
ANNÉE 2016

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

Pierre Wilke

préparée à l’unité de recherche 6074 - IRISA
Institut de recherche en informatique et systèmes aléatoires

UFR Informatique Électronique (ISTIC)

Formally Verified

Compilation of

Low-Level

C code

Thèse soutenue à Rennes

le 9 novembre 2016

devant le jury composé de :

Julia LAWALL
Directrice de recherche - Inria / rapporteur

Frank PIESSENS
Professeur - KU Leuven / rapporteur

Xavier LEROY
Directeur de recherche - Inria / examinateur

Isabelle PUAUT
Professeur - Université Rennes 1 / examinatrice

Boris YAKOBOWSKI
Ingénieur - CEA List / examinateur

Frédéric BESSON
Chargé de recherche - Inria / examinateur
Sandrine BLAZY
Professeur - Université Rennes 1 / directrice de
thèse

2

Remerciements

Je tiens à remercier Julia Lawall et Frank Piessens d’avoir accepté de rapporter ma thèse
et pour l’intérêt qu’ils ont porté à mes travaux. Je remercie également Xavier Leroy et
Boris Yakobowksi d’avoir accepté d’être examinateurs à ma soutenance. Un merci plus
particulier à Isabelle Puaut qui a accepté de présider mon jury de thèse.

Je n’aurais pas pu effectuer ces travaux de thèse sans ma directrice de thèse, Sandrine
Blazy, avec qui j’ai pu effectuer de nombreux voyages à l’autre bout du monde: Singapour,
Nanjing, Nancy... Cette thèse n’aurait pas vu le jour non plus sans mon encadrant de
thèse, Frédéric Besson, à qui je dois beaucoup pour ses nombreux conseils techniques et
ses conversations inspirantes. Merci à eux pour les remarques constructives qu’ils ont su
apporté pour améliorer la qualité des travaux décrits dans cette thèse et la qualité des
articles que nous avons écrits ensemble.

Une thèse n’est pas limitée aux travaux décrits dans un manuscrit, c’est aussi une ex-
périence humaine enrichissante au sein d’une équipe; et l’équipe Celtique est formidable.
Pour ces moments extraprofessionnels entre doctorants, je remercie Martin Bodin, Pauline
Bolignano, Gurvan Cabon, Alexandre Dang, Yon Fernandez de Retana, Vincent Laporte,
Petar Maksimović, André Maroneze, Florent Saudel, Alix Trieu et Yannick Zakowski. Je
remercie également les autres membres de l’équipe pour leur convivialité et leur bienveil-
lance: David Cachera, Delphine Demange, Thomas Genet, Laurent Guillo, Thomas Jensen,
David Pichardie et Alan Schmitt. Merci aussi à Lydie Mabil pour son aide précieuse pour
mes différentes démarches administratives.

Je terminerai par remercier mes parents et ma famille qui m’ont soutenu tout au long
de cette thèse, et dont certains ont été présents le jour de ma soutenance. Merci enfin à
Nadia, avec qui je partage ma vie depuis bientôt six ans et qui m’a soutenu tout au long
de ce doctorat. Je lui dédie ce manuscrit.

3

4

Résumé étendu en français

De plus en plus, notre vie quotidienne est régie par des programmes informatiques. Que
ce soit pour des applications de divertissement, des véhicules autonomes ou le système
de contrôle de vol des avions, les logiciels sont omniprésents. Les logiciels comportent
des erreurs (des bogues informatiques) dont les conséquences peuvent varier d’une simple
nuisance bénigne – dans le cas de jeux vidéos par exemple – à de graves conséquences
humaines, écologiques ou financières – dans le cas de systèmes plus critiques.

Pour ces systèmes critiques, l’utilisation de méthodes formelles est de plus en plus
commune. Les méthodes formelles sont des techniques, reposant sur des fondations math-
ématiques, qui visent à vérifier qu’un programme vérifie sa spécification, i.e. il se comporte
comme on s’y attend. La vérification formelle consiste en l’application mécanisée des méth-
odes formelles, c’est-à-dire que le raisonnement effectuée est vérifié par un programme, que
l’on appelle un assistant à la preuve, ce qui permet d’atteindre un haut niveau de confiance
dans le résultat obtenu.

Pour raisonner sur des programmes, les méthodes formelles se basent sur une sémantique
formelle du langage de programmation considéré. La sémantique d’un langage décrit le
comportement de n’importe quel programme écrit dans ce langage. La plupart du temps,
cette sémantique est informelle et contient des ambigüités – inhérentes au langage naturel
dans lequel la sémantique est spécifiée. En revanche, les méthodes formelles s’appuient sur
des sémantiques formelles, c’est-à-dire des objets qui définissent avec rigueur et précision
le comportement des programmes du langage considéré, sans ambigüité.

Les méthodes formelles sont traditionnellement appliquées au code source d’un pro-
gramme (écrit en C par exemple). La garantie formelle est donc établie vis-à-vis de la
sémantique du language source. Cependant, c’est une garantie concernant l’exécution du
programme compilé (en assembleur ou en langage machine) qui nous intéresse en fin de
compte. Plutôt que d’analyser directement le programme compilé (ce qui est compliqué,
puisque beaucoup d’abstraction a été perdue), la solution que nous considérons est la
compilation formellement vérifiée.

Un compilateur formellement vérifié produit, à partir d’un programme source, non
seulement un programme compilé mais également une garantie formelle que les programmes
source et compilé se comportent de manière identique. On appelle cette garantie formelle
le théorème de préservation sémantique. Une manière d’interpréter ce théorème est la
suivante: “Le compilateur n’introduit pas de bogues.”

La notion de comportement est primordiale dans l’énoncé du théorème de préservation
sémantique. Un comportement de programme est soit un comportement défini – qui peut
lui même représenter la terminaison d’un programme avec une valeur v ou la divergence
d’un programme qui rentre en boucle infinie – soit un comportement indéfini – pour les
programmes qui comportent des instructions illégales, par exemple une division par zéro.
On dit qu’un programme est sûr si tous ses comportements sont définis. Le théorème de
préservation sémantique peut alors être énoncé plus précisément: si le programme source S

5

6

est sûr et si le compilateur réussit à générer un programme compilé C alors T se comporte
comme S.

L’hypothèse selon laquelle le programme source est sûr est primordiale pour le théorème
de préservation sémantique. En effet, étant donné un programme comportant des com-
portements indéfinis, il est permis qu’un compilateur réalise des optimisations et produise
un programme ne comportant que des comportements définis. Sans l’hypothèse de sûreté
du programme source, le compilateur ne serait pas autorisé à réaliser l’optimisation qui
élimine les comportements indéfinis. Pour aboutir à un résultat formel complet, il est donc
nécessaire de prouver séparément la sûreté du programme source. Pour ce faire, il est pos-
sible d’utiliser les méthodes formelles pour prouver qu’un programme est sûr: par exemple
Astrée [Bla+03], Frama-C [Kir+15] ou Verasco [Jou+15] sont des analyseurs statiques (un
type particulier de méthodes formelles) dont le but est de prouver que des programmes C
sont sûrs.

Dans cette thèse, nous nous intéressons au langage C. Le langage C a été introduit en
1972 comme le langage de développement du système d’exploitation Unix [JR78]. Depuis,
C est utilisé pour le développement de tous types d’applications et est toujours parmi les
langages les plus populaires aujourd’hui. La diversification des usages de C et des archi-
tectures sur lesquelles on exécutait les programmes a entraîné la nécessité de standardiser
le langage. Le standard C [ISO99] décrit, de manière informelle, le comportement des
programmes C.

CompCert [Ler09b] est un compilateur formellement vérifié, utilisé dans l’industrie,
du langage C vers les langages assembleurs des plateformes x86, PowerPC et ARM. Le
compilateur est entièrement spécifié, implémenté et prouvé à l’aide de l’assistant à la preuve
Coq. Cela signifie que des sémantiques formelles ont été écrites pour le langage C, pour
chacun des langages assembleur des diverses architectures, ainsi que pour les 8 langages
intermédiaires utilisés dans CompCert. On appelle chaque transformation de programme
d’un langage vers le suivant une passe de compilation. Le compilateur est défini comme
la composition de toutes les passes de compilation. De manière analogue, chaque passe de
compilation est prouvée correcte indépendemment des autres, puis le théorème global de
préservation sémantique est obtenue par la composition des théorèmes associés à chaque
passe de compilation.

Le théorème de préservation sémnatique de CompCert est soumis à l’hypothèse de
sûreté: les programmes source ne doivent pas entraîner de comportement indéfini. Le
standard C, pour des raisons de performance et de portabilité, utilise plusieurs notions de
sous-spécification, qui se divisent en trois catégories:

• les comportements non-spécifiés sont des comportements pour lesquels le standard
propose un certain nombre d’alternatives parmi lesquelles une implémentation du
langage est libre de choisir pour chaque occurence du comportement;

• les comportements définis par l’implémentation sont des comportements non-spécifiés
pour lesquels l’implémentation doit documenter ses choix;

• les comportements indéfinis sont des comportements pour lesquels le standard C
n’impose rien: un compilateur est alors libre de générer – ou pas – du code exécutable,
d’ignorer l’instruction responsable du comportement indéfini, ou de générer n’importe
quel code.

Les comportements indéfinis sont nombreux: plus de 200 cas sont recensés dans l’an-
nexe J.2 du standard [ISO99]. Les opérations qui provoquent des comportements indéfinis
incluent, sans surprise, les divisions par zéro ou les accès mémoire via un pointer nul.

7

En revanche, pour certains comportements indéfinis, il existe des sémantiques raisonnables
auxquelles on peut penser: ce sont ces comportements qui vont nous intéresser pour la suite.
Par exemple, le dépassement d’entier signé ou le décalage bit-à-bit d’une trop grande quan-
tité sont des comportements indéfinis. On peut penser que des comportements définis par
l’implémentation seraient plus adaptés pour ces cas.

Dans cette thèse, nous nous intéressons en particulier à deux comportements indéfi-
nis que l’on retrouve dans des programmes importants, par exemple le noyau Linux ou
l’implémentation de la librairie standard de FreeBSD. Ces comportements sont provoqués
par des opérations sur la représentation binaire des pointeurs (e.g. opérateurs bit-à-bit,
arithmétique arbitraire) et la manipulation de données non-initialisées.

Nous examinons ces programmes issus de projets open source et définissons la séman-
tique de ces opérations (arithmétique arbitraire et opérateurs bit-à-bit sur des pointeurs
et manipulation de données non initialisées) en conséquence. Notre but est de formaliser
le modèle informel que les programmeurs C ont en tête lorsqu’ils écrivent du code de
bas-niveau. Cela peut se résumer en deux idées principales:

1. les pointeurs sont des entiers, qui satisfont un certain nombre de propriétés (notam-
ment d’alignement), et les opérations sur les pointeurs ne sont rien d’autre que des
opérations sur les entiers qui les représentent; et

2. les données non-initialisées peuvent être manipulées et la lecture de telles données
résulte en une valeur arbitraire, mais stable: deux lectures successives donneront le
même résultat.

Bien que ces hypothèses soient contraires aux opinions du comité du standard C, nous
pensons qu’elles correspondent au modèle mental des utilisateurs de C. De plus, il est
classique pour un compilateur de faire des choix sémantiques, c’est-à-dire de rendre des
comportements indéfinis plus définis. Par exemple, le dépassement d’entier signé est un
comportement indéfini en C, mais CompCert lui donne une sémantique définie telle que
INT_MAX + 1 == INT_MIN.

Le but de cette thèse est d’adapter CompCert avec une sémantique de C plus définie,
i.e. une sémantique qui permet des opérations arbitraires sur des pointeurs et des données
non-initialisées. En conséquence le théorème de préservation sémantique s’appliquera plus
souvent, puisque davantage de programmes auront une sémantique définie et seront sûrs.
Nous modifions le moins possible le code du compilateur CompCert. En revanche, nous
modifions le modèle mémoire sur lequel repose CompCert en profondeur, nous adaptons
les sémantiques formelles utilisées par tous les langages intermédiaires de CompCert et,
bien sûr, nous adaptons les preuves de préservation sémantique de chacune des passes de
compilation.

Les contributions de cette thèse sont les suivantes.

Valeurs symboliques. Nous définissons un domaine de valeurs symboliques [BBW14],
qui modélisent les résultats d’opérations (par exemple des opérations bit-à-bit sur des
pointeurs) qui seraient indéfinis, que ce soit pour le standard C ou la sémantique existante
de CompCert.

Modèle mémoire de bas-niveau. Nous définissons un modèle mémoire [BBW15] de
bas-niveau, qui repose à la fois sur le modèle mémoire plus abstrait de CompCert ainsi que
sur les valeurs symboliques. Le modèle mémoire est un composant sémantique, utilisé dans
les sémantiques formelles de tous les langages de CompCert, du C jusqu’à l’assembleur.

8

Il définit comment la mémoire est organisée, les valeurs qui y sont stockées, ainsi que des
opérations de base sur la mémoire (écriture, lecture, allocation et libération). Le modèle
mémoire est également équipé de propriétés de bonne formation qui permettent de raisonner
sur les états mémoire.

La particularité de notre modèle mémoire est sa capacité à capturer les constructions
de bas-niveau que le modèle mémoire de CompCert ne peut pas modéliser.

Une autre différence entre notre modèle mémoire et celui de CompCert est que nous
modélisons une mémoire finie, contrairement à CompCert, qui modélise une mémoire
infinie, dans laquelle l’allocation d’une nouvelle région de mémoire ne peut jamais échouer.

Sémantiques formelles symboliques. En utilisant ce modèle mémoire de bas-niveau,
nous adaptons les sémantiques formelles de tous les langages, depuis le C jusqu’à l’assem-
bleur de l’architecture x86. Nous appelons ces sémantiques symboliques puisque les valeurs
qu’elles manipulent sont des valeurs symboliques. Nous montrons que les sémantiques sym-
boliques sont des raffinements des symboliques existantes dans CompCert, c’est-à-dire
que tous les comportement capturés par les sémantiques de CompCert sont également
capturées par nos sémantiques symboliques. Nos sémantiques associent par ailleurs des
comportements définis à des programmes auxquels les sémantiques de CompCert associ-
aient des comportements indéfinis.

Transformations de la mémoire. Afin de prouver les théorèmes de préservation sé-
mantique de chacune des passes de CompCert, des notions génériques de transformations
de la mémoire sont définies. En particulier, les injections mémoire sont des transforma-
tions qui modifient l’agencement de zones de mémoire. Nous réutilisons et généralisons ces
notions à notre modèle mémoire de bas-niveau.

Passes de compilation et Théorème de préservation sémantique. Les passes de
compilation de CompCert sont réutilisées telles quelles. En effet, ces passes sont des
transformations de la syntaxe du programme et sont indépendantes de la sémantique des
langages. Évidemment, lorsque les passes de compilation se basent sur des analyses de
code (par exemple pour les optimisations), ces analyses sont dépendentes de la sémantique
et doivent être adaptées à notre modèle. Néanmoins, les preuves de préservation séman-
tique de chacune des passes de compilation doivent, elles, être adaptées en utilisant nos
généralisations des transformations de la mémoire. On appelle CompCertS le compila-
teur résultant de toutes ces modifications: un domaine de valeurs symboliques, un modèle
mémoire de bas-niveau, des sémantiques symboliques plus permissives et des preuves de
préservation sémantique adaptées.

Le théorème de préservation sémantique de CompCertS est plus fort que celui de
CompCert pour deux raisons. Premièrement, parce qu’il s’applique à plus de programmes
puisque plus de programmes sont sûrs. Ensuite, puisque notre modèle mémoire est fini,
nous sommes en mesure de quantifier la consommation mémoire des programmes C. Nous
apportons en particulier la garantie suivante: si un programme C est sûr et se compile
sans erreurs vers un programme assembleur, alors non seulement les programmes C et
assembleurs se comportent de manière identique, mais aussi le programme assembleur
utilise moins de mémoire que le programme C.

Notes sur le développement Coq associé. Sauf explicitement indiqué dans ce doc-
ument, l’intégralité des théorèmes ont été prouvés grâce à l’assistant à la preuve Coq. Le

9

développement est accessible en ligne1. Des liens vers le développement sont indiqués à
l’aide du logo Coq: .

Dans ces travaux, nous nous concentrons sur l’architecture x86. Toutefois, nous ne
voyons pas d’obstacle à adapter nos travaux aux autres architectures cibles de CompCert,
à savoir PowerPC et ARM. De plus, les parties de CompCert dépendentes de l’architecture
sont relativement localisées.

1http://www.irisa.fr/celtique/wilke/phd/index.html

http://www.irisa.fr/celtique/wilke/phd/coq-logo.html
http://www.irisa.fr/celtique/wilke/phd/index.html

10

Contents

Remerciements 3

Résumé étendu en français 5

1 Introduction 15

2 Background 23
2.1 The C Standard And Underspecified Behaviours 23
2.2 Formal Semantics . 24
2.3 Formally-Verified Compilation . 27
2.4 Simulation Relations . 29
2.5 CompCert . 31

2.5.1 Overall architecture of the CompCert compiler 31
2.5.1.1 CompCert’s front-end . 31
2.5.1.2 CompCert’s back-end . 33

2.5.2 The Memory Model of CompCert 34
2.5.2.1 Locations and values . 34
2.5.2.2 Memory and Operations . 35
2.5.2.3 Pointer Arithmetic . 36

2.5.3 Memory Transformations . 36
2.5.3.1 Memory Injections in CompCert 37
2.5.3.2 Memory Extensions . 39

2.6 Notations . 40

3 Motivation: Low-Level C Code In The Wild 41
3.1 Bitwise Pointer Arithmetic . 42

3.1.1 Storing information in spare bits . 43
3.1.2 System call return value . 43
3.1.3 Red-Black Trees . 44
3.1.4 XOR-linked lists . 45
3.1.5 Portable Software Fault Isolation . 46
3.1.6 Variable Splitting Obfuscations . 46
3.1.7 Checking pointer alignment . 47

3.2 Manipulation Of Uninitialised Data . 48
3.2.1 Flag setting in an integer variable . 48
3.2.2 Bit-Fields in CompCert . 49
3.2.3 Using uninitialised data as random seed 50

3.3 Conclusion . 50

11

12 CONTENTS

4 Symbolic Values and Normalisation 53
4.1 Symbolic Values . 54
4.2 Evaluation of Symbolic Values . 55
4.3 Well-formedness Condition for Concrete Memories 56

4.3.1 Towards a notion of validity for concrete memories 57
4.3.2 Preservation of validity of concrete memories by memory operations 60

4.4 Normalisation of Symbolic Values . 61
4.4.1 Sound normalisation . 61
4.4.2 The normalisation is functional . 62
4.4.3 Syntactic appearance and normalisation 66

4.5 Conclusion . 66

5 A Novel Memory Model Using Symbolic Values 69
5.1 Encoding And Decoding Of Symbolic Values In Memory 70
5.2 Good Variable Properties . 72
5.3 Uninitialised Data As Indeterminate Values 74
5.4 Memory Allocation and Finite Memory . 74

5.4.1 Allocation Algorithm . 75
5.4.2 Allocation Properties . 76

5.5 Conclusion and Discussion . 78

6 More Defined Semantics For CompCert 81
6.1 Updating The Semantics Of CompCert’s Languages 81
6.2 Our Semantics Is A Refinement Of CompCert’s 85

6.2.1 Forward simulation between CompCert Clight and CompCertS

Clight . 85
6.2.2 An opportunity to discover bugs . 87

6.3 An Executable Semantics For C . 89
6.3.1 SMT solvers . 90
6.3.2 Axiomatising the memory . 90
6.3.3 Translating symbolic values into logical expressions 90
6.3.4 Normalisation as SMT queries . 91

6.3.4.1 Normalising into an integer. 91
6.3.4.2 Normalising into a pointer. 92

6.3.5 Relaxation and Optimisation of the SMT Encoding 93
6.4 Experiments . 94

6.4.1 Stubs in the interpreter . 95
6.4.2 Patterns and Idioms of Low-Level C Code 96

6.4.2.1 Pointer Arithmetic Using Alignment and Bitwise Operations 96
6.4.2.2 Comparison Between Pointers and (void*)(-1) 96
6.4.2.3 Operations on Uninitialised Values 96
6.4.2.4 Copying Bytes between Memory Areas with memmove . . . 97

6.5 Conclusion and Discussion . 98

7 Memory Relations 101
7.1 Structure-Preserving Memory Relations . 102

7.1.1 Structural Equivalence . 103
7.1.2 Symbolic Values Relations . 104

7.1.2.1 Memory Equivalence . 104
7.1.2.2 Memory Improvement . 105

CONTENTS 13

7.1.3 Compatibility With Normalisation And Memory Operations 106
7.1.3.1 Compatibility With Normalisation 106
7.1.3.2 Compatibility With Memory Operations 107

7.2 Memory Injections . 109
7.2.1 Injection of Symbolic Values . 109
7.2.2 Injection of Memories . 110
7.2.3 Preservation of Normalisation by Injection 111

7.2.3.1 Existence of the injection of the normalisation. 112
7.2.3.2 Injection of concrete memories and indeterminate memories. 113
7.2.3.3 Construction of concrete and indeterminate pre-memories. . 115
7.2.3.4 Proof of the final theorem. 117

7.3 Conclusion and Discussion . 118

8 Semantic Preservation Of The Compiler Passes 121
8.1 Generation Of Temporaries . 122

8.1.1 Description of the transformation . 122
8.1.2 Correctness arguments . 123
8.1.3 Proof of SimplLocals in CompCertS 123

8.1.3.1 Restrictions over injection functions. 125
8.1.3.2 Proof sketch for Theorem 8.1.1 about forgetful injections. . 126

8.2 Construction Of Stack Frames . 128
8.2.1 Description of the transformation . 129
8.2.2 Adaptation of the existing proof . 129

8.2.2.1 Preservation of injection by allocation 130
8.2.2.2 Preservation of injection by deallocation 131

8.3 Optimisations . 133
8.3.1 Value analysis of CompCert . 133
8.3.2 Formal tracking of pointer provenance 134
8.3.3 Improving the transfer functions . 135

8.4 Construction of Mach stack frames . 136
8.4.1 The Stacking transformation . 137
8.4.2 Adapting the correctness proof with memory provisions 139
8.4.3 Memory provisions in the intermediate languages 140

8.4.3.1 Preservation of the memory provision. 140
8.4.3.2 Computing the oracle. 141
8.4.3.3 CompCertS’ theorem. 142

8.5 Conclusion and Discussion . 143

9 Conclusion 147
9.1 Summary . 147
9.2 Short-term improvements . 148

9.2.1 External functions . 148
9.2.2 Formalisation of the SMT encoding of normalisations 149
9.2.3 Injection of Indeterminate Values . 149

9.3 Extensions . 149
9.3.1 Validity of concrete memories with lifetimes 149
9.3.2 More Optimisations . 151
9.3.3 A More Concrete Assembly Language 152

9.4 Perspectives . 152

14 CONTENTS

9.4.1 Portable Software Fault Isolation . 153
9.4.2 Obfuscations . 153
9.4.3 A Lower-Level Static Analyser . 153

Appendices 163

A Notations 165

Chapter 1

Introduction

Software systems are pervasive. From benign uses such as entertainment and web browsing
to more involved cases such as self-driving cars and airplane flight control systems, our daily
lives are becoming more and more governed by software systems. Errors in such software
are found regularly and may have dramatic consequences. Errors in benign systems such
as video games generally lead to minor annoyances; however errors in critical software sys-
tems may lead to disastrous consequences, either humanly, ecologically or financially. For
instance, in 2016, the Japanese satellite Hitomi was lost, after reacting to inaccurate sen-
sor data: while trying to counterbalance a detected but inexisting rotation movement, the
satellite lost communications. In 2008, Halperin et al. [Hal+08] show that pacemakers are
vulnerable to denial-of-service attacks, i.e. one could prevent the device from functioning.
From 2002 to 2009, Toyota vehicles have suffered from bugs that provoked unintended and
uncontrollable acceleration of the vehicles, resulting in multiple fatal accidents [Sam14].
More recently, in April 2014, the Heartbleed bug [Dur+14] was discovered in the OpenSSL
cryptography library. The bug is a buffer overflow which leaks cryptographic private keys,
therefore annihilating the confidentiality of the communications.

Because the consequences of software errors can be dramatic, the need rises for the use
of formal methods. Formal methods are a set of techniques, based on mathematical and
rigorous foundations, whose aim is to verify that such critical programs are safe, i.e. that
their execution never results in run-time errors. We call formal verification the mechanised
application of formal methods, whereby the mathematical rigor required for the use of
formal methods is verified by a computer program, called a proof assistant. This gives a
high level of confidence, because one does not need to check the entirety of all the reasoning
steps, but merely trust that the proof assistant is correct.

To reason about programs, formal methods need formal semantics. The semantics
of a programming language answers the question of assigning meanings to programs. In
other words, it describes the behaviour of every program written in that language. In
most cases, the semantics of programming languages is given by informal specifications in
natural language prose – with its load of imprecisions and ambiguities. Formal methods
need formal semantics, i.e. an object that describes, with mathematical rigor and without
ambiguities, the behaviour of every program written in that language.

Formal methods are usually applied to the source code of programs. They therefore
give formal guarantees about the behaviour of programs according to the formal semantics
of the source language. Static analysers, for instance, are formal methods tools whose
aim is to prove that a given property is satisfied by every execution of the input program,
as specified by the formal semantics of the source language. In general, it is undecidable
whether a property holds for every execution of a program (see Rice’s theorem [Ric53]).

15

16 CHAPTER 1. INTRODUCTION

Static analysers circumvent this issue by computing over-approximations of the possible
behaviours of a program. It is always sound to compute over-approximations because
every behaviour of the actual system is captured by the approximation. Hence, if the
over-approximation does not contain undesirable behaviours, then neither does the set of
behaviours of the actual program.

Successful examples of the application of formal methods to industrial contexts include
the Astrée static analyser [Bla+03; DS07], which has been used in particular to prove the
absence of run-time errors in the primary flight control software of the Airbus fly-by-wire
systems since the A340 airliner. Frama-C [Kir+15] is another static analysis framework
which provides various analyses for C programs. Verasco [Jou+15] is yet another static
analyser, that aims at proving the absence of run-time errors in C programs, whose distin-
guishing feature is that it is entirely specified, implemented and proved in the Coq proof
assistant.

All those examples yield a guarantee about C programs. However, what we really value
is a guarantee about the behaviour of the program being actually run on our machine, i.e.
after it has been compiled to machine code. Performing program analysis at this level is an
option [BR10; KV08], sometimes even the only option when the source code of programs is
not available. However, it is much harder than at the source level. Indeed, most abstraction
(be it code abstraction with the high-level notions of functions and loops, or data abstraction
such as types, variables or struct constructs) has been lost, making reasoning harder.

To achieve the formal guarantee over the assembly program, while keeping the analysis
at the source level, the idea is to verify that the compilation preserves the properties
proved at the source level. Formally verified compilers fill the gap between the result of
a formal verification on a source program and the guarantee we expect on the running
program. A verified compiler provides, in addition to a compiled program, a formal proof
that the compiled program behaves as the source program. This is known as the semantic
preservation theorem. An intuitive reading of this theorem is: “The compiler does not
introduce bugs.” It also follows that any safety property that was proved by static analysis
for the source program still holds for the compiled program.

In order to introduce the topic of this thesis, we need to give more information about
the semantic preservation theorem. The notion of program behaviour is central to the
semantic preservation theorem. A program behaviour is one of the two following: either a
defined behaviour, which can be termination (the program terminates with a return value
v) or divergence (the program loops forever), or an undefined behaviour (for programs that
perform illegal operations, e.g. division by zero). We say that a program is safe if all its
behaviours are defined. The semantic preservation theorem can be stated as follows: if the
source program S is safe and the compiler generates a target program T , then T behaves
as S.

We need the hypothesis that the program is safe in the semantic preservation theorem,
because compilers routinely optimise away pieces of code that may exhibit undefined be-
haviours. For example, consider a program that assigns to a variable x the result of dividing
by zero, and then never uses x again. This program has undefined behaviour because of the
illegal division by zero. However, since the assignment is never used, it may be removed by
a dead code elimination optimisation, resulting in a program that does not have undefined
behaviours. For that reason, semantic preservation theorems generally exclude programs
that have undefined behaviours.

The important hypothesis that the source program must be safe can be discharged by
running a static analyser (e.g. Astrée, Frama-C, Verasco) on the source program.

In this thesis, we will focus on programs written in C. The C language has been intro-

17

duced in 1972 as the development language of the Unix operating system [JR78]. Since
then, C has been used as a general purpose programming language, and is still widely
used nowadays. It soon became important that the C language be portable so that C
programs could be run on different platforms. This need for portability led to the devel-
opment of specifications for the C language, starting from the K&R book [KR78], to more
formal standardisations of C by ANSI [ANS89] (American National Standards Institute) or
ISO [ISO99; ISO11] (International Organization for Standardization). Those documents
explain, informally, the behaviour of every program written in C.

CompCert [Ler09b] is a formally-verified, industrial-strength compiler for a large sub-
set of the C language down to the assembly languages for the x86, PowerPC and ARM
architectures. The compiler is fully specified, implemented and proved using the Coq

proof assistant. More precisely, the C language, the assembly languages for each target
architecture and the 9 intermediate languages are defined and given formal semantics in
Coq. Each program transformation from one language to another (lower-level) language
is called a compiler pass, and the whole compiler is the composition of all those compiler
passes. Similarly, each compiler pass is proved to be semantics preserving independently
and the final semantic preservation theorem of the whole compiler is the composition of
the semantic preservation of the individual compiler passes.

CompCert provides unprecedented confidence in a C compiler. As an illustration of
this confidence, Yang et al. [Yan+11], the authors of the Csmith tool – that generates
random C programs and tests compilers (11 of them, including GCC and LLVM) – report:

The striking thing about our CompCert results is that the middle-end bugs we
found in all other compilers are absent. As of early 2011, the under-development
version of CompCert is the only compiler we have tested for which Csmith
cannot find wrong-code errors. This is not for lack of trying: we have devoted
about six CPU-years to the task. The apparent unbreakability of CompCert

supports a strong argument that developing compiler optimizations within a
proof framework, where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.

CompCert’s semantic preservation theorem only holds for safe programs, i.e. those
that do not exhibit undefined behaviour. The C language, for performance and portability
reasons, uses several notions of under-specification, i.e. some behaviours are not, or only
partially, given semantics. These behaviours fall in three different categories:

• unspecified behaviours are behaviours for which the standard gives a number of al-
ternatives, from which the implementation is free to choose any for any occurrence;

• implementation-defined behaviours are unspecified behaviours for which the imple-
mentation must document how the choice between alternatives is made in every
particular situation;

• undefined behaviours are behaviours for which the standard imposes no require-
ments on the implementation: it may or may not generate executable code; the
offending situation may be silently ignored or compiled into any piece of code.

Undefined behaviour happens in a wide variety of cases: around 200 cases are listed
in Appendix J.2 of the C standard [ISO99]. This list includes NULL pointer dereferences
and out-of-bounds array accesses, for which no reasonable semantics comes to mind: it is
therefore natural to make such behaviours undefined. However, the list also includes signed
integer overflows or over-sized shifts for which reasonable semantics can be thought of, such

18 CHAPTER 1. INTRODUCTION

as considering the shift amount modulo 32 or discarding the higher bits. One might argue
that an unspecified behaviour or implementation-defined behaviour would have been more
appropriate for this case. As John Regehr puts it,1 one might suspect “that the C standard
body simply got used to throwing behaviours into the “undefined” bucket and got a little
carried away”.

There are other kinds of behaviours that, although being undefined, are nevertheless
used in production code. For example, bitwise operations are performed on pointers with
the mental assumption that pointers can be treated as integers. Another misconception
that programmers have is related to uninitialised data: reading the value of an uninitialised
variable does not result in some arbitrary value – as one could believe – but is undefined
behaviour. As we will see in this document, examples of such misunderstandings of the C
standard happen in system code, mainly for performance reasons, and rely on assumptions
that are not shared by compilers, and therefore the compiler does not necessarily preserve
the semantics of these programs.

Contributions In this thesis, we want to reconcile the programmers’ informal mental
model of the memory in the C language with the formal semantics needed for both static
analyses and verified compilers correctness. In particular, we formalise the assumption
that pointers can be casted to and from integers and their binary representation can be
manipulated as standard integers. We also formalise accesses to uninitialised data as
reading an arbitrary but stable value, meaning that reading an uninitialised value twice
results in the same arbitrary value. This is closely related to Defect Report #260 [ISO],
which demands clarification to the C standard committee on the two following questions:

1. if an object holds an indeterminate value, can that value change other than by an
explicit action of the program?

2. if two objects hold identical representations derived from different sources, can they
be used exchangeably?

Regarding Question 1 about indeterminate values, the standard committee answers that
the result of accessing indeterminate values may change even without a direct action of the
program. Our answer to the same question is opposite to that of the standard committee,
namely that the value may be arbitrary but must be stable. We advocate that no reasonable
architecture would modify the bit-pattern representation of indeterminate values.

Question 2 can be slightly rephrased into a more specific question about pointers: is
a pointer anything more than its bit-pattern representation? The answer of the standard
committee states that two pointers may be treated differently based on their origin, or
provenance, even if they have the same binary representation. Once again, we give a
different answer to that question. Our motto is that pointers can be treated as integers, in
a way that will be described later in this thesis. Hence, we consider two pointers with the
same bit-pattern as equal and interchangeable.

The answers we give are opposite to those of the standard committee, however we
believe that they capture the mental model that programmers have in mind when writing
C code that can be found in real-life projects, as we will show in Chapter 3.

This work builds upon the CompCert compiler, which is the only formally-verified
compiler for C. We aim at preserving as much as possible of the compiler passes provided
by CompCert. We only change the formal semantics of the languages of CompCert,
therefore making more programs have defined semantics. As a result, more programs are

1http://blog.regehr.org/archives/213

19

covered by the semantic preservation theorem. This necessitates to adapt the semantic
preservation theorems of the individual passes in consequence. Our contributions can be
stated as follows.

• We define a formalism of symbolic values [BBW14] that denote the result of operations
(e.g. bitwise manipulation of pointers, computation on uninitialised data) that would
otherwise be undefined, according to both the C standard and the formal semantics
of CompCert. This formalism is the basis for reasoning about C expressions and
programs that perform bit-level manipulation of data.

• We define a low-level memory model for C [BBW15], based on the abstract memory
model of CompCert and our formalism of symbolic values. This memory model fea-
tures in particular a finite memory space (contrasting with CompCert’s unbounded
memory). We also reprove the good-variable properties on our memory model – those
are well-behavedness properties of the memory (i.e. reading just after writing at the
same location results in the value that was just written).

• We adapt the formal semantics of all the languages of the CompCert development:
the C language, the assembly language for the x86 architecture, and all the inter-
mediate languages in between, that will be introduced in Section 2.5.1. We call
the resulting formal semantics symbolic semantics because the values they operate
on are symbolic values. We show that the symbolic semantics are a refinement of
CompCert’s semantics.

• The generic notions of memory transformations (extensions and injections), intro-
duced in Section 2.5.3, formally describe how memory states are transformed by the
CompCert compiler. We generalise these notions to our low-level memory model.

• The compiler passes of CompCert hardly need to be modified. However the cor-
rectness proofs of those passes need to be reworked. We adapt the proofs to our
symbolic semantics. This results in CompCertS (S stands for Symbolic), our modi-
fied version of CompCert equipped with our low-level memory model, our symbolic
semantics and proved correct with our generalisations of memory transformations.
This compiler gives the formal guarantee that the compiled program behaves as the
source program, but also that the compiled program uses no more memory than the
source program.

In this work, we focus on the x86 back-end of CompCert to build CompCertS. The
parts of CompCert’s development that are specific to the target architecture are relatively
small and we foresee no obstacle for adapting our contributions to PowerPC and ARM
architectures. Unless explicitly stated otherwise, all the material described in this thesis
has been formally specified, implemented and proved using the Coq proof assistant. The
entire development is available online.2 The electronic version of this document includes
links to the development, showing the corresponding functions or theorems. Those are
signaled by a Coq logo: .

Outline The remainder of this thesis can be split into three parts. The first part (Chap-
ters 1 to 3) includes this introduction, general information about the context of this work
and motivating examples. The second part (Chapters 4 to 6) defines the formalism we use

2http://www.irisa.fr/celtique/wilke/phd/index.html

http://www.irisa.fr/celtique/wilke/phd/coq-logo.html
http://www.irisa.fr/celtique/wilke/phd/index.html

20 CHAPTER 1. INTRODUCTION

to create our low-level memory model and symbolic semantics. The third part (Chapters 7
and 8) is dedicated to the proof of correctness of CompCertS. Chapter 9 concludes this
thesis.

