
Compilation and Equivalenceof Imperative ObjectsA.D. Gordon1, P.D. Hankin1, and S.B. Lassen21 Computer Laboratory, University of Cambridge2 BRICS, Computer Science Department, University of AarhusAbstract. We adopt the untyped imperative object calculus of Abadiand Cardelli as a minimal setting in which to study problems of compila-tion and program equivalence that arise when compiling object-orientedlanguages. Our main result is a direct proof, via a small-step unloadingmachine, of the correctness of compilation to a closure-based abstractmachine. Our second result is that contextual equivalence of objects co-incides with a form of Mason and Talcott's CIU equivalence; the latterprovides a tractable means of establishing operational equivalences. Fi-nally, we prove correct an algorithm, used in our prototype compiler, forstatically resolving method o�sets. This is the �rst study of correctnessof an object-oriented abstract machine, and of CIU equivalence for anobject-oriented language.1 MotivationThis paper collates and extends a variety of operational techniques for describingand reasoning about programming languages and their implementation. We focuson implementation of imperative object-oriented programs. The language we de-scribe is essentially the untyped imperative object calculus of Abadi and Cardelli[1{3], a small but extremely rich language that directly accommodates object-oriented, imperative and functional programming styles. Abadi and Cardelli in-vented the calculus to serve as a foundation for understanding object-orientedprogramming; in particular, they use the calculus to develop a range of increas-ingly sophisticated type systems for object-oriented programming. We have im-plemented the calculus as part of a broader project to investigate concurrentobject-oriented languages. This paper develops formal foundations and veri�ca-tion methods to document and better understand various aspects of our imple-mentation. Our work recasts techniques originating in studies of the �-calculusin the setting of the imperative object calculus. In particular, our reduction re-lation for the object calculus, our design of an object-oriented abstract machine,our compiler correctness proof and our notion of program equivalence are allbased on earlier studies of the �-calculus. This paper is the �rst application ofthese techniques to an object calculus and shows they may easily be re-used inan object-oriented setting.Our system compiles the imperative object calculus to bytecodes for an ab-stract machine, implemented in C, based on the ZAM of Leroy's CAML Light



[16]. A type-checker enforces the system of primitive self types of Abadi andCardelli. Since the results of the paper are independent of this type system, wewill say no more about it.In Section 2 we present the imperative object calculus together with a small-step substitution-based operational semantics. Section 3 gives a formal descrip-tion of an object-oriented abstract machine, a simpli�cation of the machine usedin our implementation. We present a compiler from the object calculus to in-structions for the abstract machine. We prove the compiler correct by adaptinga proof of Rittri [23] to cope with state and objects. In Section 4, we develop atheory of operational equivalence for the imperative object calculus, based on theCIU equivalence of Mason and Talcott [18]. We establish useful equivalence lawsand prove that CIU equivalence coincides with Morris-style contextual equiva-lence [20]. In Section 5, we exercise operational equivalence by specifying andverifying a simple optimisation that resolves at compile-time certain method la-bels to integer o�sets. We discuss related work at the ends of Sections 3, 4 and 5.Finally, we review the contributions of the paper in Section 6.The full version of this paper, with proofs, is available as a technical report [9].2 An Imperative Object CalculusWe begin with the syntax of an untyped imperative object calculus, the impςcalculus of Abadi and Cardelli [3] augmented to include store locations as terms.Let x, y, and z range over an in�nite collection of variables. Let � range over anin�nite collection of locations, the addresses of objects in the store.The set of terms of the calculus is given as follows:a; b ::= termx variable� location[`i = ς(xi)bi i21::n] object (`i distinct)a:` method selectiona:`( ς(x)b method updateclone(a) cloninglet x = a in b letInformally, when