Compilation and analysis of eukaryotic POL II promoter sequences

Philipp Bucher and Edward N.Trifonov

Department of Polymer Research, The Weizmann Institute of Science, Rehovot, PO Box 26, Israel

Received 20 August 1986; Revised and Accepted 30 October 1986

Abstract

A representative set of 168 eukaryotic POL II promoters has been compiled from the EMBL library and subjected to computer signal search analysis. Application of this technique to E. coli promoters as a control ensemble revealed the well known consensus sequences at -35 and -10 which indicates that the methods are adequate to approach problems of this kind. The results obtained from the eukaryotic promoter set can be summarized as follows: (i) Common sequence features are confined to a region between -50 and +10 relative to the transcriptional initiation site. (ii) The only well conserved consensus sequence is TATAAA, centered at -28. (iii) A weak motif, CA followed preferentially by pyrimidines, surrounds the cap-site. (iv) Two pentanucleotides which have been shown by experiments to stimulate transcription of certain genes, GGGCG and CCAAT, are moderately over-represented in the upstream region (between - 129 and $\mathbf{- 5 0}$). However, they occur at highly variable distances from the initiation site.

INTRODUCTION

Eukaryotic POL II promoters have been the subject of intense investigation during the last decade. Despite these efforts, no generally accepted description of their general sequence features, such as exists for E. coli promoters, has as yet emerged. The results of earlier comparative studies (1,2) were derived from relatively small promoter sets biased by high proportions of histone and globin sequences and need re-evaluation. Site-directed mutagenesis data do not provide a coherent picture of promoter structure because it is usually not possible to decide whether the mutations affect general or gene-specific mechanisms. The only undisputed eukaryotic POL II promoter element is the Goldberg/Hogness- or TATA-box (3) which occurs between 25 and 30 bp upstream from the initiation site. Its requirement for accurate initiation as well as for maximal rate of transcription has been demonstrated for a considerable number of genes. However, in some cases it has also been shown that it is dispensable for low levels of transcription (4) or insufficient for high rates (5).

Many mutations which modulate the activity of a promoter have been mapped to a region upstream from the TATA-box (6). What remains uncertain is whether a second universal promoter element exists in this region which is inactivated by some of these mutations. Several candidate consensus sequences have been proposed for this. The most popular one is the cartbox introduced in two different versions by Efstratiadis et al. (7) and Benoist et al. (8). Although its quality as a consensus sequence has never been convincingly demonstrated by

Nucleic Acids Research

comparative DNA sequence analysis, the biological significance of this motif seems to be broadly accepted. This is reflected by dozens of underlined or boxed CAAT-related oligonucleotides in newly published promoter sequences which are declared as "transcription signals" in the absence of experimental evidence that would support such a claim. The clarification of the status of this consensus sequence was one of the objectives of this investigation.

In our sequence analysis strategy we considered it as important to apply the following principles: We required first that the data set is representative in the sense that it does not include significant numbers of sequences which are closely related by phylogeny, and second that the algorithms do not depend on a priori assumptions on the nature of the sequence features to be found. Since we felt that a possible negative result would not be appreciated unless the power of our methods is demonstrated on a related problem where there is agreement about the expected results, we applied our sequence analysis procedures simultaneously to Hawley and McClure's collection of E. coli promoters (9) and show these results here, too.

SELECTION OF DNA SEQUENCE DATA:

We define eukaryotic promoters as DNA segments which determine the site rather than the rate of transcriptional initiation. The existence of transcriptional enhancers which influence initiation rates over distances of 1 kb or more renders alternative definitions impractical. Our compilation is therefore a collection of transcriptional initiation sites. Consequently we considered only biochemical but not genetic evidence in order to decide whether a given sequence should be incorporated or not. We further assumed that all capped 5 'termini of eukaryotic mRNAs are generated by RNA POL II initiation. Biochemical evidence for a transcription start site usually comes from direct or indirect sequence analysis of mRNA 5 'regions. In a few cases, data on the structure of in vitro generated transcripts were also accepted as promoter definition. Some capsites were inferred from experimentally determined transcriptional intiation sites of closely related genes. Putative promoters predicted from nucleotide sequence alone are not included in our compilation. However, in order to avoid subjective decisions, we did not exclude initiation sites located at unusual distances from a clear TATA-box if they were reportedly mapped by adequate techniques.

For purely technical reasons we confined our collection to sequences which were available in the EMBL nucleotide sequence data library release 7 (10). Promoters from lower eukaryotes (protozoa, slime-molds, algae, and fungi) were excluded because there are some indications that the specificity of their POL II transcription system might differ from that of higher eukaryotes. In an in vitro study, RNA polymerase II from yeast behaved more like E. coli polymerase than like the corresponding enzyme of higher eukaryotes (11). This taxonomic selection criterion applies only to the organisms where a given gene is expressed but not to the species which it belongs to due to its way of perpetuation. Consequently, our compilation includes many viral promoters as well as a few transcriptional initiation sites on the TDNA of Ti-plasmids, a DNA
segment which is replicated in a prokaryote but expressed by plant tumor cells after transformation (12).

Since the objective was to compile a set of promoters which is representative of higher eukaryotic genes in general, we had to eliminate a certain number of sequences which are closely related by phylogeny to other items of the collection. In doing so, we gave preference to the representatives with the longest upstream sequences available. The threshold for exclusion was set at 50% average homology between positions -50 and +10 relative to the initiation site. In principle, our sequence collection should also be devoid of larger groups of co-ordinately regulated promoters which could introduce statistically significant numbers of control signals into the ensemble which then could not be distinguished from general promoter elements by our computer analyses. With hemoglobin promoters constituting the largest subclass of this type but accounting only for 5% of the sequences in our compilation, we decided that further exclusions were not necessary.

Our computer algorithms require an initial alignment of the sequences with respect to an experimentally determined position. The fact that most transcriptional initiation sites are not mapped with absolute precision poses no fundamental problems for our techniques. However, difficulties arise when alternative transcription start sites are shown or supposed to be used by RNA polymerase for transcription of the same gene. In such a situation, we distinguished three cases. If most mRNA termini map to a small DNA region less than 10 bp in length, the sequence is listed only once in the collection and aligned with respect to an averaged position. If two or a few well separated major transcription start sites exist which are of similar strength or differentially regulated, each one appears as a distinct item in our compilation. If the pattern of transcriptional initiation is to diffuse to meet either of these conditions, the promoter was excluded from our set. Only a maize zein gene (13) and the late promoter region of polyoma virus were (14) discarded for this reason.

The analysis of E. coli promoters was based on Hawley and McClure's compilation (9). Only the precisely mapped promoters listed in Table 1 were considered. Those which were found in the EMBL library (85 out of 112) were analysed further upstream and downstream from the sequence segments shown in the original compilation.

COMPUTER METHODS FOR DNA SEQUENCE ANALYSIS

All analyses were carried out with an extended version of the signal search analysis program package described in detail by Bucher and Bryan (15). This method has much in common with Waterman's recently published pattern recognition techniques $(16,17)$ and the package resembles in its software design certain parts of the "Delila system tools" described by Schneider et al. (18). A typical signal search analysis involves the following steps: 1. A set of fixed length DNA sequence segments defined by their location relative to an experimentally determined functional site (in this case transcriptional initiation sites) is extracted from a data

Nucleic Acids Research

Gene and organism
Wheat H3 Wheat H4

Maize zein zA1 Maize zein 19 K

Soybean RuBCC SS Soybean Lb I Soybean hs6871 Soybean Le1
F.v. phaesolin
A.t. TDNAo tmr P1
A.t. TDNAo tmr P2
A.t. TDNAo ocs
A.t. TDNAn nos
A.t. TDNAo tr-7