General information regarding the C standard and formally-verified compilation is pro-
vided in Chapter 2. A particular focus is made on CompCert, an industrial-strength
formally verified compiler for C, upon which this work builds. We explain the memory
model that CompCert uses, the overall architecture of the compilation chain of Comp-

Cert. We also give background regarding the proof techniques used for the correctness
proof of the individual compiler passes. Finally, we give the statement of CompCert’s
semantic preservation theorem.

Next, Chapter 3 exhibits a number of motivating examples of C programs that come
from major open source pieces of software and that CompCert’s formal guarantees do
not apply to, because those programs have undefined behaviour. We give an intuitive
explanation of how the example programs should behave in the programmers’ mental model.
Our aim throughout this thesis will be to build a formal semantics for C that assigns a
meaning to these widely-used low-level idioms.

The remaining chapters are the bulk of our work, and aim at defining the semantics
of those programs and providing formal guarantees about their compilation. We follow
a bottom-up approach: we build CompCertS from its heart – the domain of symbolic
values – to the full theorem of compiler correctness.

Chapter 4 introduces the domain of symbolic values and the notion of normalisation.
Symbolic values are used to represent the result of computations that would otherwise be
undefined. The normalisation aims at simplifying symbolic values into values. This process
is based on the definition of concrete memories, which are all the possible concrete layouts
of the memory.

Then, Chapter 5 pushes the formalism of symbolic values and normalisations into
CompCert’s memory model, resulting in a low-level, more permissive albeit finite, mem-
ory model. We show that the good-variable properties – well-behavedness properties on the
primitive operations of the memory model – still hold in our low-level memory model. We
also show how we cope with a finite memory, i.e. how we decide whether there is enough
available space.

Next, in Chapter 6, we show how this low-level memory model is used in the formal
semantics of all the intermediate languages of CompCert. We call the resulting semantics
symbolic semantics. We also show how to get an executable version of our symbolic seman-
tics of the C language, enabling us to execute C programs with our symbolic semantics.
The challenge resides in the implementation of the normalisation – we use an SMT solver
for this purpose. We demonstrate the usefulness of our symbolic semantics by running our
C semantics on a set of programs, including examples from Chapter 3.

The remaining chapters concentrate on the adaptation of the proof of correctness of
the CompCert compiler to our symbolic setting, resulting in the CompCertS compiler.

Chapter 7 defines the generalisations of generic memory relations (extensions and injec-
tions) used as invariants in CompCert. We show how to reprove the existing theorems of
CompCert and we introduce new theorems linking e.g. the normalisation to the memory
relations. Those theorems are the building blocks of the semantic preservation proofs of
the individual compiler passes, and therefore of the whole CompCertS compiler.

Finally, Chapter 8 builds on top of every definition and theorem we introduced in earlier
chapters and builds the correctness proof of all the individual compiler passes. It specifically
reports on four passes that require more work than the others to port CompCert to
CompCertS. The difficulties we face are mainly due to the finiteness of our low-level

21

memory model. The final result, CompCertS, is a formally verified compiler for the
C language equipped with the semantics that we believe to be commonly-assumed by
programmers. CompCertS comes with an end-to-end correctness theorem that states
that not only the semantics, but also the amount of memory used by programs is preserved
by compilation.

Chapter 9 concludes this thesis. It summarises the results we achieved and provides
ideas for future work, improvements and applications of this low-level compiler, Comp-

CertS, particularly to security issues.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 The C Standard And Underspecified Behaviours

The C standard [ISO99; ISO11] is the official documentation of the C language. It describes
the behaviour of every program by specifying an abstract machine. The statements and
expressions of C are then defined in terms of interactions with the state of this machine.
The first document used as a reference for the C language is the book by Kernighan and
Ritchie [KR78], which explains informally the concepts of C. It is only in 1983, ten years
after the introduction of C, that the first committee for a C standard was formed. The
first version of the standard was published in 1989 by ANSI (American National Standards
Institute) and is known as C89. ISO (International Organization for Standardization) then
adopted the standard and reworked it several times, including new features such as the
long long type, variable-length arrays and better support for floating-point numbers in
C99 and support for concurrency in C11.

This document is important because it defines a contract between compiler writers and
programmers. Compiler writers are required to generate executable code that behaves as
prescribed by the source code that the programmer gave as input, under the condition that
the input program is well-defined according to the C standard.

To understand precisely this condition, we must introduce a few notions used in the C
standard about the behaviour of programs. The C standard does not associate a precise
behaviour for every possible C program. Indeed, some programs are given underspecified
behaviours. Those underspecified behaviours can be either unspecified, implementation-
defined or undefined behaviours.

An unspecified behaviour is a behaviour for which each implementation (i.e. compiler
or interpreter) may choose among a list of possibilities and is free to change its choice for
every occurrence of the behaviour. For example, the order in which the arguments to a
function are evaluated is unspecified behaviour (left-to-right or right-to-left).

An implementation-defined behaviour is a special case of unspecified behaviour for
which the implementation is required to document how the choice between alternatives
is made. For example, the representation of signed integers (using sign and magnitude,
two’s complement or one’s complement) is implementation-defined. The gcc compiler
and Microsoft Visual Studio document that they use only two’s complement. The clang

compiler does not seem to document its choices1, however they seem to follow the same
choices as gcc.

1The bug report https://llvm.org/bugs/show_bug.cgi?id=11272 is still open after more than 5 years,
at the time of writing. Recently, Richard Smith ironises that being an implementation, the implementation-
defined behaviours of clang are defined by the implementation.

23

https://llvm.org/bugs/show_bug.cgi?id=11272

24 CHAPTER 2. BACKGROUND

An undefined behaviour is a behaviour for which the standard imposes no requirements.
The implementation may abort processing the input program, silently ignore the problem
or generate arbitrary code. The C standard makes no distinction of severity between the
following selected undefined behaviours:

• dereference a NULL or dangling pointer;

• division by zero;

• signed integer overflow;

• sequence point violations;

• bitwise pointer arithmetic;

• access to uninitialised data.

Indeed, C programmers will probably not expect their program to have well-defined se-
mantics when it dereferences the NULL pointer, or when a division by zero occurs. It is
commonly understood that these behaviours are undefined.

However, regarding signed integer overflow, most programmers will assume that it wraps
around modulo 232 (in a 32-bit architecture). Still, it is undefined behaviour and enables
unexpected optimisations.2 gcc actually provides an command-line option (-fwrapv) to
force the wrap-around behaviour and disable this optimisation.

Similarly for sequence point violations, e.g. (x = 1) + (x = 2) is undefined because
there is no sequence point between the two assignments to variable x. However, a pro-
grammer might expect the result of this expression to be 3, because the first assignment
evaluates to 1 and the second assignment evaluates to 2, no matter in what order they are
evaluated. This expression is actually transformed by gcc 4.9.2 (at all optimisation levels)
into x = 1; x = 2; x + x, which doesn’t match the programmer’s expectations but is
legal with respect to the C standard.

Pointers, on modern platforms, are merely integers that represent addresses. While the
C standard forbids treating pointers as integers (e.g. bitwise operations are not allowed),
one can be tempted to exploit this fact and perform arbitrary pointer comparisons or
storing some information in spare bits of pointers (see Section 3.1).

Reading uninitialised data is sometimes thought of as a way of generating randomness
(see examples in Section 3.2), although it is undefined behaviour. The compiler is free to
generate any code, and not necessarily treat the uninitialised data as some arbitrary value,
and as we will see in greater detail in Section 3.2, it uses this freedom and optimises away
computations based on uninitialised data.

2.2 Formal Semantics

The C standard is a specification of the meaning of C programs in natural language, and
is hence ambiguous and subject to interpretation. Formal verification relies on a formal,
unambiguous specification of the meaning of programs, i.e. a mathematical object that
reflects this informal specification. This formal specification is called a formal semantics.

Formal semantics come in various flavours, each of which has its own purpose. Denota-
tional semantics [SS71] describes the meaning of programs using an abstract mathematical

2See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=33498. An overflow inside the body of a for

loop makes the loop infinite.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=33498

2.2. FORMAL SEMANTICS 25

model relying on partial orders, continuous functions and least fixpoints. Axiomatic se-
mantics [Flo67] defines the meaning of programs by giving proof rules to reason about
them. The canonical example of axiomatic semantics is Hoare logic [Hoa69], and it is used
to prove, among other properties, that a program satisfies its specification. In this work,
we focus on a third type of formal semantics, operational semantics [Plo81], where the
meaning of a program is given by a transition system in an abstract machine. For every
syntactic construct of the languages, transition rules dictate how the state of the abstract
machine evolves when this construct is executed. Definition 2.2.1 formalises the notion of
labelled transition system, which is the basis of operational semantics, as introduced in
[Plo81].

Definition 2.2.1 (Labelled transition system (LTS)). A labelled transition system is a
tuple (Σ, E , I, F,→) where Σ is a set of states (or configurations), E is a set of events
including a silent event ǫ, I ⊆ Σ is the set of initial states and F ⊆ Σ is the set of final
states. →⊆ Σ × E × Σ is the transition relation such that (σ, e, σ′) ∈→ (written σ

e
−→ σ′)

if and only if a transition can be fired from state σ to state σ′, emitting event e.

The events on the transitions enable to abstract from the low-level details of program
states, which are dependent on the actual language we consider and its formal semantics.
Events aim at being language-agnostic and capturing the behaviour of programs, at a
higher level of abstraction. Definition 2.2.2 captures the notion of traces, which extract
the sequences of events from all possible paths in a labelled transition system.

Definition 2.2.2 (Traces). A trace is a (possibly infinite) sequence of events. We write
finite traces e0e1 . . . en and infinite traces e0e1 The set of traces of a labelled transition
system S = (Σ, E , I, F,→) is written Traces(S) and captures the sequences of events emitted
by every possible derivation in S. Formally,

Traces(S) =

e0 . . . en−1 | ∃ σ0 . . . σn,

σ0 ∈ I

∧ ∀i < n, σi
ei−→ σi+1

∧ ¬∃σ, σn → σ

finite traces

∪ {e0 . . . | ∃ σ0 . . . σ0 ∈ I ∧ ∀i, σi
ei−→ σi+1} infinite traces

Traces are either finite or infinite. Finite traces are either terminating traces (those
that end with σn ∈ F) or stuck traces (those that end with σn /∈ F). Note that those traces
are maximal, i.e. they end with a state from which no step can be taken. Infinite traces
model non-terminating executions and are said to be diverging. Definition 2.2.3 defines
program behaviours on top of program traces.

Definition 2.2.3 (Program Behaviours). The set of behaviours of a program P , written
Beh(P), is the set of traces of the labelled transition system associated with P .

Program behaviours can be split between stuck, going-wrong, behaviours and normal
behaviours (either terminating or diverging).

Formal Semantics for C. Since the 1990’s, a number of formal semantics have been
given for C.

Gurevich and Huggins [GH92] describe the semantics of C using abstract state machines
(ASMs). Their semantics is not executable and can therefore not be applied mechanically
to C programs. This work has not been conducted inside a proof assistant.

Cook and Subramanian [CS94] define a semantics for the C language inside the Nqthm
theorem prover. Their aim is to perform formal verification of functional correctness of C

26 CHAPTER 2. BACKGROUND

programs. Their semantics is written as an interpreter and is therefore executable. The
semantics does not cover the entirety of C: it is restricted to a limited set of types and
expression constructs.

In his thesis [Nor98], Norrish defines another formal semantics for C, with the purpose
of verifying C programs. This semantics is written using the HOL theorem prover. His
semantics is not executable but is aimed at proving properties of programs. A particular
effort is made on capturing precisely all the possible evaluation orders e.g. for the arguments
to function calls, which the previous semantics did not do accurately. Norrish also defines
a Hoare logic for C programs in order to perform verification.

In the context of the CompCert compiler [Ler09b] (which will be introduced in greater
detail in Section 2.5), Leroy et al. formalise a large subset of C inside the Coq proof
assistant. While the goal of the previous formal semantics was to perform verification at
the C level, the objective of CompCert is to verify that the compiler is correct, i.e. it
preserves the behaviour of programs. Besides, they have developed an interpreter for C,
that captures all the possible evaluation orders, and that can be applied to C programs to
test their semantics. Unlike other semantics that intend to follow as closely as possible the
C standard, CompCert takes the freedom (and is justified in doing so) of giving arbitrary
(though reasonable) semantics to behaviours that are undefined or unspecified according
to the standard, e.g. signed integer overflow.

Ellison and Roşu [ER12] define an executable semantics of C inside the K framework,
based on rewriting systems. Their aim is to develop a practical tool, that can be used
for finding bugs or observing sets of behaviours however it is not tailored for use inside a
proof assistant. Hathhorn et al. [HER15] extend their work, and put emphasis on precisely
distinguishing undefined and defined behaviours: they want to be able to identify precisely
programs with undefined behaviours.

Kang et al. [Kan+15] propose a formal semantics in Coq of a C-like language that
focuses on assigning semantics to pointer-to-integer casts. They do so by realising pointers
only when needed, i.e. actually giving a concrete 32-bit address to a pointer only when it is
cast to an integer. This model allows them to prove the soundness of several optimisations,
which would not be valid if pointers were always realised, i.e. if they always had a concrete
address.

Memarian et al. [Mem+16] present Cerberus, a de facto semantics for C, i.e. a semantics
that captures not the ISO C standard, but the C as it is used in practice. To discover the
de facto semantics of C, they have designed a set of questions regarding various unclear
aspects of the C standard and received responses from hundreds of C programmers and
members of the standard committee. Their formalisation consists of a translation from
C to a core language. The core language is a typed call-by-value language of function
definitions and expressions. It is parametric on the memory model to be used. Hence, one
can plug in different memory models to obtain the various behaviours (possibly deviating
from the standard) that are the de facto semantics of C.

In his thesis [Kre15], Krebbers formalises in Coq the C standard. His formalisation,
CH2O, consists of an operational semantics (used to reason about program transforma-
tions), an executable semantics (used to compute the set of behaviours of a given program)
and an axiomatic semantics (used to reason about programs). This formalisation aims at
being close the C11 standard [ISO11]. Like the work of Memarian et al., CH2O is based
on a core language, into which C programs are translated prior to any reasoning.

2.3. FORMALLY-VERIFIED COMPILATION 27

2.3 Formally-Verified Compilation

A compiler translates a program from a source language S into a target language T , where
T is often a lower-level language than S. For example, a C compiler typically generates
assembly programs from C programs.

A formally-verified compiler is a compiler that provides formal guarantees about the
code it generates. The purpose of this section is to investigate various compiler correctness
properties, i.e. answer the question “What does it mean for a compiler to be correct?”.
Robert Dockins’s thesis [Doc12] gives a detailed survey of several verified compilers and
the correctness properties they claim. Informally, such a correctness property should be a
trade-off between permissiveness (traditional program transformations should be allowed)
and tightness (interesting program properties should be preserved).

A natural candidate for compiler correctness is bisimilarity, and can be stated as in
Property 2.3.1.

Property 2.3.1 (Bisimilarity). Two programs S and T are bisimilar if both programs have
the same set of behaviours, i.e. if Beh(S) = Beh(T).

The bisimulation relation captures equivalent programs, i.e. bisimilar programs behave
identically, and all properties of the behaviours of the programs are preserved. However it
is too strong a property to be a criterion for compiler correctness.

A first reason why bisimulation is not appropriate in the case of compiler correctness
is because not all behaviours of the source program need to be behaviours of the target
program. To understand why behaviours of the source program should be allowed to be
forgotten, consider a non-deterministic feature of the source language. For example, in C,
the order of evaluation of the arguments to a function call is chosen non-deterministically.
Consider the code snippet f(g(),h()) where g and h are functions that may produce
side-effects. The set of behaviours of this program will include different traces depending
on whether g is executed before or after h. However, the compilation of this code might
yield the code int x = h(); int y = g(); x + y; thus forcing the evaluation order and
reducing the set of behaviours.

This results in Property 2.3.2, a relaxed property that is a candidate criterion for
compiler correctness, and that is called backward simulation.

Property 2.3.2 (Backward simulation). All the behaviours of program T are included in
the behaviours of program S.

Beh(T) ⊆ Beh(S)

Only safety properties, i.e. the set of behaviours does not intersect with a predetermined
set of undesirable behaviours, are preserved by this correctness property. However, it is
better-suited to compilation than bisimilarity. Indeed, it allows program transformations
that reduce non-determinism, i.e. that choose a strategy from a set of possibilities.

We are getting closer to the compiler correctness property. The backward simulation
property is still slightly too strong. Recall the notion of undefined behaviour in C. It
is stated in the C standard that when a C program exhibits undefined behaviour, the
standard imposes no requirements on the implementation. That is to say, a C compiler
can compile code with undefined behaviour into any program. More generally, going-wrong
behaviours can be compiled into anything. The corresponding formal property is the
backward simulation with behaviour improvement. We say that a behaviour BT improves
over a behaviour BS (written BS ⊑ BT) if either BS is a going-wrong behaviour, or BS =
BT . We write P ⇓ B to denote that program P exhibits behaviours B, i.e. B ∈ Beh(P).

28 CHAPTER 2. BACKGROUND

Property 2.3.3 (Backward simulation with behaviour improvement). Every behaviour of
T is an improvement over a behaviour of S.

∀B, T ⇓ B ⇒ ∃B′, S ⇓ B′ ∧ B′ ⊑ B

This property is suitable for verified compilation. As a matter of fact, this is the
final theorem of the CompCert compiler (see transf_c_program_preservation). A
direct corollary is that programs that do not exhibit undefined behaviour enjoy the simpler
backward simulation property without behaviour improvements. We say that a program P
is safe (written Safe(P)) when it has no going-wrong behaviours. The following property
gives a high-level view of the meaning of CompCert’s theorem, however keep in mind
that it is slightly weaker than Property 2.3.3.

Property 2.3.4 (Backward simulation for safe programs).

Safe(S)⇒ Beh(T) ⊆ Beh(S)

It is an interesting property because we can deduce for example that the compilation
does not introduce bugs in safe programs. Indeed, if T contains a bug (i.e. an undesirable
behaviour), then this behaviour was already present in the source program S: it is therefore
not the responsibility of the compiler.

Another interesting corollary is that safety properties proved on the source program
are still valid for the target program. A safety property P is a property of traces, i.e.
P ⊆ E∗. A program P satisfies a safety property P if all the behaviours of P are in P,
i.e. Beh(P) ⊆ P . Because the inclusion of behaviours is transitive, if there is a backward
simulation between programs S and T , and S satisfies some safety property P, then so
does T .

Backward simulations are difficult to prove. Indeed, it involves reasoning by induction
on the semantics of the target language, and somehow inverting the compilation function
to figure out the possible shapes of the source program that match the target program’s
constructs. An alternative property, called forward simulation, can be stated as follows.

Property 2.3.5 (Forward simulation with behaviour improvements).

∀B, S ⇓ B ⇒ ∃B′, T ⇓ B′ ∧ B ⊑ B′

The forward simulation argument states that for every behaviour B of the source pro-
gram S, there exists a behaviour of T that is an improvement over B. While it may seem
counter-intuitive, under certain conditions of determinacy on the semantics of the source
and target languages, one can transform a forward simulation proof into a backward simu-
lation proof. The appeal of doing so resides in the fact that forward simulations are much
simpler to prove than backward simulations. The standard proof technique consists in a
structural induction on the semantics of the input program. Each construct has only one
image in the target program, i.e. one does not have to invert the compilation function.

This proof technique is however subject to a few restrictions. First, it must be provable
that the forward simulation argument holds. For example, consider a program transfor-
mation that reduces non-determinism. It is not provable that the compiled program has
more behaviours than the source program, because the very purpose of the transformation
is to choose one behaviour among many. Second, the semantics of the source and target
languages must obey certain determinacy requirements, that we do not detail here (see
[Ler09a] for details).

http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Complements.html#transf_c_program_preservation

2.4. SIMULATION RELATIONS 29

Verified compilers and their correctness properties. The first mechanically verified
realistic compiler is due to Young [You89]. It is a compiler from Gypsy (a programming
language for specifying, implementing and proving programs) to Piton (a generic high-level
assembly-like language). The correctness property associated with this compiler states the
equivalence between an interpreter of the source language and the execution of the compiled
program.

The correctness property used by the CompCert compiler has been explained above.
However, early versions of CompCert [BDL06] provided a less useful theorem that was only
applicable to programs which terminate, and the property claimed by the final theorem
was merely the equality of the return values of programs. With the notion of behaviours,
we have a closer matching between S and T , namely they must exhibit the same trace of
events all along their executions.

The notion of behaviour improvement used by CompCert is slightly stronger than
the one presented above. Indeed, the definition we gave stated that any behaviour is
an improvement of a going-wrong behaviour. Actually, in CompCert, a going-wrong
behaviour has a trace τ of observable events until the point where the execution gets stuck.
An improvement over a going-wrong behaviour with trace τ is any behaviour whose trace
is prefixed by τ . In other words, all the events emitted before the triggering of undefined
behaviour are preserved by CompCert.

CompCertTSO [Sev+11] is a fork of CompCert whereby concurrency and weak
memory are modelled. Because of the concurrency introduced, the determinacy properties
required to turn forward simulations (easier to prove) into backward simulations (valuable
result) do not hold. Nevertheless, the executions are threadwise-deterministic. Hence, they
can prove threadwise-forward simulations, that they transform into threadwise-backward
simulations. Finally they can transform several threadwise-backward simulations into a
whole-system backward simulation, hence proving a similar backward simulation property
as CompCert.

CakeML [Tan+16] is an ML compiler that targets multiple architectures. The cor-
rectness compiler they use resembles the backward simulation property presented above,
with the additional property that compiled programs are allowed to fail because of out of
memory errors. Indeed, since it is difficult to estimate the memory consumption of ML
programs, compiling into memory exhausting programs is permitted. The final theorem
is therefore: the set of behaviours of the compiled program is a subset of the union of
out-of-memory behaviours and the set of behaviours of the source program.

2.4 Simulation Relations

This section aims at providing proof techniques for proving forward simulations. We intro-
duce simulation relations [Mil89], that are used to relate program states throughout whole
executions. Given two transition systems S1 = (Σ1, I1, F1,→1) and S2 = (Σ2, I2, F2,→2),
a binary relation R ⊆ Σ1 × Σ2 is a simulation relation if and only if it relates initial and
final states of S1 and S2, and the relation is preserved all along the execution of programs.
Formally, R is a simulation relation if:

• every initial state of S1 has a matching initial state in S2:

∀σ1 ∈ I1, ∃ σ2 ∈ I2, σ1 R σ2

• every final state of S1 is matched only by final states of S2:

∀σ1 ∈ F1, σ2 ∈ Σ2, σ1 R σ2 ⇒ σ2 ∈ F2

30 CHAPTER 2. BACKGROUND

a.

σ1

σ2

σ3

e1

e2

b.

σ1

σ2

σ3

e1

e2

σ′
1

R

c.

σ1

σ2

σ3

e1

e2

σ′
1

R

σ′
2

R
e1

d.

σ1

σ2

σ3

e1

e2

σ′
1

R

σ′
2

R
e1

σ′
3

R
e2

Figure 2.1: Forward simulation diagrams

• starting from states σ1 and σ2 such that σ1 R σ2, any step from σ1 to some σ′
1 can

be simulated by steps from σ2 to σ′
2 such that σ′

1 R σ′
2

If those properties are satisfied, we say that S2 simulates S1, or that the system S1 is
simulated by S2.

This last requirement is intentionally vague because the preservation of the matching
relation comes in various flavours, depending on the number of steps allowed for the target
system to simulate one step of the source system. The simplest simulation property is
called lock-step simulation. It captures executions where both programs perform the same
number of steps, and program states stay related by R at every step of the execution.
This can be formally stated and visualised as follows. The picture represents hypotheses
as plain lines and conclusions as dashed lines.

∀ σ1 ∈ Σ1, σ2 ∈ Σ2,

σ1 R σ2 ⇒ σ1
e
−→1 σ

′
1 ⇒

∃σ′
2, σ2

e
−→2 σ

′
2 ∧ σ′

1 R σ′
2

σ1 σ2
R

σ′
1

e

σ′
2

R

e

This property is sufficient to prove Property 2.3.5, i.e. the forward simulation property.
Consider the following derivation σ1

e1−→ σ2
e2−→ σ3, where σ1 ∈ I1 and σ3 in F1. This is

the situation depicted in Figure 2.1a. Because σ1 is an initial state and R is a simulation
relation, we know that there exists a corresponding initial state σ′

1 such that σ1 R σ′
1, as

illustrated by Figure 2.1b. Then, starting from those matching states, the step from σ1 to
σ2 can be simulated by a step starting from σ′

1. This implies the existence of a state σ′
2

such that σ′
1

e1−→ σ′
2 and σ2 R σ′

2, as illustrated by Figure 2.1c. A similar step exists for
state σ3 (Figure 2.1d.). Finally, since σ3 is a final state and is in relation with σ′

3, then
σ′
3 is also a final state. From this reasoning, it follows that all the behaviours of the first

program (on the left-hand-side) are also behaviours of the second program.

More sophisticated properties can be used in lieu of the lock-step property. Indeed,
one step in the source program may correspond to zero steps (e.g. if an optimisation
removes some useless code) or many steps (e.g. a high-level construct is broken into several
lower-level instructions). This is the purpose of the star simulation, shown below, where
the relation

e
−→

∗
is the reflexive transitive closure of the

e
−→ relation.

∀ σ1 ∈ Σ1, σ2 ∈ Σ2,

σ1 R σ2 ⇒ σ1
e
−→1 σ

′
1 ⇒

∃σ′
2, σ2

e
−→

∗

2 σ
′
2 ∧ σ′

1 R σ′
2

σ1 σ2
R

σ′
1

e

σ′
2

R

e
∗

2.5. COMPCERT 31

2.5 CompCert

CompCert is an industrial-strength C compiler [Bed+12]. It compiles C code into assem-
bly language for three different architectures: x86, PowerPC and ARM. CompCert is a
formally-verified compiler, in the sense defined in Section 2.3. It is written in the Coq

language, which allows to prove formal properties. This mechanisation of the correctness
proof of the compiler gives a high-level of confidence in CompCert.

This section first introduces the overall architecture of CompCert, i.e. it describes the
intermediate languages used in CompCert and briefly explains what the transformations
between those languages do. Then, we describe the memory model of CompCert, i.e.
how the memory is modelled and what operations can be performed. Finally, we introduce
memory transformations, i.e. formal ways to relate memory states. In particular, we will
focus on memory injections and memory extensions, which are a crucial notion of memory
transformation used by several transformations.

2.5.1 Overall architecture of the CompCert compiler

The CompCert compiler targets three different architectures: x86, Power PC and ARM.
CompCert compiles C programs into assembly programs through 9 intermediate lan-
guages, split between a front-end which is architecture-independent, and a back-end which
is architecture-dependent. Figure 2.2 shows the different languages of the front-end (on
the left-hand side) and of the back-end (on the right-hand side).

2.5.1.1 CompCert’s front-end

The input language of CompCert’s front-end is a large subset of C, called CompCert C,
which includes all of MISRA-C 2004 [Mot04] and almost all of ISO C99 [ISO99], with the
exceptions of variable-length arrays and unstructured, non-MISRA switch statements (e.g.
Duff’s device). CompCert C is non-deterministic, i.e. multiple behaviours are acceptable
for a given C program. In particular, the order in which the arguments to a function call
are evaluated is non-deterministic.

CompCert ships with an interpreter for CompCert C. This is an executable version of
the semantics of C, which allows to test whether a given C program has defined semantics,
and therefore whether the semantics preservation theorem applies for this program. The
other semantics in CompCert are not executable, but are inductively defined predicates
that describe which steps are allowed. While the operational semantics style can be rather
easily transformed into executable semantics, it is not in general needed for the purpose of
the semantics preservation proofs that are performed in CompCert.

The second language of CompCert is called Cstrategy. Its syntax is the same as C, but
its semantics is deterministic, i.e. only one evaluation order for arguments to function calls
is allowed. The very first proof amount to showing that every behaviour of the program in
the Cstrategy semantics is also a behaviour in the CompCert C semantics. Note that the
proof of this first pass is necessarily performed as a backward simulation proof, since the
forward simulation property does not hold: there are some behaviours in the CompCert

C semantics that have no counterpart in the Cstrategy semantics.
Cstrategy programs are then translated into Clight. Clight is a subset of C (i.e. any

valid Clight program is a valid C program), where side-effects have been pulled out of
expressions and made explicit. Clight programs are transformed into simpler Clight pro-
grams by the compilation pass SimplLocals. The aim of this pass is to transform certain
local variables out of memory, and replace them by temporaries, i.e. pseudo-registers.

32 CHAPTER 2. BACKGROUND

CompCert C

Cstrategy

Clight

C♯minor

Cminor

CminorSel

RTL

LTL

Linear

Mach

ASM

Determinisation

Side-effect removal

Pulling scalars
out of memory

Type elimination

Construction of stack-frames

Instruction selection

Control-flow graph generation

Register allocation

Linearisation

Layout of stack frames & spilling

Assembly generation

Optimisations

Figure 2.2: Architecture of CompCert

2.5. COMPCERT 33

Clight is then transformed into C♯minor, where all type-information is erased and
operations are transformed accordingly. For example, the Clight expression p+2 where p is
a pointer to int is transformed into the following C♯minor expression: p+2*sizeof(int).
The semantics of addition is then simpler in C♯minor because it does not need to reason
about the type of its operands, but simply adds an offset to a pointer.

Finally, C♯minor programs are transformed into Cminor programs, where a stack frame
is built for every function, and accesses to variables are translated into accesses in the stack
frame. This transformation and its proof of correctness are more involved because the
memory layout of the program is heavily modified. More details about this transformation
are present in Section 8.2. This ends the front-end of CompCert, i.e. the architecture-
independent part of the compiler.

2.5.1.2 CompCert’s back-end

Subsequent passes are architecture-dependent and form the back-end of CompCert. Still,
most of the back-end is common to all target architectures: the intermediate languages
involved are the same; they are only parameterised by a different set of operators for
expressions, for instance.

Cminor programs are transformed into CminorSel programs by an instruction selection
pass. The goal of this transformation is to take advantage of the instructions available on
the targeted architecture. For example, multiplication by a power of 2 can be turned into
a logical left-shift during the selection pass.

CminorSel programs are then turned into RTL programs. RTL is a register transfer
language, i.e. it is a 3-address code language. The code of functions is organised as control
flow graphs, and instructions explicitly store their successors. RTL programs manipulate
infinitely many pseudo-registers. Because the structure is simple, RTL is the host language
for a number of static analyses and optimisations, such as inlining, constant propagation,
common subexpression elimination, dead-code elimination and tail code recognition.

RTL code is then transformed into LTL code. This is the register allocation pass. The
structure of programs is the same as in RTL. However, LTL programs manipulate only
finitely many registers. Also, the nodes of the control flow graph no longer contain single
instructions but basic blocks of instructions (i.e. purely sequential code with no jumps or
calls).

LTL code is linearised to produce Linear code. The structure of programs is now linear,
i.e. the code of a function is not a control flow graph anymore but a list of instructions
including conditional jumps and labels.

Linear code is transformed into lower-level Mach code during the Stacking pass. The
Mach language is like Linear except that accesses to the stack frames of functions are made
more concrete. The machine-specific layout for stack frames is specified and accesses to
the function’s stack frames are modified accordingly. In particular, the layout specifies how
callee-save registers and spilled local variables fit in the stack frame.

Finally, Mach code is transformed into Assembly code. This last pass is truly architecture-
dependent, i.e. the assembly language is necessarily different for the three target architec-
tures: x86, PowerPC and ARM. Mach instructions are mapped to the actual assembly
instruction that will be executed.

Every single program transformation comes with its proof of correctness with respect
to a unique memory model. The final theorem of CompCert is the composition of all
the correctness proofs of individual passes. In Chapter 8, we adapt the proofs of all these
passes for our memory model.

34 CHAPTER 2. BACKGROUND

2.5.2 The Memory Model of CompCert

The memory model of CompCert defines the layout of the memory and the different mem-
ory operations. It is shared by all the languages of the CompCert compiler. CompCert

uses an abstract block-based model where memory is an infinite collection of separated
blocks [Ler+14]. Intuitively, a block is an array of bytes that represent values. At the
C level, each block corresponds to an allocated variable (e.g. a 32-bit integer is stored
in a 4-byte-wide block, an array of 10 characters is stored in a 10-byte-wide block). In
lower-level languages, this correspondence between variables and memory blocks does not
hold anymore: for example, after the Cminor language, the local variables of a function
are merged together in one block that serves as the stack frame of the function, therefore
losing the variable-block correspondence.

2.5.2.1 Locations and values

The values used in CompCert’s memory model are given in Figure 2.3. Locations l are
pairs (b, i) where b is a block identifier and i is an integer offset that indicates a posi-
tion within this block. Values (of type val) used in the semantics of the CompCert lan-
guages (see [LB08]) are the disjoint union of 32-bit integers (written int(i)), 64-bit integers
(written long(l)), 32-bit floating-point numbers (written float(f)), 64-bit floating-point
numbers (written double(d)), pointers (written ptr(l)), and the special value undef repre-
senting the result of undefined operations or the value of uninitialised variables. Operations
are strict in undef i.e. they yield undef as soon as one of the operands is undef.

Locations: l ::= (b, i) (block, integer offset)

Values: val ::= int(i) | long(l)
| float(f) | double(d)
| ptr(l) | undef

Figure 2.3: CompCert’s values

2.5. COMPCERT 35

2.5.2.2 Memory and Operations

Abstract bytes: memval ::= Byte(b)
| Pointer(b, i, n)
| Undef

Memory chunks: memory_chunk ::= Mint8signed 8-bit integers
| Mint8unsigned

| Mint16signed 16-bit integers
| Mint16unsigned

| Mint32 32-bit integers or pointers
| Mfloat32 32-bit floats
| Mint64 64-bit integers
| Mfloat64 64-bit floats

alloc m lo hi = (m′, b) Allocates a fresh block with bounds [lo, hi[.
free m b = ⌊m′⌋ Frees (invalidates) the block b
load κ m b i = ⌊v⌋ Reads consecutive bytes (as determined by κ) at block

b, offset i of memory state m. If successful, returns the
contents of these bytes as value v.

store κ m b i v = ⌊m′⌋ Stores the value v as one or several consecutive bytes
(as determined by κ) at offset i of block b. If successful,
returns an updated memory state m′.

loadbytes m b i n = ⌊mvl⌋ Reads n consecutive bytes from memory state m, start-
ing at location (b, i). If successful, returns a list of
memvals.

storebytes m b i mvl = ⌊m′⌋ Stores the bytes from mvl in memory state m, starting
at location (b, i). If successful, returns an updated
memory state m′.

size_chunk κ Returns the size (number of bytes) that κ holds.
bounds m b Returns the bounds [lo, hi[of block b.
nextblock m Returns the identifier of the next block to be allocated.
contents m b Returns the contents of block b as a finite map from

offsets to memvals.

Figure 2.4: Operations over memory states

The memory itself is not a direct mapping from locations to values; instead it is a mapping
from locations to abstract bytes called memvals (see Figure 2.4). This allows to reason about
byte-level accesses to the memory. A memval is a byte-sized quantity that can be one of
the following: Undef represents uninitialised bytes, Byte (b) represents the concrete byte
(8-bit integer) b and Pointer (b, i, n) represents the n-th byte of the binary representation
of the pointer ptr(b, i).

The memory model defines four main memory operations: load, store, free and
alloc. The load and store operations are parameterised by a memory chunk κ which
concisely describes the number of bytes to be fetched or written, and the signedness of the
value. An access at location (b, o) with chunk κ is aligned if size_chunk κ divides o3. For

3It is slightly too strong a condition: a 64-bit float variable only needs to be accessed at addresses that

36 CHAPTER 2. BACKGROUND

instance, the size of the chunk Mint32 is 4 bytes, hence an integer could be accessed with
this chunk at offsets that are multiples of 4. These operations are partial, i.e. they may
fail e.g. when the access is out of bounds, misaligned, or when the value and the chunk
are inconsistent. This is modelled by the option type: we write ∅ for failure and ⌊x⌋ for a
successful return of value x.

The memory model also defines lower-level memory access operations, namely loadbytes

and storebytes, which allow to access the memory at the byte level, i.e. they load and
store lists of memvals from and to the memory.

The free operation frees a given block. It fails when the given block either has never
been allocated or has already been freed. The alloc operation allocates a new block of
the requested size. It never fails, thus modelling an infinite memory.

The nextblock property of memory states gives the identifier of the next block to be
allocated. It usually serves as a threshold for identifying whether blocks are valid (i.e.
have been allocated). The contents property gives access to the internal structure of
memory states and returns the finite map corresponding to a given block, that associates
to each offset a memval. The bounds function returns the bounds of a given block. Those
accessors (nextblock,contents and bounds) are not intended to be used in the semantics
of the intermediate languages. Rather, using them in formal specifications give strong
connections that we will make use of later in this thesis.