an object is created, it is put at a fresh location, �, in thestore, and referenced thereafter by �. Method selection runs the body of themethod with the self parameter (the x in ς(x)b) bound to the location of theobject containing the method. Method update allows an existing method in astored object to be updated. Cloning makes a fresh copy of an object in thestore at a new location. The reader unfamiliar with object calculi is encouragedto consult the book of Abadi and Cardelli [3] for many examples and a discussionof the design choices that led to this calculus.Here are the scoping rules for variables: in a method ς(x)b, variable x isbound in b; in let x = a in b, variable x is bound in b. If � is a phrase of syntaxwe write fv(�) for the set of variables that occur free in �. We say phrase � is



closed if fv(�) = ?. We write �ff =xgg for the substitution of phrase  for eachfree occurrence of variable x in phrase �. We identify all phrases of syntax upto alpha-conversion; hence a = b, for instance, means that we can obtain term bfrom term a by systematic renaming of bound variables. Let o range over objects,terms of the form [`i = ς(xi)bi i21::n]. In general, the notation �i i21::n means�1, . . . , �n.Unlike Abadi and Cardelli, we do not identify objects up to re-ordering ofmethods since the order of methods in an object is important for an algorithmwe present in Section 5 for statically resolving method o�sets. Moreover, weinclude locations in the syntax of terms. This is so we may express the dynamicbehaviour of the calculus using a substitution-based operational semantics. InAbadi and Cardelli's closure-based semantics, locations appear only in closuresand not in terms. If � is a phrase of syntax, let locs(�) be the set of locationsthat occur in �. Let a term a be a static term if locs(a) = ?. The static termscorrespond to the source syntax accepted by our compiler. Terms containinglocations arise during reduction.As an example of programming in the imperative object calculus, here is anencoding of the call-by-value �-calculus:�(x)b def= [arg = ς(z)z:arg ; val = ς(s)let x = s:arg in b]b(a) def= let y = a in (b:arg ( ς(z)y):valwhere y 6= z, and s and y do not occur free in b. It is like an encoding from Abadiand Cardelli's book but with right-to-left evaluation of function application.Given updateable methods, we can easily extend this encoding to express anML-style call-by-value �-calculus with updateable references.Before proceeding with the formal semantics for the calculus, we �x notationfor �nite lists and �nite maps. We write �nite lists in the form [�1; : : : ; �n],which we usually write as [�i i21::n]. Let  :: [�i i21::n] = [ ; �i i21::n]. Let[�i i21::m]@[ j j21::n] = [�i i21::m;  j j21::n].Let a �nite map, f , be a list of the form [xi 7! �i i21::n], where the xi aredistinct. When f = [xi 7! �i i21::n] is a �nite map, let dom(f) = fxi i21::ng. Forthe �nite map f = f 0@[x 7! �]@f 00, let f(x) = �. When f and g are �nite maps,let the map f + (x 7! �) be f 0@[x 7! �]@f 00 if f = f 0@[x 7!  ]@f 00, otherwise(x 7! �) :: f .Now we specify a small-step substitution-based operational semantics for thecalculus [8,18]. Let a store, �, be a �nite map [�i 7! oi i21::n] from locationsto objects. Each stored object consists of a collection of labelled methods. Themethods may be updated individually. Abadi and Cardelli use a method store,a �nite map from locations to methods, in their operational semantics of im-perative objects. We prefer to use an object store, as it explicitly represents thegrouping of methods in objects. Let a con�guration, c or d, be a pair (a; �) wherea is a term and � is a store. Let a reduction context, R, be a term given by thefollowing grammar, with one free occurrence of a distinguished variable, �:R ::= � j R:` j R:`( ς(x)b j clone(R) j let x = R in b