CAMV 8s, 35s-major CANV 35s-minor
D.m. cut.-protein I
D.m. cut.-protein III
D.畐. sgs4 glue
D.四. 3L 74F
D.m. globin IV
D.m. YP I
D.a. YP II
D.n. ADH larval
D.m. ADH adult
D.m. hsp 70K
D.m. hsp 22 K
D.m. hsp 23K
D.m. hsp 26 K
D.m. hsp 27K
D.m. hsp 68K
D.m. hsp 83K
D.m. 44D gene H
D.m. 44D gene L
D.m. rp49
B.m. fibroin
B.m. Hc-A. 13
B.m. Hc-B. 13
P.m. early H1
P.m. early H2A
S.p. early H2B
S.p. early H3
S.p. early H4
L.p. late H3
L.p. late H4
$\begin{array}{llllll}-40 & -30 & -20 & -10 & 0 & +10\end{array}$
TCTCGGTGCTCCTCCTATTTAACTCCGCCCCGTCCCCTTCTTCCTCCTCACCCCAATCTC CAACCTCTCGACCCCTTTAAGACGCCCTTCGCCCCACCCAGCAAATCACAGCTACCAGACG
antatttgagacctcacctatatanatagctcccatatcagtagttantcecatcacceat CACAAGGACTGAGATGTGTATAAATATCTCTTAGATTAGCTAGCTAATATATCGCACATA
acacanatcgacactattatatatagcangTtTgagcagangctiggantatct gccacca CTCTTCAAGCCTTCTATATAAATAAGTATTGGATGTGAAGTTGTTGCATAACTTGCATTG TATATTGCTCCTCTACATCATTTTAAATACCCCATGTGTCCTTTGAAGACACATCACAGA angTacccantantgctagtatanataggggcatgactccccatgcatcaceg TGcantt СТСТСТТАТАТАатACCTATAAATACCTCTAATATCACTCACTTCTTTC CATCATCCATCC antganttichaggagacantatanccgcctctgatancacanttctctantattananat CTGATAACACAATTCTCTAATATAAAAATCAGTITGTATTCAATATACTGCCAAAAAACTT TTGCCCATTCATTGATCTATTTAAAGGTGTGGCCTCAAGGATAATCGCCCAAACCATTATA CAAAAATGCTCCACTGACGTTCCATAAATTCCCCTCGGTATCCAATTAGAGTCTCATATT CGTCCCAGCCCGGCATCTATATATAGCGCCAATATAGTTTGTCTTACACAAACACACCTC

TTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGGACACGCTGAAA TAATGACCCCTTATCGATTTAAAGAAATAATCCGCATAAGCCCCCGCTTAAAAAATTGGT
aCTTTGGGTGGCAATCATATAAAAAGGCTCTGCCCGACCACAATCAGTTATCAGTCAACG TGCATCAGCTTTTGATGATATATAAACACCGATTTGAGCATAGATTGTCATCAGTCTTAG CGATGGCAAAATGCAGTGGGTATATAAAGAGCATCAAGCGGTATTGAATTCṬAAAGTCAA TATGTAATCATATAGATTCTATAATAAACAAAGAAACAAAACTAGTTGTAAAACAAACAC TTCTCAAAATTTTTAAGTATAAATGGAGCACAAATTTCGATAGTAAATCAGTTTCTTCAAT CGCTCAGCGTAAATTGTGGTATATAAACCACCATCGTTGGATTTGGAAGGGCTCAGTTCAAC atagactaccgattccanggg tatanantgcattgagtcgcagcagTccececatgcagta TGCTGTACGGATCTTCCTATAAATACGGGGCCGACACGAACTGGAAACC!AACAACTAACG CCCCCACGAGAGAACAGTATTTAAGGAGCTGCGAAGGTCCAAGTCACCGGATTATTGTCTC

CGAAAAGAGCGCCGGAGTATAAATAGAGGCGCTTCGTCGACGGAGCGTCTAATTCAATTCA TTCCTCTCTGTCAAGAGTATAAATAGCCACCGGTTGGACACTACGCTCTC! TTCGACAGCAAGCGGTTGTATAAATATCCGGCACTTTCGTGCAACCGGCGTCCAGTTGAAT agAanagctccagcgagtatanangcagcgTcGctTGacgancagacceacacatcgant TGTGAGCCCAGCGTCAGTATAAAAGCCGGCGTCAACGTCGCCCGAGC!AC.AGTCTTAAACTG TCCCCTCCCGGCGACAGAGTATAAATACGGGCGCAAATTTCCCAGACG̣CTACATTTGAAA TTCGGGTGCGGGTTTTTCTATAAAAGCAGACGCGCGGCGTTTGCCGGTTTCGAGTCTTGAA
CACCTTATCGACTAGTATAAAAGGCACTGTCAGCTCTCCAGCCCGAACMAAATCGATCAA CAATGGGAGCGGTATGCTTAAATAGGGGCACCTTTTAATCCCTCTGGCCATXGGCAATCG
TATTTCCAGTGGGTCAGTGCACTAATGGCTACACTTGTTGTGTCCTACCCAGCTTTCAAGAT
AAAACTCGAAAATTTTCAGTATAAAAAGGTTCAACTTTTTCAAATCAGCATCAGTTCGGT
gGTGAACATGATTCTTAGTTACTATATAAGAACGAAGTCTTAAGCTTXAAGXATTCAAGA ATTTTCAAGGAAACTGCTCGGTATAAAAGCTGATGTAGTTCAGAGTTAAGTCATTCTGAA

CCACGTACGCAACCGCGCGGGATATAGGTGAGGTTGCCGTGAGGGCCGTCACTTGTTTTTG TCCGATCCCGACGTTTGGTATAAATAGCCAGCAAAAAAGATAGGTGGTCAACTCATTCAAG AGGGATCCGGCCCCGTGTATAAAAAGGAAAGGTTCTCGCTGGCCATTCACAGTATCCAAA CCAGGATCCCGCAGCACATATAAATAGCTGAAAATTGCCAGTGGTTCTCCATTCATCCCGT CAAGTCCGCAATGGTGTAACAATACTCGGTGCAATCCGGTTGAGGCATCATTCGCTTAGC

CGAGAAGCAGTCTGGAGGTATAAATACGTCGCGGTTACTTTGAAAATXXATCAGTTGACT taAngGCTATATATACCGCACGAACAGCAGAATTGAGTATCAGTTTGAATCTCAAACAGG

Exp. def.	Expression/Regulation	References for initiation site	EMBL Sequence Ref.		
3	proliferating tissues	MGG196:397	TAHIO2	1+	186
3	proliferating tissues	NAR11:5865	TAHIO1	1+	669
3	endosperm	EMBOJ1:1589	ZMZE05	1+	148
4	endosperm	Cell29:1015	ZMZE01	1+	888
3	leaves, + light	JMAG1:483	GMRUBP	1+	241
3	root nodules	PNAS79:4055	GMGLO4	1+	144
3	root e.g., +heatshock	EMBOJ3:2491	GMHSP2	1+	492
4	cotyledon	Cell34:1023	GMLEA	1+	942
4,6	cotyledon	PNAS80:1897	PVPHASL	1+	101
3	plant tumor	NAR11:6211,JMAG2:354	atachs	$1+$	8729
3	plant tumor	NAR11:6211,JMAG2:354	ATACH5	$1+$	8780
3	plant tumor	JMAG1:499	ATACH5	1-	13658
3	plant tumor	NAR11:369,JMAG1:561	ATNOPA	1+	550
3	plant tumor	EMBOJ2:419	ATACH5	1-	3303
3,8	infected leaves	Cell130:763	CAMVG2	$0+$	7435
3,8	infected leaves	Cell30:763	CAMVG2	$0+$	8017
6	third instar larva	Cell29:1027	DMCUT1	1-	760
6	third instar larva	Cell29:1027	DMCUT2	1+	2606
3,7	larva; salivary glands	Cell29:1041,Cel134:74	DMSGS4	1+	52
4	larva; salivary glands	EMBOJ3:289	DM74EF	1+	401
4	larva; fat body	Nature310:795	CTGLO1	1+	260
3,7	puppa; ovary, fat body	NAR10:2261	DMYOLK1	1-	225
3,7	puppa; ovary, fat body	NAR10:2261	DMYOLK1	$1+$	1447
4,5	larva; fat body, gut	Cell33:125	DMADH1	$1+$	974
4,5	adult	Cell33:125	DMADH1	$1+$	267
4,5	+heatshock	NAR8:3105,Cell21:669,EMBOJ1:1583	DMHSP1	$1+$	717
4,8	+heatshock	NAR9:1627	DMHSO8	$1+$	514
4,8	+heatshock	NAR9:1827	DMHSO9	1+	320
3,8	+heatshock	NAR9:1627,PNAS78:3775	DMHS10	$1+$	470
4,8	+heatshock	NAR9:1627	DMHS11	$1+$	290
3	+heatshock	PNAS78:3775	DMHSP68	1+	158
3	+heatshock	NAR11:7011,PNAS78:3775	DMHS83	$1+$	878
3	larva, adult	JMB166:101	DMCUT3	1-	3168
3	larva, adult	JMB166:101	DMCUT3	1-	8158
3	housekeeping gene	NAR12:5495	DMRP49	$1+$	411
1,3,6	larva; silk gland	Cell16:425,Cell18:591	BMFIBR	1+	551
(3 or 4)	eggshell, late	PNAS81:4452, JME20:265	BMCH01	$1-$	248
(3 or 4)	eggshell, late	PNAS81:4452, JME20:265	BMCHO1	$1+$	514
3	early blastula	Nature285:147,Nature 288:100	PMHIS7	0+	4860
3	early blastula	Nature285:147,Nature288:100	PMHIS7	$0+$	3614
5	early blastula	Nature279:737,PNAS77:1265	SPHIS1	$1+$	170
5	early blastula	PNAS77:1265	SPHIS1	$1+$	1341
1,5	early blastula	B1och20:1216,PNAS77:1265	SPHIH4	1+	165
3	late blastula	Cell31:383,PNAS81:2411	LPHISL34	1+	1487
3	late blastula	Cell31:383,PNAS81:2411	LPHISL34		724

