

0.8
Λ ,

where the PML is restricted over multisets of support O(ε2.1SΛ log(SΛ)).

Proof. Follows from Lemma 61, Corollary 50 and Lemma 59. �

Corollary 63. For all ε ∈ (0, 1
2
), and for all Λ with sufficiently large SΛ and

k = O(ε2.1SΛ), if µ ∼ Λ, then

Pr
(
|Λ−Qemp

µ | ≥ εSΛ

)
≤ e−ε

2SΛ/17

and

Pr
(
|Λ− Λ̂ϕ(µ)| ≥ 2εSΛ

)
≤ e−ε

2SΛ/18,

where the PML is restricted over multisets of support O(ε2.1SΛ).

Proof. Follows from Lemma 61, Lemma 38 and Lemma 59. �

We conclude this section on Poisson multiset estimation with the follow-

ing remarks. Similar to the distribution estimation problem, Lemma 59 can be

stated as competitive sample complexity result using the following observation

and lemma.

Observation 64. Let L be a collection of Λ that correspond to Poisson processes

Λ′ observed for time T , i.e., Λ = T · Λ′. Let L′ = {Λ/T : Λ ∈ L}. Suppose there

is an estimator Q′ for Λ′ such that for some distance metric D(·, ·) on Λ′, and

some ε > 0, when µ ∼ T · Λ′, Pr
(
D(Λ′, Q′µ) ≥ ε

)
≤ δ < 1

4
. Then there exists an

estimator Q′′ for Λ′ such that for all positive integers r, when µ ∼ (2r + 1)T · Λ′,
Pr
(
D(Λ′, Q′′µ) ≥ 3ε

)
≤ (4δ)r.

Proof Sketch. Similar to Observation 37. �
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Lemma 65. Following the notation in Observation 64, let L′ be a collection

of Λ′ and suppose there is an estimator Q′ for Λ′ such that when µ ∼ T · Λ′,
Pr
(
D(Λ′, Q′µ) ≥ ε

)
≤ δ < 1

4
. Then the PML estimator takes as input µ ∼ T ′ · Λ′

and outputs QPML = 1
T ′

Λ̂µ and has error Pr
(
D(Λ′, QPML) ≥ 6ε

)
≤ δ, where

T ′ = O
(

max{T, SΛ′T
2

log2( 1
4δ

)
}
)
.

Proof Sketch. Using Observation 64, r = O
(

max{1, SΛ′T

log2( 1
4δ

)
}
)

suffices to guaran-

tee the existence of an estimator whose error probability is δ′ = (4δ)r ≤ δ2e−10
√
S′ΛT

′

using µ ∼ T ′Λ′ where T ′ = (2r + 1)T . Hence, by Lemma 59, the error probability

of PML estimator is at most δ when µ ∼ T ′Λ′. �

Note that the sample complexity guarantees hold even when δ ≥ e−4
√
SΛ , unlike

in Lemma 59. Lastly, we note the following simple relationship between the PML

estimators for distribution multiset and Poisson multiset estimation.

Observation 66. For all µ,

Λ̂ϕ(µ) = Sµ · P̂ϕ(µ). �

Thus, the computation of PML for Poisson multiset estimation is the same,

i.e., requires solving the same optimization problem, as that for the corresponding

distribution multiset estimation. And all the earlier machinery used for computing

PML for distribution multiset estimation is therefore directly applicable for Poisson

multiset estimation as well.

6.2 Bernoulli Multiset Estimation

Let B be a list of k Bernoulli 0-1 distributions, indexed i = 1, 2, . . . , k, whose

success probabilities are B
def
= (θ(1), θ(2), . . . , θ(k)). For a positive integer n and for

each of i = 1, 2, . . . , k, let X(i)
def
= X(i, 1), X(i, 2), . . . , X(i, n) be a sequence of n

samples drawn independently according to bernoulli(θ(i)), i.e., X(i, j) takes values

1 and 0 with probabilities θ(i) and θ(i)
def
= 1 − θ(i) respectively, for j = 1, . . . , n.
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Let

X
def
= X1, X2, . . . , Xm

def
=
{
X(i) :

n∑
j=1

X(i, j) > 0, 1 ≤ i ≤ k
}

be the set of sequences X(i) in which at least one of the X(i, j) = 1 for j =

1, 2, . . . , n. Here m
def
= m(X) is the number of X(i) that have at least one 1.