We write R[a] for the outcome of �lling the single occurrence of the hole � in areduction context R with the term a. Let the small-step substitution-based re-duction relation, c! d, be the smallest relation satisfying the following, where ineach rule the hole in the reduction context R represents `the point of execution'.(Red Object) (R[o]; �)! (R[�]; �0) if �0 = (� 7! o) :: � and � =2 dom(�).(Red Select) (R[�:`j ]; �)! (R[bjff�=xjgg]; �)if �(�) = [`i = ς(xi)bi i21::n] and j 2 1::n.(Red Update) (R[�:`j ( ς(x)b]; �) ! (R[�]; �0) if �(�) = [`i = ς(xi)bi i21::n],j 2 1::n, �0 = �+(� 7! [`i = ς(xi)bi i21::j�1; `j = ς(x)b; `i = ς(xi)bi i2j+1::n]).(Red Clone) (R[clone(�)]; �)! (R[�0]; �0)if �(�) = o, �0 = (�0 7! o) :: � and �0 =2 dom(�).(Red Let) (R[let x = � in b]; �)! (R[bff�=xgg]; �).Let a store � be well formed if and only if fv (�(�)) = ? and locs(�(�)) �dom(�) for each � 2 dom(�). Let a con�guration (a; �) be well formed if andonly if fv (a) = ?, locs(a) � dom(�) and � is well formed. A routine caseanalysis shows that reduction sends a well formed con�guration to a well formedcon�guration, and that reduction is deterministic up to the choice of freshlyallocated locations in rules for object formation and cloning.Let a con�guration c be terminal if and only if there is a store � and alocation � such that c = (�; �). We say a con�guration c converges to d, c + d,if and only if d is a terminal con�guration and c !� d. Because reduction isdeterministic, whenever c + d and c is well formed, the con�guration d is uniqueup to the renaming of any newly generated locations in the store component ofd. Abadi and Cardelli de�ne a big-step closure-based operational semantics forthe calculus: it relates a con�guration directly to the �nal outcome of takingmany individual steps of computation, and it uses closures, rather than a sub-stitution primitive, to link variables to their values. We �nd the small-stepsubstitution-based semantics better suited for the proofs in Sections 3 and 5as well as for developing the theory of operational equivalence in Section 4. Wehave proved, using an inductively de�ned relation unloading closures to terms,that our semantics is consistent with theirs in the following sense:Proposition 1. For any closed static term a, there is d such that (a; []) + d ifand only if evaluation of a converges in Abadi and Cardelli's semantics.3 Compilation to an Object-Oriented Abstract MachineIn this section we present an abstract machine for imperative objects, a compilersending the object calculus to the instruction set of the abstract machine anda proof of correctness. The proof depends on an unloading procedure whichconverts con�gurations of the abstract machine back into con�gurations of the



object calculus from Section 2. The unloading procedure depends on a modi�edabstract machine whose accumulator and environment contain object calculusterms as well as locations.The instruction set of our abstract machine consists of the operations, rangedover by op, given as follows: access i, object[(`i; ops i) i21::n] (`i distinct),select `, update(`; ops) or let ops , where ops ranges over operation lists.We represent compilation of a term a to an operation list ops by the judgmentxs ` a) ops , de�ned by the following rules. The variable list xs includes all thefree variables of a; it is needed to compute the de Bruijn index of each variableoccurring in a.(Trans Var) [xi i21::n] ` xj ) [access j] if j 2 1::n.(Trans Object) xs ` [`i = ς(yi)aii21::n]) [object[(`i; ops i)i21::n]]if yi :: xs ` ai ) ops i and yi =2 xs for all i 2 1::n.(Trans Select) xs ` a:`) ops@[select `] if xs ` a) ops .(Trans Update) xs ` (a:`( ς(x)a0)) ops@[update(`; ops 0)]if xs ` a) ops and x :: xs ` a0 ) ops 0 and x =2 xs.(Trans Clone) xs ` clone(a)) ops@[clone] if xs ` a) ops .(Trans Let) xs ` let x = a in a0 ) ops@[let(ops 0)]if xs ` a) ops and x :: xs ` a0 ) ops 0 and x =2 xs.An abstract machine con�guration, C or D, is a pair (P;�), where P is astate and � is a store, given as follows:P;Q ::= (ops ; E;AC;RS) machine stateE ::= [�i i21::n] environmentAC ::= [] j [�] accumulatorRS ::= [Fi i21::n] return stackF ::= (ops ; E) closureO ::= [(`i; Fi) i21::n] stored object (`i distinct)� ::= [�i 7! Oi i21::n] store (�i distinct)In a con�guration ((ops ; E;AC;RS); �), ops is the current program. Envi-ronment E contains variable bindings. Accumulator AC either holds the resultof evaluating a term, AC = [�], or a dummy value, AC = []. Return stack RSholds return addresses during method invocations. Store � associates locationswith objects.Two transition relations, given next, represent execution of the abstract ma-chine. A �-transition, P ��! Q, corresponds directly to a reduction in the objectcalculus. A �-transition, P ��! Q, is an internal step of the abstract machine,either a method return or a variable lookup. Lemma 3 relates reductions of theobject calculus and transitions of the abstract machine.(� Return) (([]; E;AC; (ops ; E0) ::RS); �) ��! ((ops ; E0; AC;RS); �).