2.5.2.3 Pointer Arithmetic

A location (b, i) is valid for a memory m (written valid(m, b, i)) if the offset i lies within the
bounds of the block b. It is weakly valid (written weakly_valid(m, b, i)) if it is either valid
or just one byte past the end of its block. This accounts for a subtlety of the C standard,
stating that pointers one-past-the-end of an object deserve a particular treatment, namely
that they can be compared to the other pointers to this object. This is intended to make
looping over an entire array easier, allowing to compare the current pointer to the pointer
just one-past-the-end.

Example 2.5.1 (Valid and weakly valid pointers). Consider a block b with bounds [0; 3[.
Then, pointers ptr(b, 0) and ptr(b, 3) are valid (and also weakly valid a fortiori). Pointer
ptr(b, 4) is not valid, however it is weakly valid. Pointer ptr(b, 5) is neither valid nor
weakly valid.

Pointer arithmetic is defined in Figure 2.5. The only defined operations on pointers are
the addition of an integer offset to a pointer, the subtraction of an integer offset from a
pointer, and the subtraction of two pointers that point to the same object. Comparisons
are also defined between pointers to the same object. All operations not described are
undefined (they return undef). Note that, starting from pointer ptr(b, i) it is not possible
to reach a pointer to a different block via pointer arithmetic, as blocks are separated by
construction.

2.5.3 Memory Transformations

Each of the compilation passes of CompCert is proved correct independently. For most of
the passes, this amounts to showing a forward simulation between the source program and
the target program, as explained in Section 2.4. Proving a forward simulation requires to
exhibit some relation R over program states, and then prove that R is a forward simulation

are multiple of 4, not 8.

2.5. COMPCERT 37

ptr(b, o)± int(i) = ptr(b, o± i)
ptr(b, o)− ptr(b, o′) = int(o− o′)
ptr(b, o) ⋆ ptr(b, o′) = o ⋆ o′ when ⋆ ∈ {<,≤,==,≥, >, !=}

and both pointers are weakly valid
ptr(b, o) == ptr(b′, o′) = false when b 6= b′ ∧ valid(m, b, o) ∧ valid(m, b′, o′)
ptr(b, o)!=ptr(b′, o′) = true when b 6= b′ ∧ valid(m, b, o) ∧ valid(m, b′, o′)
ptr(b, o) ⋆ ptr(b′, o′) = undef when b 6= b′ and ⋆ ∈ {<,≤,≥, >}
ptr(b, o)!=int(0) = true when weakly_valid(m, b, o)
ptr(b, o) == int(0) = false when weakly_valid(m, b, o)

Figure 2.5: Pointer arithmetic in CompCert

relation. Once R is fixed, the proof of the simulation is performed by induction on the
semantic derivation of the source program, which can be lengthy but relatively straight-
forward. The difficulty of the proofs therefore lies in finding a suitable relation R that is
strong enough to give enough information about the target states, but general enough so
that it is indeed invariant throughout the execution of both programs.

Since R is a relation over program states, and program states always include memory
states, relations over memory states are needed to construct simulation relations. Comp-

Cert defines two such relations over memory states that capture different memory transfor-
mations. Memory injections capture memory transformations that merge blocks together.
Memory extensions capture memory transformations that do not change the number of
blocks, but their size may increase and their contents may be specialised.

2.5.3.1 Memory Injections in CompCert

Memory injections are the most complex memory transformations in CompCert. They
capture memory transformations that merge blocks together. The canonical example of
memory injection is the Cminorgen pass, which transforms C♯minor programs into Cminor.
At the C♯minor level, every local variable of a given function is stored in its own block. At
the Cminor level, all local variables of a given function are stored in a single stack block,
representing its stack frame. Memory blocks from the C♯minor program are mapped to
offsets in the memory block of the Cminor program. This is shown in Figure 2.6, where
three blocks are merged into a single one. Also, the values contained in the blocks are
injected in a sense that will be explained by the val_inject predicate.

int(i)

ptr(b, i)

undef

int(i)

ptr(b′, i+ δ2)

int(4)

δ1

δ2

Figure 2.6: Injecting local variables into a stack block

Formally, a memory injection is a relation between two memory states m1 and m2

parameterised by an injection function f : block ⇀ location4 mapping blocks in m1 to

4We use the notation A ⇀ B to denote partial function types. The actual type in the Coq implemen-

38 CHAPTER 2. BACKGROUND

locations in m2. The injection relation is defined over values (and called val_inject) and
then lifted to memories (and called mem_inject).

The val_inject relation is defined inductively in Figure 2.7. Rule vinj-ptr captures
the intuitive semantics of injection that is depicted in Figure 2.6. It states that a pointer
ptr(b1, i) is in injection with a pointer ptr(b2, i+δ) if f(b1) = ⌊(b2, δ)⌋. Rule vinj-vundef

states that undef is in injection with any value. Finally, Rule vinj-no-ptr states that for
non-pointer values, the injection is reflexive.

vinj-ptr

f(b1) = ⌊(b2, δ)⌋

val_inject f ptr(b1, i) ptr(b2, i+ δ)

vinj-vundef

val_inject f undef v

vinj-no-ptr

v 6= ptr(b, i)

val_inject f v v

Figure 2.7: val_inject in CompCert

The purpose of the injection of values is twofold: it establishes a relation between
pointers using the function f but it can also specialise undef by any value. The latter can
be understood intuitively as follows. Consider the situation of Figure 2.6. Consider the
blocks on the left-hand side are named b1, b2 and b3 from top to bottom. Now consider
the pointer subtraction ptr(b3, 0)−ptr(b2, 0). It evaluates to undef because of the pointer
arithmetic rules defined in Figure 2.5. However, after the injection, the expression reads
ptr(b′, δ2)−ptr(b

′, δ1), where b′ is the name of the block on the right-hand side of Figure 2.6.
This expression is well-defined and evaluates to int(δ2 − δ1). Hence, we have transformed
an undef result into a defined result by injection.

The relation memval_inject is built on the same principles as val_inject and relates
memvals. It is defined as follows.

1. Concrete bytes are in injection with themselves only.

2. Pointer (b, i, n) is in injection with Pointer (b′, i+ δ, n) when f(b) = ⌊(b′, δ)⌋.

3. Undef is in injection with any memval.

The mem_inject relation is built on top of memval_inject, but it also includes well-
formedness properties. Consider a block b1 of m1 injected to a location (b2, δ) of m2; the
following properties must hold to establish a memory injection between m1 and m2:

• for every valid offset o of b1, o+ δ must be a valid offset of b2;

• δ must be properly aligned with respect to the size of b1; and

• for every valid offset o of b1, the memvals at locations (b1, o) in m1 and (b2, o+ δ) in
m2 must be related by memval_inject.

The alignment constraint ensures that all aligned accesses remain aligned after the
injection, therefore that loads and stores are preserved by the injection. To build a valid
memory injection, the injection f must also be an injective function, i.e. for every pair of
disjoint blocks (b1, b2), the locations they are injected to do not overlap. The corresponding
formal definition is the following:

tation uses option types and reads A → option B. When the function is defined and returns a value v, we
write ⌊v⌋ (Some v in Coq). Otherwise, when it fails to produce a value, we write ∅ (None in Coq).

2.5. COMPCERT 39

Definition 2.5.1 (meminj_no_overlap).

meminj_no_overlap f m : P := ∀b1 b′1 δ1 b2 b′2 δ2 ofs1 ofs2,
b1 6= b2 ⇒ f(b1) = ⌊(b

′
1, δ)⌋ ⇒ f(b2) = ⌊(b

′
2, δ2)⌋ ⇒

valid(m, b1, ofs1)⇒ valid(m, b2, ofs2)⇒ (b′1 6= b′2 ∨ ofs1 + δ1 6= ofs2 + δ2).

The memory model provides theorems about the behaviour of memory operations with
respect to injections. For example, Theorem 2.5.1 (store_mapped_inject) states that,
starting from two memory states m1 and m2 in injection, if a store of a given value v1
can be performed in m1 at a location (b1, o), resulting in a memory state m′

1, and if b1 is
injected into location b2 at offset δ, then a store of a value v2 (in injection with v1) can be
performed on m2, resulting in a memory state m′

2 such that m′
1 and m′

2 are in injection.

Theorem 2.5.1 (store_mapped_inject).

∀ f m1 m2 b1 b2 o δ v1 v2,
mem_inject f m1 m2 ⇒ store κ m1 b1 o v1 = ⌊m

′
1⌋ ⇒

f(b1) = ⌊(b2, δ)⌋ ⇒ val_inject f v1 v2 ⇒
∃ m′

2, store κ m2 b2 (o+ δ) v2 = ⌊m
′
2⌋ ∧ mem_inject f m′

1 m′
2.

Similar theorems are proved for all the operations of the memory model (load, store,
alloc and free, loadbytes, storebytes). Those theorems are the building blocks of the
forward simulation theorems used in the correctness proofs of most compiler passes.

2.5.3.2 Memory Extensions

Not all compiler passes modify the memory layout as much as the Cminorgen pass. Most
passes do not modify the structure of the memory, i.e. the number and size of blocks, but
are allowed to specialise the values stored in the memory, i.e. transform undef values into
any other value. Those transformations are captured by memory extensions.

First, since the contents of the memory can be specialised, we formalise in Defini-
tion 2.5.2 this specialisation of values by the less-defined relation over values.

Definition 2.5.2 (The less-defined relation). A value v1 is less defined than a value v2
(written v1 ≤ v2) either if v1 is undef or if v1 = v2. This can be summarised by the two
following rules:

lessdef-undef

undef ≤ v

lessdef-refl

v ≤ v

It is worth remarking that the less-defined relation is a special case of the val_inject

relation, with f(b) = ⌊(b, 0)⌋ for every block b. We call such an injection function the
identity injection Hence, the extension relation over memvals is simply a special case of
memval_inject.

Finally the memory extension relation also shares most properties with the memory
injection relation with an identity injection function. Some properties needed for memory
injections are not needed in the case of memory extensions, e.g. the fact that the injection
function is injective does not need to be proved separately.

Because of the close relationship between extensions and injections, the theorems that
hold for injections also hold for extensions and the proofs are factored. Most program
transformations in CompCert are proved using the memory extension relation.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.meminj_no_overlap
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.store_mapped_inject

40 CHAPTER 2. BACKGROUND

2.6 Notations

In the remainder of this thesis, we use some notations, defined in Appendix A.

Chapter 3

Motivation: Low-Level C Code In

The Wild

The C standard leaves many behaviours underspecified. As explained in Section 2.1, under-
specified behaviours are split between three categories: unspecified, implementation-defined
or undefined behaviours [ISO99, §3.4].

Undefined behaviours have a dramatic impact on the human understanding of what
a program is supposed to do. Consider the simple program in Figure 3.1. It performs a
naive overflow check, assuming that signed overflow is defined in modular arithmetic, i.e.
it wraps around modulo. Compiled with gcc (version 4.9.2) at optimisation levels -O0 and
-O1, it behaves as expected, i.e. the overflow check succeeds. However, at higher levels, the
condition i + 1 > i is optimised and transformed into true. This optimisation is sound
from the compiler’s perspective because a) if the computation does not overflow, it is
obvious that i + 1 > i, b) if it overflows, this is undefined behaviour and therefore the
compiler is allowed to remove the else branch.

This counter-intuitive optimisation is not correct for CompCert, because its devel-
opers have made the choice to define signed overflow as a wrap-around behaviour, hence
CompCert does not have the opportunity to optimise this.

Unsafe programming languages like C have undefined behaviours by nature because
preventing them would require the introduction of runtime checks in the compiled pro-
grams, thus making the programs slower, while an important purpose of the C language is
its speed of execution.

There is no way to give a meaningful semantics to an out-of-bound array access or a
null pointer dereference. Yet, certain behaviours in C were made undefined on purpose to
ease either the portability of the language across platforms or the development of efficient
compilers. For example, the behaviour of signed overflow has been made undefined because
at the time when the standard was written, several concurrent architectures used different

int main(){

int i = INT_MAX;

if (i + 1 > i) printf("Overflow check failed");

else printf("Overflow check succeeded");

return 0;

}

Figure 3.1: A simple program triggering undefined behaviour

41

42 CHAPTER 3. MOTIVATION: LOW-LEVEL C CODE IN THE WILD

representations of signed integers (one’s complement, two’s complement or sign and magni-
tude representations) with different behaviours on overflow. Nowadays, most architectures
use the two’s complement representation in which the wrap-around behaviour is the one
chosen on overflow: there is therefore little reason left to keep this behaviour undefined.

We believe that defining the semantics of real-life C idioms is the way to go to reconcile
the programmer’s intentions with the actual program’s behaviour. CompCert went in
that direction by defining the behaviour of signed overflow. We go further in that direction
and aim at giving semantics to low-level idioms such as low-level pointer arithmetic and
manipulation of uninitialised data, that are present in real-life code.

In the following, we give examples of low-level C programs that have no defined se-
mantics in C (or in CompCert). These programs rely on the bit-representation of values.
We use the 0x prefix to denote hexadecimal constants and the 0b prefix to denote binary
constants. Sometimes, we will need to introduce variables for hexadecimal and binary dig-
its that are unknown. We use upper case letters that cannot be mistaken for hexadecimal
constant digits (e.g. P, Q, . . .) to represent arbitrary hexadecimal digits and lower case
letters to represent arbitrary binary digits.

First, Section 3.1 shows C programs that exploit the binary representation of pointers.
Then, Section 3.2 shows programs that use uninitialised contents in computations. The
programs we will show are excerpts (or derived from such excerpts) of real-life code that
has been found in major open source software such as the Linux kernel, various standard
C libraries and applications necessitating a low-level access to pointers.

3.1 Bitwise Pointer Arithmetic

The C standard does not specify the bit-width or the alignment of pointers: those are
implementation-defined. In CompCert, pointers are 32-bit-wide. We consider, for the
sake of the following examples, that the malloc function returns pointers that are 16-byte
aligned (i.e. the 4 least significant bits of the returned address are zeros).

As we showed in Section 2.5.2, pointer arithmetic is very limited in C. In order to
perform arbitrary operations over a pointer, it is possible to cast it to an unsigned integer
of type uintptr_t for which the ISO C standard provides the following specification [ISO99,
Section 7.18.1.4].

[The type uintptr_t] designates an unsigned integer type with the property
that any valid pointer to void can be converted to this type, then converted
back to pointer to void, and the result will compare equal to the original
pointer.

We also know from [ISO99, Section 6.3.2.3] that any pointer can be converted to a pointer
to void.

A pointer to void may be converted to or from a pointer to any incomplete or
object type. A pointer to any incomplete or object type may be converted to a
pointer to void and back again; the result shall compare equal to the original
pointer.

Note that this specification is very weak and does not ensure anything if a pointer, cast to
uintptr_t, is modified before being cast back.

In our model, a pointer fits into 32 bits and we implement uintptr_t as a 32-bit
unsigned integer. More importantly, we ensure that casts between pointers and uintptr_t

integers preserve the binary representation of both pointers and integers. In other words,

3.1. BITWISE POINTER ARITHMETIC 43

casts between pointers and a uintptr_t integers are a no-op. In the following, we illustrate
how existing low-level C idioms can exploit this specification.

3.1.1 Storing information in spare bits

With the previous specification of pointer casts, consider the code snippet of Figure 3.2. It
is a made-up example inspired from an implementation of malloc in the standard library
for Mac. The pointer p is a 16-byte aligned pointer to a heap-allocated integer obtained
by a call to the malloc function. Therefore, the 4 trailing bits of the binary representation
of p are zeros. We can think of the binary representation of p as 0xPQRSTUV0 where letters
P to V are hexadecimal indeterminate values. The last digit of the representation of p is 0,
because of the 16-byte alignment constraint.

char hash(void *ptr);

int main(){

int *p = (int *) malloc(sizeof(int));

// p = 0xPQRSTUV0

*p = 0;

int *q = (int *) ((uintptr_t) p | (hash(p) & 0xF));

// q = 0xPQRSTUVH

int *r = (int *) (((uintptr_t) q >> 4) << 4);

// r = 0xPQRSTUV0 = p

return *r;

}

Figure 3.2: Unspecified behaviour: low-level pointer arithmetic

Next, pointer q is obtained from the pointer p by filling its 4 trailing bits with a hash
of the pointer p (the hash is masked with 0xF to ensure that it fits on 4 bits). We write
H for the abstract digit corresponding to the hash of p. The representation of q is exactly
that of p with the last digit changed to H. Then, pointer r is obtained by clearing (using
left and right shifts) the 4 least significant bits of q, resulting in the binary representation
of r being equal to that of p.

This pattern is commonly used as a hardening technique (e.g. in an implementation
of malloc). 1 In this context, a list of free memory areas is maintained. The first bytes
contained in those free areas indicate the size of the current chunk of memory and the
address of the next. To ensure that the address of free chunks is not modified by a malicious
user, a checksum is stored in the least significant bits of the pointer to the next free memory
block.

Our model provides semantics to this program, which CompCert does not because of
the undefined operations on pointers (hash, shifts, bitwise OR/AND).

3.1.2 System call return value

It is common for system calls (e.g. mmap or sbrk) to return either the pointer (void *)-1

to indicate a failure, e.g. because no memory is available, or a pointer aligned on a page
boundary. In two’s complement arithmetic -1 is encoded by the bit-pattern 0xFFFFFFFF

1See "free list utilities" in http://www.opensource.apple.com/source/Libc/Libc-594.1.4/gen/

magazine_malloc.c

http://www.opensource.apple.com/source/Libc/Libc-594.1.4/gen/magazine_malloc.c
http://www.opensource.apple.com/source/Libc/Libc-594.1.4/gen/magazine_malloc.c

44 CHAPTER 3. MOTIVATION: LOW-LEVEL C CODE IN THE WILD

and a page aligned pointer is of the form 0xPRSTU000, assuming that the page size is 4kB.
Consider the code of Figure 3.3 which calls mmap to allocate a single character. The call to
mmap is rather complex. The important part here is the second argument: the size of the
requested region. In our case, we request a 1-byte-wide region. The program then tests
whether the allocation succeeded, and exits.

int main(){

char *p = (char*)mmap(NULL, 1,

PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

return (p == (void*) -1);

}

Figure 3.3: Undefined behaviour: mmap usage

In the semantics of C and CompCert, the comparison between a pointer and -1 is
undefined. The only allowed comparison between pointers and integers is when the integer
is 0. However, we advocate that a defined meaning should be assigned to that program.

Suppose that the call to mmap fails and returns -1. In that case, the condition

(void *) -1 == (void *) -1

always holds and the program returns 1. Otherwise, if mmap succeeds, the condition

0xPRSTU000 == 0xFFFFFFFF

does not hold, because 0 and F hexadecimal digits can not be equated, and the program
returns 0. Again, because we model alignment constraints, we give a meaning to this
program.

3.1.3 Red-Black Trees

The Linux kernel uses red-black trees as a data structure in schedulers to track various
kinds of requests, in filesystems to store directory entries and in many other situations.
Red-Black trees are defined in the "include/rbtree.h" header. The implementation of
red-black trees aims at being very fast and memory efficient. To that end, the internal
structure of red-black trees uses low-level bit-stealing, as shown in Figure 3.4.

The structure, shown in Figure 3.4a, contains three fields. The two pointers to other
rb_nodes are the pointers to the left and right children of this node. The first field,
rb_parent_color, is the most intriguing. It stores, in a single variable, a pointer to the
parent node and the color of the node (whether it is red or black). This is achieved via
this simple reasoning. The pointer to the parent node is necessarily at least 4-byte aligned
(because every field of a rb_node struct necessitates a 4-byte alignment); hence its 2 least
significant bits are necessarily zeros. It is therefore possible to encode the color of the
node using these two spare bits (actually, one bit suffices). The accessors rb_parent and
rb_color, whose code is shown in Figure 3.4a, extract respectively the pointer to the
parent node and the color of the node. Figure 3.4b illustrates the process of retrieving
information from the rb_parent_color field. For example, the rb_parent(r) macro first
accesses the rb_parent_color field of r, and discards the last two bits (this is the purpose
of the & ~3). Then, this unsigned integer is casted into a pointer to a rb_node, resulting
in the pointer to the parent node.

3.1. BITWISE POINTER ARITHMETIC 45

struct rb_node {

uintptr_t rb_parent_color;

struct rb_node *rb_right;

struct rb_node *rb_left;

};

define rb_color(r) (((r)-> rb_parent_color) & 1)

define rb_parent(r) \

((struct rb_node *) \

((r)-> rb_parent_color & ~3))

(a) Red-black tree C structure and accessors

00101101 11011101 10001011 10110110

00101101 11011101 10001011 10110100 0

rb_parent_color

rb_colorrb_parent

(b) Extracting information from rb_parent_color

Figure 3.4: Red-black trees in Linux

3.1.4 XOR-linked lists

XOR-linked lists are a memory-efficient data structure that implements doubly-linked lists
with only one pointer per node. Traditionally, a doubly-linked list is implemented through
a structure similar to the following (dll stands for doubly-linked list):

struct dll {

int val;

struct dll* prev;

struct dll* next;

};

The structure is usually composed of a field for the actual value to be stored in the list
(an integer in our example), and two fields that hold pointers to the previous and next
elements of the list. XOR-linked lists are an improvement over doubly-linked lists because
they only need one field for the pointers to previous and next elements. The idea is to
store the result of XORing those pointers. The stucture of a XOR-linked list is shown in
Figure 3.5a (xll stands for XOR-linked list). The figure also shows the code to retrieve
the pointer to the next element given a pointer to the previous element. The reasoning is as
follows: the value stored in prev_next is the result of XORing the previous and the next
pointers, i.e. prev_next = prev ^ next. XORing this with the previous pointer yields
the following: prev_next ^ prev == (prev ^ next) ^ prev , which is equal to next by
the rules of the XOR operator. Figure 3.5b illustrates the structure of a XOR-linked list.

Since retrieving the pointers or constructing the XOR of those pointers involves bitwise
operations, this does not have defined semantics, neither in C nor in CompCert. We
argue that this program should be given defined semantics, because thinking of pointers
as integers is de facto a widely shared intuition among programmers.

46 CHAPTER 3. MOTIVATION: LOW-LEVEL C CODE IN THE WILD

struct xll {

int val;

uintptr_t prev_next;

};

typedef struct xll xll;

xll* next(xll* cur, xll* prev){

return (xll*) ((cur -> prev_next) ^ ((uintptr_t) prev));

}

(a) Implementation

prev ˆ next

prev cur next

(b) A XOR linked list

Figure 3.5: XOR-linked lists: a memory-efficient doubly-linked list structure

3.1.5 Portable Software Fault Isolation

Software Fault Isolation (SFI) is a technique first introduced by Wahbe et al. [Wah+93],
aiming at executing untrusted binary code in a sandbox. Roughly speaking, it consists
of a program instrumentation that transforms every memory access into a memory access
into a sandbox memory region, properly aligned so that the addresses of the whole safe
memory region share a common prefix. Memory accesses are transformed by replacing the
most significant bits of the address to be accessed by the prefix of the safe region. Consider
for example that the safe region spans addresses 0xFDCB0000 to 0xFDCBFFFF. The prefix of
this region consists of the hexadecimal digits FDCB. Making an arbitrary address addr safe
consists in first clearing the most significant bits from the addr and then replace them with
the safe prefix, i.e. (addr & 0x0000FFFF) | 0xFDCB0000. This technique is inherently
architecture-dependent because the instrumentation is made on assembly programs, that
are tailored to a specific architecture.

Appel et al. [KSA14] proposed a portable version of SFI, where the instrumentation
takes place in an architecture-independent language, that resembles C. This work is for-
malised in Coq, inside of CompCert. The SFI instrumentation is implemented in Coq,
however the correctness proof of the program transformation has not been fully done. They
have proved that the instrumented programs are SFI-secure, i.e. all the memory accesses
are done within a pre-identified memory region. However, the masking function, which
transforms any pointer into a pointer to a sandbox cannot be written in C, because it
involves bit-level manipulation which have no defined semantics. This function is actually
modelled as an external call whose semantics is axiomatised. We argue that we can give
semantics to such a masking function with our low-level memory model. Doing so would
provide a formal basis to reason about the security that these techniques add to the original
program.

3.1.6 Variable Splitting Obfuscations

A program obfuscation is a program transformation that preserves the semantics of the
original program while making it harder, for humans and tools, to understand. Collberg
et al. [CTL97] introduces a number of obfuscating transformations, that can be applied to
programs so as to increase their complexity. In particular, they introduce variable splitting.

3.1. BITWISE POINTER ARITHMETIC 47

This obfuscation splits each variable into several variables, thus losing some intuition of
what the contents of variables is supposed to represent. A simple example of variable
splitting consists in transforming every integer variable x into a pair of variables x1 and
x2 such that x1 holds the result of dividing x by 10 and x2 holds the remainder of x

by 10. It is always possible to recover the original value with the following expression:
x == x1 * 10 + x2.

This can be done in C on integer variables, however not on pointers, because dividing
or multiplying pointers is not permitted by the C standard, or CompCert’s semantics.

In recent work, Blazy et al. [BT16] formalise in Coq and in CompCert another obfus-
cation: control flow graph flattening. This obfuscation aims at deconstructing loops and
other control structures into lower-level switch constructs. Program analyses are therefore
more subtle to perform, because a lot of abstraction has been lost. This obfuscation could
be made even more aggressive if combined with the variable splitting obfuscation presented
above.

Once again, we advocate that reasoning about the bit-pattern of pointers should be
permitted, in a way that shall be described further in the remainder of this thesis.

3.1.7 Checking pointer alignment

Dynamic memory allocation operations allow to request memory regions during the ex-
ecution of the programs. The simplest is probably the malloc function, which allocates
a region of the requested size. The memalign function is slightly more complex, and al-
lows to request a memory region aligned on some boundary, passed as a parameter. A
call to memalign(alignment,bytes) is a request to allocate an alignment-byte aligned
bytes-byte wide region. The implementation present in Doug Lea’s allocator [Lea] first
calls the malloc function and checks whether the pointer returned is correctly aligned.
The following code checks if pointer mem is misaligned, where mem has type void*, and
alignment is a size_t.

if ((((size_t)(mem)) & (alignment - 1)) != 0) /* misaligned */

To see why this code actually checks for misalignment, recall that a 2n-byte aligned
address has its n least significant bits set to 0. Consider that mem has the bit-pattern
ABCDEFGH (on 8 bits, for the sake of simplicity), where each of the A . . . H are binary digit
variables. Consider also alignment to be 16, i.e. 0b00010000.

A B C D E F G H mem

0 0 0 1 0 0 0 0 alignment

0 0 0 0 1 1 1 1 alignment - 1

0 0 0 0 E F G H mem & (alignment - 1)

The condition therefore holds if the last four bits of mem are 0, i.e. if mem is a multiple
of 16. Once again, the code uses bitwise operations on pointers that are permitted neither
by the C standard nor by CompCert. We argue that such programs should be given
semantics.

48 CHAPTER 3. MOTIVATION: LOW-LEVEL C CODE IN THE WILD

3.2 Manipulation Of Uninitialised Data

Another axis of our work, except from bitwise pointer arithmetic, is the use of uninitialised
data. The C standard states that any read access to uninitialised memory triggers undefined
behaviour [ISO99, section 6.7.8, §10]: “If an object that has automatic storage duration is
not initialised explicitly, its value is indeterminate.” Here, indeterminate means that the
value is either unspecified or a trap representation. In case the object may have a trap
representation2, reading a variable’s value before it has been initialised is an undefined
behaviour. In CompCert, reading uninitialised data returns the special undef value
upon which no computation can be meaningfully performed. In this work, we aim at
being more permissive. We want to model that uninitialised memory has an indeterminate
arbitrary but stable value. To be more precise, we ensure that reading twice from the same
uninitialised location returns the same result. We show below a number of idioms found
in real world C code, that would benefit from this more defined semantics.

3.2.1 Flag setting in an integer variable

Consider the code snippet of Figure 3.6 that is representative of a C pattern found in an
implementation of malloc (see Section 6.4.2.3).

unsigned int set(unsigned int p, unsigned int flag) {

return p | (1 << flag);

}

int isset(unsigned int p, unsigned int flag) {

return (p & (1 << flag)) != 0;

}

int main() {

unsigned int status = set(status,0);

return isset(status,0);

}

Figure 3.6: Undefined behaviour: reading the uninitialised variable status

The program declares a status variable of type unsigned int whose purpose is to
store a number of bits. Function set is used to set some bit, addressed by its number,
and function isset checks whether some bit is set. The main function first sets the least
significant bit of status, then tests whether the least significant bit is set. The expected
return value of the program is therefore obviously 1.

According to the C standard, this program has undefined behaviour because the set

function reads the value of the status variable before it is ever written.
However, we argue that this program should have a well-defined semantics and should

always return the value 1. The argument goes as follows: whatever the initial value of
the variable status, the least significant bit of status is known to be 1 after the call
set(status,0). Moreover, the value of the other bits is irrelevant for the return value
of the call isset(status,0), which returns 1 if and only if the least significant bit of
the variable status is 1. More formally, the program should return the value of the

2All types expect unsigned char may have trap representations.

3.2. MANIPULATION OF UNINITIALISED DATA 49

expression (status|(1 << 0))&(1 << 0) != 0 which simplifies to (status|1)&1 != 0,
which evaluates to 1 no matter what the initial value of status is.

3.2.2 Bit-Fields in CompCert

Another motivation is illustrated by the translation of bit-fields in CompCert version 2.4:
they are emulated in terms of bit-level operations by an elaboration pass preceding the
formally verified front-end. Figure 3.7 gives an example of such a transformation.

int main() {

struct {

unsigned int a0 : 1;

unsigned int a1 : 1;

} bf;

bf.a1 = 1;

return bf.a1;

}

(a) Bit-fields in C
1 struct bfs {

2 unsigned char __bf1;

3 } bf;

4

5 int main(){

6 struct { unsigned char __bf1;} bf;

7 bf.__bf1 = (bf.__bf1 & ~2U) | ((unsigned int) 1 << 1U & 2U);

8 return (int) ((unsigned int)(bf.__bf1 << 30) >> 31);

9 }

(b) Bit-fields in CompCert C

Figure 3.7: Emulation of bit-fields in CompCert

The program defines a structure with bit-fields bf with two fields a0 and a1; both fields
are 1-bit-wide. The main function sets the field a1 of bf to 1 and then returns this value.
The expected semantics is therefore that the program returns 1.

The transformed code (Figure 3.7b) is not very readable but the gist of it is that the
bit-field structure is encoded by a standard structure with one integer field, and bit-field
accesses are encoded using bitwise and shift operators, operating over the integer field of the
transformed structure. After evaluation of compile time constants, Line 7 of the program
in Figure 3.7b can be read as bf.__bf1 = (bf.__bf1 & 0xFFFFFFFD) | 0x2. The mask
with 0xFFFFFFFD clears the second least significant bit of bf.__bf1 and keeps all the other
bits unchanged. The bitwise OR with 0x2 sets the second least significant bit. In Line 8, the
value of the field is extracted by first moving the field bit towards the most significant bit
(bf.__bf1 << 30) and then moving this bit towards the least significant bit (>> 31). The
transformation is correct and the target code generated by CompCert correctly returns
1. However, using the existing memory model, the semantics is undefined. Indeed, the
program starts by reading the field __bf1 of the uninitialised structure bf. This triggers
undefined behaviour according to the C standard. Even though this case could be easily
solved by modifying the pre-processing step, C programmers might themselves write such

50 CHAPTER 3. MOTIVATION: LOW-LEVEL C CODE IN THE WILD

low-level code with reads of undefined memory and expect it to behave correctly. With
our model of uninitialised memory, this program has a perfectly defined semantics.

3.2.3 Using uninitialised data as random seed

The following example is an excerpt from the FreeBSD standard C library.3 The undefined-
ness of this program has been reported by Wang et al. [Wan+12]. It concerns the random
number generator and in particular the generation of a random seed. The computation of
the seed relies on some junk, i.e. arbitrary value read from an uninitialised variable that is
believed to introduce randomness.

struct timeval tv;

unsigned long junk; // left uninitialised on purpose

gettimeofday(&tv, NULL);

srand((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);

The computation of the seed relies on a bitwise combination of the current process id
(getpid()), the current time (tv.tv_sec and tv.tv_usec) and some supposedly random
uninitialised data (junk).

Since using uninitialised data in computations is undefined behaviour, compilers are
free to remove all the seed computation and replace it with a constant seed value. This
compiler “optimisation” actually happened with gcc and clang compilers. The FreeBSD
code has since then fixed the seed computation by simply removing the junk variable.

While it is debatable whether it is a good idea to use uninitialised data to introduce
randomness, it certainly shouldn’t annihilate the security of software. We advocate for a
more permissive semantics that considers that junk holds an arbitrary, unknown value,
rather than a trap representation that allows compilers to transform arbitrarily the code
of programmers.

3.3 Conclusion

We have introduced a number of C programs that exhibit undefined behaviour, either
because of unallowed operations on the representation of pointers, e.g. bitwise operations,
or because they use uninitialised data in computations. Those programs do not have
well-defined semantics, neither in C nor in CompCert. However, all these programs are
excerpts of code that have been found in real-life projects such as the Linux kernel or
various versions of standard C libraries.

The fact that C programs found in the wild exhibit undefined behaviour raises an
important problem: C programmers do not write C programs with the C standard as a
mental model of which program constructs are allowed and which are forbidden, but with
a more relaxed model that treats, in particular, pointers as mere integers and uninitialised
data as arbitrary, non-blocking, values.

In a broad sense, the objective of this thesis is to reconcile the formal semantics of the
C programming language, in particular the one used in the formally verified C compiler
CompCert, with the relaxed mental model of C programmers.

A similar objective is shared by the proposal of a “Friendly C” by John Regehr et
al.4 This proposal is the fruit of the following discussion: undefined behaviour in C is

3See the exact SVN revision at: http://svnweb.freebsd.org/base/head/lib/libc/stdlib/random.

c?r1=241046&r2=241373.
4See http://blog.regehr.org/archives/1180.

http://svnweb.freebsd.org/base/head/lib/libc/stdlib/random.c?r1=241046&r2=241373
http://svnweb.freebsd.org/base/head/lib/libc/stdlib/random.c?r1=241046&r2=241373
http://blog.regehr.org/archives/1180

3.3. CONCLUSION 51

responsible for numerous unintuitive optimisations. Because they are unintuitive, gcc for
example provides command-line switches to disable certain optimisations. For example the
-fwrapv switch sets the behaviour for signed integer overflow to a wrap around behaviour.
The friendly C dialect proposed by Regehr et al. can then be seen as a set of switches,
whose effect is mainly to replace triggering of undefined behaviours with returning an
unspecified value, thereby taming the power of optimisations. The work of this thesis is a
step in that direction.

The following chapters introduce new formalisms into CompCert to make the seman-
tics of C conform to that mental model. Eventually, we reprove the entire CompCert

compiler with this relaxed model, resulting in CompCertS, a verified compiler for more
real-life C programs.

52 CHAPTER 3. MOTIVATION: LOW-LEVEL C CODE IN THE WILD

Chapter 4

Symbolic Values and Normalisation

To give a semantics to the C idioms given in Chapter 3, a direct approach is to have a
fully concrete memory model where a pointer is a mere integer and the memory is an array
of bytes. In this model, bitwise operations on pointers are allowed because they are just
bitwise operations on integers. Uninitialised data can be dealt with by introducing some
kind of non-determinism. Initially, every location contains a non-deterministic byte. This
model is indeed very expressive, however reasoning about it is cumbersome. For example,
determining whether a pointer is valid necessitates to reconstruct abstractions. Another
pitfall of the fully concrete memory model is that it prevents a number of optimisations.
Consider the code snippet in Figure 4.1.

int x = 4;

f();

return x;

Constant Propagation
−−−−−−−−−−−−−−−−−→

int x = 4;

f();

return 4;

Figure 4.1: The constant propagation optimisation

This program allocates an integer x initialised to 4. A constant propagation optimisa-
tion could transform the return x instruction into return 4. This is a valid optimisation
in CompCert for any function f because the function is not given any way to access the
local variable x and f can not forge a pointer to x. As a consequence, f cannot modify
the value of x. However, this is not valid if pointers are mere integers. Indeed, in that
case, function f may guess the address of x and modify its value, thus invalidating the op-
timisation. Consider for example that x is allocated at the concrete address 0x0000ABCD.
Function f may modify x with the following code: *((int*)0x0000ABCD) = 7. This makes
the optimisation invalid, because instead of returning the new value of x, the optimised
program returns its old value. Of course, it is improbable that f actually guesses the
concrete address of x. However, it may iterate over concrete addresses, and modify the
contents of all these addresses, possibly including that of x. This iteration is well-defined
in a fully concrete memory model. On the other hand, it is not well-defined in CompCert

to transform integers into pointers, thus making the optimisation valid.
In order to preserve the structure of the existing transformations and of the correct-

ness proofs, and to keep the validity of the existing optimisations, we choose to keep the
block-based memory that CompCert uses. This chapter first introduces symbolic values,
that are used to denote the result of otherwise undefined constructs, while keeping an ab-
stract block-based memory model. We show how to evaluate these symbolic values, and
introduce the notions of concrete memories that give concrete addresses (32-bit integers)
to abstract pointers and indeterminate memories that give arbitrary values to uninitialised

53

54 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

data. Then, we define a normalisation process, whose aim is to recover a genuine value
from a symbolic value. The notions defined in this chapter will be used in subsequent
chapters to build a symbolic memory model and semantics for the intermediate languages
of CompCert that enable reasoning about low-level C programs, and ultimately build
CompCertS, a C compiler that provides guarantees for low-level C code that performs
arbitrary pointer arithmetic and computations based on uninitialised data.