Nucleic Acids Research

Gene and organism
Trout protamine
Chicken H1
Trout testis H2A
Trout testis H3 Chicken H4 Xenopus H4 Mouse H4

Human SOD-1
Mouse MT-I
Human MT-IIA
Human DHFR
Mouse DHFR
Mouse HPRT
Ghicken α-actin
Rat skel. muscle actin Chicken β-actin Rat β-actin

Chicken myosin LC1 Chicken myosin LC3 Mouse myosin LC2

Chick. $\alpha 2$ (I)-collagen Mouse $\alpha 1$ (I)-collagen
Chicken f.-keratin Mouse β-crystallin

Seal myoglobin
Human α-globin
Mouse α-globin
Rabbit $\boldsymbol{\beta}$-globin Rabbit β-globin Chicken β-globin Chicken ϵ-globin Human $\boldsymbol{\gamma} \mathrm{A}$-globin Xenopus βI-globin Rat TAT
Rat liver p-450 Chicken serum alb.

Chicken ovalbumin Chicken gene \mathbf{X} Chicken gene \mathbf{Y} Chicken conalbumin Chicken ovomucoid Chicken lysozyme
Xenopus vitellogenin Chicken VTGII Chicken apoVLDLII
$\begin{array}{llllll}-40 & -30 & -20 & -10 & 0 & +10\end{array}$
ACTCCAGCCCCCTCCAGCCCTATAAAAGGGAGCACGGCCGTCTAAAAGTCTTTATCCATCA TCACCGCGCGGCTCCGCTCTATAAATACGAGGCCGCCGACTTGCTCCG̣G̣GC̣CAGTGGTT CAGACGCCGCTGCCGGCCTTATAAACTTCACATAGGCATTTTGAGGCTATACTCCGACTG GGCTTTTGTGGCGAGGTATAAGTAAGGCTCTCGAGGTGCCCAGCGGCTCTATTTCAGACTTT GGTCCGACCATACGCCATAACACCCGCGCGCGCCCCGCCACATCCTCACTGGTGTCGGAC CAGGTCCTCTCCAGCTGCATATAAAGAGGAGGAGAGGCCCTGATACGTTATATTGTGTTT TCTGGTCCGATCCTCTCATATATTAGTGGCACTCCACCTCCAATGCCTCACCAGCTGGTG GCGAGGCGCGGAGGTCTGG̣C̣CTTATAAAGTAGTCGCGGAGACGGGGTGC̦TGఢTTTGCGTCG CGCCCGGACTCGTCCAACGACTATAAAGAGGGCAGGCTGTCCTCTAAGC!GTC!ACCACGAC TCGTCCCGGCTCTTTCTAGCTATAAACACTGCTTGCCGCGCTGCACTTCCACCACGCCTCC
GGGGGCGGGGCCTCGCCTGCACAAATAGGGACGAGGGGGCGGGGCGGCC!ACAATTTCGCG GCCTAAGCTGCGCAAGTGGTACACAGCTCAGGGCTGCGATTTCGCGCCCAAACTTGACGGC

GGCCGGGCGGTGCTCCCGTCGATAAAAGGCTCCGGGGCCGGCGGGCGAC̣C̣旨AGCTACCC TGGAGAGCTCAGGACTATATAAAAACCTGAGGCTAGGGACAGGCGGTCTACAC!GGACGTGA GAGGCGGCGGCGGCGGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGTCTGGGAGTCGCTGC CGAGTGGCCGCTGTGGCGTCCTATAAAACCCGGCGGCGCAACGCGCGCCCACTGTCGAGTC
tgTacangGcGCTAngTGAAATATATATATGCCCTTATAGAGTTTAGC!ACACTGGGTCCA CAGCAATGCCGTCGCGCTGCCAGATAAATAAGGGGAAGAAAGGCCAGGAAAGCAGGACCA GGTATGTTAAGGGGCAGGACTATATAACCCCAGAAGAACTGCCCCAAGCCAGATTCTCTGC
gCGGGACCCCCTGCGGTATAAATACGGCGGAGCGGGGCTTGATTAATTTAGCATCCCGGG TCCCAGCTCTCCATCAAGATGGTATAAAAGGGGCCCAGCCAGTCGTCGGGAGCAGACGGGA
gCCTACTATAGTTACATATGCATAAATTAACTCTAAACCAGGCTCCCTTCATCTCACTTCTC ATCCTGGGTTGTAGCTAGTTATGAAAACCACAGGATGAAGTTTGTTCTTAACTTGCACCC

GTCAAGCTTCTGGGAAAGTATAAAATCCCTCTGGGGCCAGGCGATCTCAAACTCCCAGCTG
GCGTGCCCCCGCGCCCCAAGCATAAACCCTGGCGCGCTCGCGGCCCGGCACTCTTCTGGT AGGACAGCCCTTGGAGGGCATATAAGTGCTACTTGCTGCAGGTCCAAGACACTTCTGATT
CATAGTTCAGGACTTGGGCATAAAAGGCAGAGCAGGGCAGCTGCTGCTTACACTTGCTTT agatgiccagcgaggangantanaaggacgagcctiagagcagittcacetactigctic GGAGGGGCCCGGCGGAGGCGATAAAAGTGGGGACACAGACGGCCGCTCACCAGCGTGCTA GAGGAGCTGTCAGCGGTGGATAAAAGCCCCGGGGGTCCGCAGCTCCGGCTCTAAGCTCTGA GGCTGGCTAGGGATGAAGAATAAAAGGAAGCACCCTTCAGCAGTTCCACACACTCGCTTC TGACTCAGCATGGCCATATAAAGCAAGGCCAACAACTCAAAGGAACAGCAGCCTCTTACT acGCCCATTGGCTGAAACTATTTCAAGGGTCAGGACTGCACCTGAGCTCATGATCAGAGG CTGAGTGTAGGGGCAGATTCAGCATAAAAGATCCTGCTGGAGAGCATGCEACTGAAGTCTA aAGCAGTCAGTAAAAGGTATATAAGAAAATGATTTCCCTCAATCATCTCTAGCATTTTTGA
gTGGGTCACAATTCAGGCTATATATTCCCCAGGGCTCAGCCAGTGTCTGTACATACAGCT GTGTCCGAAAGGGTACTGTATATATCACCAAGGACTCAGAGAATCTGRXGAGGTTCAACT tGTCATGACATTATACAGGATATATTTCAAGGAGTTCTGCAAGGCTGTACCACGTACAGC CAGCCAGGGCTGCTCCTCTATAAAAGGGGAAGAAAGAGGCTCCGCAGCCCATCACAGACCC ----------------TTTGTATATATTTGCAGGCAGCCTCGGGGGGAC̣CATCTCAGGAGC AAAGGGGGTGGGAGGAAGTTAAAAGAAGAGGCAGGTGCAAGAGAGCTXGCAGTCCCGCTG GTGTTACAGATTTTCCTGCAATAAATATGGCAGGCTTTTCTGGGTTCAGTTGTTCACCATC GTTCCTGAACATTCTTCCATAAAAGTCTCACCATGCCTGGCAGAGCCCTXAXICACCTTCG CCCTCACTATATTAGTTCTGCATAAATGCCAGTGTCTCAGATG̣AGCATCAACTCTCAGCTT