Given a sample collection X ∼ B, we want to find the Bernoulli multiset

M(B)
def
= (θ1, θ2, . . . , θk)

def
= {θ(1), θ(2), . . . , θ(k)}

of the unknown distributions B. Without loss of generality, we assume θ1 ≥ θ2 ≥
· · · ≥ θk. We often use B to implyM(B) for brevity, whenever it is clear from the

context. In general, we are not given k or any other information about B. An esti-

mator Q outputs a multiset of probabilities Q
X

def
= {q1, q2, . . . , qk′} corresponding

to each possible input X.

A simple example of Q is the empirical estimator Qemp

X

def
= {µ1

n
, . . . , µm

n
}

where µi is the number of 1’s in X i, for i = 1, 2, . . . ,m. Notice that for a given

B and X, the probability of observing X(1), . . . , X(k) such that X(i) = X i for

i = 1, . . . ,m and X(i) = 0, 0, . . . , 0 for i = m+ 1, . . . , k is

B
(
X(i), . . . , X(k)

)
=

k∏
i=1

θ(i)µi(1− θ(i))n−µi ,

where µi = 0 for i = m + 1, . . . , k. Hence, Qemp

X
= B̂X(1),...,X(k) maximizes the

likelihood of observing X(1), . . . , X(k).

To evaluate the performance of estimators, one may consider various dis-

tance measures between the underlying multiset B and estimated multiset Q =

Q
X

. A natural choice for such a distance, motivated from the related distribution

estimation problem, is the sorted L1 distance, or simply the L1 distance, between

B and Q and is defined as

|B −Q| def
= |M(B)−Q| def

=
∞∑
i=1

|θi − qi|,

where the probabilities of B and Q are arranged in decreasing order. The following

example illustrates the problem.
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Example 67. Let B = (θ(1), . . . , θ(5)) = (1
8
, 1, 1

2
, 1

8
, 1

8
). Then its multiset is

M(B) = (1, 1
2
, 1

8
, 1

8
, 1

8
). Suppose n = 3 samples are taken from each of these distri-

butions and the sample sequences obtained are X(1) = (0, 0, 0), X(2) = (1, 1, 1),

X(3) = (1, 0, 1), X(4) = (0, 0, 0), X(5) = (1, 0, 0). We are given only the sequences

X = X(2), X(3), X(5) that contain at least one 1 to estimate B. The empirical

estimator outputs Q = Qemp

X
= (1, 2

3
, 1

3
). If in addition, we are given that k = 5

and that each of the θ(i) have a uniform prior over [0, 1], then one obtains the

Laplace or add-one estimate for each of the processes as (3+1
3+2

, 2+1
3+2

, 1+1
3+2

, 0+1
3+2

, 0+1
3+2

)

and outputs Q′ = (4
5
, 3

5
, 2

5
, 1

5
, 1

5
). The multisets Q′′ = (1, 1

2
), Q′′′ = (1, 1, 1

3
). are

also allowed estimates, although it is clear that they cannot generate the given

collections. We still notice that |P −Q′′| = 3
8

is smaller than |P −Q| = 5
8
. �

Since we want to estimate M(B) and the sequences are generated i.i.d.,

it is natural to consider the profile of X, which conveys the multiset of counts

of 1 in the different sequences in X. The profiles considered here are similar

to those considered for distribution multiset and Poisson multiset estimation. For

i = 1, 2, . . . ,m, letX i
def
= Xi,1, . . . , Xi,n and µi, the multiplicity ofX i, is the number

of appearances of 1 in X i, i.e.,

µi
def
= µ(X i)

def
=

n∑
j=1

Xi,j.