4.1 Symbolic Values

Our approach to improve the semantics coverage of CompCert consists in delaying the
evaluation of expressions which result in undefined values in CompCert. To that end, we
replace the semantic domain of CompCert values by symbolic values, defined in Figure 4.2.

Types: typ ::= Tint | Tlong | Tsingle | Tfloat

Comparisons: cmp ::= Ceq | Cne | Clt | Cle | Cgt | Cge

Operators: op1 ::= OpBoolval | OpNotbool | OpNeg | OpNot | OpAbs
| OpZeroext | OpSignext | OpLoword | OpHiword
| OpSingleofbits | OpDoubleofbits
| OpBitsofsingle | OpBitsofdouble
| OpConvert(tfrom, tto)

op2 ::= OpAnd | OpOr | OpXor | OpAdd | OpSub | OpMul
| OpDiv | OpMod | OpShr | OpShl | OpCmp(cmp)
| OpFloatofwords | OpLongofwords

Symbolic values: sv ::= val value
| indet(l) indeterminate content of location
| op1 sv unary operation
| sv1 op2 sv2 binary operation

Figure 4.2: Semantics of symbolic values

The simplest case of symbolic values is a simple CompCert value val . It can therefore
be a pointer ptr(b, i), a 32-bit integer int(i), a 64-bit integer long(l), a 32-bit floating-point
number float(f) or a 64-bit floating-point number double(d), or the special undefined
value undef.

A symbolic value can also be an indeterminate value indet(l) labelled by a location
l. As we shall see in Section 5.3, indeterminate values will be used to model uninitialised
memory. In particular, indet(l) represents the arbitrary value that is stored at location l
before any write is performed at this location.

Symbolic values can also denote operations with symbolic values as operands. The
exhaustive list of unary operators (op1) and binary operators (op2) is given in Figure 4.2.
These are all the operators that are defined on CompCert values and that are needed
to evaluate C programs. Our semantics do not evaluate operators but instead construct
symbolic values which represent delayed computations.

4.2. EVALUATION OF SYMBOLIC VALUES 55

Operator OpBoolval transforms a value into a boolean (1 for true or 0 for false) value:
any non-zero value is mapped to true and 0 is mapped to false. Operator OpNotbool

is the boolean negation of OpBoolval. Operators OpNeg and OpAbs represent respectively
the unary negation and the absolute value operators. Operator OpNot is the bitwise nega-
tion operator. Operators OpZeroext(n) and OpSignext(n) convert integers to n-bit wide
integers, considering the operand respectively as unsigned and signed integers. Operators
OpLoword and OpHiword retrieve respectively the least significant and the most signif-
icant 32-bit words from 64-bit integers. Operators OpSingleofbits, OpDoubleofbits,
Bitsofsingle and OpBitsofdouble convert single (32-bit floating point) and double
(64-bit floating point) values to their bit-pattern representation and back. Operator
OpConvert(tfrom, tto) converts a symbolic value from type tfrom to type tto. Types
are one of Tint (for 32-bit integers and pointers), Tlong (for 64-bit integers), Tsingle
(for single-precision floating-point numbers) or Tfloat (for double-precision floating-point
numbers).

Operators OpAnd, OpOr, OpXor, OpShr and OpShl perform the obvious bitwise op-
erations. Operators OpAdd, OpSub, OpMul, OpDiv, OpMod perform the self-explanatory
arithmetic operations. Operator OpCmp(cmp) performs the comparison cmp. Comparisons
include equality, disequality and various inequality tests. Finally, OpFloatofwords and
OpLongofwords construct respectively a 64-bit floating point and a 64-bit integer from the
bit-patterns of two 32-bit words.

In this document, we use a concise and concrete C-like syntax for symbolic values
and operators. For instance, we will write (ptr(b, i) | int(3))&int(3) instead of the less
readable expression: OpAnd(OpOr(ptr(b, i), int(3)), int(3)).

4.2 Evaluation of Symbolic Values

Symbolic values were introduced with a promise that they would enable reasoning about
the concrete encoding of pointers as integers and uninitialised data. So far, we have seen
that we could build symbolic values instead of returning an undefined value or ending in
a stuck semantic state. But we still have no clue about how to perform the reasoning we
exposed in Chapter 3. A first step towards this end is to define an evaluation function,
that maps symbolic values to values.

We need a more precise semantics for pointer operations. Indeed, the existing semantics
of operations on pointers (defined in Figure 2.5) would result in a model almost identical
to CompCert that does not enable reasoning about the bit-encoding of pointers. Note
however, that a model with symbolic values and the existing semantics of pointers would
give semantics to programs that contain undefined operations but do not use the result
of such operations. For example, the program x = y >> 33; return 3; is undefined in
CompCert because the shift amount cannot be greater than or equal to 32 for integer
variables. However, with symbolic values, this program would have semantics because we
would have simply stored a symbolic value in x, but never evaluated it.

We could enrich this restricted semantics of pointers to include special cases. For
instance, we could state that the exclusive or (∧) applied to two copies of the same operand
yields 0 and that 0 is a neutral element for bitwise or (|):

ptr(b, o)∧ptr(b, o) = int(0)
ptr(b, o) | int(0) = ptr(b, o)

This approach may help giving semantics to specific cases of pointer operations. However,
giving a complete axiomatisation of low-level operations on pointers relying on simplifica-

56 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

tion rules would be cumbersome, notably because of symmetric rules that make it difficult
to implement an evaluation function. We rule out this approach to introduce a more
principled way of evaluating symbolic values.

As we intend to reason about the bit-level encoding of pointers, we need to somehow
model memory as an array of bytes. We introduce the notion of concrete memory for that
purpose. A concrete memory cm is a mapping from block identifiers to concrete addresses
as 32-bit integers. The evaluation of a pointer ptr(b, i) in a concrete memory cm yields
the concrete address of this pointer in cm, i.e. the integer cm(b) + i.

Indeterminate values indet(l) model arbitrary values that represent the uninitialised
contents of location l. We introduce the notion of indeterminate mapping for that purpose.
An indeterminate mapping im is a mapping from locations to concrete byte values. The
evaluation of an indeterminate value indet(l) in an indeterminate mapping im yields
im(l).

The evaluation of other kinds of symbolic values is straightforward. Non-pointer values
evaluate to themselves (regardless of cm and im). Unary and binary operations recursively
evaluate their operands and apply CompCert’s semantics for the corresponding operators
(eval_unop and eval_binop). The complete set of rules for the evaluation function
(written J·Kimcm) is given in Figure 4.3.

Parameters:
cm : block→ int concrete memory
im : location→ byte indeterminate mapping

Evaluation:
Jptr(b, i)Kimcm = cm(b) + i
JvKimcm = v

Jindet(l)Kimcm = im(l)
Jop1 svKimcm = eval_unop(op1, JsvKimcm)
Jsv1 op2 sv2K

im
cm = eval_binop(op2, Jsv1K

im
cm , Jsv2K

im
cm)

Figure 4.3: The evaluation of symbolic values

The evaluation function is a total function: evaluation errors are mapped to the undef

value (e.g. oversized shifts return undef).
In the rest of this document, we call cm a concrete memory and im an indeterminate

mapping. Both cm and im bridge the gap between the high-level concepts of blocks and
locations and a low-level memory model represented as an array of bytes.

Notice that symbolic expressions are side-effect free, therefore their evaluation is in-
dependent from the contents of the memory. We can also note that the result of the
evaluation of any symbolic value sv is always a non-pointer value. The process of evalua-
tion has brought us to a lower-level model where there is no distinction between pointers
and integers, which was our original goal: treating pointers as integers.

4.3 Well-formedness Condition for Concrete Memories

As stated earlier, a concrete memory cm maps blocks to concrete addresses, representing
the base address of this block. In this section, we show that not all concrete memories
are of interest, because some concrete memories do not represent feasible low-level memory
states, and we characterise the properties that one concrete memory must satisfy to be valid.

4.3. WELL-FORMEDNESS CONDITION FOR CONCRETE MEMORIES 57

Intuitively, those properties should ensure that the semantics of operations on pointers that
are defined in C (see Figure 2.5) are preserved in valid concrete memories.

This section proceeds by trial-and-error to discover the interesting properties that a
valid concrete memory should satisfy. Starting from an abstract memory state, we explore
the set of concrete memories, from naive models – which do not satisfy the assumptions we
expect from C pointer arithmetic – to more elaborate models – that are consistent with the
already defined C pointer arithmetic. This process intends to imitate our initial reasoning
regarding concrete memories.

4.3.1 Towards a notion of validity for concrete memories

Throughout this section, we will consider an abstract (block-based) memory m with two
distinct blocks b1 and b2, both 16-bytes wide. We will then propose several concrete
memories and show why these concrete memories are valid or not.

Address space and location overlap. A first requirement for concrete memories to
be valid is that they give the same semantics as CompCert to pointer comparisons.
Example 4.3.1 illustrates a counter-example to that informal rule.

Example 4.3.1. Consider a trivial concrete memory cm0 = λb. 0, i.e. the concrete memory
that maps every block to the address 0.

In the abstract model, ptr(b1, 0) 6= ptr(b2, 0) yields true because b1 and b2 are distinct
blocks and 0 is a valid offset of both blocks (see Figure 2.5 for the definition of pointer
comparisons in CompCert).

However, the evaluation of the corresponding symbolic value in cm0 yields false:

Jptr(b1, 0) 6= ptr(b2, 0)K
im
cm0

= Jptr(b1, 0)K
im
cm0
6= Jptr(b2, 0)K

im
cm0

= int(cm0(b1) + 0) 6= int(cm0(b2) + 0)
= int(0 + 0) 6= int(0 + 0)
= int(0) 6= int(0) = false

This concrete memory cm0 is not to be considered valid, because it gives different
semantics to pointer comparisons, compared with CompCert. This leads us to the first
validity condition for a concrete memory cm with respect to an abstract memory m.

Property 4.3.1 (No overlap). A concrete memory cm has the no-overlap property for a
memory m if cm is an injective function for valid locations. In other words, for any two
valid locations in different blocks, cm gives distinct concrete addresses. Formally,

∀ b1 i1 b2 i2, b1 6= b2 ∧ valid(m, b1, i1) ∧ valid(m, b2, i2)⇒
cm(b1) + i1 6= cm(b2) + i2

Another defined operation on pointers is comparison of pointers to the same object.
It states that for two valid pointers ptr(b, i1) and ptr(b, i2), the operation ptr(b, i1) >
ptr(b, i2) can be reduced to the comparison of the offsets of pointers, namely i1 > i2.
Example 4.3.2 shows that not all concrete memories that satisfy Property 4.3.1 give the
expected semantics to pointer comparison, and extra care needs to be taken.

Example 4.3.2. Let us now consider cm1 , cm0[b1 7→ 232 − 8, b2 7→ 16]. This concrete
memory cm1 satisfies Property 4.3.1, i.e. valid locations do not overlap. However, this
concrete memory fails to transport the comparison of pointers to the same object to the
comparison of their offsets.

58 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

In CompCert’s memory model, ptr(b1, 0) < ptr(b1, 15) evaluates to true (see Fig-
ure 2.5 in Section 2.5.2).

However, the evaluation of this symbolic value in cm1 yields a different result.

Jptr(b1, 0) < ptr(b1, 16)K
im
cm1

= Jptr(b1, 0)K
im
cm1

< Jptr(b1, 16)K
im
cm1

= int(cm1(b1) + 0) < int(cm1(b1) + 16)
= int(232 − 8) < int(232 + 8)
= int(232 − 8) < int(8) = false

The reason of this unintuitive behaviour is that the addition on 32-bit integers may
overflow, and therefore not behave as the addition of mathematical integers. A first attempt
at avoiding this situation is to specify that valid locations must have concrete addresses
in the range]0; 232[. This restriction only prevents valid concrete addresses to be 0; all
the other 32-bit integers are valid. An immediate side-product of this restriction is that
comparisons between valid pointers and the NULL pointer always evaluate to false in
valid concrete memories, as expected in the CompCert semantics of pointers. It also
prevents cm1 from being a valid concrete memory, because pointer ptr(b1, 8) is valid and
has concrete address int(cm1(b1) + 8) = int(232 − 8 + 8) = int(232) = int(0). More
generally, because the set of valid offsets for a given block b in memory m is convex (i.e. , if
valid(m, b, i1) and valid(m, b, i2), then ∀i, i1 ≤ i ≤ i2 ⇒ valid(m, b, i)), it is impossible
to have a block begin at a concrete address at the end of the memory (e.g. 232−4) and end
at the beginning of the memory (e.g. at concrete address 4), because that would violate
this range property.

However, this is not strong enough a restriction because of pointers one-past-the-end,
briefly discussed in Section 2.5.2. The C standard stipulates that, given an array of n
elements, a[n], the addresses of successive elements (including n) are strictly increasing.
Formally, we have: a+0 < a+1 < · · · < a+(n-1)< a+n. Note that a+n is a pointer one-
past-the-end of the array. Example 4.3.3 shows why the previous restriction to the]0; 232[
interval is too weak.

Example 4.3.3. Consider the concrete memory cm2 = cm0[b1 7→ 232 − 16; b2 7→ 8]. It
satisfies Property 4.3.1 and the range restriction discussed above. Consider that b1 is the
block associated with an array a of char variables of size 16.

In CompCert, we have that a[0] < a[16] because both locations, (b1, 0) and (b1, 16),
are weakly valid, and this reduces to the simpler test 0 < 16, which is true.

The evaluation of the symbolic value ptr(b1, 0) < ptr(b1, 16) in cm2 yields false:

Jptr(b1, 0) < ptr(b1, 16)K
im
cm2

= Jptr(b1, 0)K
im
cm2

< Jptr(b1, 16)K
im
cm2

= cm2(b1) < cm2(b1) + 16
= int(232 − 16) < int(232 − 16 + 16)
= int(232 − 16) < int(232)
= int(232 − 16) < int(0) = false

To solve this problem, we need to exclude the concrete address 232 − 1 from the ad-
dress space, therefore preventing a possible wrap-around of a+n that would invalidate the
inequality expected by the C standard.

These requirements yield the following property needed to be satisfied by concrete
memories.

Property 4.3.2 (Address space). A concrete memory cm has the address-space property
for a memory m if valid locations are given concrete addresses in the range]0; 232 − 1[.1

1We use the notation]x; y[to denote the interval of integers {z | x < z < y}. It is equivalent to the
notation (x, y) that can be found in other documents.

4.3. WELL-FORMEDNESS CONDITION FOR CONCRETE MEMORIES 59

Formally,
∀ b i, valid(m, b, i)⇒ 0 < cm(b) + i < 232 − 1

Alignment constraints To comply with the C standard and the Application Binary
Interfaces (ABI) of various architectures, blocks cannot be allocated at arbitrary addresses
but must satisfy alignment constraints. The C standard requires that fields of structures
are aligned in an implementation-defined way (see [ISO11, Section 6.7.2.1, § 14]). The
ABI for Power PC requires natural alignment for loads and stores, i.e. a 8-byte quantity
can only be stored to or loaded from an 8-byte aligned address. The ABI for ELF x86-32
has similar requirements. In CompCert, these alignment constraints are modelled at two
different levels. First, loads and stores only succeed when given a sufficiently aligned
address, i.e. a pointer with a sufficiently aligned offset. Second, when building the stack
frames of functions, local variables are mapped to offsets in a single stack block so that
the offsets are sufficiently aligned. The required alignment of variables depends on the
number of bytes of the data-structure and an upper bound for it is given by the function
alignment_of_size , which returns the number of trailing bits that must be zero:

Definition 4.3.1. alignment_of_size size ,

0 if size ≤ 1
1 if 2 ≤ size ≤ 3
2 if 4 ≤ size ≤ 7
3 if 8 ≤ size

In particular, a variable of type char (1-byte wide2) has no alignment constraint; a
short (16-bit) integer is 21-byte aligned; an int (32-bit) integer is 22-byte aligned and a
long (64-bit) integer is 23-byte aligned. It follows that the alignment of a block is obtained
by the function min_alignment which retrieves the size of a block and returns the number
of trailing bits that are 0s in the concrete representation of the block.

Definition 4.3.2. The size and min_alignment functions are defined as:
size(m,b) := let (lo,hi) := bounds(m,b) in hi - lo.

min_alignment(m,b) := alignment_of_size(size(m,b)).

Notice that this is a minimal alignment constraint, i.e. it is the weakest acceptable
alignment for a given data size. However, a stricter alignment may be requested. Think
for example of the malloc-allocated block in Figure 3.2 which is assumed to be 16-byte
aligned, or of the memory chunks returned by mmap which are page-aligned blocks, where
page alignment is typically 212 for 4Ko pages. To account for this stronger alignment
constraints in our model, the memory model explicitly associates with each block b an
alignment, accessed through the function alignment, such that alignment(m,b) is always
greater than or equal to min_alignment(m,b).

Property 4.3.3 (Alignment constraint). A concrete memory cm satisfies the alignment-
constraint property for an abstract memory m if every block is given a suitably aligned
address. Formally,

∀ b, cm(b) mod 2alignment(m,b) = 0

This property can be equivalently stated as a divisibiliy property or using bit-masks,
i.e. cm(b) & (2alignment(m,b) − 1) = 0.

We now have all the necessary definitions to state the definition of a valid concrete
memory.

2All this work assumes a 32-bit architecture where sizeof(char) = 1, sizeof(short int) = 2,
sizeof(int) = 4 and sizeof(long long) = 8.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Cminorgen.html#block_alignment

60 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

Definition 4.3.3 (Valid concrete memory). A concrete memory cm is valid for a memory
m (written cm ⊢ m), if and only if the three following properties are satisfied.

1. Property 4.3.1: valid locations from distinct blocks do not overlap.

2. Property 4.3.2: valid locations lie in the range]0; 232 − 1[.

3. Property 4.3.3: blocks are mapped to suitably aligned addresses.

This axiomatisation is sufficient to ensure that the operations on pointers that are
defined in CompCert’s model are still defined with the same semantics in CompCertS,
our symbolic model. We will show in Section 6.2, after we define semantics of intermediate
languages with symbolic values, that our semantics, based on this notion of valid concrete
memories, are a refinement of that of CompCert. This validates the fact that this set of
validity properties accurately models the axiomatisation of pointers in CompCert.

4.3.2 Preservation of validity of concrete memories by memory opera-
tions

Valid concrete memories will be very important objects in the following, since they will
be used as the basis of reasoning for the formal semantics of C and all the intermediate
languages used in CompCert. It is therefore interesting to study the properties of valid
concrete memories and in particular the preservation (or lack thereof) of the validity of
concrete memories by the operations that construct new memory states. We will show the
following relations.

∀ cm, cm ⊢ empty (4.1)

∀ cm κ m sv b o m′, store κ m b o sv = ⌊m′⌋ ⇒ (cm ⊢ m⇔ cm ⊢ m′) (4.2)

∀ cm m lo hi b m′, alloc m lo hi = (m′, b)⇒ cm ⊢ m′ ⇒ cm ⊢ m (4.3)

∀ cm m b m′, free m b = ⌊m′⌋ ⇒ cm ⊢ m⇒ cm ⊢ m′ (4.4)

As a base case, consider the empty memory which consists of 0 blocks. Every concrete
memory is valid for empty (4.1) because Property 4.3.1 and Property 4.3.2 are only con-
cerned with valid locations and therefore are vacuously satisfied in empty. Property 4.3.3
ensures that blocks are suitably aligned. However, in the empty memory, blocks do not
have alignment constraints and are therefore trivially suitably aligned.

Now, consider a memory m and a concrete memory cm valid for m (cm ⊢ m). The
following investigates whether cm is still valid in the memory states obtained after a store,
alloc or free.

After a store operation resulting in a memory state m′, a key observation is that the
bounds and the alignment constraints of all blocks are untouched. As a result, any valid
location of m is a valid location of m′ and vice versa, hence the two first properties hold.
Also, since the alignment constraints are the same in both m and m′, the third property
of valid concrete memories holds. Hence cm is still valid in m′ (4.2).

After an alloc operation resulting in a memory state m′ and a new allocated block b,
the situation is more delicate. In cm, b can be mapped to any address whatsoever because
it is an invalid block for m. However, for cm to be a valid concrete memory of m′, the
address of block b has to satisfy the three properties of Definition 4.3.3. Hence in general,
cm is not a valid concrete memory for m′. However, any valid concrete memory cm ′ for
m′ is also a valid concrete memory of m, because m′ is more constrained (4.3).

4.4. NORMALISATION OF SYMBOLIC VALUES 61

Symmetrically, after a free operation resulting in a memory state m′, we know that
cm is still a valid concrete memory for m′ (4.4) because freeing some block b amounts to
clearing all the constraints associated with block b. Hence if cm satisfied a more constrained
set of properties, it must satisfy a more relaxed one.

These properties will be used in Section 5.4 when we prove that there exist concrete
memories that satisfy certain constraints for every abstract memory. Besides, these prop-
erties are useful to give intuition about valid concrete memories.

4.4 Normalisation of Symbolic Values

We have introduced symbolic values to capture the meaning of otherwise undefined oper-
ations, and we know how to evaluate these symbolic values for a given environment given
by a concrete memory cm and an intermediate mapping im. However, we want to keep
our memory model abstract, i.e. the memory object that the memory primitives operate
on is still an abstract collection of blocks, and not a concrete memory (that would result
in a flat memory model, discussed at the beginning of this chapter).

4.4.1 Sound normalisation

We introduce the notion of normalisation, which can be seen as a lifting of evaluation
from concrete memories to abstract memories. The intuition behind the normalisation of
a symbolic value sv is that the result v of the normalisation should evaluate as sv in every
valid environment. We formalise this intuition in the definition of a sound normalisation.

Definition 4.4.1 (Sound normalisation). A value v is a sound normalisation of sv in a

memory m (written sv
m
−−։ v) if v and sv evaluate identically in every concrete memory

cm valid for m and in every indeterminate mapping im. Formally,

sv
m
−−։ v , ∀ cm ⊢ m, ∀ im, JsvKimcm = JvKimcm

Note that not all symbolic values have a sound normalisation, as illustrated by Exam-
ple 4.4.1.

Example 4.4.1. Consider the symbolic value sv = indet(b, o). There does not exist a
value v such that JsvKimcm = JvKimcm for every im. That would imply that ∀ im im ′, im(b, o) =
im ′(b, o), which is a contradiction (take im = λ l.0 and im ′ = λ l.1 for example).

Likewise for sv ′ = ptr(b, 0)− ptr(b′, 0): it evaluates to int(cm(b)− cm(b′)) for every
cm ⊢ m. For different concrete memories, the evaluation of sv ′ returns different values,
hence there is no sound normalisation for sv ′.

Using Definition 4.4.1, we can reason about the programs we exposed in Chapter 3.
Example 4.4.2 illustrates this reasoning.

Example 4.4.2. Consider the following code, copied from Figure 3.7b.

1 struct bfs {

2 unsigned char __bf1;

3 } bf;

4

5 int main(){

6 struct { unsigned char __bf1;} bf;

62 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

7 bf.__bf1 = (bf.__bf1 & ~2U) | ((unsigned int) 1 << 1U & 2U);

8 return (int) ((unsigned int)(bf.__bf1 << 30) >> 31);

9 }

Unlike the existing semantics, operators are not strict in undef but construct symbolic
values. Hence, in Line 7, we store in bf.__bf1 the symbolic value sv defined by

(indet(l)&∼0x2) | (1≪ 1&0x2)

The value returned in Line 8 is the symbolic value sv ′ = (sv ≪ 30)≫ 31. Let us show that
int(1) is a sound normalisation of sv ′, as expected (see Section 3.2.2).

We need to show that for any concrete memory cm and any indeterminate memory im,
we have Jint(1)Kimcm = Jsv ′Kimcm .

JsvKimcm = J(indet(l)&∼0x2) | (1≪ 1&0x2)Kimcm
= Jindet(l)&∼0x2Kimcm | J1≪ 1&0x2Kimcm
= (Jindet(l)Kimcm&0xFFFFFFFD) | int(2)
= (im(l)&0xFFFFFFFD) | 0x00000002

Jsv ′Kimcm = J(sv ≪ 30)≫ 31Kimcm
= (JsvKimcm ≪ int(30))≫ int(31)
= (((im(l)&0xFFFFFFFD) | 0x00000002)≪ int(30))≫ int(31)
= int(1)

We now detail the last rewriting step, and we write 0xPQRSTUVW for the hexadecimal
representation of im(l).

im(l) = 0xPQRSTUVW where W = 0bxyzt

im(l)&0xFFFFFFFD = 0xPQRSTUVX where X = 0bxy0t

(im(l)&0xFFFFFFFD) | 2 = 0xPQRSTUVY where Y = 0bxy1t

((im(l)&0xFFFFFFFD) | 2)≪ 30 = 0xZ0000000 where Z = 0b1t00

(((im(l)&0xFFFFFFFD) | 2)≪ 30)≫ 31 = 0x00000001

Hence int(1) is a sound normalisation of sv .

4.4.2 The normalisation is functional

An important property that we expect is that the sound normalisation relation is functional:
a given symbolic value admits at most one sound normalisation. After showing that this
is not the case in general, we introduce a slight restriction over abstract memory states
that ensures that this desirable property is always satisfied. This enables us to assume the
existence of a normalise function, that will be used in the semantics of the intermediate
languages and in the memory model.

Let us first examine Example 4.4.3, where two different values are equally sound nor-
malisations of a same symbolic value.

Example 4.4.3. Suppose a memory m with a single block b of size 232 − 9. Because it
is 8-byte aligned and the last address (232 − 1) is not in the range of valid addresses, the
unique valid concrete memory cm for m is such that cm(b) = 8. As a result, both the value
int(8) and ptr(b, 0) are a sound normalisation for the degenerate symbolic value ptr(b, 0).

4.4. NORMALISATION OF SYMBOLIC VALUES 63

In our previous work [BBW14; BBW15], we designed a more complex specification
of the normalisation, that avoided this discrepancy. In particular, the normalisation was
parameterised by the kind of result that is expected: a pointer or a non-pointer value.
Moreover, when the expected result was a pointer, it could only be a valid pointer. These
alternate definitions are more intricate and have the counter-intuitive side-effect that values
did not always normalise to themselves (e.g. an invalid pointer has no sound normalisation).

We have later identified that the real problem of having multiple sound normalisa-
tions comes from near out-of-memory situations, i.e. situations where the memory is so
constrained that few concrete memories are valid, and the position of one block can be de-
duced from the positions of others. We avoid this situation by ensuring that every abstract
memory satisfies Property 4.4.1.

Property 4.4.1 (Sliding Blocks). A memory m is such that for any block b, there exist at
least two valid concrete memories cm and cm ′ that allocate b at different concrete addresses
while allocating all the other blocks at the same address. Formally,

∀ b, ∃cm, cm ′,
∧

cm ⊢ m
cm ′ ⊢ m
cm(b) 6= cm ′(b)
∀b′ 6= b, cm(b′) = cm ′(b′)

In Section 5.4, we prove that Property 4.4.1 holds for every abstract memory. This
suffices to show that the sound normalisation relation is functional.

Theorem 4.4.1 (sound_norm_functional). Assuming Property 4.4.1, the sound nor-
malisation relation is functional, i.e. for every symbolic value sv and memory m, for any

values v and v′ such that sv
m
−−։ v and sv

m
−−։ v′, we have v = v′.

Proof. By Definition 4.4.1 because v and v′ are sound normalisations of sv , we get:

∀im, ∀cm ⊢ m, JvKimcm = JsvKimcm ∧ Jv′Kimcm = JsvKimcm (4.5)

By transitivity, we get Hypothesis 4.6:

∀im, ∀cm ⊢ m, JvKimcm = Jv′Kimcm (4.6)

The proof then goes by case analysis over v and v′.

• Case v 6= ptr(b, o) and v′ 6= ptr(b′, o′). By Property 4.4.1, there exists cm ⊢ m.
Moreover, because v and v′ are not pointers, their evaluation is independent from
cm and we get from Hypothesis 4.6: v = JvKimcm = Jv′Kimcm = v′. Hence, the property
holds.

• Case v = ptr(b, o). By Property 4.4.1, we exhibit cm ⊢ m and cm ′ ⊢ m such that
Hypotheses 4.7 and 4.8 hold:

cm(b) 6= cm ′(b) (4.7)

∀ b′ 6= b, cm(b′) = cm ′(b′) (4.8)

– Case v′ = int(i). From Hypothesis 4.6 using cm and cm ′, we get:

cm(b) + o = JvKimcm = Jv′Kimcm = i = Jv′Kimcm′ = JvKimcm′ = cm′(b) + o

As a result, cm(b) = cm(b′). This contradicts Hypothesis 4.7 and the property
holds.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/PhdNormSpec.html#sound_norm_functionnal

64 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

– Case v′ = ptr(b′, o′).

∗ Case b = b′. By Hypothesis 4.6, we get:

cm(b) + o = JvKimcm = Jv′Kimcm = cm(b) + o′

As a result, we deduce that o = o′ and the property holds.

∗ Case b 6= b′. By Hypothesis 4.6, we get:

cm(b) + o = JvKimcm = Jv′Kimcm = cm(b′) + o′

cm′(b) + o = JvKimcm′ = Jv′Kimcm′ = cm′(b′) + o′

Because cm(b′) = cm′(b′) (from Hypothesis 4.8), we get by transitivity that
cm(b) + o = cm′(b) + o and therefore cm(b) = cm′(b). This contradicts
Hypothesis 4.7 and the property holds.

– Case v′ = long(l) or v′ = float(f) or v′ = double(d). This is in contradiction
with the facts that v and v′ evaluate the same and v is a pointer, hence v
evaluates to an integer. The property holds.

• Other cases are symmetric and therefore the property holds.

Existence of a normalisation function. We have defined a sound normalisation rela-
tion, and have proved that this relation is functional, i.e. for a given memory state m and a

given symbolic value sv , there is only one value v such that sv
m
−−։ v. For the remainder of

this document, we will assume the existence of a function that we call normalise of type
mem → sval → val such that for every memory m and symbolic value sv , normalise m sv

returns a value v such that sv
m
−−։ v when such a value exists, and returns undef otherwise.

Assuming the axiom of choice and the law of excluded middle, we can prove the exis-
tence of this normalisation function. The axiom of choice can be stated as follows, for any
types A and B and any binary relation R ⊆ A×B:

(∀x ∈ A, ∃y ∈ B, xRy)⇒ ∃f ∈ (A→ B), ∀x ∈ A, xR(f(x))

The axiom of choice allows to transform a left-total binary relation R into a function
that associates with every x a y such that xRy. A binary relation is left-total if for
every x, there exists a y such that xRy. The −։ relation is not exactly such a relation:
some symbolic values do not have sound normalisations, as explained in Example 4.4.1.
However, we can complete the −։ relation by associating the symbolic values that have no
sound normalisation with the value undef. We define sound_norm_comp as an inductive
predicate satisfying the two following rules:

sound-norm-exists

sv
m
−−։ v

sound_norm_comp m sv v

sound-norm-not-exists

¬∃v, sv
m
−−։ v

sound_norm_comp m sv undef

The law of excluded middle (∀P, P ∨¬P) is needed to prove that the completed relation
sound_norm_comp is left-total, as required by the axiom of choice. Specifically, it is used to
decide whether a symbolic value has a sound normalisation or not, i.e. we use the following
specialised property:

4.4. NORMALISATION OF SYMBOLIC VALUES 65

∀ m sv , (∃ v, sv
m
−−։ v) ∨ ¬(∃ v, sv

m
−−։ v)

Therefore, depending on which branch is true, we apply one of the two rules sound-

norm-exists or sound-norm-not-exists, and prove the left-totality of sound_norm_comp.
The axiom of choice may then be used, resulting in the existence of the normalisation func-
tion.

Actually, those axioms are not needed to prove the existence of the normalisation
function, because the set of values of interest is finite. Values are said to be of interest if
they are not pointers in unallocated blocks, i.e. they are not pointers ptr(b, o) where b has
never been allocated. The set of these values is finite because integers and single-precision
floating point numbers can only take one of 232 different values, and the set of 64-bit
integers and double-precision floating point numbers can only take one of 264 different
values. The set of pointers of interest ptr(b, o) is also finite because b must belong to the
finite set of allocated blocks and o is a 32-bit integer, hence its possible values can be finitely
enumerated. Likewise, for a given memory m, the set of valid concrete memories valid for m
is finite. Indeed, there are only finitely many blocks to allocate inside a finite address space.
Using these finiteness arguments, a naive implementation of a sound normalisation can be
constructed. Algorithm 1 shows such an implementation. First, Function is_norm is an

Algorithm 1: Deciding the existence of a sound normalisation

Function is_norm(m, sv , v),
input : m: a memory state

sv : a symbolic value
v: a candidate normalisation

output: a boolean true if and only if sv
m
−−։ v

foreach cm ⊢ m do
if JsvKimcm 6= JvKimcm then return false

end
return true

Function normalise(m, sv),
input : m: a memory state

sv : a symbolic value

output: a value v such that sv
m
−−։ v if one exists; undef otherwise

foreach v ∈ val do
if is_norm(m, sv , v) then return v

end
return undef

implementation of the sound normalisation −։ relation. It enumerates all valid concrete
memories (which is possible because this set is finite), and returns true if and only if the
symbolic value and the value evaluate identically in every valid concrete memory. Then,
Function normalise is an implementation of the normalisation function. It enumerates all
values of interest (again, this is possible because of the finiteness of these values) and looks
for a value that satisfy the is_norm predicate.

In the following, we assume the existence of this normalise function, and we give a
more tractable implementation than that of Algorithm 1 in Chapter 6.

66 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

4.4.3 Syntactic appearance and normalisation

Another interesting property of the normalise function is given by Lemma 4.4.1. It states
that a pointer ptr(b, i) can only be the result of the normalisation of a symbolic value
sv if b appears syntactically in sv . This is also a consequence of Property 4.4.1. This
property is used in the implementation of the normalisation (see Section 6.3) but also to
relate memory injections and normalisations (see Theorem 7.2.2).

Let us first define the notion of syntactic appearance. A block b appears in a symbolic
value sv if sv = ptr(b, o) for some o, or if b appears in any of the operands of unary or
binary operations.

Definition 4.4.2 (Syntactic appearance of blocks).

block_appears sv b :=

match sv with

| ptr(b′, i) => b = b′

| op1 sv1 => block_appears sv1 b
| sv1 op2 sv2 => block_appears sv1 b ∨ block_appears sv2 b
| _ => ⊥
end.

Lemma 4.4.1 (norm_block_appears). For any memory m, for any symbolic value sv ,
if normalise m sv = ptr(b, i), then the block b appears syntactically in sv .

Proof. The proof is by contradiction. Assume b does not appear in sv . Property 4.4.1
applied on block b provides two concrete memories cm and cm ′ such that

cm ⊢ m
cm ′ ⊢ m
cm(b) 6= cm ′(b)
∀b′ 6= b, cm(b′) = cm ′(b′)

For any indeterminate memory im, we can derive the two following contradictory facts:

• Since b does not appear in sv , and cm and cm ′ agree on all blocks but b, we have
JsvKimcm = JsvKimcm ′ .

• By Definition 4.4.1 and because sv
m
−−։ ptr(b, i), we have that JsvKimcm = cm(b) + i

and JsvKimcm ′ = cm ′(b) + i. Since cm(b) 6= cm ′(b), we have that JsvKimcm 6= JsvKimcm ′ .

4.5 Conclusion

In this chapter, we have defined the core notion of this work, namely symbolic values,
that capture the meaning of operations that would have otherwise been undefined. We
introduced the concept of concrete memories and indeterminate memories, which bridge
the gap between the high-level abstract view of memory states of CompCert and the
low-level concrete view that is needed to reason about e.g. bit-level encoding of pointers.
We identify the properties that make concrete memories valid, i.e. they conform to what
programmers expect. We show how to evaluate symbolic values, in order to recover values
from symbolic values. We define a normalisation function that lifts the evaluation to all

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memdata.html#block_appears
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.norm_block_appears

4.5. CONCLUSION 67

concrete memories valid for the considered abstract memory, i.e. it transforms a symbolic
value into a value that evaluates identically in every valid environment.

All these notions form the basis of this work. In the next chapters, we will introduce
them first in the memory model of CompCert (Chapter 5), then in the semantics of all
the intermediate languages of CompCert (Chapter 6). Later chapters will show how the
proofs of semantic preservation have been updated.