(� Access) ((access j :: ops ; E; []; RS); �) ��! ((ops ; E; [�j ]; RS); �)if E = [�i i21::n] and j 2 1::n.(� Clone) ((clone :: ops ; E; [�]; RS); �) ��! ((ops ; E; [�0]; RS); �0)if �(�) = O and �0 = (�0 7! O) ::� and �0 =2 dom(�).(� Object) ((object[(`i; ops i) i21::n] :: ops ; E; []; RS); �) ��!((ops ; E; [�]; RS); (� 7! [(`i(ops i; E)) i21::n]) ::�) if � =2 dom(�).(� Select) ((select `j :: ops ; E; [�]; RS); �) ��! ((opsj ; � :: Ej ; []; (ops ; E) ::RS); �) if �(�) = [(`i; (ops i; Ei)) i21::n] and j 2 1::n.(� Update) ((update(`; ops 0) :: ops ; E; [�]; RS); �) ��! ((ops ; E; [�]; RS); �0)if �(�) = O@[(`; F )]@O0 and �0 = � + (� 7! O@[(`; (ops 0; E))]@O0).(� Let) ((let ops 0 :: ops ; E; [�]; RS); �) ��! ((ops 0; � :: E; []; (ops ; E) ::RS); �).Each rule apart from the �rst tests whether the accumulator is empty or not.We can show that this test is always redundant when running code generatedby our compiler. In the machine of the full version of this paper [9], we replacethe accumulator with an argument stack, a list of values.To prove the abstract machine and compiler correct, we need to convertback from a machine state to an object calculus term. To do so, we load thestate into a modi�ed abstract machine, the unloading machine, and when thisunloading machine terminates, its accumulator contains the term correspondingto the original machine state.The unloading machine is like the abstract machine, except that instead ofexecuting each instruction, it reconstructs the corresponding source term. Sinceno store lookups or updates are performed, the unloading machine does not acton a store. An unloading machine state is like an abstract machine state, exceptthat locations are generalised to arbitrary terms. Let an unloading machine state,p or q, be a quadruple (ops ; e; ac; RS) where e takes the form [ai i21::n] and actakes the form [] or [a]. Next we make a simultaneous inductive de�nition of au-transition relation p u�! p0 and an unloading relation, (ops ; e) ; (x)b, thatunloads a closure to a method.(u Access) (access j :: ops 0; e; []; RS) u�! (ops 0; e; [aj ]; RS)if j 2 1::n and e = [ai i21::n].(u Object) (object[(`i; ops i) i21::n] :: ops 0; e; []; RS) u�!(ops 0; e; [[`i = ς(xi)bi i21::n]]; RS) if (ops i; e); (xi)bi for each i 2 1::n.(u Clone) (clone :: ops 0; e; [a]; RS) u�! (ops 0; e; [clone(a)]; RS).(u Select) (select ` :: ops 0; e; [a]; RS) u�! (ops 0; e; [a:`]; RS).(u Update) (update(`; ops) :: ops 0; e; [a]; RS) u�!(ops 0; e; [a:`( ς(x)b]; RS) if (ops ; e); (x)b.