For µ = 1, . . . , n, the prevalence of µ is

ϕµ
def
= |{i : µi = µ, 1 ≤ i ≤ m}| def

=
m∑
i=1

1[µi=µ],

the number of sequences X i that have µ 1’s. The profile of X is

ϕ(X)
def
= ϕ

def
= (ϕ1, ϕ2, . . . , ϕn).

The profile ϕ(X) is equivalently conveyed as the multiplicity vector

µ(X)
def
= µ(ϕ)

def
= µ

def
= {µ1, µ2, . . . , µm}.

Without loss of generality, we assume that µ1 ≥ µ2 ≥ · · · ≥ µm and that X i’s are

indexed in decreasing order of their multiplicities. For every µ, there is a unique
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ϕ = ϕ(µ) and vice versa. We use both ϕ and µ with the same meaning. For all ϕ

and its corresponding µ, let

Sϕ
def
= Sµ

def
=

m∑
i=1

µi
def
=

∞∑
µ=1

ϕµ · µ.

Following the notation in Section 2.4, it is implied that ϕ ∈ ΦSϕ .

The likelihood of a profile ϕ under Bernoulli distributions B is the proba-

bility of observing a sample collection X whose profile is ϕ under B , given by

B(ϕ)
def
= B

(
ϕ(X) = ϕ

) def
=

∑
x(1),...,x(k):ϕ(x)=ϕ

B(x(1), . . . , x(k)).

Since the probability of x(1), . . . , x(k) under B is

B(x(1), . . . , x(k)) =
k∏
i=1

(θ(i))µ(xi)(1− θ(i))n−µ(xi),

a simple enumeration of all x(1), . . . , x(k) such that the corresponding x has profile

ϕ(x) = ϕ leads to the following explicit expression for B(ϕ).

Observation 68. For all B such that M(B) = (θ1, . . . , θk) and for all ϕ =

(ϕ1, ϕ2, . . .) such that µ(ϕ) = (µ1, . . . , µm),

B(ϕ) =
1

(k −m)!
∏n

µ=1 ϕµ!

∑
σ∈Sk

k∏
i=1

(
n

µi

)
θµiσ(i)(1− θσ(i))

n−µi

=
(n!)m∏n

µ=1 (µ!(n− µ)!)ϕµϕµ!

∑
σ∈[k]m

m∏
i=1

θµiσ(i)(1− θσ(i))
n−µi . �

The maximum likelihood of a profile ϕ over all B is

B̂(ϕ)
def
= max

B
Λ(ϕ) = B̂ϕ(ϕ),

where

B̂ϕ = arg max
B

B(ϕ)

is the maximizing distribution. When restricted to a class of Bernoulli multisets B,

we define the corresponding maximum likelihoods and maximizing distributions

B̂B(ϕ)
def
= max

B∈B
B(ϕ) and B̂B,ϕ

def
= arg max

B∈B
B(ϕ).
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The profile maximum likelihood (PML) estimator QPML outputs the Bernoulli

multiset QPML

X
= B̂

ϕ(X)
or B̂B,ϕ(X)

corresponding to input X.

Using the general result on the competitivity of ML for distribution estima-

tion in Lemma 40, we show that the PML estimator is competitive for Bernoulli

multiset estimation. Without loss of generality, since we want to estimate M(B)

and the sequences in X are generated i.i.d., we only consider estimators Q that

depend on X only through its profile ϕ(X), i.e., Q
X

= Q
ϕ(X)

, by an argument

similar to subsection 3.2.1 or [9, Section 3.1.3]. To apply the general competitivity

result, we needed to bound |Z| in Lemma 40. For this, we show that for all B and

large n, when X ∼ B, S
ϕ(X)

concentrates around nSB where

SB
def
=

k∑
i=1

θi

is the sum of its success probabilities.