Exp. def. Expression/Regulation

$(3,6)$	spermatocytes	NAR10:7581,NAR10:4551,NAR11:4907	SGPROTA1	1+	252
3	embryo	JBC258:9005	GGH11A1	$1+$	167
3	spermatogones	JME20:238	SGHIS2A3	$1+$	1192
3	spermatogones	JME20:236	SGHIS2A3	$1+$	329
3	embryo	JBC258:9005	GGH43D8	$1+$	244
4°	not active in oocytes	NAR11:8641	XLHIS4	$1+$	380
3	during S-phase	JMB151:607,Cel141:885	MMHIO1	$1+$	229
3,8	housekeeping gene	NAR12:9349	HSSOD1G1	$1+$	292
3	+heavy metal ions	Nature292:267	MMMTIX	$1+$	301
3	+heavy metal ions	Nature299:797	HSTHIO2A	$1+$	300
2*, $3 \ddagger, 8 \ddagger$	cell cycle: G1/S	JBC259:3933	HSDHFRO1	$1+$	324
4,8	cell cycle: G1/S	JBC281:4685,MCB6:365	MMDHF5	$1+$	388
4,8	housekeeping gene	PNAS81:2147,Cel144:319	MMHPRT1	$1+$	846
4,5	embryo; skeletal muscie	NAR10:3861	GGACTI	$1+$	92
3	skeletal muscle	Nature298:857	RNACO2	$1+$	193
7	housekeeping gene	NAR11:8287	GGACO1	$1+$	544
3	housekeeping gene	NAR11:1759	RNaCO1	1+	235
3	skeletal muscle	Nature308:333	GGMYO3	$1+$	321
3	skeletal muscle	Nature308:333	GGMYO4	$1+$	344
4	skeletal muscle	NAR12:7175	RNMYOLC1	$1+$	237
1*,3,6	embryo; fibroblasts	JBC256:11251,PNAS78:5334	GGC1A201	$1+$	404
3	foetus	PNAS81:1504,Nature304:315	MMC1A1LV	1+	220
5	embryo; feather	NAR10:6007	GGKERC	1+	61
3	lens	Nature302:310	MMCRY1	1+	71
4	skeletal muscle	Nature301:732	HGGL01	1+	262
1,6	adult; reticulocytes	JBC255:2807,Cel112:1085	HSAGL1	1+	98
1,4¥	adult; reticulocytes	JBC252:1758,Cel121:697	MMAGL1	1+	372
1	adult; reticulocytes	Cell9:747,Cell $32: 695$	OCBGLO	1+	224
3	embryo; reticulocytes	JBC256:11780	OCBGLX	1+	162
3,7	adult; reticulocytes	JBC258:3983,Bioch20:2091	GGGL02	1+	386
4,6	embryo; reticulocytes	JBC258:12885,Cell28:515	GGHBBR2	1+	198
6	foetus; reticulocytes	NAR5:3515	HSGLBN	1+	7062
4	larva; reticulocytes	NAR12:7705	XLBGL3	1+	241
3	liver, +glucocorticoid	PNAS81:1346	RNTAT5E	1+	601
3	liver, +phenobarbital	PNAS80:3958	RNCYP451	1+	71
4	liver	JBC258:4556	GGALO7	1+	267
1	oviduct, +estrogen	NAR9:1657	Ggovo3	1+	1342
3	oviduct, +estrogen	JMB156:1	GGOVO1	1+	1327
3	oviduct, +estrogen	JMB156:1	GGOV02	1+	1612
3,5	oviduct, +estrogen	Nature282:567	GGCALB1	$1+$	267
3,6	oviduct, +estrogen	JCB87:480,JMB162:345	GGOVO1	1+	35
3	oviduct, +estrogen	Cell25:743	GGLYSX	1+	439
3,5	liver, +estrogen	EMBOJ2:2271	XLVITE	1+	494
4,5	liver, +estrogen	EMBOJ2:2271,NAR12:1117	GGVIO1	1+	1146
2*,3	liver, +estrogen	NAR11:2529, JBC258:4556	GGVL01	1+	485

Nucleic Acids Research

Gene and organism	-40	-30	-20	-10	0	+10

Rat α-lactalbumin Rat γ casein

Mouse complement C3 Rat γ-fibroin Human factor IX
Mouse kallikr. mGK-1 Mouse α-amylase

Rat PSBP C3
Rabbit uteroglobin
Rat vasopressin Rat oxytocin Bovine oxytocin Bovine prolactin Rat growth hormone Human ACTH/ β-LPH
Hum. CG/LH/FSH/TSH Human enkefalin A Rat parath. hormone
Human insulin Chicken insulin
Human α-interferon Human β-interferon Human γ-interferon Human IL-2 (TCGF)
Mouse Ig VH101 Mouse Ig V1
Human Ig κ HK101
Mouse $\operatorname{Ig} \kappa T$ Mouse Ig κ MPC11
Mouse Ig λ I
Human HLA-DR Mouse MHCII Ia Eka

M-MuLV LTR
Human ATLV LTR
Human ARV-2 LTR
Avian RSV LTR
Avian SNV LTR
HSV-1 IE-I
HSV-1 IE-II
HSV-1 IE-III
HSV-1 IE-IV/V
HSV-1 early 33K
HSV-1 early 21 K
HSV-1 early 5.0 kb
HSV-1 early 1.2 kb
HSV-1 TK
HSV-1 β / γ late 6 kb

GTGCTAGGGCCAGAGGCCTTCTTCATAAATAAAAGCAGGTGAAGTGAGTGGGGTCCACAT GATGCTAGAACCTGGTTTAAATAGTGCGGGAGCTACCCACTGCTATCATCATCTACCTAT
gGaCCAGAGAGGAGAGCCATATAAAGAGCCAGCGGCACAGCCCCAGCTCCGCCTTCTGCCCA CCCGCCCAGACTGGGAATTCATATAAAGGCCCAAGGAGAGCCCAAGAGGGTCACAGTGCTG CAGAAGTAAATACAGCTCAGCTTGTACTTTGGTACAACTAATCGACCTTTACCAACTTTCAC
CTGTGGGGAGAATGGGGGATTTAAAGTCTCCCCAGGGAGCCTCAATAGCTCCAAGCTCAC AATGTACTTTTTGTAGAAATATAAATAGGCGCTAGAGAGAAAGAACACTGACAACTTCAA