(u Let) (let(ops 0) :: ops 00; e; [a]; RS) u�! (ops 00; e; [let x = a in b]; RS)if (ops 0; e); (x)b.(u Return) ([]; e; ac; (ops ; E) :: RS) u�! (ops ; E; ac; RS).(Unload Closure) (ops ; e); (x)b if x =2 fv (e) and(ops ; x :: e; []; []) u�!� ([]; e0; [b]; []).We complete the machine with the following unloading relations: O ; o (onobjects), � ; � (on stores) and C ; c (on con�gurations).(Unload Object) [(`i; (ops i; Ei)) i21::n]; [`i = ς(xi)bi i21::n]if (ops i; Ei); (xi)bi for all i 2 1::n.(Unload Store) [�i 7! Oi i21::n]; [�i 7! oi i21::n] if Oi ; oi for all i 2 1::n.(Unload Con�g) ((ops ; E;AC;RS); �); (a; �) if � ; � and(ops ; E;AC;RS) u�!� ([]; e0; [a]; []).We can prove the following:Lemma 2. Whenever [] ` a) ops then ((ops ; []; []; []); []); (a; []).Lemma 3.(1) If C ; c and C ��! D then D ; c(2) If C ; c and C ��! D then there is d such that D ; d and c! dLet a big-step transition relation, C + D, on machine states hold if and onlyif there are �; E;� with D = (([]; E; [�]; []); �) and C ( ��! [ ��!)� D.Lemma 4.(1) If C ; c and C + D then there is d with D ; d and c + d(2) If C ; c and c + d then there is D with D ; d and C + DTheorem 5. Whenever [] ` a) ops, for all d, (a; []) + d if and only if there isD with ((ops ; []; []; []); []) + D and D ; d.Proof. By Lemma 2 we have ((ops ; []; []; []); []) ; (a; []). Suppose (a; []) + d. ByLemma 4(2), ((ops ; []; []; []); []) ; (a; []) and (a; []) + d imply there is D withD ; d and ((ops ; []; []; []); []) + D. Conversely, suppose ((ops ; []; []; []); []) + D forsome D. By Lemma 4(1), ((ops ; []; []; []); []) ; (a; []) and ((ops ; []; []; []); []) + Dimply there is d with D ; d and ((ops ; []; []; []); []) + d. utIn the full version of this paper [9], we prove correct a richer machine, basedon the machine used in our implementation, that supports functions as well asobjects. The full machine has a larger instruction set than the one presentedhere, needs a more complex compiler and has an argument stack instead ofan accumulator. The correctness proof is similar to the one for the machinepresented here.