68 CHAPTER 4. SYMBOLIC VALUES AND NORMALISATION

Chapter 5

A Novel Memory Model Using

Symbolic Values

This chapter builds upon the definitions introduced in the previous chapter, namely those
of symbolic values and normalisation. We adapt the memory model of CompCert, in-
troduced in Section 2.5.2, with symbolic values, i.e. we replace CompCert values with
symbolic values. This leads to a number of necessary modifications; this chapter highlights
the most fundamental of those. A summary of the resulting symbolic memory model can
be found in Figure 5.1. Section 5.1 explains how loads and stores are performed in this
memory model, in particular it focuses on the encoding and decoding of symbolic values.
Section 5.2 shows how properties of the memory model have been adapted to this symbolic
memory model. Section 5.3 gives a precise account of our handling of uninitialised values.
Finally, Section 5.4 shows how to implement the allocation operation to ensure that Prop-
erty 4.4.1 (Sliding Blocks), needed for the well-behavedness of the normalisation, holds
for every abstract memory state. All along this chapter, we will give a contrast between
properties that are true of CompCert’s memory model but not of CompCertS’, and
vice versa.

Symbolic memvals:

smemval ::= Symbolic(sv , n) n-th byte of symbolic value sv

Memory operations:

palloc m lo hi = ⌊(m′, b)⌋ Allocate a fresh block with bounds [lo, hi[. Fails if no
concrete memory can be constructed.

free m b = ⌊m′⌋ Free (invalidate) the block b
load κ m b i = ⌊sv⌋ Read consecutive bytes (as determined by κ) at block

b, offset i of memory state m. If successful, return the
contents of these bytes as symbolic value sv .

store κ m b i sv = ⌊m′⌋ Store the symbolic value sv as one or several consecu-
tive bytes (as determined by κ) at offset i of block b.
If successful, return an updated memory state m′.

Figure 5.1: The symbolic memory model

69

70 CHAPTER 5. A NOVEL MEMORY MODEL USING SYMBOLIC VALUES

5.1 Encoding And Decoding Of Symbolic Values In Memory

The memory content of CompCert’s memories is modelled by memvals, ranging over
Undef for undefined bytes, Byte (b) for concrete byte b or Pointer (b, i, n) for the n-th
byte of the pointer ptr(b, i). In our symbolic memory model, the memory content is no
longer represented by the memvals that we described in Section 2.5.2. Rather, we use a
generalised form called smemval (see Figure 5.1) with a single constructor that subsumes all
the existing ones and makes it possible to encode symbolic values. A smemval is merely a
pair Symbolic sv n composed of a symbolic value sv and a natural number n denoting the
n-th byte of the symbolic value sv , following the same principles as the Pointer constructor
of memval.

Symbolic smemvals contain the bit-level representation of the contents of the memory.
To facilitate the decoding function decode, the symbolic values found inside smemvals are
converted to the binary 64-bit representation by the to_bits function, shown in Figure 5.2.
The to_bits function takes a chunk and a symbolic value and returns the bit-representation
of the symbolic value. For instance, starting from an integer chunk, the 64-bit representa-
tion is obtained by applying an integer-to-long conversion. The function convert is sim-
ply a wrapper around OpConvert, introduced in Figure 4.2. Functions bits_of_single

and bits_of_double retrieve the binary encoding of floating-point symbolic values. The

Definition to_bits chunk sv :=

match chunk with

| Mint8signed | Mint8unsigned

| Mint16signed | Mint16unsigned

| Mint32 => convert Tint Tlong sv

| Mint64 => sv

| Mfloat32 => convert Tint Tlong (bits_of_single sv)

| Mfloat64 => bits_of_double sv

end.

Definition from_bits chunk sv :=

match chunk with

| Mint8signed => sign_ext 8 (loword sv)

| Mint8unsigned => zero_ext 8 (loword sv)

| Mint16signed => sign_ext 16 (loword sv)

| Mint16unsigned => zero_ext 16 (loword sv)

| Mint32 => loword sv

| Mint64 => sv

| Mfloat32 => single_of_bits (loword sv)

| Mfloat64 => double_of_bits sv

end.

Figure 5.2: Converting values to their bit-pattern representation

from_bits function does the opposite: it interprets a 64-bit bit pattern as a typed value,
as dictated by a chunk. The functions sign_ext, zero_ext, loword, single_of_bits and
double_of_bits are simple wrappers around the corresponding operators introduced in
Figure 4.2 and their definition is omitted in this document.

Encoding a symbolic value sv into a list of smemvals with respect to a chunk κ is
straightforward. It consists in building a list of n = size_chunk κ elements of the form

5.1. ENCODING AND DECODING OF SYMBOLIC VALUES IN MEMORY 71

Symbolic (to_bits κ sv) i, i ∈ 0, . . . , n− 1. For example, encoding a symbolic value sv

of integer type with chunk Mint32 results in the following list1:

[Symbolic (convert Tint Tlong sv) 3;
Symbolic (convert Tint Tlong sv) 2;
Symbolic (convert Tint Tlong sv) 1;
Symbolic (convert Tint Tlong sv) 0]

Decoding a list of smemvals into a symbolic value is somewhat more involved. Let’s
first show how to decode one smemval: Symbolic sv n. We define a function extr : sval →
N→ sval in Figure 5.3 to that end. Its purpose is to extract the n-th byte from a symbolic
value. It is defined recursively: the 0-th byte is obtained by masking the higher bits; the
(n + 1)-th byte of sv is obtained by shifting sv 8 bits to the right, then taking the n-th
byte of the resulting symbolic value. For instance, extr sv 2 results in the symbolic value:

extr sv 2 = extr (sv ≫ 8) 1
= extr ((sv ≫ 8)≫ 8) 0
= ((sv ≫ 8)≫ 8) & 0xFF

Function smv_to_sval (see Figure 5.3) is a simple lifting of extr to smemvals.

Fixpoint extr (sv : sval) (n: nat) : sval :=

match n with

| O => sv & 0xFF

| S m => extr (sv >> 8) m

end.

Definition smv_to_sval (smv: smemval) : sval :=

match smv with Symbolic sv n => extr sv n

end.

Figure 5.3: Decoding a smemval into a symbolic value

Now, we need to decode lists of such smemvals. This is done by converting each smemval

into a symbolic value using smv_to_sval, and then concatenating those symbolic values:
the concat function (Figure 5.4) takes a list of smemvals in little-endian order2 (least
significant bytes first) and builds a symbolic value that represents the binary encoding of
the value to be read. Finally, the decode function applies the from_bits function to the
result of concat with the appropriate chunk, yielding the decoded symbolic value.

In the higher-level memory model, the load operation first retrieves a list of smemvals
(the number depends on the chunk κ) and then decodes this list with the aforementioned
decode function. Note that it results in a symbolic value, where the original CompCert

load operation resulted in a value.
Symmetrically, the store operation first encodes the symbolic value to be stored into

a list of smemvals (as opposed to a list of memvals in the original CompCert model), and
puts these smemvals in the memory at the requested address.

Figure 5.1 shows the new type signatures of the memory operations, together with the
type definition of smemvals. Note that the address given to load and store is really a

1Assuming a big-endian architecture. The endianness is a parameter in CompCert, instantiated dif-
ferently depending on the target architecture.

2The list is reversed if needed, depending on the architecture.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memdata.html#from_bits

72 CHAPTER 5. A NOVEL MEMORY MODEL USING SYMBOLIC VALUES

Fixpoint concat (l : list smemval) : sval :=

match l with

| nil => 0

| a::r => (smv_to_sval a) + (concat r) << 8

end.

Definition decode (l: list smemval) (κ : memory_chunk) : sval :=

from_bits κ (concat l).

Figure 5.4: Decoding smemvals into symbolic values

block identifier and an integer offset, as in CompCert, and not symbolic values. This
is because the inner structure of CompCert memories is a map from block identifiers to
arrays of bytes indexed by integer offsets. Consider the CompCert loadv and storev

functions that take as input an address as a value v, and call load and store with the
address (b, i) if v = ptr(b, i) and fail otherwise. To adapt these functions so that they
take symbolic values for the address, we need to include normalisations. The code of those
functions is shown in Figure 5.5.

Definition loadv (κ: memory_chunk) (m: mem) (addr: sval) : option sval :=

match normalise m addr with

| Vptr b ofs => load κ m b ofs

| _ => None

end.

Definition storev (κ: memory_chunk) (m: mem) (addr: sval) (sv: sval)

: option mem :=

match normalise m addr with

| Vptr b ofs => store κ m b ofs sv

| _ => None

end.

Figure 5.5: The loadv and storev operations.

5.2 Good Variable Properties

CompCert’s memory model exports an interface summarising all the properties of the
memory operations necessary to prove the compiler passes. Those properties include so-
called good-variable properties [Ler+14], and describe the behaviour of combinations of
memory operations. For instance, the property load_store_same states that loading at an
address that has just been written with some value v results in the same value v, converted
to the appropriate chunk κ. The function load_result does this conversion. It consists
of truncating integers to the expected size for chunks Mint8xxx and Mint16xxx and it is
the identity function for other chunks. Formally, we have:

Theorem 5.2.1 (load_store_same).

∀κ m b o v m′, store κ m b o v = ⌊m′⌋ ⇒ load κ m b o = ⌊load_result κ v⌋.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/CCMemory.html#Mem.load_store_same

5.2. GOOD VARIABLE PROPERTIES 73

Because we use symbolic values and delay their evaluation, this theorem does not hold
anymore. This is illustrated by Example 5.2.1.

Example 5.2.1. Consider κ = Mint16unsigned, o = int(0) and v = int(3735928559) =
int(0xDEADBEEF). In CompCert, the store operation first encodes v into concrete bytes,
keeping only the two least significant (because κ = Mint16unsigned) b1 = 0xBE and b0 =
0xEF and stores them at addresses (b, 1) and (b, 0) (respectively). The load then decodes
these two bytes and computes the resulting value v = int(b1 ≪ 8+b0) = int(0xBEEF). Ap-
plying load_result with κ = Mint16unsigned to v results in the same integer int(0xBEEF),
because it already fits in 2 bytes.

In our model however, the behaviour is slightly different. The store encodes each byte
lazily, i.e. the addresses (b, 1) and (b, 0) do not contain concrete bytes but symbolic smemvals
that denote them. Let sv be the symbolic value denoting the binary representation of value
v for chunk Mint16unsigned, i.e.

sv = to_bits Mint16unsigned v = convert Tint Tlong v

For example, the location (b, 1) contains the smemval (Symbolic sv 1) that encodes byte
number 1 of the binary representation of the original symbolic value v. The load first
decodes smemvals into symbolic values, and then concatenates them to produce the final
result. The smemval (Symbolic sv n) is decoded into (sv ≫ (8 ∗ n))& 0xFF. In our
example we have sv1 = (sv ≫ 8)& 0xFF and sv2 = sv & 0xFF. The concatenation is
again expressed as a symbolic value based on shifts. The result of the load is then equal
to the concatenation of sv1 and sv2, i.e. L = (sv1 ≪ 8) + sv2. On the other hand,
load_result Mint16unsigned v amounts to zeroing the 2 highest bytes, resulting in the
symbolic value v&(216 − 1).

The theorem load_store_same clearly does not hold for Example 5.2.1: the two sides
of the equation are different symbolic values. However, they are equivalent, i.e. they always
evaluate to the same value. This equivalence relation between symbolic values is noted ≡
and is formally defined as follows:

Definition 5.2.1 (Equivalence of symbolic values).

sv1 ≡ sv2 , ∀ cm im, Jsv1K
im
cm = Jsv2K

im
cm

We generalise load_store_same and every theorem of the memory model to use equiv-
alence in lieu of syntactic equality when needed. We then state that there exists a symbolic
value sv ′ that is the result of the load and this symbolic value is equivalent to the result
we expect. The resulting theorems are of the form:

Theorem 5.2.2 (load_store_same with symbolic values).

∀ κ m b o sv m′, store κ m b o sv = ⌊m′⌋ ⇒
∃sv ′, load κ m b o = ⌊sv ′⌋ ∧ sv ′ ≡ load_result κ sv .

This generalisation is also needed for theorem load_int64_split, as shown below:

∀ m b o sv , load Mint64 m b o = ⌊sv⌋ ⇒
∃ sv1 sv2, load Mint32 m b o = ⌊sv1⌋∧

load Mint32 m b (o+ 4) = ⌊sv2⌋∧
sv ≡ longofwords(sv1, sv2)

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.load_store_same

74 CHAPTER 5. A NOVEL MEMORY MODEL USING SYMBOLIC VALUES

Theorem load_int64_split states that loading a value using the Mint64 chunk (for
long-typed values, on 8 bytes) can be simulated by loading two adjacent Mint32 chunks
(int-typed values, on 4 bytes) and concatenating the result of those reads with the longofwords
operator. For the same reason as load_store_same (i.e. the decoding results in symbolic
values), we had to generalise the theorem to use our equivalence relation instead of plain
equality.

While the proof structure follows that of CompCert, the proof effort to port the whole
memory model is non-negligible because we have to reason modulo equivalence of symbolic
values.

5.3 Uninitialised Data As Indeterminate Values

We have included a constructor indet(l) in the constructors of symbolic values to represent
uninitialised values. We can think of those indeterminate values as unknown variables.
This construction has enabled us to reason about indeterminate values in Example 4.4.2.
In this section, we explain how these values are used in the memory model, in particular
how we make the connection between uninitialised data in C and indeterminate values in
our model.

The idea is to initialise the contents of newly allocated blocks with indet(l) values.
The location l is simply the address of the byte being initialised. In other words, when we
allocate a new block b with bounds [lo, hi [, all the byte values stored at address (b, i), for
all i ∈ [lo, hi [, are initialised with value indet(b, i). Using the location as an identifier of
indeterminate value is a convenient way to assign each uninitialised value an independent
variable (because block identifiers are never reused).

Note that giving names to indeterminate values models the assumption that two subse-
quent reads of the same uninitialised location result in the same arbitrary value, therefore
enabling reasoning on such values, as illustrated by Example 5.3.1.

Example 5.3.1 (Evaluation of symbolic values with uninitialised values). Let b be a block
corresponding to a freshly allocated variable x of type char. The contents of the cell at
location (b, 0) are initialised with indet(b, 0).

In CompCert, the C expression x - x evaluates to undef − undef, which reduces to
undef. As a result, the semantics of the C program containing this expression is stuck.

By contrast, in CompCertS, the C expression x - x is first transformed into the
symbolic value indet(b, 0) − indet(b, 0). This symbolic value evaluates the same as the
value int(0), because for any im:

Jindet(b, 0)− indet(b, 0)Kimcm = im(b, 0)− im(b, 0) = 0

As a result, this symbolic value normalises into int(0) and the semantics of the C program
does not get stuck on this expression.

5.4 Memory Allocation and Finite Memory

In CompCert, memory allocation always succeeds and returns a new block of the requested
size. This makes the implicit assumption that the memory is infinite. This assumption is
very convenient for the proof of correctness of CompCert because the memory consump-
tion needs not be accounted for in the proof. However, the actual hardware has (obviously)
a finite memory space, and a program that tries to use more memory than available will
crash. This has the unsettling consequence that a program can be safely compiled by

5.4. MEMORY ALLOCATION AND FINITE MEMORY 75

CompCert into an assembly program that exhausts memory, and even though the source
program has semantics and the semantic preservation applies, the compiled program may
crash.

In CompCertS, because the semantics of the normalisation is based on concrete mem-
ories that map blocks to a finite 32-bit address space, we model a finite memory. As a
result, our allocation function, palloc, is partial (hence the p in the name of the function)
and may fail (see Figure 5.1) when no more memory is available. More precisely, palloc
only succeeds when it can build a concrete memory for the resulting abstract memory. Be-
sides, palloc is designed in such a way that we can prove that all abstract memories satisfy
Property 4.4.1 (Sliding Blocks), needed for the well-behavedness of the normalisation (see
Section 4.4).

In this section, we first describe the algorithm used to decide whether an allocation
is possible, then we describe how we can derive from this partial allocation function that
all abstract memories satisfy Property 4.4.1, thus making this memory model fit into the
framework of the normalisation function exposed in Chapter 4.

5.4.1 Allocation Algorithm

The implementation of palloc is shown in Figure 5.6. Let us examine the code of the
different functions.

Fixpoint alloc_blocks (bl : list (block * Z)) (next_available: Z)

(cur : block -> Z) : (Z * (block -> Z)) :=

match bl with

| nil => (next_available, cur)

| (b,sz)::l => alloc_blocks l (align next_available 2MA + sz)

cur[b 7→ align next_available 2MA]
end.

Definition size_mem (bl : list (block * Z)) : Z :=

fst (alloc_blocks bl 2MA (λb => 0))

Definition can_alloc (m: mem) (sz: Z) (al: Z) : bool :=

let b := fresh_block m in

let size := size_mem ((b,sz)::blocks_of m) in

alignment_of_size sz <= al <= MA && size < Int.max_unsigned - 2MA.

Definition palloc (m: mem) (sz: Z) (al: Z) : option (mem * block) :=

if can_alloc m sz al

then ⌊ set_alignment (alloc m 0 sz) al ⌋
else ∅.

Figure 5.6: Definition of the new allocation operation

Compared to the existing alloc function, palloc takes an additional argument al

which specifies the alignment of the block, i.e. the number of trailing bits guaranteed to
be zeros. To decide whether it is possible to allocate the block, palloc is guarded by
the predicate can_alloc. If the predicate holds, the allocation succeeds, calls the existing
CompCert allocation operation alloc and records the alignment with the set_alignment
function. Otherwise, the allocation fails.

76 CHAPTER 5. A NOVEL MEMORY MODEL USING SYMBOLIC VALUES

The can_alloc predicate checks two properties, detailed in the following paragraphs.

Valid alignment constraint. The first property to be checked is that the requested
alignment is at least as large as the minimal alignment computed by alignment_of_size,
and not larger than a maximal alignment MA. The whole development is parametric in MA,
with the constraint that MA should be greater than or equal to 3 (the maximal alignment
requested by CompCert e.g. for long-typed variables). For programs which do not ex-
plicitly perform dynamic memory allocation, i.e. the CompCert alignment is the only one
required, the value of MA can be set to 3. For programs using malloc- or mmap-allocated
blocks, MA would typically be the alignment of a kernel page (i.e. 12 for pages of 4Ko).

Existence of a valid concrete memory. The second property to be checked is that
there exists a concrete memory valid for the abstract memory obtained after performing
the allocation of the new block. This property is checked in a constructive way, i.e. we run
an algorithm that attempts to construct such a concrete memory. The palloc function
will succeed when the algorithm succeeds, and fail otherwise. Using the size_mem function,
function can_alloc computes the size of the memory composed of the blocks of m plus
the new block to be allocated. The size of the memory is defined as the first fresh address
in a concrete memory where all blocks are maximally (2MA-byte) aligned. size_mem takes
as input a list of pairs (bi, szi) where szi is the size in bytes of block bi. The resulting size
size can be seen as an address such that all the blocks can be allocated below size at
addresses that are 2MA-byte aligned. The predicate can_alloc holds only if there are still
2MA reserved bytes above size. As we shall see, this reserved space will be necessary to
ensure Property 4.4.1.

The size of the memory is recursively computed by alloc_blocks. It allocates each
block at the next available (2MA-byte aligned) address and returns the next available ad-
dress and the constructed concrete memory. It takes as arguments two accumulators:
next_available and cur. The accumulator next_available is the next available address
and cur is the concrete memory currently being constructed. The initial values of these
accumulators are given in the size_mem function: the first available aligned address is 2MA,
and the initial concrete memory is λb.0, i.e. it maps every block to the address 0.

This notion of memory size will be used in the rest of this thesis as a way to give some
guarantees about the memory usage of programs. In particular, we force CompCertS

to reduce the memory usage of programs, and the final theorem of the compiler accounts
for this resource usage. It would be valid for CompCert to transform any program into
one that first exhausts memory (by allocating many blocks) and then perform a faithful
program compilation, because CompCert does not model out-of-memory behaviours. Our
model forbids such abnormal compilations because the memory usage is forced to decrease
with compilation. This is an improvement over the theorem of CompCert.

5.4.2 Allocation Properties

The specification of the normalisation is well-behaved only under the conditions of Prop-
erty 4.4.1 (see Section 4.4). It states that for any memory m, it is possible to rearrange
the blocks so that there always exist two concrete memories which only differ on a single
block. In other words, any block b can be found at least two valid concrete addresses. We
show in Theorem 5.4.1 that this is a property of the allocation algorithm presented above.

The memory type in the Coq development of CompCert is a dependent record, which
holds on one hand data structures that model the memory and on the other hand proof of

5.4. MEMORY ALLOCATION AND FINITE MEMORY 77

well-formedness properties on those data structure. In order to prove the Sliding Blocks
property for every memory, we add the property to the dependent record that represents
the memory state. This way, we have a proof that every constructed memory state satisfies
the property, because it becomes a typing constraint of the memory type. As we shall see,
this generates proof obligations for every function that returns a memory state: one must
prove that the resulting memory actually satisfies Property 4.4.1.

Theorem 5.4.1 (Sliding Blocks). Every memory m is such that for any block b, there
exist at least two valid concrete memories cm and cm′ that allocate b at different concrete
addresses while allocating all the other blocks at the same addresses. Formally,

∀ b, ∃cm, cm′,
∧

cm ⊢ m ∧ cm′ ⊢ m
cm(b) 6= cm′(b)
∀b′ 6= b, cm(b′) = cm ′(b′)

Proof. As discussed above, the property is part of the memory type. Hence, once a memory
m has been constructed, the proof of the claim of Theorem 5.4.1 is for free. The real proof
is disseminated in the proof obligations of each operation on memory states, i.e. the proof
that the initial memory state m0 satisfies the property, and the proof that starting from
a memory state m that satisfies the property, the memory obtained by store, free and
palloc still satisfy the property.

• For the initial memory m0, as there are no allocated blocks, all the concrete memories
are valid. Given a block b, we can therefore construct cm and cm ′ such that cm =
(λx.0)[b 7→ 1] and cm ′ = (λx.0)[b 7→ 2]. Hence, the property holds for m0.

• Suppose a memory m2 obtained after performing a store in some memory m1, for
which the property holds. Since m1 and m2 have the same set of valid concrete
memories, and the property doesn’t depend on the contents of the memory blocks
but only on their structure, the property holds.

• Suppose a memory m2 obtained after performing a free in some memory m1, for
which the property holds. Since every valid concrete memory of m1 is also a concrete
memory of m2, the property holds.

• Suppose that a memory m is obtained by the allocation function palloc. The al-
gorithm in palloc checks that all the blocks fit in memory by running the function
size_mem which constructs as witness a valid concrete memory cm and returns the
first fresh address addr. A key insight of the proof is that the order of the blocks
is not relevant for the success of palloc. The argument is illustrated by Figure 5.7
and goes as follows. If the alloc_blocks function followed a first fit allocation dis-

Permutation
Moving last block

cmb

cm ′
b

Figure 5.7: Construction of two concrete memories for Property 4.4.1

cipline, the alignment constraints could have an impact on the fragmentation of the
witness concrete memory and therefore palloc could succeed or fail depending on
the order the blocks are allocated. To prevent this, all the addresses computed by

78 CHAPTER 5. A NOVEL MEMORY MODEL USING SYMBOLIC VALUES

alloc_blocks are maximally aligned. Therefore, the success of the allocation is in-
dependent of the allocation order, we can therefore choose any permutation for the
order of the blocks. Hence, without loss of generality, for every block b, we can con-
struct cmb ⊢ m such that block b is allocated last. In Figure 5.7, we consider b to be
the light red block with horizontal lines.

Moreover, the test addr < Int.max_unsigned - 2MA ensures that the last block, say
b, can also be allocated at cmb(b) + 2MA. This constructs a second concrete memory
cm ′

b, as depicted in the last line of Figure 5.7: block b simply needs to be shifted by
2MA bytes from its position in cmb.

Hence the property holds for any memory state m and any block b.

5.5 Conclusion and Discussion

In this chapter, we have shown how to introduce the notion of symbolic values into the
memory model of CompCert, allowing to express the result of low-level operations on
pointers and on uninitialised data.

Loading from and storing to the memory. The load and store operations opera-
tions have been adapted to operate on symbolic values: symbolic values are read from and
written to memory. The accessed address may also be given as a symbolic value, in which
case it needs to be normalised into a genuine pointer before actually performing the access.
This results in a more relaxed semantics than that of CompCert because the locations to
be read from or written to may be computed with low-level operations, provided that the
computation yields a unique location at the time of dereference.

It would be interesting to investigate the case of a fully symbolic memory, in which the
inner structure is no longer a concrete map from block identifiers to contents but a symbolic
map where keys need not be concrete values. A fully symbolic memory state would be a
sequence of symbolic stores (i.e. a store at a symbolic address, that needs not evaluate to a
unique location), and we would extend our domain of symbolic values to include symbolic
loads in a given symbolic memory.

This would enable to give semantics to C programs that use hash of pointers as indices
in arrays. See for example function hash_ptr from the source code of the Linux kernel3,
which computes the hash of a pointer using bitwise shift operators. Now consider we use
this hash to index an array, as in table[hash_ptr(ptr,n)]. This hash depends on the
concrete bit-representation of the pointer ptr and is likely not to evaluate the same in
every valid concrete memory. Hence in our model with normalisations, the array access
will fail because the address can not be normalised to a unique location. By contrast, with
a fully symbolic memory, we would be able to perform the store symbolically and retrieve
the value stored symbolically. However, this would not suffice to give semantics to accesses
in hash maps where keys (i.e. hashes of pointers) need to be compared. Indeed, with a
deterministic semantics, we would still need to normalise the guard of a conditional branch
to a unique value to continue the execution of the program. Treating hash maps would
require a non-deterministic semantics, as noted by Kang et al. [Kan+15]. In the remainder
of this thesis, we do not investigate further this idea and keep our deterministic model with
normalisations before memory accesses.

3See https://github.com/torvalds/linux/blob/master/include/linux/hash.h#L71.

https://github.com/torvalds/linux/blob/master/include/linux/hash.h#L71

5.5. CONCLUSION AND DISCUSSION 79

Allocation in a finite memory. The alloc operation has been profoundly modified.
First, it initialises the contents of every allocated block with indet(l) values, making it
possible to reason about accesses to uninitialised data.

Second, it is now a partial function (hence the p in palloc). The palloc function
only succeeds when it can build a valid concrete memory for the abstract memory after
allocation. To do so, it runs an eager algorithm that allocates blocks at maximally aligned
addresses. As a consequence, blocks may be allocated in any order, which allows to prove
Theorem 5.4.1, which states that Property 4.4.1 (Sliding Blocks) holds for every abstract
memory m. This is a significant result because this was stated as an hypothesis for the
well-behavedness of the normalisation function in Section 4.4.

Third, it assigns alignment constraints to blocks. These alignment constraints are
not arbitrary but must be contained within a lower bound that depends on the size of
the considered block and a maximal alignment MA. This maximal alignment needs to be
larger than 3, which is the maximal alignment already considered in CompCert, even
though in CompCert the alignment is a property of an offset within a block, and in our
model it becomes a property of a block in a concrete memory. For programs that do not
perform dynamic allocation of memory, MA can be set to 3. For other programs that need
to express stronger alignment constraint, we set MA to 12 which is the alignment required
for pages of 4Ko (as returned by mmap for example). However, since all blocks have to be
maximally aligned for the success of palloc, some programs with many small variables
may fail to be given semantics because of a too large MA when a reasonable alternative
would be possible: our algorithm would behave in a too conservative fashion. To mitigate
this issue, a possibility would be to split the memory space into two distinct parts: the
stack and the heap. The stack only requires 8-byte alignment because it only contains
statically allocated blocks already present in CompCert. However, the heap may require
212-byte alignments. This solution is more relaxed than the existing one because only the
blocks in the heap would require 212-byte alignment, therefore wasting less memory space
than the existing solution.

As a result of this finite memory model, we are now able to account for memory con-
sumption. In particular, the definition of the size of the memory, i.e. the first unallocated
concrete address in a concrete memory in which all blocks are maximally aligned, will be
used in the rest of this thesis to prove that compiled programs use less memory than source
programs, in the sense of the size_mem function.

80 CHAPTER 5. A NOVEL MEMORY MODEL USING SYMBOLIC VALUES

Chapter 6

More Defined Semantics For

CompCert

In Chapter 5, we have shown how to adapt the memory model of CompCert using sym-
bolic values. This chapter lifts these modifications from the memory model to the semantics
of the different languages used in CompCert, including CompCert C, the assembly lan-
guage for x86 and all the intermediate languages used during the compilation.

The semantics of these languages are of capital importance, especially those of Comp-

Cert C and assembly, because they are part of the trusted computing base of the whole
compiler. The semantic preservation theorem is stated with respect to these semantics. In
other words, a bug in the semantics may invalidate the correctness of the whole compiler
because it does not accurately represent the real world C and assembly languages. We
therefore put a lot of care into this adaptation of the semantics.

This chapter is organised as follows. First, we explain in Section 6.1 how we adapt
the semantics of all the intermediate languages, and identify patterns that need to be
adapted similarly in several languages. Then, in Section 6.2 we perform a cross-validation
of CompCert’s semantics and ours, whose aim is to strengthen our confidence both in
our novel semantics and in CompCert’s. This results in the discovery of bugs both in
CompCert and in preliminary versions of our semantics. The C interpreter that ships
with CompCert is an executable semantics of C, that needs an executable normalisation:
Section 6.3 explains how the normalisation is implemented with the help of a SMT solver.
Finally, Section 6.4 reports on the experimental evaluation of this executable semantics
and details several low-level idioms that we are now able to give semantics to.

6.1 Updating The Semantics Of CompCert’s Languages

This section presents the modifications that we apply to the semantics of all intermediate
languages. We will see that the changes are relatively small and they are mostly the same
for every language.

Symbolic values instead of values. The first obvious change is to use symbolic values
(sval) everywhere values (val) are used in CompCert. For example, the semantics of
the Clight language uses an environment for temporaries called temp_env and defined as
PTree.t val, where PTree.t A is the type of maps indexed by positive numbers (the
type positive in Coq represents bitvectors of arbitrary length) and whose content is of
type A. We adapt this definition to use symbolic values instead of values, i.e. we redefine

81

82 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

temp_env as PTree.t sval.

Evaluation of expressions into symbolic values. The evaluation of expressions in
the front-end of CompCert is typically expressed by a relation between expressions and
CompCert values. This predicate is also parametrised by a memory state and an en-
vironment whose type we note E here (it varies accross different languages). For exam-
ple, in C♯minor, the evaluation of expressions (of type expr) is formalised by a predi-
cate eval_expr : mem -> E -> expr -> val -> Prop . In our CompCertS seman-
tics for C♯minor, the predicate associates symbolic values to expressions, i.e. we have
eval_expr : mem -> E -> expr -> sval -> Prop . The evaluation of expressions is
mostly a translation to symbolic values, and no computation happens. For example, the
following shows the rules for the addition expression. Rule Eval-Add shows the rule as it
is in CompCert, while Rule Eval-Add-Symb shows how we adapt the rule. The main
difference, apart from the fact that symbolic values are used instead of values, is that the
Val.add function actually computes on values, while the OpAdd symbolic operator merely
constructs a symbolic value.

Eval-Add

eval_expr m E e1 v1 eval_expr m E e2 v2

eval_expr m E (e1 + e2) (Val.add v1 v2)

Eval-Add-Symb

eval_expr m E e1 sv1 eval_expr m E e2 sv2

eval_expr m E (e1 + e2) (sv1 OpAdd sv2)

C♯minor expressions also include Eload expressions, whose purpose is to fetch some con-
tent from the memory. We show below the rules for the evaluation of Eload expressions in
CompCert (Rule Eval-Eload) and in CompCertS (Rule Eval-Eload-Symb). Here,
there is no visible difference in the rules, however keep in mind that the loadv operation
involves a normalisation in our setting (see Section 5.1).

Eval-Eload

eval_expr m E eaddr vaddr loadv κ m vaddr = ⌊v⌋

eval_expr m E (Eload κ eaddr) v

Eval-Eload-Symb

eval_expr m E eaddr svaddr loadv κ m svaddr = ⌊sv⌋

eval_expr m E (Eload κ eaddr) sv

Functions expecting pointers. Some functions or predicates expect locations as pa-
rameters, split between a block identifier and an offset. For instance, in the semantics of
C and Clight, the deref_loc predicate has the following type signature:

deref_loc: type -> mem -> block -> int -> val -> Prop.

A derivation of deref_loc ty m b o v can be understood as follows: reading a value of
type ty in memory m at location (b, o) results in value v. We adapt the type signature to
symbolic values:

deref_loc: type -> mem -> sval -> sval -> Prop.

http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Csharpminor.html#eval_expr
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Csharpminor.html#eval_expr
http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Clight.html#deref_loc
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Clight.html#deref_loc

6.1. UPDATING THE SEMANTICS OF COMPCERT’S LANGUAGES 83

The various constructors of deref_loc are adapted to symbolic values but the logic of this
predicate from CompCert is preserved. We recall the different cases here, and in Fig-
ure 6.1. Depending on the C type, the access_mode function dictates whether the access
is to be performed by value, by reference or by copy. If the type is a scalar type, the access
mode is by value and the value is directly fetched from the memory (see Rule Deref-

Loc-Value). If the type is an array type or a function pointer type, the access mode is
by reference and the deref_loc predicate simply relates the symbolic value representing
the location with itself (Rule Deref-Loc-Copy). If the type is a structure or union type,
the access mode is by copy, and the deref_loc predicate is similar to the case of reference
accesses.

Deref-Loc-Value

access_mode(ty) = By_value κ
loadv κ m svptr = ⌊sv⌋

deref_loc ty m svptr sv

Deref-Loc-Copy

access_mode(ty) 6= By_value κ

deref_loc ty m svptr svptr

Assign-Loc-Value

access_mode(ty) = By_value κ
storev κ m svdst sv = ⌊m′⌋

assign_loc ty m svdst sv m′

Assign-Loc-Copy

access_mode(ty) = By_copy

normalise(m, sv src) = ptr(bsrc , isrc)
loadbytes m bsrc isrc (sizeof(ty)) = ⌊mvals⌋

normalise(m, svdst) = ptr(bdst , idst)
storebytes m bdst idst mvals = ⌊m′⌋

assign_loc ty m svdst sv src m′

Figure 6.1: Memory access predicates

The symmetric predicate, assign_loc, relates an input memory state and an output
memory state where a store has taken place. The original predicate has the following type
signature:

assign_loc: type -> mem -> block -> int -> val -> mem -> Prop.

A derivation of assign_loc ty m b o v m′ can be understood as follows: starting from
a memory state m, performing a store of type ty at location (b, o) of value v yields the
memory state m′. We adapt the type signature to symbolic values in a similar way as we
did for deref_loc:

assign_loc: type -> mem -> sval -> sval -> mem -> Prop.

The predicate distinguishes two cases depending on access_mode(ty). The cases are shown
in Figure 6.1. If the access is to be performed by value (i.e. the type ty is a scalar type), then
the predicate simply models the effect of a storev operation (Rule Assign-Loc-Value).
If the access is to be performed by copy, a byte-wise copy is performed, using the loadbytes
and storebytes operations of the memory model (Rule Assign-Loc-Copy).

Memory accesses. Normalisations must be introduced before memory accesses, as stated
in Section 5.1. However, most memory accesses are performed through the use of the
loadv and storev operations, which already include the normalisations. Hence, we need
not worry about those in the semantics of languages.

http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Clight.html#assign_loc
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Clight.html#assign_loc

84 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

Conditional branches. The semantics of if (..) { .. } else { .. } statements
consists of two rules in the semantics of all languages. The rules shown below are not
tied to a specific language but are representative of the constructs present in most interme-
diate languages of CompCert. We assume a semantic state made only of the instruction
to be executed and a memory state, written 〈S,m〉 for the state where S is the instruction
to execute and m is the current memory state. Languages typically have a more complex
semantic state, however only the parts shown here are common to all languages. Simi-
larly, eval_expr evaluates expressions in the considered language and is different in every
language. In CompCert’s semantics, the guard is first evaluated into an integer. If the
integer is 0, the semantics is that of the else block (rule If-false); otherwise it is that of
the then block (rule If-true).

If-true

eval_expr m E b = int(i) i 6= 0

〈if b then s1 else s2, m〉 → 〈s1, m〉

If-false

eval_expr m E b = int(0)

〈if b then s1 else s2, m〉 → 〈s2, m〉

In our model, because C expressions evaluate to symbolic values, the guards of con-
ditional statements are evaluated to symbolic values, and a normalisation is needed to
obtain an integer which dictates which branch of the conditionnal is executed (see rules
If-true-symb and If-false-symb).