AGGTGATTGCCTGAGCAATAAATAGAGGAACACTGAGGTCTCAGCTCCAGAGTTTCCTGA GGGCACTGCCCGGAGAATACAAAAAGGCACCTGACGGCCGTCCCCCTTCAAGGATCACCGGA
TCCTAGCCAACACCTGCAGACATAAATAGACAGCCCAGCCCGCTCAGGCAGCAGAGCAGA CCCACCATGGCAGTGGACAAGGCATAAAAAGGTCGGTCTGGGCTGGAGAAACCCATCACCG CGCCCACGCGGCCGCCGGGCTTAAAAGGCCAGACCCGAGAGACGGCCGGCAGTCTCCCGGCC atTCATGAAGATGTCAAAGCCTTATAAAGCCAACATCTGGGGAAGAGAAAGCCCATAGGAC TCGAGGAAAACAGGTAGGGTATAAAAAGGGCATGCAAGGGACCAAGTCCCAGCACCCTCGA CCACCAGGAGAGCTCGGCAAGTATATAAGGACAGAGGAGCGCGGGACCTAAGCTGGCGGCGA
gGTGGAAACACTCTGCTGGTATAAAAGCAGGTGAGGACTTCATTAACTGCAGTTACTGAG TTCGGTTTGGGGCTAATTATAAAGTGGCTCCAGCAGCCGTTAAGCCCCCGGGGACTGGCGAGG GGCATGACATCATCCTTCCCAATAAAATACTCCTCTTGGTGAGCAAAAGGGCCTGCATATG GGGAGATGGGCTCTGAGACTATAAAGCCAGCGGGGGCCCAGCAGCCCTCAGC̣CCTCCAGG -------------CTTCTGGTTATAATTGGTCATTTATTATGACTTTTAAAGCCTTGATGAA
GAAATTAGTATGTTCACTATTTAAGACCTATGCACAGAGCAAAGTCTTCAGAAAACCTAG TAGAGAGAGGACCATCTCATATAAATAGGCCATACCCACGGAGAAAGGAACATTCTAACTG CCTCAGGAGACTTCCAATTAGGTATAAATACCAGCAGCCAGAGGAGGTGCAGCACATTGTT antattittccaganttancagtatanattgcatctctigitcangacticcectatcact
AAGCAGCCCTCAGGCAGAGGATAAAAGCTCACACTAACTGAGAAGCTCCCATCTCTCTTCTC AATTAGGCCACCCTCATCACATGAAAACCAGCCCAGAGTGACTCTAGCCAGTGGGATCCTG CTCCTGCCCTGAAGCCTTATTAATAGGCTGGTCAGACTTTGTGCAGGAATCAGACCCAGT TCACTGCCTTGGGGACTTCTTCATATACCCGTCACACATGTACGGTACCTATTGTCATTGC GCACTGAGGGCCAGCTGATTTATAAC-AGGTCTTTGCAGTGAGATATGAAATGCATCACA CAGCCCAGCCCATACTAAGAGTTATATTATGTCTGTCTCACAGCCTGCTGCTGACCAATA
TGCATTTTAATGGTCAGACTCTATTACACCCCACATTCTCTTTTCXXXTAXICTXTGTCTG AAAAGTTGAGTGCTTTGGATTTTTAATCCCTTTTAGTTCTTGTTAATTCTXGCTCTCAGTCTG
GCTTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCTCACTCGGGGCGCCAGTCCT TCAATAAACTAGCAGGAGTCTATAAAAGCGTGGAGACAGTTCAGGAGGGGGGTCGCATCT TGGCGTCCCTCAGATGCTGCATATAAGCAGCTGCTITTTGCCTGTACTGGGTCTCTCTGG CCGCATCGCAGAGATATTGTATTTAAGTGCCTAGCTCGATACAATAAACGCCATTTTACC ACCCTGTAAGCTGTAAGCGGCTATATAAGCCGGGTACATCTCTTGCTÇGGGGTCGCCGTC
TTTGGGGAGGGGAAAGGCGTGGGGTATAAGTTAGCCCTGGCCCGACAGTCTGGTCGCATT AGCCGGCCCCGGCACCACGGGTATAAGGACATCCACCACCCGGCCGGTGGTGGTGTGCAG TTCCCGCCGGCCCCCTGGGACTATATGAGCCCGAGGACGCCCCGATCTGXCCACACGGAGCG GGGGGCGGGTCTCTCCGGCGCACATAAAGGCCCGGCGCGACCGACGCCTCGCAGACGGCGC
GGCCGGGCGACCCAGATGTTTACTTAAAAGGCGTGCCGTCCGCCGGCATGCACCCCAGAG CGACGTACGCGATGAGATCAATAAAAGGGGGCGTGAGGACCGGGAGGCGGGCCAGAACCGC GCCCCACCCCTGCGCGATGTGGATAAAAAGCCAGCGCGGGTGGTTTGGGTACṬACAGGTG TGGTCCGCCTTCTGGTCCACGCATATAAGCGCGGACTAAAAACAGGGATGTACTACTGCA CGCGGTCCCAGGTCCACTTCGCATATTAAGGTGACGCGTGTGGCCTCGGAACACGGGCGA CGGACGCTTTGCCGGCCTCTGCCAATITCTTCCTGCACGCTTTTGGACCAGT़GT!CATCTTG

Exp. def.	Expression/Regulation	Referencesfor initiation site	EMBL Sequence Ref.		
3,6	mam. glands,+prolactin	Nature308:377,PNAS77:2093	RNLALB01	1+	1248
6	mam. glands,+prolactin	NAR10:8079	RNCASG11	$1+$	86
7	liver, +hydrocortisone	PNAS79:7077	MMC31	$1+$	107
3	liver	Cell31:159	RNFBRG5E	$1+$	274
3,7	liver	EmBCJ3:1053	HSFIXG1	1+	296
8	submaxillary gland	Nature303:300	MMKALL	$1+$	4474
1,6	pancreas,	Cell21:179	MMAMY2	1+	434
4,5,6	prostata, +androgen	EMBOJ2:769,JBC258:12	RNPS01	$1+$	584
4	+progesterone	PNAS79:4853	OCUG1	$1+$	396
3,(5)	hypothalamus	EMBOJ2:763,Nature295:299,EMBOJ3:3289	RNVNO3	1+	368
3	hypothalamus	PNAS81:2006	RNOXTNP	$1+$	220
3 or 4	hypothalamus	Nature308:554	BTHORO1	$1+$	210
6,(3)	pituitary	DNA3:237,JBC256:10524	BTPROLO1	$1+$	475
3,(5)	pituitary	NAR9:2087, NAR7:305,NAR9:3719	RNGROW3	$1+$	401
3	pituitary	EMBOJ1:1533,EJBC133:599	HSACTH	$1+$	681
8	placenta	JMAG1:3	hSagci	1+	92
3,8	adrenal medulla	EMBDJ2:2223 Nature297:431	HSENKE	$1+$	948
3,6	parathyroid gland	JBC259:3320	RNPTH2	1+	399
5,(4 \ddagger)	pancreas islet cells	Sc1208:57, Nature306:557	HSINSU	$1+$	2186
4	pancreas islet cells	Cel120:555	GGINS1	1+	38
$(3,6)$	leukocytes, +viral inf.	Nature287:401,Sc1212:1159	HSIFD1	$1+$	2194
3	fibroblasts, +viral inf.	PNAS78:5305	HSIFD4	1+	284
6	lymphocytes, +mitogen	NAR10:3605	HSIFNG	1+	347
8	T lymphocytes, +antigen	Nature302:305	HSILO5	$1+$	1366
3,6	B lymphocytes, + antigen	JBC257:277	MMIGHAII	$1+$	237
4,5	B lymphocytes, + antigen	NAR10:7731	mmighas	$1+$	575
3^{*},(5)	B lymphocytes, +antigen	NAR10:1841,Cel125:47	HSIGK2	$1+$	109
3	B lymphocytes, + antigen	EMBOJ1:719,Cel133:741	MMIG19	$1+$	840
1,3	B lymphocytes, + antigen	Cel129:681	MMIGKAL	$1+$	166
3,7 or 8	B lymphocytes, + antigen	PNAS80:417,EMBOJ4:2831	MMIG31	$1+$	221
3	lymphoid cells,+antigen	NAR11:8663	HSHLO7	$1+$	449
3,7	lymphoid cells, +antigen	Cell32:745	MMMHO2	$1+$	94
1,3** 6	leukemia	Cell13:781,PNAS78:5411,PNAS77:3307	REMML1	$1+$	486
8	T-cell leukemia	PNAS79:6899	RE1PROP	$1+$	376
7	AIDS-inf. T-cells	Sc1227:484	AIARV2	$1+$	455
1,6	sarcoma	Nature262:186,NAR10:5183,PNAS74:989	RERSV6	$1+$	9292
1,5 or 6	various cell-types	Nature285:550	REXXX1	1+	418
3	immediate early	JVIR44:939	HE1AO	1+	324
3	immediate early	NAR11:6271,JVIR43:1015	HE2IERN2	1+	269
3	immediate early	JGV62:1,PNAS79:4917,NAR11:2347	HE1IE3A	$1+$	371
3	immediate early	NAR10:2241,JGV62:1	HEHSO8	1+	136
4	early	NAR12:2473	HEHS08	1+	1078
4	early	NAR12:2473	HEHSO8	$1+$	784
3	early	PNAS78:6139,JGV64:997	HEHSV1	$1+$	121
3	early	JGV64:997	HEHSO6	1+	371
3,5	early	PNAS78:1441,NAR8:5949	HEHSTK	1+	407
3	intermediate/late	PNAS78:6139	HEHSV2	1+	111