There is a large literature on proofs of interpreters based on abstract ma-chines, such as Landin's SECD machine [12,22,25]. Since no compiled machinecode is involved, unloading such abstract machines is easier than unloading anabstract machine based on compiled code. The VLISP project [11], using deno-tational semantics as a metalanguage, is the most ambitious veri�cation to dateof a compiler-based abstract machine. Other work on compilers deploys metalan-guages such as calculi of explicit substitutions [13] or process calculi [28]. Ratherthan introduce a metalanguage, we prove correctness of our abstract machinedirectly from its operational semantics. We adopted Rittri's idea [23] of unload-ing a machine state to a term via a specialised unloading machine. Our proof issimpler than Rittri's, and goes beyond it by dealing with state and objects.Even in the full version of the paper there are di�erences, of course, betweenour formal model of the abstract machine and our actual implementation. Onedi�erence is that we have modelled programs as �nitely branching trees, whereasin the implementation programs are tables of bytecodes indexed by a programcounter. Another di�erence is that our model omits garbage collection, whichis essential to the implementation. Therefore Theorem 5 only implies that thecompilation strategy is correct; bugs may remain in its implementation.4 Operational Equivalence of Imperative ObjectsThe standard operational de�nition of term equivalence is Morris-style contex-tual equivalence [20]: two terms are equivalent if and only if they are interchange-able in any program context without any observable di�erence; the observationsare typically the programs' termination behaviour. Contextual equivalence is thelargest congruence relation that distinguishes observably di�erent programs.Mason and Talcott [18] prove that, for functional languages with state, con-textual equivalence coincides with so-called CIU (\Closed Instances of Use")equivalence. Informally, two terms are CIU equivalent if and only if they haveidentical termination behaviour when placed in the redex position in an arbi-trary con�guration and locations are substituted for the free variables. Althoughcontextual equivalence and CIU equivalence are the same relation, the de�nitionof the latter is typically easier to work with in proofs.In this section we adopt CIU equivalence as our notion of operational equiv-alence for imperative objects. We establish a variety of laws of equivalence. Weshow that operational equivalence is a congruence, and hence supports compo-sitional equational reasoning. Finally, we prove that CIU equivalence coincideswith contextual equivalence, as in Mason and Talcott's setting.We de�ne static terms a and a0 to be operationally equivalent, a � a0, if, for allvariables x1; : : : ; xn, all static reduction contexts R with fv(R[a]) [ fv (R[a0]) �fx1; : : : ; xng, all well formed stores �, and all locations �1; : : : ; �n 2 dom(�), wehave that con�gurations (R[a]ff�i=xi i21::ngg; �) and (R[a0]ff�i=xi i21::ngg; �) eitherboth converge or both do not converge.It follows easily from the de�nition of operational equivalence that it is anequivalence relation on static terms and, moreover, that it is preserved by static



reduction contexts: (� Cong R) a � a0 locs(R) = ?R[a] � R[a0]From the de�nition of operational equivalence, it is possible to show a mul-titude of equational laws for the constructs of the calculus. For instance, thelet construct satis�es laws corresponding to those of Moggi's computational �-calculus [19], presented here in the form given by Talcott [27].Proposition 6.(1) (let x = y in b) � bffy=xgg(2) (let x = a in R[x]) � R[a], if x =2 fv (R)The e�ect of invoking a method that has just been updated is the same asrunning the method body of the update with the self parameter bound to theupdated object.Proposition 7. (a:`( ς(x)b):` � (let x = (a:`( ς(x)b) in b)The following laws characterise object constants and their interaction withthe other constructs of the calculus.Proposition 8. Suppose o = [`i = ς(xi)bi i21::n] and j 2 1::n.(1) o:`j � (let xj = o in bj)(2) (o:`j ( ς(x)b) � [`i = ς(xi)bi i21::j�1; `j = ς(x)b; `i = ς(xi)bi i2j+1::n](3) clone(o) � o(4) (let x = o in R[clone(x)]) � (let x = o in R[o]), if x =2 fv(o)(5) (let x = o in b) � b, if x =2 fv (b)(6) (let x = a in let y = o in b) � (let y = o in let x = a in b),if x =2 fv(o) and y =2 fv (a)It is also possible to give equational laws for updating and cloning, but weomit the details. Instead, let us look at an example of equational reasoning usingthe laws above. Recall the encoding of call-by-value functions from Section 2.�(x)b def= [arg = ς(z)z:arg ; val = ς(s)let x = s:arg in b]b(a) def= let y = a in (b:arg ( ς(z)y):valFrom the laws for let and for object constants, the following calculation showsthe validity of �v-reduction, (�(x)b)(y) � bffy=xgg. Let o = [arg = ς(z)y; val =