Observation 69. For all ε ∈ (0, 1) and all B, if X ∼ B, then

Pr
(
|S
ϕ(X)
− nSB| ≥ εnSB

)
≤ 2e−ε

2SB/3

and

Pr
(
Sµ > 2nSB

)
≤ e−SB/3.

Proof. Using Chernoff bounds from Fact 8 on the quantity S
ϕ(X)

=
∑m

i=1 µi =∑k
i=1

∑n
j=1X(i, j), which is a sum of 0-1 independent random variables and has

mean E[
∑

i

∑
j X(i, j)] =

∑
i nθ(i) = nSB. �

Lemma 70. Let B be a collection of Bernoulli multisets B and D(·, ·) be a distance

measure on B × B. Suppose there exists a profile-based estimator Q such that for

some ε, δ > 0 and for all B ∈ B, when X ∼ B,

Pr
(
D(Λ, Q

ϕ(X)
) ≥ ε

)
≤ δ.

Then, the PML estimator B̂B,ϕ(X)
has error

Pr
(
D(Λ, B̂B,ϕ(µ)) ≥ 2ε

)
≤ δe4

√
SB + e−SB/3.
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Proof. Similar to the proof of Lemma 41 for distribution multiset estimation and

that of Lemma 59 for Poisson multiset estimation, if X ∼ B ∈ B, then the error

probability of the PML estimator is

Pr
(
D(B,B̂B,ϕ(X)

) ≥ 2ε
)

≤ Pr
(
S
ϕ(X)

> 2nSB) + Pr
((
D(Λ, Λ̂L,ϕ(X)

) ≥ 2ε
)
∧ (S

ϕ(X)
≤ 2nSB)

)
≤ e−nSB/3 + δe4

√
nSB .

In the last inequality, the bound on the first term follows from Observation 69.

For the second term, the Q in the statement of the lemma has a small error

given by Pr
((
D(Λ, Q

ϕ(X)
) ≥ ε

)
∧ (S

ϕ(X)
≤ 2SB)

)
≤ Pr

(
D(Λ, Q

ϕ(X)
) ≥ ε

)
≤ δ.

Hence, the result follows from the general result for competitivity of ML in Lemma

40, along with the fact that the number of ϕ such that Sϕ ≤ 2nSB is at most

2nSB · |Φ2nSB | ≤ e4
√
nSB using Lemma 1. �

To make use of the above lemma, we show the existence of multiset esti-

mators Q whose error probability is at most exp(−4
√
nSB) for non-trivial choices

of B and D(·, ·). We do this by relating the Bernoulli multiset estimation problem

to that of distribution estimation problem when L1 distance is used for evaluating

the quality of estimation. In the process, we show that good distribution multiset

estimators can be easily used as good Bernoulli multiset estimators. The simple

idea behind this is that estimating a Bernoulli multiset B to within an L1 distance

of εnSB is essentially equivalent to estimating the distribution multiset

B

SB

def
=
(θ(1)

SB
,
θ(2)

SB
, · · · , θ(k)

SB

)
to within a sorted L1 distance of ε. The complete construction is stated below.

Definition 71. Let B be a class of Bernoulli multisets B and let P def
= {B/SB :

B ∈ B} be the collection of the class of corresponding normalized distributions.