If-true-symb

eval_expr m E b = sv normalise m sv = int(i) i 6= 0

〈if b then s1 else s2, m〉 → 〈s1, m〉

If-false-symb

eval_expr m E b = sv normalise m sv = int(0)

〈if b then s1 else s2, m〉 → 〈s2, m〉

Lazy operators. In the semantics of CompCert C, the input language of CompCert,
more constructs require normalisations in their semantics. For example, the sequential
AND && and sequential OR || operators and the ternary condition a ? b : c need nor-
malisations to encode the lazy behaviour of these operators. While it may seem counter-
intuitive that more work is needed to encode laziness, the normalisation of the left-hand-side
is needed so that the right-hand-side is evaluated (with its potential side effects) only if
necessary – hence the laziness. In particular, the right-hand-side is evaluated only when
the left-hand-side is true (for &&) or false (for ||).

Return value of programs. Finally, in all languages, the state of a program at the
end of its execution is represented as a so-called return state containing, among others, a
return value (an integer) and a memory state. We change the type of return values into
symbolic values. Still, to be compatible with all the formal results about formal semantics
and simulation arguments, we require that the symbolic value used as return value of
programs be normalisable into an integer (because the return value of a program is always
an integer).

This sums up all the places where normalisations had to be introduced. An important
thing we have realised through the process of transforming semantics is that the normalisa-
tions must be introduced at the same places in the different semantics so that the semantics
stay consistent, thus the proofs can be easily adapted.

6.2. OUR SEMANTICS IS A REFINEMENT OF COMPCERT’S 85

One way to think about these extended semantics is the following: we allow some
kind of non-deterministic reasoning as long as it doesn’t affect the control flow or memory
accesses. At those points, we demand that the non-determinism is resolved, i.e. all paths
converge, i.e. the result of evaluating a symbolic value is independent from the precise
layout of the memory.

6.2 Our Semantics Is A Refinement Of CompCert’s

The semantics of the CompCert C language is part of the trusted computing base of
the compiler. Any modelling error can be responsible for a buggy, though formally ver-
ified, compiler. It is therefore crucial to ensure that the semantics is accurate. To de-
tect a glitch in the semantics, a first approach consists in running tests and verifying
that the CompCert C interpreter computes the expected value. With this respect, the
CompCert C semantics successfully runs hundreds of random test programs generated
by CSmith [Yan+11]. Another indirect but original approach consists in relating formally
different semantics for the same language. For instance, when designing the Clight se-
mantics, several equivalences between alternate semantics were proved to validate this
semantics [Bla07]. Our new memory model with symbolic values is a new and interesting
opportunity to apply this methodology. We will see that, since our model is built on a no-
tion of concrete memory, which is lower-level, we are able to detect incorrect assumptions
in CompCert’s semantics. In the following, we first describe the cross-validation of the
Clight semantics that we performed, then we explain the errors that we discovered during
the process of doing the proof.

6.2.1 Forward simulation between CompCert Clight and CompCertS

Clight

The cross-validation proof that we perform is a forward simulation between CompCert

Clight (CClight) and CompCertS Clight (SClight). That is, whenever a program has
defined semantics in CClight, it will have the same semantics in SClight. We prove a
lock-step simulation, as illustrated by Figure 6.2. Assuming a relation R, we must prove
that starting from two matching states σ1 and σ2 (in the sense of R), if a step is possible
from σ1 to σ′

1 in CClight, then it is possible to take a step from σ2 to σ′
2 in SClight, such

that σ′
1 and σ′

2 are matching states (in the sense of R).

∀ σ1 ∈ Σ1, σ2 ∈ Σ2,

σ1 R σ2 ⇒ σ1
τ
−→1 σ

′
1 ⇒

∃σ′
2, σ2

τ
−→2 σ

′
2 ∧ σ′

1 R σ′
2

CClight SClight

σ1 σ2
R

σ′
1

τ

σ′
2

R

τ

Figure 6.2: Simulation for the cross-validation of the semantics of Clight

Of course, since the memory in SClight is finite and that in CClight is infinite, this
simulation will only hold when the CClight program does not exhaust the memory space.
Thus, we perform the proof under the hypothesis that our allocation function never fails.
This is a reasonable assumption: we expect our semantics to be less defined than that of
CompCert in those out-of-memory situations.

86 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

To prove the simulation, we need to define an invariant match_states (represented as
R in Figure 6.2) that relates CClight and SClight program states and that is preserved at
every step of the semantics. This invariant is built on top of a relation match_val that
relates CompCert values and symbolic values. We show in Example 6.2.1 a C program
that we execute both with CClight and SClight semantics. We will then discuss our choice
for the match_val relation.

Example 6.2.1. Consider the following C program: int i; return (&i != 0) . It tests
whether a valid pointer is different from NULL. We are interested in the return value of this
program. We assume that variable i is allocated in block b. In CClight, the C expression
is transformed into ptr(b, 0)! =int(0), which in turn evaluates to true, i.e. int(1). In
SClight, we merely build the symbolic value ptr(b, 0)! =int(0).

A natural candidate for match_val v sv is that v must be the normalisation of sv ,

i.e. sv
m
−−։ v. However, this requires parameterizing match_val with a memory state

and proving that all memory operations preserve match_val. As a matter of fact, the
free operation does not preserve the normalisation. For example, consider m the memory
state of the program before returning its result. The symbolic value ptr(b, 0)! = int(0)
normalises to int(1) in m. However, if we call m′ the memory state obtained after freeing
block b from memory m, then the same symbolic value does not normalise in m′ because
ptr(b, 0) is no longer valid. This is in accordance with the C standard1 but a loss of
completeness with respect to the existing CompCert semantics.

For the sake of the proof, we adapt the semantics of SClight to avoid this situation.
The solution is to normalise symbolic values in a more eager manner i.e. before any write
into memory or into a register, and only keep symbolic values when the normalisation fails.
This is performed by the function simplify:

Definition 6.2.1. simplify m sv := if normalise m sv = undef

then sv else normalise m sv.

Back to our example, after introducing the simplifications, the match_val relation
needs to relate int(1) and the simplification of ptr(b, i)! = int(0), i.e. int(1). We define
match_val as follows:

Definition 6.2.2. match_val v sv := ∀ cm im, JvKimcm ≤ JsvKimcm .

We use ≤ instead of equality to account for the fact that SClight gives semantics to
more programs than CClight, i.e. undef in CClight can be matched with any symbolic
value in SClight.

A large part of the simulation proof is the preservation of C operators. That is, in a
memory m, for any operation op that produces a value v in CClight, the same operation
will produce a symbolic value sv , such that match_val v (normalise m sv). Indeed,
if CClight produced a value v 6= undef, then we must normalise it into the same value.
This is stated formally in Lemma 6.2.1. The sem_binop function gives the CompCert

semantics of a binary operator op applied to values v1 of type t1 and v2 of type t2. It
is parameterised by a function valid m that takes a location (b, i) and returns true if
and only if the location (b, i) is valid in memory m. This is needed for example for the
semantics of pointer comparisons (see Figure 2.5). The function sem_binop_sval mimics
the signature of sem_binop except that symbolic values replace values and it does not
need information about the validity of pointers when constructing the symbolic values.

1[ISO11][§6.2.4.2]: The value of a pointer becomes indeterminate when the object it points to (or just
past) reaches the end of its lifetime.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Clighteq.html#try_norm
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Clighteq.html#match_val

6.2. OUR SEMANTICS IS A REFINEMENT OF COMPCERT’S 87

Lemma 6.2.1 (expr_binop_preserved).

∀ op m v1 sv1 v2 sv2 t1 t2 v, match_val v1 sv1 ⇒ match_val v2 sv2 ⇒
sem_binop op v1 t1 v2 t2 (valid m) = ⌊v⌋ ⇒
∃sv , sem_binop_sval op sv1 t1 sv2 t2 = ⌊sv⌋ ∧ match_val v (simplify m sv).

This can be pictured as a diagram close to simulation diagrams, as in Figure 6.3. Plain
lines represent hypotheses, and dashed lines represent conclusions. The match_val relation
is depicted by R. The proof of this lemma (and its sibling about unary operators) is a
copious case analysis on the considered operator op. The existence of sv as the result of
sem_binop_sval is only dependent on the types t1 and t2, and not on the actual symbolic
values. Then, the semantics of every operator follow a similar structure: depending on
the type of the operands, we perform different computations on the inputs (symbolic)
values. For example, the semantics of the addition operator distinguishes the following
cases: addition of an integer to a pointer, addition of a long to a pointer or addition of
two scalars of the same type (i.e. two integers, two longs, two floats, . . .). Our semantics
follows the same structure, which makes it easy to compare the two semantics. Then, yet
another case analysis on v1 and v2 is necessary to relate the result v in CompCert and
the symbolic value sv that we construct.

v1, v2 sv1, sv2
R

v

sem_binop

sv
R

sem_binop

Figure 6.3: expr_binop_preserved as a simulation diagram.

6.2.2 An opportunity to discover bugs

The high-level intuition of why Lemma 6.2.1 is true is that whenever CompCert succeeds
in evaluating an expression, we should succeed as well. Situations where this is not the
case are likely bugs. During the proof, we encountered several such issues.

First, we made some silly mistakes in the evaluation of symbolic values: a particular
cast operator was mapped to the wrong syntactic constructor. While this is a benign
error and easy to fix (just map the correct syntact constructor), this shows how useful this
cross-validation is: it enables us to detect errors.

Pointers one-past-the-end. This is also during the proof that we have identified the
issue of weakly valid pointers and therefore have excluded 232 − 1 from the address space
(see Section 4.3). Indeed, in early versions of our development, we did not think of pointers
one-past-the-end. As a consequence, such pointers could be assigned the concrete address
0, resulting in inconsistent behaviour with respect to CompCert. Consider for example
Lemma 6.2.1 in the case where the operator op is the comparison operator < (less than)
and v1 and v2 are pointers. Consider the particular case where v1 = ptr(b, o1) and v2 =
ptr(b, o2), i.e. both pointers are in the same block. This particular case of Lemma 6.2.1 is
shown in Lemma 6.2.2.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Clighteq.html#eval_binary

88 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

Lemma 6.2.2 (expr_binop_preserved (particular case)).

∀ m b o1 o2 sv1 sv2, match_val (ptr(b, o1)) sv1 ⇒ match_val (ptr(b, o2)) sv2 ⇒
weakly_valid(m, b, o1)⇒ weakly_valid(m, b, o2)⇒
match_val (of_bool (o1 < o2)) (simplify m (sv1 (OpCmp Lt) sv2))

The of_bool function takes a boolean b and returns int(1) if b is true and int(0) if
b is false. The < symbol models the addition of 32-bit integers, i.e. it may overflow. The
symbolic operator OpCmp Lt models the < comparison on symbolic values. We write it with
its full name instead of the < symbol to avoid confusion with the comparison on integers.
We must prove that (sv1 (OpCmp Lt) sv2) normalises in m into of_bool (o1 < o2), which
can be rewritten conveniently into a property about machine integer arithmetic:

∀ cm im, Jof_bool (o1 < o2)K
im
cm = J(sv1 (OpCmp Lt) sv2)K

im
cm

⇔
∀ cm im, of_bool (o1 < o2) = of_bool (Jsv1K

im
cm < Jsv2K

im
cm)

⇔
∀ cm im, (o1 < o2) = (cm(b) + o1 < cm(b) + o2)

This last property holds if the computations cm(b) + oi, ∀ i ∈ {1, 2} do not overflow, i.e.
0 ≤ cm(b) + oi ≤ 232 − 1. To prove the theorem, we need that every weakly valid location
verifies this property, i.e. :

∀ b o, weakly_valid(m, b, o)⇒ 0 ≤ cm(b) + o ≤ 232 − 1

Or equivalently, using only the notion of valid locations:

∀ b o, valid(m, b, o)⇒ 0 ≤ cm(b) + o < 232 − 1

Hence, Definition 4.3.3 (valid concrete memories) requires that valid locations be mapped
at addresses strictly lower than 232 − 1.

Comparison with NULL. After these relatively easy fixes, we have found an interesting
discrepancy with the semantics of CompCert C (version 2.4). The issue is related to
the comparison of pointers with the NULL pointer. In CompCert, the NULL pointer is
represented by the integer 0. The semantics therefore assumes that a location can never
be equal to the NULL pointer. In CompCertS, a location (b, i) can evaluate to 0 if the
computation cm(b) + i overflows and wraps around. This is a glitch in the CompCert

semantics that is illustrated by the code snippet of Figure 6.4. This program initialises
a pointer p to the address of the variable i. In the loop, p is incremented until it equals
0 in which case the loop exits and the program returns 1. The executable semantics of
CompCert C returns 0 because p==0 is always false whatever the value of p. However,
when running the compiled program, the pointer is a mere integer, the integer eventually
overflows; wraps around and becomes 0. Hence, the test holds and the program returns
1. One might wonder how the CompCert semantic preservation can hold in the presence
of such a contradiction. Actually, the pointers are kept logical all the way through to the
assembly level, and the comparison with the NULL pointer is treated identically during all
the compilation process, thus even the assembly program in CompCert returns 0. The
inconsistency only appears when the assembly program is compiled into binary and run on
a physical machine.

The fix consists in defining the semantics of the comparison with the NULL pointer only
if the pointer is weakly valid. This causes the program to have undefined semantics at

6.3. AN EXECUTABLE SEMANTICS FOR C 89

int main(){

int i=0, *p = &i;

for(i=0; i < INT_MAX; i++) {

if (p++ == 0) {

return 1;

}

}

return 0;

}

Figure 6.4: A NULL pointer comparison glitch

the C level as soon as we increment the pointer beyond its bounds. The issue has been
acknowledged and is fixed since CompCert 2.5.

After adjusting both memory models, we are able to prove that operators of CClight
are refined by SClight operators. Using this result, and under the hypothesis that the
program does not run out of memory, we prove a forward simulation between CClight and
SClight, thus cross-validating our formal semantics with that of CompCert.

6.3 An Executable Semantics For C

As we mentioned in Section 2.5.1, CompCert ships with an executable interpreter for
CompCert C. The interpreter is a valuable tool to test whether a given C program has
defined semantics or not. In Section 6.1, we explained that the semantics of all the lan-
guages in CompCertS, including C, rely on normalisations in a number of semantic rules.
Hence, in order to get an executable interpreter, we need to provide an executable imple-
mentation of the normalisation.

The problem is the following. Given a symbolic value sv and an abstract memory m,
find a value v such that v and sv evaluate identically in all concrete memories that are
valid for m.

Given a memory m, there are finitely many valid concrete memories cm. It is thus
decidable to compute a sound and complete normalisation and the naive algorithm consists
in enumerating over the valid concrete memories and checking that the symbolic values
always evaluate to the same values. Yet, this is not tractable.

We show that the normalisation can be thought of as a decision problem in the logic
of bitvectors. A bitvector of size n is the logic counterpart of a machine integer with n
bits. This logic is therefore a perfect match for reasoning over machine integers. This
decision problem will then be solved by a SMT (Satisfiability Modulo Theory) solver (e.g.
Z3 [MB08], CVC4 [Bar+11]).

First, we briefly recall what an SMT solver is and what problems it solves. Then, we ax-
iomatise the memory and the notion of valid concrete memory in the SMT language. Then,
we show how to encode the normalisation problem into a SMT problem. We show how to
interpret the response sat or unsat from the solver. Finally, we present an optimisation
of this SMT encoding that makes this solution tractable.

90 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

6.3.1 SMT solvers

Satisfiability Modulo Theories (SMT) is a generalisation of the boolean Satisfiability (SAT)
problem with domain-specific theories. While SAT formulas are propositional logic formu-
las, over boolean variables, SMT formulas are first order logic formulas, enriched with
theories i.e. the variables are not only boolean but can be integers, arrays, bitvectors, et
cætera.

The input of a SMT solver is a set of variables, e.g. bitvectors in our case, together
with constraints or assertions about those variables, expressed as first-order logic formulas.
The goal of the solver is to find a model for this problem. A model is a valuation, i.e. an
assignment of actual values to variables, such that all the constraints are satisfied. The
output of a SMT solver is either unsat (for unsatisfiable), meaning that there exists no
valuation that satisfies the given problem; sat(M), meaning that M is a model of the input
problem; or unknown when the SMT solver is unable to reach a conclusive answer.

The SMT-LIB [BFT15] initiative provides a unified input language for stating SMT
problems and a library of benchmarks. Using a unified language enables to run multiple
SMT solvers on one given problem without having to rewrite the problem in a different
format for each SMT solver used as a backend.

In the following, we show how we encode the problem of finding a normalisation into
an instance of SMT problem, using the theory of bitvectors. We will use Z3 as SMT solver,
however using an alternative solver should not affect our results in any way.

6.3.2 Axiomatising the memory

To encode a memory m in our logical framework, we define one logical variable for each
block in m. The variable associated with each block is both its identifier and its concrete
address. This works because we constrain different blocks to be mapped to different logical
variables. We then define a logical function size mapping each block to its size and a logical
function alignment mapping each block to its alignment, i.e. the number of trailing bits
that must be zero. Next, we axiomatise the valid concrete memory relation by directly
translating Definition 4.3.3 into first-order logic formulae.

Example 6.3.1. Consider a memory m restricted to two blocks b1 and b2, with b1 of
bounds [0, 4[and alignment 2 bits and b2 of bounds [0, 8[and alignment 3 bits. The
axiomatisation of m is given by the following formulae.

Disjoint blocks: distinct(b1, b2)

Block sizes: size(b) =

4 if b = b1
8 if b = b2
0 otherwise

Block alignments: alignment(b) =

2 if b = b1
3 if b = b2
0 otherwise

No overlap: ∀b, b′, o, o′.
∧

b 6= b′

o < size(b)
o′ < size(b′)

⇒ b+ o 6= b′ + o′

Address space: ∀b, o.o < size(b)⇒ 0 < b+ o < Int.max_unsigned− 1

Alignment : ∀b, b mod 2alignment(b) = 0

6.3.3 Translating symbolic values into logical expressions

We process the symbolic value sv to be normalised into a logical symbolic value sv∗.

6.3. AN EXECUTABLE SEMANTICS FOR C 91

We can safely assume that the symbolic value sv does not contain the undef value at
any depth, i.e. the undef value does not appear as an operand of any symbolic operator
inside sv . If it did, the whole symbolic value sv would evaluate to undef, and undef would
therefore be the normalisation of sv . In other words, we check that sv does not contain
undef before even calling the SMT solver.

We replace pointers ptr(b, i) by the bitvector addition of the variable associated with
block b and the bitvector representing the integer i.

Indeterminate values indet(l) are modelled by fresh variables; the same variable is
used for every occurence of the same label, modelling the intuition of an arbitrary fixed
value that we introduced in Chapter 4.

Other values (32-bit and 64-bit integers, 32-bit and 64-bit floating-point numbers) are
mapped to their representation as bit-vectors. Unary and binary operations on symbolic
values are mapped to their equivalent operations in terms of bitvectors.

6.3.4 Normalisation as SMT queries

We now show how a SMT solver can be used to compute normalisations. As we will see,
the queries are quite different depending on whether we expect the normalisation to result
in a pointer or an integer value. Indeed, like the specification of the normalisation in
earlier versions of this development, the implementation of the normalisation function is
parametrised by its expected return type. Since we have seen (see Theorem 4.4.1) that
a symbolic value may normalise into either an integer or a pointer but never both, it is
sound for the ultimate (typeless) implementation to try both types and keep the one that
succeeds, if any.

The reasoning behind the algorithm of the normalisation is the following. Given a
symbolic value sv and a memory m, our goal is to find a value v which evaluates the same
as sv in every valid concrete memory for m. We first find a candidate value v0 such that
there is some cm0 ⊢ m such that JsvKimcm0

= Jv0K
im
cm0

. Then, we check that this v0 evaluates
like sv in every valid concrete memory, or equivalently that there exists no valid concrete
memory in which sv evaluates to a value v 6= v0.

In the following we describe algorithms for the normalisation. These algorithms include
calls to SMT solvers via the function SMT . This function returns one of unsat meaning
the problem is unsatisfiable or sat(M), meaning the problem is satisfiable with model M .
A model is a valuation {k1 7→ v1; . . . ; kn 7→ vn} that associates values vi to variables ki.

6.3.4.1 Normalising into an integer.

The algorithm to normalise sv∗ into an integer is described in Algorithm 2. First, we
generate the SMT query: sv∗ = i, where i is a fresh logical variable. Suppose the formula
is satisfiable for a value v for logical variable i. This means that there exists a valid concrete
memory such that sv is evaluated into the value v. We now need to check that no valid
concrete memory evaluates sv to a different value. We generate a second SMT query:
sv∗ = i ∧ i 6= v. This query is expected to be unsatisfiable. If it is indeed unsatisfiable,
then we return v as the normalisation of sv , because it means that every valid concrete
memory yields this value v. On the other hand, if it is satisfiable, then there exists a
different result with a different valid concrete memory, meaning that the result depends
non-deterministically on the concrete memory. In this case the normalised value is undef.

Example 6.3.2. Consider the memory m introduced in Example 6.3.1. Consider the
symbolic value sv = ptr(b2, 0)&0x00000007. This symbolic value clears all bits but the

92 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

Algorithm 2: Normalisation of sv into an integer
if SMT (sv∗ = i) = sat({i 7→ v}) then

if SMT (sv∗ 6= v) = unsat then
return int(v)

end if
end if
return undef

three least significant from pointer ptr(b2, 0). It is expected to normalise to int(0) because
alignment constraints ensure that the last three bits are 0.

We generate the SMT query varb2&0x00000007 = i. The SMT solver finds a model
where i 7→ 0 with a witness concrete memory cm0 where e.g. cm0(b2) = 8. In that concrete
memory, the symbolic value indeed evaluates to 8&7 = 0. We now check that there is no
other integer solution by submitting the following query: varb2&0x00000007 = i ∧ i 6= 0.
The SMT solver answers unsat, indicating that no valid concrete memory yields an integer
different from 0. Hence sv normalises into int(0).

Consider now the symbolic value sv = ptr(b1, 0) < ptr(b2, 0). We transform sv to get
sv∗ = var b1 < var b2 . The first SMT query sv∗ = i can be satisfied with e.g. i = 0, meaning
that there is a valid concrete memory cm where b1 is allocated after b2, e.g. cm(b1) = 16
and cm(b2) = 8. We then submit the second SMT query: sv∗ = i∧i 6= 0. It is satisfied with
i = 1 by a concrete memory where e.g. cm(b1) = 4 and cm(b2) = 8. Hence, sv normalises
into undef, since sv has no sound normalisation in m.

6.3.4.2 Normalising into a pointer.

Getting the normalisation of a pointer value is more complicated because there are several
ways of decomposing an integer into a location made of a base and an offset. Algorithm 3
explains how we proceed. Theorem 4.4.1 tells us that only one such decomposition will
be valid for all concrete memories. Moreover, by Lemma 4.4.1 we know that a symbolic
value sv can only have ptr(b, o) as normalisation if b appears syntactically in sv. As a
result, given fresh logical variables b and o, we encode that b must be a block that appears
in sv by asserting the logical constraint b ∈ B, where B is initially the set of blocks that
appear in sv . We generate the SMT query sv∗ = cm(b) + o. Suppose we get a model such
that b 7→ b′ and o 7→ o′. The following query checks whether there can be another pointer
denoted by the same symbolic value in another valid concrete memory: sv∗ 6= cm(b′) + o′.
If the query is unsatisfiable, then the normalisation returns ptr(b′, o′). Otherwise, if the
query is still satisfiable, we know that ptr(b′, o′) is not a sound normalisation of sv . We can
therefore discard block b′ from the candidates for the normalisation of sv (i.e. we remove
it from the set B) and we iterate the search. This process eventually terminates because
there are finitely many blocks b that appears syntactically in sv .

Example 6.3.3. Consider again the memory m of Example 6.3.1 and the symbolic value
sv = ptr(b1, 1) − ptr(b2, 2) + ptr(b2, 4) + indet(b3, 4)& int(0x0). We process sv into a
logical expression sv∗ by replacing indet(b3, 4) by the fresh variable x3,4:

sv∗ = cm(b1) + 1− cm(b2)− 2 + cm(b2) + 4 + x3,4& 0x0

Notice that the two occurrences of cm(b2) cancel each other out, and that we have ∀x, x& 0x0 =
0. The expression sv∗ is therefore equivalent to cm(b1) + 3. This simplification is not ac-
tually made in the implementation and is merely present here for the sake of clarity.

6.3. AN EXECUTABLE SEMANTICS FOR C 93

Algorithm 3: Normalisation of sv into a pointer
B ← {b | b ∈ sv}
while true do

if SMT (sv∗ = b+ o ∧ b ∈ B) = sat{b 7→ b′, o 7→ o′} then
if SMT (sv∗ 6= b′ + o′) = unsat then

return ptr(b′, o′)
else
B ← B\{b′}

end if
else

return undef

end if
end while
return undef

The SMT query we need to solve is: cm(b1)+3 = cm(b)+o. Although it seems silly, the
SMT solver may generate a valid concrete memory cm where cm(b1) = 4 and cm(b2) = 8
and propose the solution b∗ = b2 and o∗ = −1, which satisfies the equation we gave as input.
However, the query sv∗ 6= cm(b∗) + o∗ is indeed satisfiable, for example with a concrete
memory cm ′ identical to cm except that cm(b2) = 16.

We begin the whole process again, with the extra constraint that b 6= b2. A more natural
solution is b∗ = b1 and o∗ = 3. It turns out this is the only solution to this equation, as we
can see by submitting this second query to the SMT solver, cm(b1)+3 6= cm(b1)+3, which
is obviously unsatisfiable. Therefore the symbolic value sv is normalised into the location
ptr(b1, 3).

6.3.5 Relaxation and Optimisation of the SMT Encoding

The encoding of the memory that we presented is linear in the number of allocated blocks,
as there is one definition for the size function and one for the alignment function for every
block. Thus, as the memory gets bigger, the normalisation would get slower. In practice,
we observe that the size of the memory has a dramatic (negative) impact on SMT solvers.
To tackle the problem, we propose a relaxation of the SMT query that is independent
of the number of allocated blocks and only depends on the size of the symbolic value to
be normalised. A key observation is that a symbolic value can only be normalised if the
corresponding SMT query has a unique solution. As a result, it is always sound to relax
the SMT query and generate a weaker one (i.e. with potentially more solutions) provided
the initial formula is satisfiable. Indeed, if there are more solutions, the normalisation will
fail – this is always sound.

In our relaxation, we do not fully axiomatise the memory but only specify the bounds
and alignments of the memory blocks B that appear syntactically in the symbolic value to
be normalised. When normalising into a pointer, we also state explicitly in the SMT query
that the normalisation, if it exists, should be a location (b, i) such that b ∈ B.

This relaxation is always sound, as we discussed before, for two reasons: 1) there always
exists a valid concrete memory, thanks to our allocation algorithm; 2) we generate a weaker
SMT query, with potentially more solutions. This relaxation is however not complete. It
might miss a normalisation in pathological cases where blocks b ∈ B are constrained not
to appear at certain locations, because of other blocks b′ /∈ B. This is illustrated by

94 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

Example 6.3.4.

Example 6.3.4. Consider a memory with 2 blocks b1 of size 8 and b2 of size 231. Figure 6.5
shows the possible addresses of block b2. Because of size constraints, the concrete address
231 will always be part of block b2. Notice that block b1 can be mapped in any of these
concrete memories either before or after block b2. However b1 will never be at address 231.
The symbolic value sv = ptr(b1, 0) == int(231) therefore normalises into false.

b2

b2

b2

b2

0 231 232

Figure 6.5: Large blocks prevent some addresses from being allocated to others.

Now if we relax the validity to only account for blocks that appear syntactically in sv ,
then some concrete memories will allocate b1 at address 231 and some others not. The sym-
bolic value sv will therefore have different evaluations depending on the concrete memories,
hence the normalisation will fail.

The normalisation of Example 6.3.4 requires a full axiomatisation of the memory and
cannot be obtained using our relaxation. In the implementation, we also make the addi-
tional assumption that the normalisations result only in valid pointers i.e. their offsets are
within the bounds of the blocks. This simplification limits the search space and is therefore
sound but not complete: it will miss pointers out of their bounds. In our experience, since
normalisations of pointers are performed just before memory accesses, the semantics will
get stuck when trying to dereference an out-of-bounds pointer. In practice, we have never
encountered such pathological cases where the relaxation fails when there exists a normal-
isation. In particular, this relaxation is complete enough to give a defined normalisation to
all the examples we give in Chapter 3.

6.4 Experiments

After adapting the semantics of CompCert C and designing an implementation for the
normalisation, we performed some experiments and executed C programs with our more
permissive semantics. Because we target real-world, low-level programs, we needed to
design stubs to model system calls such as mmap. This system call is mapped to the alloc

operation of our memory model with appropriate parameters. Other system calls such as
open, read or write that operate on files are mapped to their OCaml equivalent, again
with appropriate parameters.

We have tested our C semantics with symbolic values on the benchmarks of CompCert.
Their size ranges from a few hundreds to a few thousands lines of code. We checked
the absence of regression: when the CompCert interpreter returns a defined value, our
interpreter returns exactly the same value.

6.4. EXPERIMENTS 95

We have also run our interpreter over Doug Lea’s memory allocator [Lea] and on parts
of the NaCl cryptographic library [BLS12], which are challenging programs because they
perform low-level pointer arithmetic; their size is about a few thousands lines of code.
Our interpreter succeeds in giving semantics to memory management functions, such as
malloc, memalign or free, built on top of mmap. As there is no other formal C semantics
able to deal with low-level pointer arithmetic, we checked that the result of our interpreter
was matching the output of gcc. Programs reading uninitialised variables have undefined
semantics and gcc could exploit this to perform arbitrary computations. Yet, the output
of gcc and our interpreter agree on examples similar to those presented in Chapter 3.

First, we explain how we implemented stubs for low-level system calls, and then we
review a list of interesting patterns found while experimenting on the benchmarks.

6.4.1 Stubs in the interpreter

Because we target low-level C code, the programs we are interested in contain system calls,
i.e. functions that perform low-level accesses to the system. The code of these functions
is not available with the source code, since it is typically implemented in the operating
system kernel. In order to interpret such programs, we need to design stubs for system
calls, that give their semantics in the memory model.

The mmap system call is used in malloc C implementations to fetch a region of memory
from the system. Its prototype is as follows.

void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

If fd is a valid file descriptor, then the contents of the file described by fd is mapped into
memory, starting from offset offset. If fd is -1, a memory region is made available, but
is not backed by any file. The address of the memory to be allocated in the virtual address
space is specified by the addr parameter. This parameter is only taken as a hint as to where
the mapping should be placed. If addr is NULL, the system chooses where to allocate the
region. The allocated memory region spans length bytes. The prot parameter specifies
whether pages can be read, written, executed or not. The flags parameters specifies
whether this memory mapping is only visible in the current process or if it should be
visible from other processes, amongst other properties.

This is a rather complex specification. Since our intended use is merely mapping
readable and writable memory for malloc implementations, not backed by any file and
limited to a single process, we restrict ourselves to this simple case. The stub for the mmap

system call first checks the values of the arguments to ensure that we are in this simple
case. If not, the execution of the whole program fails, as we do not model this behaviour.
If it is the case, we fetch the value of the length argument and allocate a block of the
requested size, with a 212-byte alignment (i.e. a page alignment).

Other use cases of system calls include file-managing operations such as open, read
and write. These are used in the implementation of the C standard library functions
fopen, fread and fwrite. However, the stubs for those objects are less linked to our
memory model than that for mmap. For those calls, we simply map the system calls to the
corresponding OCaml system call. For instance, we map the open system call to the OCaml
Unix.openfile, performing the adequate conversion between flags given as an integer in
the C code and flags given as a list of flags in OCaml. We also maintain a correspondence
between C and OCaml file handles. In particular, we encode the fact that file handle 0 in
C is mapped to the standard input, file handle 1 to standard output and file handle 2 to

96 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

standard error output. We do the same kind of transformation for read and write system
calls.

6.4.2 Patterns and Idioms of Low-Level C Code

Using the stubbed interpreter with an implementation for the normalisation, we are able to
give semantics to real-life programs. This is an improvement over the existing CompCert

interpreter, which fails in giving semantics (and thus interpreting) low-level programs that
rely on the concrete bit-encoding of pointer and uninitialised data. The following reports
on patterns we encountered in such code during our experiments.

6.4.2.1 Pointer Arithmetic Using Alignment and Bitwise Operations

The implementation of malloc by Doug Lea [Lea] uses the following is_aligned macro to
check whether a pointer is aligned.

/* True if address A has acceptable alignment */

define is_aligned(A) (((size_t)(A) & ALIGN_MASK) == 0)

For our experiments, pointers are allocated by mmap and are therefore known to be at least
212-byte aligned. In this example, we consider ALIGN_MASK to be equal to 0xF, therefore
the macro is_aligned checks whether a pointer is 24-byte aligned.

Consider a pointer p whose logical address is ptr(b, 3). Since b is known to be 212-byte
aligned, we have that the last 12 bits of b are zeros. The code is_aligned(p) expands
to (((size_t)(p) & 0xF) == 0) and constructs the symbolic value ptr(b, 3)&int(0xF).
This symbolic value normalises into int(0), since the last 4 bits of p are 0011, i.e. 3 in
decimal, hence different from 0.

In general, with these alignment constraints, we have that ptr(b, o)&int(0xF) is equiv-
alent to o&0xF, i.e. it is equivalent to o for o less than 15.

A similar example is the function memalign(al,nb), where al must be a power of two
(i.e. al= 2n). The function dynamically allocates a nb-byte region, and ensures that the
address returned is 2n-byte aligned, i.e. the n last bits are zeros. When called with al

= 32, the function computes checks such as p & 0x1F == 0 to check that the 5 last bits
are zeros. The left-hand side of the comparison is evaluated in the same manner as the
example above, and the comparison is computed trivially.

6.4.2.2 Comparison Between Pointers and (void*)(-1)

As discussed in Section 3.1, several system calls, such as mmap or sbrk, are expected to
return pointers but return (void*)(-1) on error. Figure 3.3 shows an example of such a
call to mmap. Our normalisation gives a defined semantics to these comparisons between
pointers and -1 using the following reasoning.

We know that pointers returned by mmap are aligned on a page boundary (212 in our
implementation), i.e. the 12 last bits of the pointer are zeros. When the allocation succeeds,
the pointer can therefore never be -1 (in binary 0xFFFFFFFF) because it would violate
alignment constraints. Hence this comparison p == (void*)-1 normalises to false, as
expected for a successful run of mmap.

6.4.2.3 Operations on Uninitialised Values

The example shown in Figure 3.6 (flag setting) is a simplified version of a C idiom that ap-
pears in real-life programs. For example, the memalign function described in Section 6.4.2.1

6.4. EXPERIMENTS 97

features this kind of operations on undefined values.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

size of previous chunk (if it is free)

size of current chunk C P

User memory

· · ·

Figure 6.6: Structure of the memory managed by malloc

Let us examine the structure of the chunks of memory allocated by malloc, illustrated
in Figure 6.6. As explained in the documentation of dlmalloc [Lea], every memory chunk
is accompanied by two 32-bit words of meta-data. The first word of metadata contains the
size of the previous chunk, if the previous chunk is free, i.e. not used, and is part of the
previous chunk otherwise.

The second word of metadata contains the size of the current chunk, which must be
4-byte aligned, i.e. a multiple of 4, therefore the last two bits can be used to store the
extra C and P bits which indicate respectively whether the current and previous chunks
are in use (1) or free (0). Initialising the second word of meta-data can be done with the
C assignment *p = (*p & 0b1)|size|0b10 (where the 0b prefix applies to constants in
binary format). The interested reader can find the definition of the set_inuse macro which
expands to this code in the implementation of dlmalloc [Lea]. When the memory pointed
by p is uninitialised, we construct the symbolic value (indet(l)&0b1) | size | 0b10.
Starting from indet(l) written with binary variables A . . .H, Figure 6.7 shows the bitwise
construction of this symbolic value, for size= 28 = 0x00000100.
0 1 2 3 4 5 6 7

A B C D E F G H

}

indet(l)

0 0 0 0 0 0 0 H

}

indet(l) & 0b1

0 0 0 0 0 1 1 H

}

(indet(l)&0b1) | size | 0b10

0 0 0 0 0 0 1 0

}

((indet(l)&0b1) | size | 0b10) & 0b10

Figure 6.7: Bit-representation of symbolic values used in dlmalloc.

The last bit of this symbolic value is H, i.e. the last bit of the original indet(l), because
size is a multiple of 4, hence the bitwise OR with size does not set the last bit. The
symbolic value itself does not normalise, because its last bit H is indeterminate, however
we are able to compute on this symbolic value, e.g. retrieve its second least significant
bit with this symbolic value: ((indet(l)&0b1) | size | 0b10) & 0b10. As the last line
of Figure 6.7 shows, this symbolic value evaluates to int(0b10), hence it normalises into
int(0b10), as expected.

6.4.2.4 Copying Bytes between Memory Areas with memmove

Because we include normalisations before every branching instruction, our semantics re-
quires the target of a jump instruction to be unique. This is a consequence of the fact that
a symbolic value representing a condition should normalise to some unique boolean value.
In other words, a program whose control-flow depends on the memory layout has an un-

98 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

defined behaviour. This dependance on the memory layout (e.g. on the memory allocator)
is a portability bug that is detected by our semantics.