ς(s)let x = s:arg in b] where z 6= y.(�(x)b)(y) � ((�(x)b):arg ( ς(z)y):val by Prop. 6(1)� o:val by Prop. 8(2) and (� Cong R)� let s = o in let x = s:arg in b by Prop. 8(1)� let x = o:arg in b by Prop. 6(2)� let x = (let z = o in y) in b by Prop. 8(1) and (� Cong R)� let x = y in b by Prop. 8(5) and (� Cong R)� bffy=xgg by Prop. 6(1)



This derivation uses the fact that operational equivalence is preserved bystatic reduction contexts, (� CongR). More generally, to reason compositionallywe need operational equivalence to be preserved by arbitrary term constructs,that is, to be a congruence. The following may be proved in several ways, mostsimply by an adaptation of the corresponding congruence proof for a �-calculuswith references by Honsell, Mason, Smith and Talcott [14].Proposition 9. Operational equivalence is a congruence.From Proposition 9 it easily follows that operational equivalence coincideswith Morris-style contextual equivalence. Let a term context, C, be a term con-taining some holes. Let the term C[a] be the outcome of �lling each hole in thecontext C with the term a.Theorem 10. a � a0 if and only if for all term contexts C with locs(C) = ?,C[a] and C[a0] are closed, that (C[a]; [])+ , (C[a0]; [])+.Earlier studies of operational equivalence of stateless object calculi [10,15,24]rely on bisimulation equivalence. See Stark [26] for an account of the di�cultiesof de�ning bisimulation in the presence of imperative e�ects. The main inuenceon this section is the literature on operational theories for functional languageswith state [14,18]. Agha, Mason, Smith and Talcott study contextual equivalence,but not CIU equivalence, for a concurrent object-oriented language based onactors [5]. Ours is the �rst development of CIU equivalence for an object-orientedlanguage. Our experience is that existing techniques for functional languageswith state scale up well to deal with the object-oriented features of the imperativeobject calculus.Some transformations for rearranging side e�ects are rather cumbersome toexpress in terms of equational laws as they depend on variables being bound todistinct locations. We have not pursued this issue in great depth. For furtherstudy it would be interesting to consider program logics such as VTLoE [14]where it is possible to express such conditions directly.5 Example: Static Resolution of LabelsIn Section 3 we showed how to compile the imperative object calculus to anabstract machine that represents objects as �nite lists of labels paired withmethod closures. A frequent operation is to resolve a method label, that is, tocompute the o�set of the method with that label from the beginning of the list.This operation is needed to implement both method select and method update.In general, resolution of method labels needs to be carried out dynamically sinceone cannot always compute statically the object to which a select or an updatewill apply. However, when the select or update is performed on a newly createdobject, or to self, it is possible to resolve method labels statically. The purpose ofthis section is to exercise our framework by presenting an algorithm for staticallyresolving method labels in these situations and proving it correct.



To represent our intermediate language, we begin by extending the syntaxof terms to include selects of the form a:j and updates of the form a:j ( ς(x)b,where j is a positive integer o�set. The intention is that at runtime, a resolvedselect �:j proceeds by running the jth method of the object stored at �. If the jthmethod of this object has label `, this will have the same e�ect as �:`. Similarly,an update �:j ( ς(x)b proceeds by updating the jth method of the object storedat � with method ς(x)b. If the jth method of this object has label `, this will havethe same e�ect as �:` ( ς(x)b. To make this precise, the operational semanticsof Section 2 and the abstract machine and compiler of Section 3 may easily beextended with integer o�sets. We omit all the details. All the results proved inSections 