Let Q̃
def
= Q̃ϕ be a profile-based distribution multiset estimator for P . Then, the

corresponding Bernoulli multiset estimator Qbern for input X ∼ B ∈ B is defined

as follows. For i = 1, . . . ,m, generate independent ni ∼ poi(n
2
). If some ni > n,

terminate the estimation process and output error. Otherwise, for each of i =

1, . . . ,m, let Y i consist of first ni samples of X i, i.e., Y i = Xi,1, Xi,2, . . . , Xi,ni .
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Let µ′i
def
= µ(Y i) be the number of 1’s in Y i for i = 1, 2, . . . ,m. And let

ϕ′ = (ϕ′1, ϕ
′
2, . . .) be the profile of µ′

def
= {µ′i : µ′i > 0, 1 ≤ i ≤ m}. In other words,

ϕ′µ =
∑m

i=1 1[µ′i=µ]
is the number of µ in µ′. Then, output

Qbern

ϕ(X)

def
=

S
ϕ(X)

n
· Q̃ϕ′ . �

The following lemma shows that if Q̃ is a good distribution estimator, then

the corresponding Qbern is good Bernoulli multiset estimator, both in L1 distance.

Lemma 72. For ε ∈ (0, 2), let B be a class of distribution multisets B such that

SΛ ≥ 8
ε2(2−ε) , and let P def

= {B/SB : B ∈ B}. Let Q̃ be a profile-based distribution

estimator such that for all P ∈ P, and all ` ≥ n · min{SB/4 : B ∈ B}, when

Y ∼ P `,

Pr
(
|P − Q̃ϕ(Y )|1 > ε

)
≤ δ(`),

where δ decreases monotonically in `. Then, the corresponding Bernoulli multiset

estimator Qbern (in Definition 71) is such that for all B ∈ B, given X ∼ B,

Pr
(
|B −Qbern

ϕ(X)
| > 2εSB

)
≤ δ

(
nSB/4

)
+ 2e−ε

2nSB/3 + e−nSB/24 + ke−n/12.

Proof. Consider any B ∈ B and let X ∼ B. And consider the intermediate steps

of Definition 71 involved in obtaining Qbern from the Q̃ in the lemma statement.

By Poisson tail bounds of Observation 7, and union bound, probability that some

ni > n for i = 1, . . . ,m, in Definition 71 is at most me−n/12 ≤ ke−n/12.

If all ni < n, by the discussion on Poissonization in Section 2.6, all µ′i ∼
poi(nθi/2) = poi

(
(nSB/2) · (θi/SB)

)
. (Notice that while we did not explicitly take

care of symbols that did not appear, hypothetically generating ni ∼ poi(n/2) for

i = m + 1, . . . , k and taking first n/2 samples would have still resulted in µ′i = 0

for i = m + 1, . . . , k, as is the case currently.) It follows that ϕ′ is the profile of

Z ∼ ( B
SB

)poi(nSB/2). Hence ϕ′ has length Sϕ′ =
∑

µ ϕ
′
µµ ≥ nSB/4 with probability

≥ 1 − e−nSB/24 by Poisson tail bounds. In that case, Pr
(
| B
SB
− Q̃ϕ′ |

1
≥ ε

)
≤

δ(Sϕ′) ≤ δ(nSB/4).
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Using Observation 69, Pr
(
|S
ϕ(X)
− nSB| ≥ εnSB

)
≤ 2e−ε

2nSB/3. Similar to

the proof of Lemma 61, if | B
SB
− Q̃ϕ′ |

1
≤ ε and |S

ϕ(X)
− nSB| ≤ εnSB, then

|B −Qbern

ϕ(X)
| = |SB ·

B

SB
−
S
ϕ(X)

n
Q̃ϕ′ | ≤ 2εSB.

Assembling the facts above, and using union bound for bounding the overall

error probability,

Pr
(
|B − Q̃

ϕ(X)
| > 2εSB) ≤ Pr

(
ni > n for some i = 1, . . . ,m

)
+ Pr

(
Sϕ′ < nSB/4

)
+ Pr

((
| B
SB
− Q̃ϕ′|

1

≥ ε
)
∧ (Sϕ′ ≥ nSB/4)

)
+ Pr

(
|S
ϕ(X)
− nSB| ≥ εnSB

)
≤ ke−n/12 + e−nSB/24 + δ

(
nSB/4

)
+ 2e−ε

2nSB/3. �

The following corollaries are applications of the competitivity result for

the PML-based estimator and the method for converting distribution multiset

estimators to Bernoulli multiset estimators.