In our experiments, we have encountered this situation in an implementation of the
memmove function (see Figure 6.8) which implements a memory copy even when the origin
and destination memory regions do overlap. In this case, e.g. when the last byte of the
origin is the same as the first byte of the destination, the naive memcpy function would
overwrite the last byte of the source, therefore invalidating the copy.

The aim of the memmove function is to avoid this situation by first checking which of
the source and destination address is the smallest, and performs the copy forwards or
backwards. This involves the pointer comparison dest <= src, which is undefined in C
when dest and src point to different objects. It is undefined in CompCert’s memory
model, and in ours, when the pointers are from distinct memory blocks, because the result
of this comparison depends on the concrete memory layout.

void *memmove(void *s1, const void *s2, size_t n) {

char *dest = (char *) s1;

const char *src = (const char *) s2;

if (dest <= src)

while (n--) { *dest++ = *src++; }

else {

src += n; dest += n;

while (n--) { *--dest = *--src; }

}

return s1;

}

Figure 6.8: memmove with an undefined semantics

We have solved the issue by replacing the original condition dest <= src with the
more involved condition src <= dest & dest < src + n. This condition explicitly tests
whether the memory regions overlap using the integer n which is the number of bytes to be
copied. Notice that we use the bitwise & operator on purpose instead of the lazy boolean
&& operator. The lazy && would force the evaluation of src <= dest which cannot be
normalised. The new condition with a bitwise & operator constructs a symbolic value which
is independent from the memory layout and has therefore always a defined normalisation.
In particular, if the pointers are from distinct blocks, the condition is always false because
locations from distinct blocks cannot overlap.

6.5 Conclusion and Discussion

In order to benefit from the more relaxed memory model introduced in Chapters 4 and 5,
and therefore give semantics to more programs, we have extended the semantics of all the
languages of CompCert with our formalism of symbolic values and normalisations.

We have shown that normalisations must be introduced before every memory access, as
was already suggested in Section 5.1. Normalisations are also necessary for the semantics
of conditionnally branching instructions. The latter are necessary because we want to
keep CompCert’s semantics deterministic, so that we can reuse the existing proof of
CompCert as much as possible. Therefore the condition of an if-then-else structure must
normalise into a unique value so that the execution continues on one branch or the other.

6.5. CONCLUSION AND DISCUSSION 99

In Section 6.2, we have proved that the resulting symbolic semantics are refinements of
those of CompCert, so that programs that have defined semantics in CompCert have
the same defined semantics in CompCertS. In addition to this formal result, the process
of doing this proof has helped discover discrepancies in CompCert, related to pointer
comparison to NULL.

Note that to perform the proof, we had to use an alternate semantics of Clight, where
so-called simplifications (normalisation attempts) were introduced eagerly. The reason why
this is necessary is because the normalisation of a given symbolic value does not always
get more defined when the memory evolves: it is not monotonic. For instance, consider a
pointer validity test &x != NULL, where x is a stack-allocated integer mapped at location
ptr(b, 0). In a memory state where b is a valid, allocated block, the validity test normalises
into the integer int(1) because valid pointers are distinct from the NULL pointer. However,
once b is freed (because its host function returns), the same expression evaluates to undef,
because b may now be allocated anywhere, and in particular possibly at the address 0.
We contemplate tightening the validity constraint on concrete memories to force b not
to be allocated at invalid addresses even after the end of its lifetime. We would restate
Property 4.3.2 so that it applies to all blocks that once were allocated. We would then need
to record the lifetime of every block: when it was allocated and when it was freed. Using
this information, we would restate Property 4.3.1 so that any pair of blocks whose lifetimes
overlap may not be allocated at overlapping locations. These modifications would maintain
the semantics of pointer comparisons &x != NULL and &x != &y defined even after x and
y are freed. The proof would then be doable with the same Clight semantics that is used
in the proof of correctness of the compiler.

Next, we have explained how to obtain an executable normalisation. To that end,
we use a SMT solver, and an encoding of valid concrete memories and symbolic values
into the logic of bitvectors. Currently, not all operations are axiomatised into bitvectors
(e.g. operations on floating point numbers). Besides, the translation is made outside of
the trusted computing base, and the various algorithms that compute a normalisation
based on SMT queries are programmed in OCaml. While experimenting with real-life
programs has not uncovered obvious bugs in our translation, we envisage performing a
more principled usage of the SMT solver in later releases of this development. Assuming
only the correctness of the underlying SMT solver, we could prove that our translation of
symbolic values into bitvector expressions is faithful and that algorithms actually compute
sound normalisations in Coq.

Finally, we have experimented on real-life C programs that had undefined semantics
according to CompCert (and the C standard), but for which our semantics is defined
and in accordance with our expectations and the output of mainstream compilers such as
gcc. The C programs we have tested range from few-lines hand-written programs that
exhibit low-level operations on pointers or uninitialised data to real-life code such as an
implementation of malloc or the testing of a complete C standard library.

In the next chapters, we will show how we reprove the compiler passes with this new
semantics, ultimately achieving CompCertS, a formally verified compiler for low-level C.

100 CHAPTER 6. MORE DEFINED SEMANTICS FOR COMPCERT

Chapter 7

Memory Relations

As seen in Section 2.4, CompCert’s passes are proved correct using simulation arguments.
We recall below the general shape of these transformations and their proofs, for a source
language S and a target language T (possibly the same language in the case of optimisa-
tions). Let PL be the set of programs in language L, for L ∈ {S, T }. A program is merely a
mapping from function and global variable identifiers to functions and global variables. A
compilation pass is a partial function comp : PS ⇀ PT which transforms the code of every
function of the program. A simulation theorem is proved for every compilation pass in the
CompCert compiler. For the simplest case of lock-step simulations (i.e. one step in the
source is mapped to exactly one step in the target), the theorem is of the form shown in

Figure 7.1, where
t
−→P

L is the transition relation associated with language L with respect to
program P , emitting event t. We write state L the domain of semantic states associated
with programs in language L. The relationR ⊆ state S×state T (written match_states

in the Coq development) is referred to as a simulation relation and is an invariant that
must hold throughout the execution of both programs. The diagram on the right-hand
side of Figure 7.1 is a graphical representation of the lock-step simulation theorem, where
hypotheses are drawn with plain lines and conclusions are drawn with dashed lines.

Theorem step_simulation:

∀ S1 t S2, S1
t
−→PS

S
S2 ⇒

∀ S1’, S1 R S1’ ⇒

∃ S2’, S1’
t
−→PT

T
S2’ ∧ S2 R S2’.

S T

S1 S2
R

S′
1

t

S′
2

R

t

Figure 7.1: Lock-step simulation theorem

Simulation proofs are typically performed by induction on the execution relation of

programs
t
−→PS

S
. This reasoning is handled by the Coq proof assistant. The difficulty

in the proof lies in the choice of the simulation relation R, for which there is no general
methodology to follow. The purpose of this chapter is to investigate the simulation relation
R. The choice of this matching relation is crucial for the simulation proof. It must be
carefully chosen:

• R must be strong enough so that it gives enough information linking both states to
prove that S2 can take a step towards a matching S′

2. For example, a relation such
that ∀ x y, xRy gives no information about the relationship between the two states.

101

102 CHAPTER 7. MEMORY RELATIONS

While this relation makes it trivial to prove that S′
1 and S′

2 match, it is impossible
to prove that S′

1 can step to S′
2.

• Rmust be an invariant: the relation must hold at every step throughout the execution
of both programs, so that it is possible to prove that S′

1 and S′
2 match from the fact

that S1 and S2 match.

• For every initial state S of the source program, there must exist an initial state S′ of
the target program such that SRS′.

• For every final state S of the source program, every state S′ such that SRS′ must
be a final state of the target program.

To satisfy these conditions, R relates the components of the semantic states of the
different languages involved. From the C semantics down to the assembly semantics, all
the states include, among other components, an abstract memory state m. Depending on
the language, it may also include a map from variable identifiers to symbolic values, various
environments for temporary variables, pseudo-registers or machine registers.

For example, consider a compiler pass from a language S to a language T . Consider that
those languages have semantic states that include only a memory state and an environment
(mapping from identifiers to symbolic values), i.e. state S = state T = mem× env. The
simulation relation R needs to relate those states and will be of the form:

(m1, e1)R(m2, e2) ,
∧

{

m1Rmm2

e1Ree2

The memory is ubiquitous in the semantic states of all intermediate languages. We
will study in this chapter how memory states are related, i.e. how the Rm relation can be
instantiated.

We will first introduce a notion of structure-preserving memory relations, which relates
two memory states that have the same structure, i.e. they have the same blocks with the
same bounds, but the contents of these blocks are symbolic values that are not necessarily
pairwise equal but only satisfy a given binary relation, e.g. the equivalence relation on
symbolic values that has been introduced in Definition 5.2.1.

Then, we will focus on memory injections, a notion of memory transformation used in
CompCert that we have presented in Section 2.5.3.1. Memory injections describe how
different blocks may be merged together. Those are the most complex memory transforma-
tions used in CompCert. As we shall see, some special care must be taken to generalise
memory injection to symbolic values, in particular because we model a finite memory and
because of our treatment of uninitialised values.

For both structure-preserving memory relations and memory injections, we provide
theorems that will be useful in Chapter 8, where we adapt the proofs of correctness of all
the compiler passes. In particular, we provide theorems linking normalisation and memory
operations to the various memory relations.

7.1 Structure-Preserving Memory Relations

The purpose of this section is to introduce memory relations that preserve the structure
of the memory. The contents of the two memories satisfying those structure-preserving
memory relations, however, are not required to be the same but to satisfy some binary
relation on symbolic values, e.g. the ≡ relation (see Definition 5.2.1). These relations will

7.1. STRUCTURE-PRESERVING MEMORY RELATIONS 103

be used instead of the plain equality of memory states or memory extensions (introduced in
Section 2.5.3.2. The differences between the relations used in CompCert and the ones we
introduce in this section are twofold: first, we require that the structure is exactly the same
for the two memories because our semantics (and in particular that of the normalisation) is
sensitive to changes in the memory structure; second, the contents stored in memory states
are no longer values but symbolic values, and the relations over those contents therefore
need to be generalised.

7.1.1 Structural Equivalence

What we call the structure of a memory state m is essentially everything but the actual
contents of the memory.

Definition 7.1.1 (Structural equivalence). Two memory states m1 and m2 are structurally
equivalent (written m1

∼= m2) if and only if all their attributes except contents are equal.
Formally,

m1
∼= m2 ,

nextblock(m1) = nextblock(m2) same block counter
∀ b, bounds(m1, b) = bounds(m2, b) same bounds
∀ b, alignment(m1, b) = alignment(m2, b) same alignment constraints

Definition 7.1.1 does not constrain the contents of the memory states at all. However,
the structural equivalence is a tight enough relation so that interesting facts can be derived
from it, no matter what the contents of the memories are.

Lemma 7.1.1. Structurally equivalent memory states admit the same set of valid concrete
memories.

∀ m1 m2, m1
∼= m2 ⇒ ∀ cm, (cm ⊢ m1 ⇔ cm ⊢ m2)

Proof. The proof is immediate from the fact that m1 and m2 give the same bounds and
the same alignment constraints to blocks, hence the validity constraints are the same.

From Lemma 7.1.1, we can deduce the useful Theorem 7.1.1 about the normalisation
of symbolic values in structurally equivalent memory states.

Theorem 7.1.1. For any memory states m1 and m2 that are structurally equivalent (m1
∼=

m2), for any symbolic value sv , the normalisations of sv in m1 and in m2 are equal.
Formally,

∀ m1 m2, m1
∼= m2 ⇒ ∀ sv , normalise m1 sv = normalise m2 sv

Proof. Recall that normalise is a function that returns a sound normalisation when one
exists, and undef otherwise. The proof distinguishes those two cases.

• In the first case, there exists a sound normalisation, i.e. there exists a value v such

that sv
m1

−−։ v. Unfolding Definition 4.4.1 (of the sound normalisation relation) yields
the following equation:

∀ cm ⊢ m1, ∀ im, JsvKimcm = JvKimcm

Because m1 and m2 are structurally equivalent, we can use Lemma 7.1.1 to prove that

v is also a sound normalisation of sv in m2, i.e. sv
m2

−−։ v. Hence, normalise m2 sv

returns this value v.

104 CHAPTER 7. MEMORY RELATIONS

• In the second case, there does not exist a sound normalisation of sv in m1. Because
m1 and m2 are structurally equivalent, we can use Lemma 7.1.1 to prove that there
does not exists a sound normalisation of sv in m2 either. Indeed, if there were one, it
would also be a sound normalisation in m1, thus contradicting the hypothesis. Hence,
normalise m1 sv and normalise m2 sv both return undef, and the property holds.

Theorem 7.1.1 will be useful to prove that memory operations preserve structural equiv-
alence in Section 7.1.3. Chapter 8 relies on this theorem and its implications to prove the
correctness of all the passes of our symbolic compiler.

7.1.2 Symbolic Values Relations

In this section, we enrich the structural equivalence relation with additional properties
on the contents of the two memories. We will first define an equivalence relation between
memories using the equivalence of symbolic values that has been defined in Definition 5.2.1.
Then we will consider the less-defined relation (see Definition 2.5.2) that is used in Comp-

Cert to capture the notion of improvement of values. We will show how we lift this relation
to a relation ≤sv on symbolic values. Finally we will define an improvement relation ≤m

on memory states.

7.1.2.1 Memory Equivalence

As demonstrated in Section 5.2, several different symbolic values sv ∈ sval can denote
equivalent sets of values. Because we do not want to distinguish between equivalent sym-
bolic values, we introduce equivalence classes between symbolic values that always denote
the same set of values. We recall here the definition of equivalent symbolic values, written
≡:

sv1 ≡ sv2 , ∀ cm im, Jsv1K
im
cm = Jsv2K

im
cm

The equivalence generalises the equality of values into an equality of symbolic values.
This is needed to prove the load_store_same and load_int64_split theorems seen in
Section 5.2 (good-variable properties), for example. However, those theorems only establish
the equivalence of symbolic values, not of memory states.

We define an equivalence relation on memory states as a combination of structural
equivalence and additional properties on the contents of the memories, using the function
smv_to_sval (see Figure 5.3) to transform smemvals into the symbolic values they denote.

Definition 7.1.2 (Memory equivalence). Two memory states m1 and m2 are equivalent
(written m1 ≡m m2) if and only if they are structurally equivalent and the smemvals con-
tained at each location are pairwise equivalent. Formally,

m1 ≡m m2 ,

{

m1
∼= m2

∀ b o, smv_to_sval m1[b][o] ≡ smv_to_sval m2[b][o]

In the above definition, the notation m[b][o] is used to fetch the smemval at location
(b, o) in memory state m.

Definition 7.1.2 allows to adapt theorems from CompCert’s memory model to our
symbolic setting. Consider for instance the theorem store_int64_split, symmetric to

7.1. STRUCTURE-PRESERVING MEMORY RELATIONS 105

load_int64_split:

∀ m b o sv m′, store Mint64 m b o sv = ⌊m′⌋ ⇒
∃ m1 m2, store Mint32 m b o (hiword sv) = ⌊m1⌋∧

store Mint32 m1 b (o+ 4) (loword sv) = ⌊m2⌋∧
m′ ≡m m2

It states that storing a 64-bit symbolic value sv results in the same memory as the memory
state obtained after storing first the 4 most significant bytes of sv (hiword(sv)) and then
storing the 4 least significant bytes (loword(sv)). While in CompCert, the theorem
establishes the equality of the resulting memory states (m′ and m2 in the theorem above), in
CompCertS the theorem establishes the equivalence of the memory states. Example 7.1.1
illustrates why the memories are not equal, but equivalent.

Example 7.1.1. Consider a memory m and a block b of bounds [0, 8[. Consider a 64-bit
integer l. On one hand, storing long(l) with the Mint64 memory chunk results in the
contents drawn on the left-hand-side of the following picture, i.e. simply different bytes of the
original value long(l). On the other hand, storing the 64-bit integer via two 32-bit accesses,
using symbolic operators hiword and loword, results in the contents of the memory shown
on the right-hand-side of the following picture.

Symbolic(long(l), 0)

Symbolic(long(l), 1)

Symbolic(long(l), 2)

Symbolic(long(l), 3)

Symbolic(long(l), 4)

Symbolic(long(l), 5)

Symbolic(long(l), 6)

Symbolic(long(l), 7)

Symbolic(hiword(long(l)), 0)

Symbolic(hiword(long(l)), 1)

Symbolic(hiword(long(l)), 2)

Symbolic(hiword(long(l)), 3)

Symbolic(loword(long(l)), 0)

Symbolic(loword(long(l)), 1)

Symbolic(loword(long(l)), 2)

Symbolic(loword(long(l)), 3)

address growth

One Mint64 store Two Mint32 stores

However, the contents of the two memories are smemvals that are pairwise equivalent,
i.e. at a given location l, if the left-hand-side memory holds a smemval mv1 and the right-
hand-side memory holds mv2, then the symbolic values that mv1 and mv2 represent are
equivalent. For example,

smv_to_sval (Symbolic(long(l), 7)) ≡ smv_to_sval (Symbolic(hiword(long(l)), 3)).

7.1.2.2 Memory Improvement

The notion of memory equivalence is useful to reprove the theorems of the memory model.
However, for most compiler passes, a more relaxed relation is needed because these passes
improve the programs, i.e. they generate programs having a more defined semantics. This
relation between semantics relies on the less defined relation on values (see Definition 2.5.2).
The less-defined relation on values can be lifted to symbolic values in a similar way that
the equality of values has been lifted to the equivalence of symbolic values.

Definition 7.1.3 (The less-defined relation for symbolic values). Let sv1 and sv2 be sym-
bolic values. We say that sv1 is less defined than sv2 (written sv1 ≤ sv2, with the same

106 CHAPTER 7. MEMORY RELATIONS

symbol as the relations on values) if they evaluate to values v1 and v2 such that v1 is less
defined than v2 in every environment. Formally,

sv1 ≤ sv2 , ∀ cm im, Jsv1K
im
cm ≤ Jsv2K

im
cm

We then lift this generalised ≤ relation to memory states, by simply using ≤ instead of
≡ in the constraint about memory contents and still use the same structural constraints.
The resulting relation about memories is written ≤m.

Definition 7.1.4 (Memory improvement). Let m1 and m2 be two memory states. We say
that m2 improves m1, or m1 is less defined than m2 (written m1 ≤m m2), if m1 and m2

are structurally equivalent and their contents at every location are pairwise related by the
less-defined relation. Formally,

m1 ≤m m2 ,

{

m1
∼= m2

∀ b o, smv_to_sval m1[b][o] ≤ smv_to_sval m2[b][o]

The memory improvement relation is used in the proofs of most compiler passes as the
memory invariant in the match_states predicates, where memory extensions were used in
CompCert. While the contents of the memories are related by the less-defined relation
in both cases (extensions and improvements), the memory improvement relation is tighter.
In particular, memory extensions do not enforce the sizes of the blocks to be the same in
both memories: blocks may be larger in the second memory. The equality of block sizes is
necessary to ensure that the set of valid concrete memories is the same for both memory
states and therefore that the normalisation behaves identically in both memory states.

7.1.3 Compatibility With Normalisation And Memory Operations

In the following, we show interesting theorems about structure-preserving memory relations
that establish the preservation of the normalisation function and of the memory operations.
These theorems are the building blocks of most simulation proofs of CompCertS.

7.1.3.1 Compatibility With Normalisation

We first show that, given a fixed memory state, the normalisation preserves equivalence
and improvement relations on symbolic values. Theorem 7.1.2 explicits this result.

Theorem 7.1.2. Given a memory state m and two symbolic values sv1 and sv2 that are
equivalent (resp. in the less-defined relation), the normalisations of sv1 and sv2 in m are
equal (resp. in the less-defined relation). Formally,

∀ m sv1 sv2, sv1 ≡ sv2 ⇒ normalise m sv1 = normalise m sv2
∀ m sv1 sv2, sv1 ≤ sv2 ⇒ normalise m sv1 ≤ normalise m sv2

Using Theorem 7.1.2 and structural equivalence of memories, Theorem 7.1.3 states that
the normalisation function is compatible with structure-preserving memory relations and
symbolic values relations.

Theorem 7.1.3. For any memory states m1 and m2 that are structurally equivalent, for
any symbolic values sv1 and sv2 that are equivalent (resp. in the less-defined relation), the
normalisations of sv1 in m1 and of sv2 in m2 are equal (resp. in the less-defined relation).
Formally,

7.1. STRUCTURE-PRESERVING MEMORY RELATIONS 107

∀ m1 m2 sv1 sv2, m1
∼= m2 ⇒ sv1 ≡ sv2 ⇒

normalise m1 sv1 = normalise m2 sv2

∀ m1 m2 sv1 sv2, , m1
∼= m2 ⇒ sv1 ≤ sv2 ⇒

normalise m1 sv1 ≤ normalise m2 sv2

Proof. The proofs of both parts of the theorem follow directly by application of Theo-
rem 7.1.1 and Theorem 7.1.2.

The two results of Theorem 7.1.3 are instrumental for the simulation proofs of most
compiler passes. Indeed, consider two matching states in a simulation proof. Since we
took care of introducing normalisations in the corresponding rules of every semantics (see
Section 6.1), a normalisation in the source program will match a normalisation in the target
language in the simulation proof. Moreover, the symbolic values to be normalised in the
two programs are in the chosen relation over symbolic values (most often the less-defined
relation ≤). In this case, we are able to use Theorem 7.1.3 to relate the normalisations,
and subsequently to maintain the R relation between program states.

7.1.3.2 Compatibility With Memory Operations

We now consider the four basic operations on memory states: load, store, palloc and
free. We will show that starting from memory states related by a structure-preserving
memory relation, the result of an operation in the first memory state can be simulated by
a similar operation in the second memory state. For the following theorems, we assume
that the underlying relation on symbolic values is the less-defined relation ≤, and that the
memory relation is memory improvement ≤m. In fact, this memory improvement relation
is used by most transformations. However, the theorems also hold for the ≡ and ≡m

relations.

Theorem 7.1.4. For any memory states m1 and m2 such that m2 is an improvement of
m1, we have the following:

∀ m1 m2, m1 ≤m m2 ⇒
Preservation of load ∀ κ b o sv , load κ m1 b o = ⌊sv⌋ ⇒

∃ sv ′, load κ m2 b o = ⌊sv ′⌋ ∧ sv ≤ sv ′

Preservation of store ∀ κ b o sv1 m′
1, store κ m1 b o sv1 = ⌊m

′
1⌋ ⇒

∀ sv2, sv1 ≤ sv2 ⇒
∃ m′

2, store κ m2 b o sv2 = ⌊m
′
2⌋ ∧m′

1 ≤m m′
2

Preservation of palloc ∀ sz al m′
1 b, palloc m1 sz al = ⌊(m′

1, b)⌋ ⇒
∃ m′

2, palloc m2 sz al = ⌊(m′
2, b)⌋ ∧m′

1 ≤m m′
2

Preservation of free ∀ m′
1 b, free m1 b = ⌊m′

1⌋ ⇒
∃ m′

2, free m2 b = ⌊m′
2⌋ ∧m′

1 ≤m m′
2

Proof. We provide a proof sketch for the preservation of each memory operation.

• Preservation of load. Because m1 and m2 are structurally equivalent, the success
of the load in m1 implies the success of the load in m2. Then, because the contents

108 CHAPTER 7. MEMORY RELATIONS

of m1 and m2 satisfy the ≤ relation, we can prove that the decoding function (see
Section 5.1) results in symbolic values that are in the ≤ relation as well, thus proving
the property.

• Preservation of store. For the same reasons as for the load operation, the success
of the store follows directly from the structural equivalence hypothesis. Then, the
proof that the resulting memory states are in the ≤m relation is a consequence of the
fact that 1. the original memory states are in the relation; and 2. the encoding (see
Section 5.1) of symbolic values that are in the ≤ relation result in smemvals in the
relation as well.

• Preservation of palloc and free. These are direct consequences of the structural
equivalence of the initial memory states.

We now state the preservation of the loadv and storev functions, introduced in Fig-
ure 5.5, that are variants of the load and store operations for which the address to be
accessed is represented by a symbolic value that must be normalised before the actual
operation is performed.

Theorem 7.1.5. For any memory states m1 and m2 such that m2 is an improvement of
m1, for any symbolic values that represent addresses svaddr and sv′addr in the less-defined
relation, we have the following results.

∀ m1 m2 svaddr sv ′addr, m1 ≤m m2 ⇒ svaddr ≤ sv ′addr ⇒
Preservation of loadv ∀ κ sv , loadv κ m1 svaddr = ⌊sv⌋ ⇒

∃ sv ′, loadv κ m2 sv ′addr = ⌊sv
′⌋ ∧ sv ≤ sv ′

Preservation of storev ∀ κ sv sv ′ m′
1, storev κ m1 svaddr sv = ⌊m′

1⌋ ⇒ sv ≤ sv ′ ⇒
∃ m′

2, storev κ m2 sv ′addr sv ′ = ⌊m′
2⌋ ∧m′

1 ≤m m′
2

Proof. We present the proof for the loadv case. From the success of the loadv in m1, we
know that, for some block b and offset o:

normalise m1 svaddr = ptr(b, o) (7.1)

load κ m1 b o = ⌊sv⌋ (7.2)

Using Theorem 7.1.3 on Hypothesis 7.1 and Theorem 7.1.4 on Hypothesis 7.2, we get:

normalise m2 sv ′addr = ptr(b, o) (7.3)

∃ sv ′, load κ m2 b o = ⌊sv′⌋ ∧ sv ≤ sv ′ (7.4)

Hence, the property holds.
The proof of the storev case is similar.

The properties of Theorem 7.1.4 and Theorem 7.1.5 are generalisations of properties
that exist in the CompCert development about memory extensions. Those properties are
building blocks of the existing proofs of semantic preservation and are therefore crucial to
generalise adequately. Chapter 8 shows that the generalisation is well-suited to be used in
the compiler proofs and allows to reprove most passes.

7.2. MEMORY INJECTIONS 109

7.2 Memory Injections

In contrast with Section 7.1, which deals with structure-preserving memory relations, this
section deals with a structure-transforming memory relation used in CompCert: memory
injections. As explained in Section 2.5.3.1, memory injections are an essential component
of CompCert for the proof of correctness of several compiler passes. Intuitively, memory
injections account for memory transformations that group several blocks into one. The
typical example of injection is illustrated by the Cminorgen pass (see Chapter 8) that
consists in grouping the blocks corresponding to the local variables of a function into a
single block, that represents its stack frame.

In this section, we show how we adapt the definitions of memory injections to symbolic
values. First, we explain how symbolic values are injected. Then, we show how we lift
this symbolic value injection to memories, highlighting the differences with the existing
CompCert injections. Finally, we give a crucial theorem linking normalisation and injec-
tions, and give its proof that requires a generalisation of injections to concrete memories
and indeterminate memories.

7.2.1 Injection of Symbolic Values

The injection of values val_inject is lifted to symbolic values, yielding the relation
sval_inj. The injection function f has the same type as in CompCert, i.e. block ⇀
block × Z. It maps a block b either to ∅, i.e. the block b is not injected, or to ⌊(b′, δ)⌋, i.e.
an offset δ in another block b′.

inj-vundef

sval_inj f undef sv

inj-val

val_inject f v1 v2

sval_inj f v1 v2

inj-indet

f(b) = ⌊(b′, δ)⌋

sval_inj f indet(b, i) indet(b′, i+ δ)

inj-unop

sval_inj f sv1 sv2

sval_inj f (op1 sv1) (op1 sv2)

inj-binop

sval_inj f sv1 sv2 sval_inj f sv3 sv4

sval_inj f (sv1 op2 sv3) (sv2 op2 sv4)

Figure 7.2: Injection sval_inj of symbolic values

Rules inj-val, inj-unop and inj-binop directly lift the injection val_inject of values
to symbolic values by induction over the structure of symbolic values. Rule inj-vundef

states that undef can be injected into any symbolic value. This is a direct generalisation
of Rule vinj-vundef, i.e. undef can be injected into any value. Finally, Rule inj-indet

explains how to inject indeterminate values. This is a difference with the existing injection.
It mimics Rule vinj-ptr (see Section 2.5.3.1) that injects pointers: the locations (b, i) of
indeterminate values are injected by the injection function f . An important property of
using locations as labels for uninitialised data is that those locations are always fresh, i.e.
every uninitialised location holds a different label. Injecting indeterminate values ensures
that this freshness is preserved by injections.

Note that the definition of sval_inj is syntactic, i.e. only symbolic values that share
the same structure can be related by sval_inj. For example, consider an injection function

110 CHAPTER 7. MEMORY RELATIONS

f such that f(b) = ⌊(b′, δ)⌋. We have sval_inj f (ptr(b, i) + 1) (ptr(b′, i + δ) + 1), by
Rule inj-binop, but not sval_inj f (ptr(b, i) + 1) (ptr(b′, i + δ + 1)). As this is too
restrictive, we consider the relation sval_inject that is obtained by closing the relation
sval_inj by the equivalence relation on symbolic values ≡ (see Definition 5.2.1).

Definition 7.2.1 (sval_inject).

sval_inject f sv1 sv2 := ∃ sv ′1 sv ′2, sv1 ≡ sv ′1 ∧ sval_inj f sv ′1 sv ′2 ∧ sv ′2 ≡ sv2.

We lift this injection of symbolic values to smemvals, using the smv_to_sval function
(see Figure 5.3).

Definition 7.2.2 (memval_inject). Two smemvals mv1 and mv2 are in injection if the
symbolic values they represent are in injection.

memval_inject f mv1 mv2:=sval_inject f (smv_to_sval mv1) (smv_to_sval mv2).

7.2.2 Injection of Memories

Given the previous generalisation of injections to symbolic values, the definition of memory
injections mem_inject is very similar to the original definition of CompCert. Defini-
tion 7.2.3 shows an excerpt from the mem_inject specification, in particular it highlights
the differences with CompCert.

Definition 7.2.3 (mem_inject).

mem_inject f m1 m2 : P := {
. . .

mi_align : ∀ b b′ δ, f(b) = ⌊(b′, δ)⌋ ⇒

alignment(m1, b) ≤ alignment(m2, b
′) ∧ 2[alignment(m1,b)] | δ;

mi_size_mem : size_mem m2 ≤ size_mem m1

}

It features two distinctive properties, mi_align and mi_size_mem, that illustrate the
main modifications due to symbolic values.

Absence of offset overflows. The existing specification of mem_inject has a property
mi_representable which states that if f(b) = ⌊(b′, δ)⌋, then for any valid offset o of b, the
offset o + δ obtained after injection does not overflow, i.e. it is an integer that fits in 32
bits. With our memory model, this property can be derived from the other properties of
the injection. Indeed, if o is a valid offset of b, then o + δ is a valid offset of b′ (see the
well-formedness properties of the injection in Section 2.5.3.1). Since o+ δ is a valid offset
of a block, then it is necessarily lower than the size of the whole memory, which is itself,
as we have explained in Section 5.4, strictly less than 232, therefore o + δ fits in a 32-bit
integer. This property is important because it ensures that no overflow happens, hence the
semantics of comparisons is faithfully preserved by injections. Being able to derive this
property is a good thing because it lightens the burden of proving injections.

Alignment constraints are modelled by the property mi_align. In CompCert, this
is only a property of the offsets δ. As explained in Section 2.5.3.1, an access at location
(b, o) with a chunk κ is valid only if the offset o is a multiple of size_chunk κ. The

7.2. MEMORY INJECTIONS 111

existing CompCert makes the implicit assumption that memory blocks are always suffi-
ciently aligned to make the actual concrete address aligned as expected. In CompCertS,
blocks are given an explicit alignment, and data alignment must be a property of concrete
addresses. As a result, we can precisely state that an injection preserves alignment: this is
the purpose of the mi_align property of Figure 7.2.3. We require that the target block is
at least as aligned as the source block (alignment(m1, b) ≤ alignment(m2, b

′)) and that
the offset δ is sufficiently aligned (2[alignment(m1,b)] | δ) so that aligned locations are injected
into at least as aligned locations.

The size constraint is a property that is only present in our specification. It states
that the memory after injection has to be smaller, in the sense of the size_mem function
(see Figure 5.6), than the original memory. The size_mem function computes the least
address that is not allocated to a block, i.e. all allocated blocks can be mapped to lower
addresses. This constraint is needed to ensure that if a memory allocation succeeds for a
source language, it also succeeds for the target language performing the allocation on an
injected memory. This is illustrated by Theorem 7.2.1 given below, which can be seen as
a forward simulation for the special case of allocating a block.

Theorem 7.2.1 (palloc_parallel_inject). Provided two memory states m1 and m2

in injection, if we can allocate a block of size sz in m1, then we can do the same in m2

and the resulting memory states will be in injection. Formally,

∀ f m1 m2 sz al m′
1 b1,

0 ≤ sz ⇒ mem_inject f m1 m2 ⇒ palloc m1 sz al = ⌊(m′
1, b1)⌋ ⇒

∃ m′
2 b2, palloc m2 sz al = ⌊(m′

2, b2)⌋ ∧ mem_inject f [b1 7→ ⌊(b2, 0)⌋] m
′
1 m′

2.

Proof. The insight of the proof is that the allocation (palloc m1 sz al) succeeds for a
memory m1 that is larger than m2. By definition of palloc, we have that

size_mem m1 + sz ≤ Int.max_unsigned− 2MA

Moreover, by definition of the injection between m1 and m2, we also have that

size_mem m2 ≤ size_mem m1

By arithmetic, it follows that size_mem m2 + sz ≤ Int.max_unsigned− 2MA. As a result,
the allocation (palloc m2 sz al) succeeds and returns a memory m′

2 and a block b2. It
remains to prove that m′

1 is in injection with m′
2. Though tedious, the proof of this part

mimics the existing proof of CompCert, and is omitted here.

7.2.3 Preservation of Normalisation by Injection

This section details the proof of the main result relating normalisation and injection. The-
orem 7.2.2 is the main theorem about injections and normalisations: it is essentially a
forward simulation proof applied to normalisation, when the matching relation is a mem-
ory injection. The theorem requires the injection function f to be total : this precondition
roughly states that every allocated block must be injected. Definition 7.2.4 formalises this
notion; it will be explained later why this is required.

Definition 7.2.4. total_injection f m : P := ∀ b, size m b > 0⇒ f(b) 6= ∅.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.alloc_parallel_inject

112 CHAPTER 7. MEMORY RELATIONS

Theorem 7.2.2 (norm_inject). Given a total injection function f , given two memory
states m and m′ in injection by function f , given two symbolic values sv and sv ′ in injection
by f , the normalisations of sv in m and sv ′ in m′ are in injection by f .

∀ f m m′ sv sv ′, total_injection f m⇒
mem_inject f m m′ ⇒ sval_inject f sv sv ′ ⇒
val_inject f (normalise m sv) (normalise m′ sv ′).

Informally, Theorem 7.2.2 states that the normalisation function preserves the injection
of symbolic values. In particular, if the normalisation in m results in a pointer, then the
normalisation in m′ results in a pointer that is in injection. Also, if the normalisation in
m is undef, then the normalisation in m′ can be any value. The intuition behind that
fact is that memory injections amount to merging blocks; as a result, pointer arithmetic
gets more defined and therefore more symbolic values get a defined normalisation. The
following picture represents Theorem 7.2.2 as a simulation diagram.

m m′

sv sv ′

v v′

normalise normalise

mem_inject f

sval_inject f

val_inject f

The rest of this section introduces useful lemmas and finally proves the theorem. First,
we will show that the normalisation of sv in m can be injected by f , i.e. if sv normalises into
a pointer ptr(b, o) then f(b) 6= ∅. Then, we will introduce a notion of injection for concrete
and indeterminate memories, and we will provide algorithms to construct valid concrete
memories and indeterminate memories from their injection. Finally, using all these results
we will give the proof of Theorem 7.2.2, which is a building block of the injection-based
simulation proofs.

7.2.3.1 Existence of the injection of the normalisation.

Lemma 7.2.1 is an important step in the proof of the norm_inject theorem. It states that
if a symbolic value sv can be injected by f , then its normalisation can also be injected. In
other words, if sv normalises into a pointer ptr(b, o), then b is necessarily injected by f ,
i.e. f(b) 6= ∅.

Lemma 7.2.1 (sval_inject_val_inject).

∀ f m sv sv ′ v, sval_inject f sv sv ′ ⇒
normalise m sv = v ⇒ ∃v′, val_inject f v v′.

Proof. By definition of sval_inject we have for some sv1 and sv2

sv ≡ sv1 ∧ sval_inj f sv1 sv2 ∧ sv2 ≡ sv ′.