3 and 4 remain true for this extended language.We need the following de�nitions to express the static resolution algorithm.A ::= [`i i21::n] layout type (`i distinct)SE ::= [xi 7! Ai i21::n] static environment (xi distinct)The algorithm infers a layout type, A, for each term it encounters. If thelayout type A is [`i i21::n], with n > 0, the term must evaluate to an objectof the form [`i = ς(xi)bi i21::n]. On the other hand, if the layout type A is [],nothing has been determined about the layout of the object to which the termwill evaluate. An environment SE is a �nite map that associates layout types tothe free variables of a term.We express the algorithm as the following recursive routine resolve(SE; a),which takes an environment SE and a static term a with fv(a) � dom(SE), andproduces a pair (a0; A), where static term a0 is the residue of a after resolutionof labels known from layout types to integer o�sets, and A is the layout type ofboth a and a0. We use p to range over both labels and integer o�sets.resolve(SE; x) def= (x; SE(x)) where x 2 dom(SE)resolve(SE; [`i = ς(xi)ai i21::n]) def= ([`i = ς(xi)a0i i21::n]; A)where A = [`i i21::n]and (a0i; Bi) = resolve((xi 7! A) :: SE; ai), xi =2 dom(SE), for each i 2 1::nresolve(SE; a:p) def=� (a0:j; []) if j 2 1::n and p = `j(a0:p; []) otherwisewhere (a0; [`i i21::n]) = resolve(SE; a)resolve(SE; a:p( ς(x)b) def=� (a0:j ( ς(x)b0; A) if j 2 1::n and p = `j(a0:p( ς(x)b0; A) otherwisewhere (a0; A) = resolve(SE; a), A = [`i i21::n]and (b0; B) = resolve((x 7! A) :: SE; b), x =2 dom(SE)resolve(SE; clone(a)) def= (clone(a0); A) where (a0; A) = resolve(SE; a)resolve(SE; let x = a in b) def= (let x = a0 in b0; B)where (a0; A) = resolve(SE; a)and (b0; B) = resolve((x 7! A) :: SE; b), x =2 dom(SE)



To illustrate the algorithm in action, suppose that false is the object:[val = ς(s)s:� ; tt = ς(s)[];� = ς(s)[]]Then resolve([]; false) returns the following:([val = ς(s)s:3; tt = ς(s)[];� = ς(s)[]]; [val ; tt ;� ])The method select s:� has been statically resolved to s:3. The layout type[val ; tt;� ] asserts that false will evaluate to an object with this layout.Our prototype implementation of the imperative object calculus optimisesany closed static term a by running the routine resolve([]; a) to obtain an opti-mised term a0 paired with a layout type A. We have proved that this optimisationis correct in the sense that a0 is operationally equivalent to a.Theorem 11. Suppose a is a closed static term. If routine resolve([]; a) returns(a0; A), then a � a0.On a limited set of test programs, the algorithm converts a majority of selectsand updates into the optimised form. However, the speedup ranges from modest(10%) to negligible; the interpretive overhead in our bytecode-based system tendsto swamp the e�ect of optimisations such as this. It is likely to be more e�ectivein a native code implementation.In general, there are many algorithms for optimising access to objects; seeChambers [7], for instance, for examples and a literature survey. The idea ofstatically resolving labels to integer o�sets is found also in the work of Ohori[21], who presents a �-calculus with records and a polymorphic type system suchthat a compiler may compute integer o�sets for all uses of record labels. Oursystem is rather di�erent, in that it exploits object-oriented references to self.6 ConclusionsIn this paper, we have collated and extended a range of operational techniqueswhich we have used to verify aspects of the implementation of a small object-oriented programming language, Abadi and Cardelli's imperative object calculus.The design of our object-oriented abstract machine was not particularly dif-�cult; we simply extended Leroy's abstract machine with instructions for manip-ulating objects. Our �rst result is a correctness proof for the abstract machineand its compiler, Theorem 5. Such results are rather more di�cult than proofs ofinterpretive abstract machines. Our contribution is a direct proof method whichavoids the need for any metalanguage|such as a calculus of explicit substitu-tions. Our second result is that Mason and Talcott's CIU equivalence coincideswith Morris-style contextual equivalence, Theorem 10. The bene�t of CIU equiv-alence is that it allows the veri�cation of compiler optimisations. We illustratethis by proving Theorem 11, which asserts that an optimisation algorithm fromour implementation preserves contextual equivalence.
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