Nucleic Acids Research

Gene and organism	$\begin{array}{rrrrrr} -40 & -30 & -20 & -10 & 0 & +10 \\ 0 & 0 & 0 & 0 & 0 \end{array}$
EBV DL/DR region	ACAGAGACCCCAAAAAGAGGATAAAAGAAGGCGAGCCGGCCCGGCTCִGcceaccectccicc
EBV BL-R1	GACAGGGACGGCGGCGCTATATATAAGAGCCCAAGACCCGGCTCTCTITACTGGCGAAATG
EBV BL-R2	CGGATTAGATGGGGATATTTAAAAGGGGCAGCAATCTCGGCTGTTTGTACTTTCTTCTCTG
EBV BL-L2	ACCCAACAGGTGGTGAAAATATAACACAGGTGACACCAGCCTCTATCAGCCACACATCATG
EBV BL-L1	ACCCCCCTTGTACCTATTAAAGAGGATGCTGCCTAGAAATCGGTGCCGGAGAC!
EBV BL-L3	CGGGTCTTGGGCTCTTATATATAGCGCCGCCGTCCCTGTCTGTTAGATCATCACCATGGA
EBV BK 2.1 kb	
EBV BK 1.3 kb	TTGCGACCCCTCTGATATTAAGGTGGTTATTTTGGGCCAGGACCCCTATCAC়़GGGGTCA
EBV EH-L1	CGGTGCCCCGGACTCAGAATTATTAAACCGGGTGGCAGCTCCTGGCAGTTCATTCTATTCGGA
EBV EC-L1	AAGGGCAGGGGGTGGGTATTTAAGGATCTATATGCCCTTCTCTACCTGCCAC¢TCCAAATG
EBV ED-L1	CTCTGACGTAGCCGCCCTACATAAGCCTCTCACACTGCTCTGCCCCCTTTCTTTCCTCAAC
Ad2 EIa	gTCAGCTGACGCGCagTGTattTatacccgatgagttcctcangaggcceactctigagig
Ad2 EIb	GGGGCGGGGCTTAAAGGGTATATAATGCGCCGTGGGCTAATCTTGGTTACATCTGACCTC
Ad7 EIb	TTCTTGGGTGGGGTCTTGGATATATAAGTAGGAGCAGATCTGTGTGGTTAGCTCACAGCA
Ad12 EIb	TGGGCGTGGTTAAACAGGGATATAAAGCTGGGTTGGTGTTGCTTTGAATAGTTCATCTTA
Ad2 EII	GAAAGGGCGCGAAACTAGTCCTTAAGAGTCAGCGCGCAGTATTTGCTGAAGAGAGCCTCC
Ad2 EIII	TGCGGTCGCCCGGGCagggtatanctcacctganantcagagggccang inattcagctca
Ad2 EIV	TTACGTCATTTITTAGTCCTATATATACTCGCTCTGTACTTGGCCCTITTTACACTGTGA
Ad2 IVa2	CCCTCCCACTTAGCCTCCTTCGTGCTGGCCTGGACGCGAGCCTTCGTCICAGAGTGGTCC
Ad2 IX	GCTTAAGGGTGGGAAAGAATATATAAGGTGGGGGTCTCATGTAGTTTTGTATCTGTTTTG
Ad7 IX	ATGGGGACTTTCAGGTTGGTAAGGTGGACAAATTGGGTAAATTTTGTTAATTTCTGTCTT
Ad2 major late	GTGTTCCTGAAGGGGGGCTATAAAAGGGGGTGGGGGCGCGTTPCGTCCTCACTCTCTTCCG
Ad2 LIIa	GGCGTGGTAGTCCTCAGGTACAAATTTGCGAAGGTAAGCCGACGTCCACAGCCCCGGAGT
AAV2 major mRNA	CCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTTGCGCAGC
AAV2 m.p. 0.06	CATGTGGTCACGCTGGGTATTTAAGCCCGAGTGAGCACGCAGGGTCTC¢CATTTTTGAAGCG
AAV2 m.p. 0.19	GTGGACTAATATGGAACAGTATTTAAGCGCCTGTITGAATCTCACGGAGCGTTAAACGGTT
SV40 T/t antigen	TGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCG̣CCTCGGCCTCTGAĢCTATT
Polyoma T/t	GGCCACCCAAATTGATATAATTAAGCCCCAACCGCCTC̣TTCCCGCCTCATTTCAGCCTCA
SV40 T/t late	CCGCCCÇTAACTCCGCCCAGTTCCGCCCATTCTCCG̣CCCCATGGCTGACTAATTTTTTTTT
Polyoma T/t late	CTGTTTTTTTTAGTATTAAGCAGAGGCCGGGGACCCCTGGCCCGCTTACTCTGGAGAAAA
SV40 major late	GTTCTTTCCGCCTCAGAAGGTACCTAACCAAGTTCCTCTTTCAGAGGTTATTTCAGGCCA

Figure 1. Compilation of 168 eukaryotic POL II promoters. The sequences were selected according to the criteria described in the text. Underlined nucleotides correspond to capped 5 'termini of mRNAs characterized by direct RNA sequencing. Dots point to regions where transcriptional initiation is likely to occur according to less precise mapping techniques. The numbers in the first column of the right-hand pages identify the experiments which define the promoter. They have the following meaning:

1 Direct RNA sequence analysis.
2 Length measurement of a transcript.
3 Length measurement of a nuclease-protected DNA fragment by comparison with a corresponding sequence ladder.
4 Length measurement of a nuclease-protected DNA fragment by comparison with unrelated molecular weight markers.
5 Indirect RNA sequencing by dideoxy-terminated cDNA synthesis.
6 DNA sequencing of an in vitro generated run-off cDNA or a full-length cDNA clone.
7 Length measurement of an in vitro generated run-off cDNA by comparison with a corresponding sequence ladder.
8 Length measurement of an in vitro generated run-off cDNA by comparison with unrelated molecular weight markers.

Exp. def.	Expression/Regulation	References for initiation site	EMBL Sequence Ref.	
4	+TPA	JVIR56:987	EBV	1-52787
2*,4	late	EMBOJ3:1083	EBV	1+88539
2^{*},4	late	EMBOJ3:1083	EBV	$1+88897$
4,8	early	EMBOJ3:1083	EBV	1-90021
2*,4	late	EMBOJ3:1083	EBV	1-92157
2^{*}, 4	early	EMBOJ3:1083	EBV	1-88480
4,8	+TPA	JVIR54:501	EBV	1+109939
4,8	+TPA	JVIR54:501	EBV	1+110632
2*,4	+TPA	EMBOJ2:1331	EBV	1-137680
2*,4	+TPA	PNAS80:1565	EBV	1-159337
$2^{*}, 4,7$	latently infected cells	JVIR51:411,EMBOJ2:1331	EBV	1-169514
1	immediate early	JMB149:189,CSHSQB44:415	AD2	1+ 498
1	early, +Ela	JMB149:189,CSHSQB44:415	AD2	$1+1700$
3	early, +E1a	Gene18:143	AD7001	$1+1577$
3	early, +E1a	Cell27:121	AD1201	$1+1527$
1,3	early, +Ela	Cel118:569,JMB149:189,PNAS78:7383	AD2	1-27092
1	early, +E1a	JMB149:189,CSHSQB44:415	AD2	1+27610
1	early, +E1a	NAR9:1675,JMB149:189	AD2	1-35611
1,3,7	intermediate	JMB149:189,NAR10:7089	AD2	1- 5827
1	intermediate	JMB149:189,Cell19:671	AD2	$1+3575$
4	intermediate	Gene13:375	AD7001	$1+3460$
1	early/late, +E1a	Cel111:533,JMB149:189,Cell15:1463	AD2	1+ 6039
1,3	late	JMB149:189,PNAS79:1073,PNAS78:7383	AD2	1-25954
3,5	Ad2 infected cells	Cell22:231,JVIR41:518	XX2	1+ 1853
7	Ad2 infected cells	JVIR41:518	XX2	$1+287$
7	Ad2 infected cells	JVIR41:518	XX2	$1+873$
1,6	early	JVIR30:279,JVIR37:7, JVIR41:449	SV40XX	0- 5233
3,7	early	JMB159:189, JVIR44:175	PAPOA2	$0+154$
1,6	late	JVIR41:449	SV40XX	0- 31
3	late	JVIR44:175	PAPOA2	0+ 22
1,8	late	NAR5:2359,PNAS76:3078,JMB126:813	SV40XX	0+ 325

These numbers are sometimes followed by special characters which indicate that the experiments were performed with RNA synthesized in vitro (*), in injected oocytes ("), or in transfected cells (\ddagger). Codes in parentheses refer to promoter evidence from closely related genes. In the column entitled "Expression/Regulation", only the most dominant regulatory features are listed. This information remains fragmentary since many genes are subjected to complex control mechanisms. The literature references given in condensed form refer to the articles on which the assignment of the transcriptional initiation site is based. In some cases, they include reports on transcription studies in experimental test systems or comments on the phylogenetic relationship between the DNA sequence shown here and the gene where the start site has actually been mapped. The rightmost column identifies the nucleotide in the EMBL library sequence which corresponds to position zero in our listing. These references which are used by our programs for automatic DNA sequence retrieval, consist of four elements: Entry name, sequence type ($0=$ circular, $1=$ linear), strand (+ or -) and position number.
library and organized as a matrix of nucleotides. 2. This matrix is subdivided inco overlapping vertical windows (originally termed "cross-sections") which are searched separately for "signal sequences" (oligonucleotides) that are defined in a "signal sequence collection" (e.g., a complete

Table I
Characterization of Constraint Regions by Over-Represented Gapped Trinucleotides.