Corollary 73. Let Qbern,VV be the Bernoulli multiset estimator Qbern corresponding

to the distribution estimator Q̃ = Q
VV

. For all ε > 0, for all sufficiently large n,

and for all B with sufficiently large nSB and k = O(ε2.1nSB log(nSB)), if X ∼ B,

then

Pr
(
|B −Qbern,VV

ϕ(X)
| ≥ εSB

)
≤ e−(nSB)0.85

and

Pr
(
|B − B̂

ϕ(X)
| ≥ 2εSB

)
≤ e−(nSB)0.8

.

where the PML is restricted over multisets of support O(ε2.1nSB log(nSB)).

Proof. Follows from Lemma 72, Corollary 50 and Lemma 70. �

Corollary 74. For all ε ∈ (0, 1
2
), for sufficiently large n, and for all B with

sufficiently large nSB and k = O(ε2.1nSB), if X ∼ B, then

Pr
(
|B −Qemp

X
| ≥ εSB

)
≤ e−ε

2nSB/17
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and

Pr
(
|B − B̂

ϕ(X)
| ≥ 2εSB

)
≤ e−ε

2nSB/18,

where the PML is restricted over multisets of support O(ε2.1nSB).

Proof. Follows from Lemma 72, Lemma 38 and Lemma 70. �

Lemma 70 can be stated as competitive sample complexity result using the

following observation and lemma. The sample complexity guarantee holds even

when δ ≥ e−4
√
nSB , unlike in Lemma 70.

Observation 75. Let B be a collection of B. Suppose there is an estimator Q for B
such that for some distance metric D(·, ·) on B, and some ε > 0, when X ∼ B ∈ B
and sequences in X are of length n, Pr

(
D(B,Q

X
) ≥ ε

)
≤ δ < 1

4
. Then there

exists an estimator Q′ for B such that for all positive integers r, when X
′
∼ B and

sequences in X
′

are of length n′ = (2r + 1)n, Pr
(
D(B,Q′

X
′) ≥ 3ε

)
≤ (4δ)r.

Proof Sketch. Similar to Observation 37. �

Lemma 76. Let B be a collection of B and suppose there is a profile-based esti-

mator Q for B such that when X ∼ B ∈ B, and sequences in X are of length n,

Pr
(
D(B,Q

ϕ(X)
) ≥ ε

)
≤ δ < 1

4
. Then the PML estimator takes as input X

′
∼ B,

where sequences in X
′

are of length n′, and has error Pr
(
D(B, B̂

ϕ(X
′
)
) ≥ 6ε

)
≤ δ,

where n′ = O
(

max{n, n2SB
log2( 1

4δ
)
}
)
.

Proof Sketch. Using Observation 64, r = O
(

max{1, nSB
log2( 1

4δ
)
}
)

suffices to guaran-

tee the existence of an estimator whose error probability is δ′ = (4δ)r ≤ δ2e−10
√
n′SB

using X
′
∼ B where sequences in X

′
have length n′ = (2r+1)n. Hence, by Lemma

70, the error probability of PML estimator is at most δ using X
′
. �

To summarize and conclude, we showed that PML estimator for Bernoulli

multiset estimator is competitive with other estimators. We showed applications

of this result by showing that good distribution multiset estimators can be used

to construct good Bernoulli multiset estimators, which is a useful result in itself.

However, we note from Observation 68 that the exact computation of PML for
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Bernoulli multiset estimation involves a related but different optimization problem

than that for distribution and Poisson multiset estimation. Several results anal-

ogous to that for PML computation for distribution estimation are shown in [1].

An EM algorithm and its experimental results for directly approximating PML for

Bernoulli multiset estimation are shown in [2, 1]. It is similar to the EM algorithm

for approximating PML for distribution estimation considered in [50, 46, 75].
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