Eukaryotic	Promoters
TATA-box region (from -35 to -16)	Cap-site region (from -9 to +10)
-30 -25 -20, Occurrence frequency	-5 0 5 Occurrence frequency
< ---TA-A---> 70.1% (117/167)	--C-CA --- > 31.0% (52/168)
	<--CA--T-- > 25.6% (43/188)
< --T-A-A-- > $\quad 60.5 \%(101 / 167)$	<-G---CA-- > 25.6% ($43 / 168$)
	--CAG---- > 23.8 \% (40/168)
--T-TA--- > 55.4% 92/166	<---CA-C--- > 23.2 \% (39/168)
$\langle--$ AT-A-- > 53.3% 89/187)	C----CA- > ${ }^{\text {c- }}$, 22.6% (38/188)
	<--CAC---C- $>$ - 22.6% \% ($38 / 168)$
	<-CA--C-- $>22.6 \%$ \% $38 / 168)$
T-AA--- > 51.5% 86/167)	<-CA--C-A->22.0\% (37/168)
	< G-----CA- > $21.4 \%^{\circ}$ ¢ $\left.36 / 168\right)$
$\langle-T$ T--A--- $\rangle \quad 50.9 \%$ 85/167	
	$\langle-\mathrm{CA}-\mathrm{T}-$ - $>20.8 \%(35 / 168)$
tatana	CA-yyy
Prokaryotic Promoters	
-35 region (from -45 to -26)	-10 region (from -19 to 0)
-40 -35 -30 Occurrence frequency	$-15 \quad-10 \quad-5 \quad$ Occurrence frequency
< --TGA---- > 37.3% \% $42 / 110$	
	$\begin{array}{llll}\text { < -AT-TT--- }> & 42.9 \% & (48 / 112 \\ \text { < }\end{array}$
--TG-C--- ${ }^{\text {P }} 34.6 \% ~(38 / 110)$	-G--A--T- > $39.3 \% \quad(44 / 112)$
-T-G-C-C- ${ }^{\text {PTT- }} 34.6 \%$ \% (388110$)$	
- ${ }_{\text {- --T-T-TT- }}$	
-A---TT-- > $33.9 \%(37 / 109)$	
--T-TG-- > 31.8% (35/110)	
	---T-AT--- > 35.7 \% (40/112)
t-TTGACa	tatant---c

Gapped trinucleotides of total length 10 were searched for in successive overlapping windows of width 14. The signal sequences are listed in decreasing order with respect to their highest local signal frequency as determined in the window that is delineated by angle brackets. Absolute frequencies and local sample size are given in parentheses. The average occurrence frequency of the 2304 signal sequences is approximately 7.5%.
set of trinucleotides). Thereby, the lines where given signal sequences occur are counted in successive windows, a process which yields an integer number called "signal frequency" for each combination of window and signal sequence. 3. The resulting "signal frequency matrix" is processed to final output (constraint profiles, lists of over-represented signals, etc.) for localization and characterization of common sequence features. The whole procedure requires specification of a few parameters which also appear in the related methods mentioned above though they have been termed differently. We decided to rename two of them in order to minimize terminological diversity: Thus, the "cross-section length" is now called "window width" in accordance with Waterman et al. (16), and for the "displacement length" we use the term "window shift" as introduced by Schneider et al. (18).

The extensions of signal search analysis include a new search technique described as an option of the ENCODE program of the Delila system tools (18): Usage of "gapped" oligonucleotides (our terminology) as signal sequences. Gapped oligonucleotides are signal sequences in which distinct positions are unspecified. These positions are represented by an additional character (hyphen or N) which plays the role of a wildcard. Since statistical analysis of signal search data usually assumes approximately equal occurrence probabilities for all signal sequences, the numbers of both specified and unspecified positions are usually kept constant within signal sequence collections. Moreover, the explicitly specified nucleotides must be centered so that the number of leading N's is either equal to the number of trailing N's or lower by one, in order to avoid multiples of equivalent signal sequences such as ANANNN, NANANN, etc. The gapped dinucleotide collection of total length 6 used for generation of the profile shown on top of Fig. 2 thus consists of all signal sequences of the following types: NNXXNN, NXXXXNN, NXNNXN, XNNNXNS, XNNNNX, where X can be any of the four bases A, C, G, and T. The gapped trinucleotide collections used in our work are defined according to the same principles.

The programs described in (15) allow search for imperfect occurrences of signal sequences. However, in the analyses presented here, it has not been made use of this facility. The parameter "homology limit" is therefore not listed in the legends to the figures and tables. Constraint profiles are shown in a slightly different way as compared to the previous publication (15). Here, we correct the constraint index for the effect the sample size has on the expected variance of signal frequencies. The new index is given by

$$
\begin{equation*}
c_{j}=\frac{n_{j}}{\left(n_{j}-1\right)}\left[\frac{v_{j}}{m_{j}\left(n_{j}-m_{j}\right)}-\frac{1}{n_{j}}\right] \tag{1}
\end{equation*}
$$

where n_{j} denotes the sample size, and m_{j} and v_{j} the mean and variance of the signal frequencies in the jth window of the DNA sequence matrix. The sample size which varies from window to window is directly reflected by a dashed line on each constraint profile.

The significance of a given signal frequency is calculated as follows:
(2)

$$
S_{i j}=\frac{\left(f_{i j}-m_{j}\right) \sqrt{n_{j}}}{\sqrt{m_{j}\left(n_{j}-m_{j}\right)}}
$$

Nucleic Acids Research

where $f_{i j}$ denotes a specific element of a signal frequency matrix. This formula yields only a rough estimate since it does not account for the slight sequence specific variations of signal occurrence probabilities. Its function is to allow comparisons between signal frequencies obtained with different sets of search parameters.
A. E. coli:

Gapped dinucleotide analysis Signal gequence length 6 Window width/shift $\quad 10 / 1$

C. All Eukaryotes:

Gapped dinucleotide analysiz Signal sequence length 6 Window width/shift $10 / 1$

D. All Eukaryotes:

Gapped trinucleotide analysis
Signal sequence length 6
Window width/shift $\quad 25 / 1$

E. Vertebrates only:

Gapped dinucleotide analysis Signal sequence length 6
Window width/shift $10 / 1$

Figure 2. Constraint profiles of E. coli and eukaryotic POL II promoters. The curves were calculated as described in the methods section. Dashed lines monitor the local sample size for which the scale is given on the left side. The right-hand labels relate to constraint as defined by equation (1).

RESULTS AND DISCUSSION

We first determined the regions of highest sequence conservation for prokaryotic and eukaryotic promoters by deriving a number of constraint profiles with various signal sequence collections and parameter sets. The general pictures that came up this way were remarkably constant: Two maxima at $\mathbf{- 3 5}$ and $\mathbf{- 1 0}$ for the E. coli system as expected, and one strong peak centered at -28 together with a weak signal near the initiation site for eukaryotes. Two typical profiles are shown in Fig. 2A and 2C. Splitting the eukaryotic promoter set into vertebrate and non-vertebrate sequences revealed only minor differences between these two groups (Fig. 2E and 2F). The cap-site homologies are more pronounced around non-vertebrate transcription start sites. Two additional features can be recognized in the profile that characterizes vertebrate promoters only: A low constraint maximum around -45 and a downstream shoulder of the tatapeak at -20. These locations coincide with maxima in GC-content (see Fig. 3) and probably reflect only biased base composition.

Constraint analysis allows quantitative comparisons between conserved sequence elements. The profiles in Fig. 2 indicate that the eukaryotic TATA-box is a stronger consensus sequence than the prokaryotic Pribnow-box. In principle, such conclusions cannot be drawn from a comparison of a single pair of constraint profiles, since the relative heights of constraint peaks is much dependent on the signal search parameters specified for the analysis (15). However, in the case of eukaryotic and prokaryotic promoters, we observed that the rank-order of the four dominant constraint maxima (euk. TATA-box, prok. -10, prok. -35, and euk. cap-site) is not affected by changes in parameters (data not shown). We also note that in both systems, sequence similarities are confined to a region extending from approximatly $\mathbf{- 5 0}$ to $+\mathbf{1 0}$ relative to the initiation site and that total constraint is of a similar magnitude. Integration of the profiles shown in Fig. 2A and 2C within these limits yields values of 2.8 for E. coli and 2.7 for eukaryotes. This means that on average two eukaryotic POL Π promoters exhibit as many common sequence features as a pair of E. coli promoters, and it is a surprising result because the eukaryotic sequence set represents a wide spectrum of organisms, developmental stages and tissues, whereas the E. coli sequences are all recognized in an identical biochemical environment. It suggests an extraordinary high conservation of the structure of those parts of the POL II transcription system which are involved in promoter recognition.

Figure 3. GC-profile of eukaryotic POL II promoters. The base composition was determined in successive overlapping windows of width 5. Similar curves are obtained when the set of sequences is split into vertebrate and nonvertebrate promoters.

Nucleic Acids Research

In Fig. 2B and 2D we show constraint profiles that have been derived by using wide windows of 25 bases and gapped trinucleotides instead of dinucleotides. Under these conditions it should be possible to detect promoter elements which occur at a more variable distance from the initiation site if they exist in a significant proportion of the analysed sequences. However, for both eukaryotic and prokaryotic promoters these profiles look qualitatively the same as those calculated for narrow windows. The peaks simply become lower and broader. This finding is strong evidence against the existence of any universal consensus sequence upstream from the TATA-box, in other words, there is no -80 region of eukaryotic promoters.

For explicit description of conserved sequence features of eukaryotic and E. coli promoters we tabulated the most frequent gapped trinucleotides up to ten base-pairs in total length for the

Table II
Over-represented Upstream Pentanucleotides of Eukaryotic POL II Promoters

Non-interrupted pentanucleotides were searched for in single windows of width 40,60 , and 80. The significance of the signal frequencies is calculated as described in the methods section.
four major constraint regions shown by the profiles of Fig. 2. Such analysis usually produces clusters of signal sequences which perfectly align to a corresponding consensus sequence (see Table 1). Only in the weakly conserved cap-sequence some positions are occupied by alternative nucleotides. For E. coli promoters the consensus sequences reflected by Table 1 are identical to those determined by Hawley and McClure (9) and independently confirmed with computer methods similar to ours by Galas et al. (17). The analysis of the eukaryotic $\mathbf{- 2 8}$ region, too, offers no surprise: TATAAA appears as consensus, with the first T being somewhat less important than the other five bases. In the cap-sequence only the dinucleotide CA is well conserved. Otherwise our analysis again suggests a motif which is very similar to previously published consensus sequences for this region $(1,2,19)$

Although the constraint profiles of Fig. 2 gave no indication of common sequence features more than 50 bp upstream from the transcription start site, we analysed this region intensively with many types of signal sequence collections and several combinations of search parameters. Special attention was paid to the region where the CAAT-sequence is believed to occur. In general, these analyses did not give very conclusive results. We show in Table 2 the most overrepresented non-interrupted pentanucleotides found in three windows of different width. The two oligonucleotides which occupy the top postions are parts of known upstream elements of certain promoters which have been identified by in vitro mutagenesis. CCAAT functions in globin genes (20) and GGGCG in the early transcription region of SV40 and in a few other promoters (21). However, as Table 2 demonstrates, the frequencies of these elements are not particularly high as compared to other oligonucleotides which appear in the lists, for instance CAAAA, AATGA, or AGAAA, and their estimated statistical significance is low as compared to the corresponding values obtained for the gapped trinucleotides of Table 1 which characterize constraint regions (the best representatives of the TATA-box and the cap-sequence attain scores of 31.1 and 11.5 , respectively). In general, we consider the results shown in Table 2 as supporting the notion that the so called upstream elements and/or enhancers, which are known from experimental studies to play a key role in the expression of eukaryotic genes (for review see 22 and 23), represent a highly polymorphic class of cis-acting genetic elements.

We end our discussion with a few comments on the status of the "CaAT-box". The fact that it cannot be visualized by constraint profiles even with relatively wide windows suggests that the analogy to the -35 region of prokaryotic promoters proposed by Benoist et al. (8) is not justified. Moreover, our analysis supports only the functional relevance of the core of the originally proposed consensus sequence $\mathrm{GG}_{\mathrm{T}}^{\mathrm{C}_{\text {CAATCT. }} \text {. It is noteworthy in this context that the }}$ pentanucleotide ACCAA which overlaps CCAAT by four nucleotides appears in Table 2 and that mutation of the globin CAAT-box from GCCAAT to ACCAAT results in a threefold increase of promoter activity (24). However, the exact sequence requirements for this upstream element still remain uncertain. It must also be mentioned that an imperfect homology to the sequence CCAAT is likely to be found in an upstream DNA segment of 60bp merely by chance and thus is statistically insignificant. The probability that a given pentanucleotide occurs in a random

Nucleic Acids Research

sequence of this length with one mismatch allowed is close to 60% as estimated by equation 1 in (15). It is probable, therefore, that several of the underlined CAAT-boxes in recently published upstream sequences are not real functional analogues of the CCAAT promoter element of globin genes.

References:

1. Corden,J., Wasylyk.B., Buchwalder,A., Sassone-Corsi,P., Kedinger,C., and Chambon,P. (1980). Science 209,1406-1414.
2. Breathnach,R., and Chambon,P. (1981). Ann. Rev. Biochem. 50,349-383.
3. Goldberg,M.L. 1979. Ph.D. thesis. Stanford University.
4. Grosschedl,R., and Birnstiel,M.L. (1980). Proc. Natl. Acad. Sci. USA 77,1432-1436.
5. Benoist,C., and Chambon,P. (1981). Nature 290,304-310.
6. Yaniv,M. (1984). Biol. Cell 50,203-216.
7. Efstratiadis,A., Posakony,J.W., Maniatis.T., Lawn,R.M., O'Connell,C, Spritz,R.A., DeRiel,J.K., Forget,B.G., Weissman,S.M., Slightom,J.L., Blechl,A.E., Smithies, O., Baralle,F.E., Shoulders,C.C., Proudfoot,N.J. (1980). Cell 21,653-668.
8. Benoist,C., O'Hare,K., Breathnach,R., Chambon,P. (1980). Nucleic Acids Res. 8,127-142.
9. Hawley,D.K., and McClure,W.R. (1983). Nucl. Acids Res. 11,2237-2255.
10. EMBL Nucleotide Sequence Data Library, Release 7 (1985). European Molecular Biology Laboratory, Postfach 1022 09, D-6900 Heidelberg.
11. Crepin,M. Triadou,P., LeLong,J.-C., and Gros, F. (1981). Eur. J. Bioch. 118,371-377.
12. Ream,L.W., and Gordon,M.P. (1982). Science 218,854-859.
13. Langridge,P., and Feix,G. (1983). Cell 34,1015-1022.
14. Cowie,A., Tyndall,C., and Kamen,R. (1981). Nucl. Acids Res. 9,6305-6322.
15. Bucher,P., and Bryan,B. (1984). Nucl. Acids Res. 12,287-305.
16. Waterman,M.S., Galas,D., and Arratia,R. (1984). Bull. Math. Biol. 46,515-527.
17. Galas,D.J., Eggert,M., and Waterman,M.S. (1985). J. Mol. Biol. 186,117-128.
18. Schneider,T.D., Stormo,G.D., Yarus,M.A., and Gold,L. (1984). Nucl. Acids Res. 12,129-140.
19. Busslinger,M., Portmann,R., Irminger,J.-C., and Birnstiel,M.L. (1980). Nucl. Acids Res. 8,957-977.
20. Dierks,P., van Oyen,A., Cochran,M.D., Dobkin,C., Reiser,J., and Weissmann,C. (1983). Cell 32,695-706.
21. Dynan,W.S., and Tijan,R. (1983). Cell 35,79-87.
22. Dynan,S., and Tijan,R. (1985). Nature 816,774-778.
23. Serfling, E., Jasin,M. and Schaffner W. (1985). Trends Gen. 1,224-230.
24. Myers,R.M., Tilly,K., and Maniatis, T. (1986). Science 232,613-618.