Since the normalisation is invariant under≡ (by Theorem 7.1.2), we have normalisem sv1 =
v and it remains to prove:

sval_inj f sv1 sv2 ⇒ normalise m sv1 = v ⇒ ∃v′, val_inject f v v′.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.norm_inject_alt
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.sval_inject_val_inject

7.2. MEMORY INJECTIONS 113

b2 b1

b2 b1

b2 b1

b2b1

b2b1

b2b1

8 16 24 32 40 48

Concrete memories of m

8 16 24 32 40 48

Concrete memories of m′

Figure 7.3: Injection of concrete memories

The proof is by case analysis over v, we exhibit a witness v′ for each case such that
val_inject f v v′.

• Case v = undef. The witness we exhibit in this case is undef. By Rule vinj-vundef,
the property holds.

• Case v 6= ptr(b, i). The witness we exhibit in this case is v. By Rule vinj-no-ptr,
the property holds.

• Case v = ptr(b, i). From Lemma 4.4.1, we have that b appears syntactically in sv1.
By direct induction over sval_inj sv1 sv2, it follows that f(b) = ⌊(b′, δ)⌋ for some
b′ and δ. The witness we exhibit in this case is v′ = ptr(b′, i+δ). By Rule vinj-ptr,
v′ is in injection with v and the property holds.

7.2.3.2 Injection of concrete memories and indeterminate memories.

To go further in the proof of Theorem 7.2.2, we need to relate normalisations in m1 and
m2 when m1 and m2 are in injection. Recall that the definition of normalisations involves
a quantification over valid concrete memories and indeterminate memories. We therefore
have to introduce new definitions regarding concrete memories and indeterminate memories
and injections. To this end, we define the cm_inject and im_inject predicates. Defini-
tion 7.2.5 details those predicates: cm_inject relates concrete memories that associate
the same concrete addresses to locations in injection and im_inject relates indeterminate
memories that associate the same byte values to locations in injection.

Definition 7.2.5 (cm_inject and im_inject).

cm_inject f cm cm ′ := ∀ b b′ δ, f(b) = ⌊(b′, δ)⌋ ⇒ cm(b) = cm ′(b′) + δ.
im_inject f im im ′ := ∀ l l′, sval_inj f indet(l) indet(l′)⇒ im(l) = im ′(l′).

Figure 7.3 illustrates the injection of concrete memories. It shows on the left-hand side
the set of valid concrete memories for some memory state m, and on the right-hand side
the set of valid concrete memories for some memory state m′ such that m and m′ are
in injection according to a function f . The effect of the injection is to group b1 and b2
together, in that order. One way to think about concrete memories injections is that it
selects the valid concrete memories of m that have a corresponding valid concrete memory
in m′.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memdata.html#inj_cm

114 CHAPTER 7. MEMORY RELATIONS

Lemma 7.2.2 is a result about the evaluation of symbolic values in injection in concrete
memories and indeterminate memories in injection.

Lemma 7.2.2 (eval_sval_inject). For any injection f , and for any concrete mem-
ories cm and cm ′, for any indeterminate memories im and im ′, for any symbolic values
sv and sv ′, if (cm, im, sv) and (cm ′, im ′, sv ′) are in injection by f component-wise, the
evaluations JsvKimcm and Jsv ′Kim

′

cm ′ satisfy the less-defined relation. Formally,

∀ f cm cm ′ im im ′ sv sv ′,
cm_inject f cm cm ′ ⇒
im_inject f im im ′ ⇒
sval_inject f sv sv ′ ⇒

JsvKimcm ≤ Jsv ′Kim
′

cm ′ .

Proof. By definition of sval_inject, there exist sv1 and sv2 such that

sv ≡ sv1 (7.5)

sv ′ ≡ sv2 (7.6)

sval_inj f sv1 sv2 (7.7)

After rewriting Hypotheses 7.5 and 7.6, it remains to show:

Jsv1K
im
cm ≤ Jsv2K

im ′

cm ′ .

The proof is by induction over the derivation of Hypothesis 7.7.

• Case sv1 = undef. Then, Jsv1K
im
cm = undef. By Rule lessdef-undef, the property

holds.

• Case sv1 = v and sv2 = v′ where v and v′ are values such that val_inject f v v′. We
must prove that JvKimcm ≤ Jv′Kim

′

cm ′ . The proof is by case analysis over val_inject f v v′.

– v = undef. Then JvKimcm = undef and by Rule lessdef-undef, the property
holds.

– v = ptr(b, i) and v′ = ptr(b′, i+ δ) and f(b) = ⌊(b′, δ)⌋. On one hand we have
JvKimcm = cm(b) + i, and on the other hand, we have Jv′Kim

′

cm ′ = cm ′(b′) + (i+ δ).
Because cm and cm ′ are in injection, we know that cm(b) = cm ′(b′) + δ and
the property holds.

– v and v′ are neither undef nor pointers. In this case v = v′, and the evaluations
of v and v′ do not depend on the concrete memory and are therefore equal.

• Case sv1 = indet(b, i) and sv2 = indet(b′, i+ δ) and f(b) = ⌊(b′, δ)⌋. This case is
similar to the case of pointers.

• Case sv1 = op1 sv ′1 and sv2 = op1 sv ′2 and sval_inj f sv ′1 sv ′2. The induction
hypothesis gives us:

∀cm ⊢ m, ∀im, Jsv ′1K
im
cm ≤ Jsv ′2K

im ′

cm ′

We have on one hand Jsv1K
im
cm = Jop1 sv ′1K

im
cm = eval_unop(op1, Jsv

′
1K

im
cm) and on the

other hand Jsv2K
im ′

cm ′ = Jop1 sv
′
2K

im ′

cm ′ = eval_unop(op1, Jsv
′
2K

im
cm). The property holds

because eval_unop is a morphism for ≤, i.e. for any symbolic values sv and sv ′ such
that sv ≤ sv ′, we have eval_unop(op1, sv) ≤ eval_unop(op1, sv

′).

• Case sv1 = sv3 op2 sv4 and sv2 = sv ′3 op2 sv ′4. The property holds by application of
the induction hypotheses using the same arguments as for the unary operators.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memdata.html#eval_sval_inject

7.2. MEMORY INJECTIONS 115

7.2.3.3 Construction of concrete and indeterminate pre-memories.

We have seen that the cm_inject and im_inject predicates represent a selection of
concrete memories and indeterminate memories. Namely, they capture those concrete
and indeterminate memories that have an injection, that we call pre-memories. In this
section we give algorithms to construct pre-memories. Let m and m′ be two memories in
injection by f . Given a concrete memory cm ′ ⊢ m′ and an indeterminate memory im ′, the
goal is to construct a concrete memory cm ⊢ m such that cm_inject f cm cm ′ and an
indeterminate memory im such that im_inject f im im ′. Graphically, the function we
seek is represented by the left arrows ← in Figure 7.3.

The following algorithms satisfy these requirements.

cm(b) = match f(b) with | ⌊(b′, δ)⌋ => cm ′(b′) + δ | None => 0 end.

im(b, i) = match f(b) with | ⌊(b′, δ)⌋ => im ′(b′, i+ δ) | None => 0 end.

Let us examine the construction of cm. To get the concrete address of block b, we first
examine f(b). If b is injected, i.e. there exist b′ and δ such that f(b) = ⌊(b′, δ)⌋, then the
address of b is equal to the address of b plus the offset δ. If b is not injected, we have no
constraint whatsoever about the concrete address of b for cm to be a pre-memory of cm ′,
hence we give the default address 0. The construction of im is similar.

We will now prove properties about these constructions. In particular we will prove
that the construction of cm yields a valid concrete memory for m. This requires as a
precondition that the injection is total, i.e. that all non-empty blocks (i.e. those with a
strictly positive size) are injected i.e. the injection function f is defined for all the allocated
(non-empty) blocks.

Lemma 7.2.3. Provided that cm ′ is a valid concrete memory for m′, and provided
that f is a total injection, the construction for cm yields a valid concrete memory for m.
Formally,

∀ f m m′ cm cm ′, total_injection f m⇒
mem_inject f m m′ ⇒
cm ′ ⊢ m′ ⇒
cm ⊢ m

Proof. We prove each of the three properties of ⊢ independently.

• Address space. The address space constraint unfolds into:

∀ b o, valid(m, b, o)⇒ cm(b) + o ∈]0; 232 − 1[

Because all non-empty blocks are injected and b is non-empty (because valid(m, b, o)),
there exist a block b′ and an offset δ such that f(b) = ⌊(b′, δ)⌋. The goal becomes:

cm ′(b′) + δ + o ∈]0; 232 − 1[

Because m and m′ are in injection, valid locations in m inject into valid locations in
m′, hence we have that valid(m′, b′, o+ δ). As a consequence, the goal is solved by
the address-space property from cm ′ ⊢ m′.

• No overlap. The no-overlap constraint unfolds into:

∀ b1 b2 o1 o2, b1 6= b2 ⇒
valid(m, b1, o1)⇒ valid(m, b2, o2)⇒
cm(b1) + o1 6= cm(b2) + o2

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#compat_inject

116 CHAPTER 7. MEMORY RELATIONS

By the same arguments as in the previous case, b1 and b2 are injected, and the valid
locations inject into valid locations:

f(b1) = ⌊(b
′
1, δ1)⌋ f(b2) = ⌊(b

′
2, δ2)⌋

valid(m′, b′1, o1 + δ1) valid(m′, b′2, o2 + δ2)

The goal becomes:
cm ′(b′1) + δ1 + o1 6= cm ′(b′2) + δ2 + o2

Because m and m′ are in injection by f , we know that f is an injective function for
valid locations, i.e. any two different valid locations are mapped to different valid
locations. More precisely, we have that:

b′1 6= b′2 ∨ o1 + δ1 6= o2 + δ2

The proof now goes by case analysis on the equality of blocks b′1 and b′2.

– Case b′1 = b′2. Then we know that o1 + δ1 6= o2 + δ2, which solves our goal.

– Case b′1 6= b′2. Our goal is solved by application of the non-overlap property
from cm ′ ⊢ m′.

• Alignment constraints.

The alignment constraint unfolds into:

cm(b) mod 2alignment(m,b) = 0

We proceed by case analysis on the result of f(b).

– Case f(b) = ∅. In this case, cm(b) = 0, and the property holds.

– Case f(b) = ⌊(b′, δ)⌋. The goal becomes:

(cm ′(b′) + δ) mod 2alignment(m,b) = 0

We will prove on one hand that cm ′(b′) mod 2alignment(m,b) = 0 and on the
other hand that δ mod 2alignment(m,b) = 0.

∗ Goal: cm ′(b′) mod 2alignment(m,b) = 0. From the fact that cm ′ ⊢ m′, we
have that: cm ′(b′) mod 2alignment(m

′,b′) = 0. From the property mi_align

of the injection of memories, we get that alignment(m′, b′) ≥ alignment(m, b).
Since 2alignment(m,b) divides 2alignment(m

′,b′), the property holds.
∗ Goal: δ mod 2alignment(m,b) = 0. From the fact that cm ′ ⊢ m′, we have

that: 2alignment(m,b) | δ. Hence, the property holds.

Lemma 7.2.4. The construction for cm yields a concrete pre-memory of cm ′. Formally,

cm_inject f cm cm ′.

Proof. The goal unfolds into: ∀ b b′ δ, f(b) = ⌊(b′, δ)⌋ ⇒ cm(b) = cm ′(b′) + δ.
This is a direct consequence of the definition of cm.

Lemma 7.2.5. The construction for im yields an indeterminate pre-memory of im ′. For-
mally,

im_inject f im im ′

Proof. The goal unfolds into: ∀ b b′ δ o, f(b) = ⌊(b′, δ)⌋ ⇒ im(b, o) = im ′(b′, o+ δ).
This is a direct consequence of the definition of im.

7.2. MEMORY INJECTIONS 117

7.2.3.4 Proof of the final theorem.

Lemmas 7.2.1, 7.2.2, 7.2.3, 7.2.4 and 7.2.5 play a major role in the proof of Theorem 7.2.2
whose statement is recalled below.

Theorem 7.2.2 (norm_inject). Given a total injection function f , given two memory
states m and m′ in injection by function f , given two symbolic values sv and sv ′ in injection
by f , the normalisations of sv in m and sv ′ in m′ are in injection by f .

∀ f m m′ sv sv ′, total_injection f m⇒
mem_inject f m m′ ⇒ sval_inject f sv sv ′ ⇒
val_inject f (normalise m sv) (normalise m′ sv ′).

Proof. The proof is by case analysis over the result, say v, of the normalisation normalisem sv .

• Case v = undef. By Rule vinj-vundef, the property holds.

• Case v 6= undef. From Lemma 7.2.1, we can always construct a value v′ such that

val_inject f v v′ (7.8)

To prove the property, it remains to show that v′ is indeed the result of the normal-

isation of sv ′, i.e. that sv′
m′

−−։ v′. We have to prove the following:

∀ cm ′ ⊢ m′, ∀im ′, Jv′Kim
′

cm ′ = Jsv ′Kim
′

cm ′ .

First, we use Lemmas 7.2.3, 7.2.4 and 7.2.5 to get:

cm ⊢ m (7.9)

cm_inject f cm cm ′ (7.10)

im_inject f im im ′ (7.11)

We can now use Lemma 7.2.2 for sv and sv ′ on one hand and for v and v′ on the
other hand to get the following:

JsvKimcm ≤ Jsv ′Kim
′

cm ′ (7.12)

JvKimcm ≤ Jv′Kim
′

cm ′ (7.13)

By Definition 4.4.1 (sound normalisation), we get:

JvKimcm = JsvKimcm (7.14)

Because v 6= undef and Hypotheses 7.12, 7.13 and 7.14, we have

Jv′Kim
′

cm ′ = JvKimcm = JsvKimcm = Jsv′Kim
′

cm ′

As a result, the property holds.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Memory.html#Mem.norm_inject_alt

118 CHAPTER 7. MEMORY RELATIONS

7.3 Conclusion and Discussion

The memory is a central component of the semantic states used by all intermediate lan-
guages in CompCert. It is thus very important to design convenient ways of reasoning
about memory states. In particular, the proof of semantic preservation of CompCert

is based on forward simulation arguments, and it is crucial to design matching relations
about memory states that capture the transformations that happen in CompCert passes.
In CompCert, those relations are memory extensions and memory injections.

We generalised the memory extension relation into a memory improvement relation,
that is tighter than extensions in CompCert, because the structure of the memory is
forced to be identical in both memories. This constrains the normalisation to be the same
in both memories.

We generalised the memory injection to symbolic values. This demanded a generalisa-
tion of injection of values, in particular for indeterminate values. We also gave a central
theorem linking injections and normalisations. The proof of this theorem required to in-
troduce new notions of injections of concrete memories and indeterminate memories.

Note that Theorem 7.2.2 holds only for total injections, i.e. injection functions f that
satisfy the total_injection predicate. Almost all transformations of CompCert that
rely on memory injections feature only total injections. However, the SimplLocals pass
uses inherentely partial injection functions, because the purpose of this pass is to remove
some variables from the memory. We can therefore not use Theorem 7.2.2 for the proof of
SimplLocals. However, we will see in Section 8.1 that the partial injections used in this
pass are of a special kind that enables to prove a version of the theorem that is usable for
the correctness proof.

Finding the right generalisation for the various memory relations has not been an
instantaneous process. Before we came up with a nice and simple notion of structure-
preserving memory relation parameterised by an underlying relation over symbolic values,
we proceeded by trial and error in defining ad hoc memory invariants tailored for each
compilation pass. One of the unfruitful tries consisted for example in relating symbolic
values by the equality of their normalisations in their respective memories, as defined in
the match_val predicate below:

match_val m1 m2 sv1 sv2 , normalise m1 sv1 = normalise m2 sv2

This relation is not well-suited for the simulation proofs we have to prove because it depends
on the memory states m1 and m2, and therefore every time the memory states change, one
needs to prove that the predicate still holds for the updated memory states. In addition
to the added proof burden that this represents, the predicate is simply not preserved by
the free operation. Indeed, we cannot relate the normalisations of a symbolic value in a
memory m and in a memory m′ obtained by freeing some blocks. The reason is that there
are more concrete memories that are valid after the free operation has been performed,
hence the normalisation (see Definition 4.4.1) needs to quantify over a larger set of concrete
memories and we have therefore no insurance that the normalisations are preserved. This
discussion is similar to what we discussed in Section 6.2, where we tried to introduce
normalisations in memory invariants.

Similarly for memory injections, our first attempts at generalising injections were more
limited than what we have achieved now. For example, we only had syntactic injections, i.e.
only symbolic values with the same structure could be in injection, akin to the sval_inj

predicate. Moreover, at first, we did not account for indeterminate values and it was

7.3. CONCLUSION AND DISCUSSION 119

unclear how to inject those. Proving theorems about our injections and how they relate
to normalisations has uncovered a number of problems and has helped make our injections
better.

120 CHAPTER 7. MEMORY RELATIONS

Chapter 8

Semantic Preservation Of The

Compiler Passes

The correctness of the CompCert compiler relies on the correctness of the individual
compiler passes, most of which are proved as forward simulation theorems, as described in
Section 2.4, except for the first determinisation pass which needs to be proved directly as a
backward simulation. The individual correctness proofs rely extensively on the theorems of
the memory model (good-variable properties), and their preservation by memory relations
and injections. Because CompCert provides all the infrastructure required for the proof
of correctness of the compiler passes, we aim at reusing the existing proofs as much as
possible.

Most proofs can be straightforwardly adapted from the existing proofs in CompCert

by generalising memory extensions into memory improvements and memory injections into
our generalised memory injections. However, a number of compiler passes need more work
to be adapted to CompCertS, with symbolic values and finite memory.

C Clight C♯minor Cminor

RTLLinearMachASM

Section 8.1:
SimplLocals

Section 8.2:
Cminorgen

Section 8.3:
Optimisations

Section 8.4:
Stacking

Figure 8.1: Compiler passes of CompCert that require substantial work.

This chapter reports on the compiler passes for which substantial work is required
and describes the adjustments we make. We focus successively on four different passes,
represented on Figure 8.1 (for clarity, not all languages are shown here). Section 8.1 reports

121

122 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

on the SimplLocals pass, that pulls out of memory scalar variables whose address is not
taken, and generates temporary variables instead. This is challenging because the existing
proof uses partial injections, that do not fit in the framework imposed by Theorem 7.2.2.
Then, we show in Section 8.2 how to adapt the Cminorgen pass that most notably builds
stack frames for every function, using our generalised notion of memory injections. Then,
Section 8.3 shows how the abstract domains used in the constant propagation and common
subexpression elimination optimisations have to be updated to fit in our new framework.
Finally, we show in Section 8.4 that the Stacking pass, which performs notably register
spilling, requires major adjustments to be proved correct in our finite memory model,
because of the decreasing memory usage constraint.

8.1 Generation Of Temporaries

The second compiler pass of CompCert, SimplLocals, is a transformation of Clight pro-
grams. It pulls out of memory scalar local variables whose address is not taken in the
program. These variables are transformed into so-called temporary variables (or tempo-
raries), that do not reside in memory. This transformation is crucial because subsequent
optimisations at the RTL level operate on these temporaries. We first explain further the
transformation performed by this pass; then we explain the arguments for the correctness
proof of this pass in CompCert. Last, we explain why the memory injections we have
generalised in Section 7.2 are not well-suited for the proof of this transformation, and we
propose a solution to generalise further memory injections.

8.1.1 Description of the transformation

Figure 8.2 illustrates the SimplLocals pass. It shows a C function f with two local variables
x and y on the left-hand side. The address of x is used as a parameter of a call to another
function g. The transformed program on the right-hand side also has two variables, however
y does not reside in memory anymore but in a temporary variable instead, as indicated by
the keyword var. This transformation is allowed because the address of y is never taken
in the original program, i.e. &y never occurs and therefore it can be pulled out of memory.
This generation of temporary variables is important because the optimisations such as
constant propagation operate on temporary variables and not on variables that reside in
the memory. For instance, during the further constant propagation pass, the temporary
variable y will be replaced by its value 11 (see Section 8.3).

int f() {

int x = 7;

int y = 11;

g(&x);

return y;

}

SimplLocals
int f() {

int x; var y;

x = 7; y = 11;

g(&x);

return y;

}

Figure 8.2: A Clight function (left) transformed by the SimplLocals pass (right)

This transformation is based on a syntactic analysis of the code of individual functions.
The result of the analysis is the set of local variables whose address is taken in the code
of the function (i.e. all local variables x such that &x appear in the code of the function).
Then, accesses to local variables are transformed, if need be, into accesses to temporaries.

8.1. GENERATION OF TEMPORARIES 123

8.1.2 Correctness arguments

The correctness proof of the SimplLocals pass relies on the assumption that the modifica-
tions to a given variable x are either performed inside the considered function via a direct
access to x, or indirectly through the address of this variable (&x). An immediate corollary
is that local variables whose address is never taken are not leaked to other functions and
we can reason locally about these variables; thus it is legitimate to pull those variables out
of memory.

The fact that a pointer to x must be passed to the external function g so that g can
access x holds because a program can not forge a pointer from nothing. This property
is true in CompCert, and it is also true in CompCertS. In particular, we prove that
the normalisation function does not forge pointers. This holds in particular thanks to
Theorem 4.4.1, which states that the normalisation of a symbolic value sv may only result
in a pointer ptr(b, o) if block b appears syntactically in sv .

It is interesting to note that this property did not hold in early versions of our develop-
ment, in which the normalisation function did not satisfy Theorem 4.4.1. Indeed, in very
constrained memory states, a symbolic value sv could normalise into a pointer ptr(b, o),
even if b did not appear syntactically in sv . This was a discrepancy due to near out-of-
memory situations, where very few concrete memories are valid, and one could deduce
the address of a block from a pointer to a different block. Example 8.1.1 illustrates this
situation.

Example 8.1.1. Consider m with 2 blocks b1 and b2 (coloured in white) of size sz = 231−8
that need to be 8-byte aligned (i.e. the 3 least significant bits of their address are zeros).
As the range of valid addresses excludes 0 and 231 − 1, there are only 2 possible concrete
memory configurations, depicted in the following figure: either b1 is allocated at address
8 and b2 is allocated at 231 (first concrete memory) or b2 is allocated at address 8 and b1
is allocated at 231 (second concrete memory). In this situation, the pointer (b2, 0) can be
forged by the conditional expression (b1 == 8)?(b1 + sz) : 8.1

b1 b2
b2 b1

8 231 232 − 8

Fortunately, this situation is solved in the current implementation, thanks to Prop-
erty 4.4.1 (Sliding Blocks) which prevents such constrained, near out-of-memory, abstract
memories.

8.1.3 Proof of SimplLocals in CompCertS

The existing proof of this pass in CompCert uses memory injections to relate memory
states before and after the transformation. However, since the transformation pulls some
variables out of memory, it is a partial injection where some blocks may not be injected, i.e.
they may be forgotten. Such a situation is illustrated on the example program of Figure 8.2.
The memory states relevant for function f are shown in Figure 8.3.

To perform the proof of correctness of this pass, we need a theorem akin to Theo-
rem 7.2.2 that relates the normalisations of symbolic values in the memory states before
and after injection. We wish to prove a theorem of the following form:

1Symbolic values do not actually include ternary conditions a?b:c, however it can be encoded using the
fact that conditions evaluate to either 0 or 1 as a*b + !a*c when b and c are of integer type.

124 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

7

11

7

x

y

x

Before transformation After transformation

Figure 8.3: Partial memory injection

∀ f m1 m2 sv1 sv2, mem_inject f m1 m2 ⇒
sval_inject f sv1 sv2 ⇒
val_inject f (normalise m1 sv1) (normalise m2 sv2)

We have seen in Section 7.2 that Theorem 7.2.2 holds for injections functions that are
total, i.e. all non-empty blocks are injected. We have already established that this is not
the case of the injection we need for the SimplLocals pass. An intuitive way to understand
why the theorem does not hold for arbitrary injection functions f is the following. If f
forgets some blocks from m1, i.e. if they are not injected into m2, then there are fewer
constraints for concrete memories cm2 to be valid for m2. As a result, there are more
concrete memories valid for m2 than there are for m1. Because the specification of the
normalisation is defined by the equality of the evaluations in all valid concrete memories,
it is more likely to fail when there are more concrete memories. Therefore, the normalisation
could be defined in m1 and undefined in m2, contradicting the theorem we wish to prove.
We exhibit in Example 8.1.2 a situation in which the normalisation becomes less defined
after injection.

Example 8.1.2. Consider a memory state m1 containing one unaligned block b1 of size
1 and one 8-byte-aligned block b2 of size 231. The following concrete memory cm1, for
example, is valid for m1:

b1 b2

0 230 231 232

cm1 ⊢ m1

In m1, the block b1 may never be assigned the concrete address 231 because it is always
part of block b2. Now consider an injection function f such that f(b2) = ∅. In m2, the
block b1 may now be assigned any concrete address, in particular 231. Consider for example
the following concrete memory cm2, valid for m2.

b1

0 230 231 232

cm2 ⊢ m2

As a result, the symbolic value sv = ptr(b1, 0)! =int(231) normalises to true in m1

because b1 is never allocated at address 231, but does not normalise in m2 because sv has
different evaluations in different valid concrete memories for m2.

In the following, we first state a lower-level property, about concrete memories and
memory injections, that is sufficient to prove the desired theorem about normalisations

8.1. GENERATION OF TEMPORARIES 125

and injections. Then we show that the injection functions we need to consider for this
correctness proof are not arbitrary, but conform to some well-formedness properties that
rule out the undesired behaviour we just described. Finally, we give a sketch of the proof
of the theorem.

Property 8.1.1 is a condition over an injection function f that is sufficient to prove the
preservation of normalisations by injections, as was explained in Section 7.2.3.

Property 8.1.1. For every memory states m1 and m2 in injection by f , for any concrete
memory cm2 valid for m2, there exists a concrete memory cm1 valid for m1 such that cm1

and cm2 are in injection. Formally,

∀ m1 m2, mem_inject f m1 m2 →
∀ cm2, cm2 ⊢ m2 →
∃ cm1, cm1 ⊢ m1 ∧ cm_inject f cm1 cm2

The intuition behind Property 8.1.1 is that we should always be able to build a concrete
pre-memory of any concrete memory valid for an injected memory. The construction we
proposed for this in Section 7.2.3 does not work in our case, because it was restricted to
total injections.

8.1.3.1 Restrictions over injection functions.

We restrict ourselves to injection functions f such that the blocks that are forgotten are
less than 8-byte wide. In the particular case of the SimplLocals pass, the blocks that are
forgotten correspond to scalar variables, hence their maximal size is indeed 8 bytes (for
long-typed variables). We formalise this notion in Definition 8.1.1.

Definition 8.1.1. Given a memory state m, an injection function f is 8-forgetful for m if
the blocks forgotten, i.e. not injected, by f have a size not greater than 8 bytes. Formally,

forgetful f m , ∀ b, f(b) = ∅ ⇒ size m b ≤ 8

Another restriction we impose on the injection is that f is a one-to-one injection, i.e.
blocks are not merged together but merely kept or forgotten. Definition 8.1.2 formalises
this intuition.

Definition 8.1.2. An injection function f is one-to-one if any block b is either injected
into itself or is not injected at all. Formally,

one_to_one f , ∀ b, f(b) = ⌊(b′, δ)⌋ ⇒ δ = 0

We can now restate Property 8.1.1 with the appropriate hypotheses in Theorem 8.1.1.

Theorem 8.1.1. For every injection function f , for every memory states m1 and m2 in
injection by f , if f is 8-forgetful for m1 and f is one-to-one, then for any concrete memory
cm2 valid for m2, there exists a concrete memory cm1 valid for m1 such that cm1 and cm2

are in injection. Formally,

∀ f m1 m2, forgetful f m1 →
one_to_one f
mem_inject f m1 m2 →
∀ cm2, cm2 ⊢ m2 →
∃ cm1, cm1 ⊢ m1 ∧ cm_inject f cm1 cm2

Using this theorem, it is straightforward to reuse the proof we presented in Section 7.2.3.

126 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

8.1.3.2 Proof sketch for Theorem 8.1.1 about forgetful injections.

This section aims at giving a proof sketch for Theorem 8.1.1.
Consider a one-to-one 8-forgetful injection f , two memory states m1 and m2 in injec-

tion by f and a concrete memory cm2 valid for m2. Consider three blocks b1, b2 and b3
4-byte-wide and 4-byte-aligned and two blocks b4 and b5 that are 2-byte-wide and 2-byte-
aligned in m1. Then, consider that f does not inject blocks b4 and b5. This situation is
depicted by Figure 8.4.

b1

b2

b3

b4

b5

b1

b2

b3

m1

m2

f

f

f

Figure 8.4: One-to-one forgetful injection.

Our goal is to prove that for every concrete memory cm2 valid for m2, it is possible to
construct a concrete memory cm1 valid for m1 such that cm_inject f cm1 cm2.

We write next_addr m cm for the first maximally aligned address that follows the last
(greatest) mapped address in the concrete memory cm (where cm is such that cm ⊢ m).
Recall that size_mem m computes the size of a maximally aligned concrete memory for m,
as constructed by the allocation algorithm presented in Section 5.4. We write cm m to
capture maximally aligned valid concrete memories. In the particular case where cm m,
we have that next_addr m cm = size_mem m.

Consider a concrete memory cm2 valid for m2. The construction of cm1 such that cm1 ⊢
m1 and cm_inject f cm1 cm2 will be different depending on which of next_addr m2 cm2

or size_mem m2 is greater.

If size_mem m2 ≥ next_addr m2 cm2, the situation is depicted by Figure 8.5.

b1 b2 b3 cm2 ⊢ m2

b1 b2 b3 cm′
2 m2

b1 b2 b3 b4 b5 cm1 m1

b1 b2 b3 b4 b5 cm ⊢ m1

0 8 16 24 32 40 48

Figure 8.5: Constructing cm ⊢ m1 from cm2: size_mem m2 ≥ next_addr m2 cm2

The first line of Figure 8.5 shows the concrete memory cm2 that we start from. We
can see that next_addr m2 cm2 = 24. The second line of the figure shows a concrete

8.1. GENERATION OF TEMPORARIES 127

memory cm′
2 m2 where the blocks are allocated in the same order however at maximally

aligned addresses. This construction is the result of running the allocation algorithm (see
Section 5.4). It exhibits that size_mem m2 = next_addr m2 cm′

2 = 32. Likewise, we
can construct a concrete memory cm1 m1 (shown on the third line of the figure) such
that the blocks that are not forgotten by f are allocated first. Finally, the desired concrete
memory cm can be constructed using the following algorithm:

cm(b) =

{

cm2(b
′) if f(b) = ⌊(b′, δ)⌋

cm1(b) otherwise

It is straightforward that cm is such that cm_inject f cm cm2 (from the definition of
cm_inject). Proving that cm is valid for m1 requires more reasoning. The alignment
and address space constraints are easily inherited from the validity of cm1 and cm2. The
proof of non-overlap follows from the validity of cm1 and cm2, but also from the fact that
forgotten and not-forgotten blocks have been mapped to disjoint regions of the memory
(before and after size_mem m2).

If next_addr m2 cm2 > size_mem m2, the construction is more delicate. The situation
is depicted by Figure 8.6.

b1 b2 b3 cm2 ⊢ m2

b1 b2 b3 cm′
2 m2

b1 b2 b3 b4 b5 cm1 m1

0 8 16 24 32 40 48

Figure 8.6: Inverting partial injections.

Like in the previous case, it is possible to construct from cm2, a concrete memory
cm′

2 m2 and a concrete memory cm1 m1 that have the same properties as be-
fore. However, this time, we have that next_addr cm2 m2 = 40 and size_mem m2 =
next_addr m2 cm′

2 = 32.
We call a box an 8-byte-wide 8-byte-aligned region of memory. Because the blocks that

have been forgotten are smaller than 8 bytes and with alignment constraints smaller than
8 bytes, every such block fits in a box.

We write num_free_boxes m cm for the number of free (unmapped) boxes in concrete
memory cm, up to address next_addrm cm. In our example, num_free_boxesm2 cm2 =
2 because there are two available boxes (from 8 to 16 and from 24 to 32). The box starting
at address 0 is not taken into account because 0 is not a valid address. Theorem 8.1.2 gives
an important result regarding the number of available boxes in concrete memories.

Theorem 8.1.2. For any memory m and any concrete memory cm valid for m, if

next_addr m2 cm2 > size_mem m2

then there are at least N =
next_addr m cm−size_mem m

8 available boxes in cm up to address
next_addr m cm, i.e. num_free_boxes m cm ≥ N .

In our example, Theorem 8.1.2 states that there is at least 40−32
8 = 1 available box in

cm2 below address 40. An intuitive explanation of Theorem 8.1.2 is the following: if a

128 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

valid concrete memory uses more space than a maximally aligned concrete memory, then
it must have left a certain number of available boxes between allocated blocks.

cm2 ⊢ m2

si
ze

_m
em
m
2

si
ze

_m
em
m
1

MA
X

ne
xt

_a
dd
r
m
2
cm

2

8X 8(F −X)

8F

Figure 8.7: The concrete memory cm2 ends after size_mem m2.

Figure 8.7 illustrates the situation. Consider that F blocks have been forgotten from
m1, hence we have the following where MAX is the maximal concrete address (232 − 1):

size_mem m2 + 8F = size_mem m1 < MAX

Besides, because of the inequality, and because size_mem and next_addr always re-
turn 8-byte-aligned addresses, we have that, for some natural number X:

next_addr m2 cm2 = size_mem m2 + 8X

We now split the F variables we forgot into two parts: one of X variables and the other
(F −X) variables. We will insert each part independently.

• The X first variables. Theorem 8.1.2 states that there are X available boxes in
cm2 before address next_addr m2 cm2 :

next_addr m2 cm2 − size_mem m2

8
=

8X

8
= X

• The remaining (F − X) variables. As we can see on Figure 8.7, we have the
following inequality:

next_addr m2 cm2 + 8(F −X) < MAX

It follows that (F −X) boxes are available after next_addr m2 cm2.

As a result, all forgotten blocks can be reinjected into a concrete memory cm ⊢ m1 such
that cm_inject f cm cm2. This finishes the proof of Theorem 8.1.1, which we needed for
the proof of our theorem relating normalisations and injections for partial injections.

8.2 Construction Of Stack Frames

From the proof point of view, the compiler pass Cminorgen, from C♯minor to Cminor, is
particularly challenging for our model. The reason is that this particular pass is responsible
for allocating the stack frame: therefore, it transforms significantly the memory layout and

8.2. CONSTRUCTION OF STACK FRAMES 129

thus the memory accesses. After the transformation, the stack frame is a single block and
local variables are accessed via offsets within this block. The proof introduces a memory
injection stating how the blocks representing local variables in C♯minor are mapped into
the single block representing the stack frame in Cminor. Chronologically, Cminorgen is
the first pass relying on memory injections that we have adapted to CompCertS. It is
an important milestone towards validating the adequacy of our generalisation of memory
injections.

8.2.1 Description of the transformation

The Cminorgen pass is responsible for allocating the stack frame of functions. In C♯minor,
each local variable is allocated in its own block. The goal of this transformation is to
allocate a single block, that will be referred to as the stack block, and through which the
individual variables will be accessed.

int main(){

int x, y, *z;

x = 2;

z = &y;

*z = x + 1;

return y;

}

int main(){

int locals[3];

locals[0] = 2;

locals[2] = &locals[1];

*locals[2] = locals[0] + 1;

return locals[1];

}

Figure 8.8: A C♯minor function (left) and its Cminor compilation

Figure 8.8 shows a C♯minor function on the left-hand-side that contains three local
variables2 x, y and z. On the right-hand-side, the compiled function no longer has three
variables but an array, called locals, in which the variables are stored. Accesses to x for
example are transformed into accesses to locals[0]. The memory states of both programs
before the return instruction are depicted by Figure 8.9.

2

3

(by, 0)

bx

by

bz

2

blocals

3

(blocals, 4)

f

f

f

Figure 8.9: Memory injection for Cminorgen

8.2.2 Adaptation of the existing proof

The existing proof maintains a simulation relation based on memory injections between
states of the C♯minor and Cminor programs at each step. Using the generalisation of

2This C♯minor program would not actually appear in the compilation of CompCert because x and z,
whose addresses are not taken, should have been pulled out of memory by the SimplLocals pass. However,
it is an illustrative example for this pass and it would suffice to artificially take the addresses of all the
variables to make this program a valid output of the previous passes.

130 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

memory injections that we introduced in Section 7.2, it is possible to adapt the existing
proof while keeping most of its structure. However, there are major differences between
our proof and that of CompCert. Those differences are essentially due to our finite
memory model. The differences appear in intermediate lemmas related to allocation and
de-allocation, the proof of which cannot be reused in our symbolic model.

8.2.2.1 Preservation of injection by allocation

The first problem is the preservation of the memory injection when allocating the variables
in C♯minor and the stack frame in Cminor. We first recall the corresponding lemma in
CompCert and the structure of its proof. Then we highlight the changes that we need to
make to this lemma and its proof in our finite memory model.

The existing lemma and its proof.
In CompCert, the lemma named match_callstack_alloc_variables aims at proving
the preservation of injection by allocation. The function stack_size vars gives the size
of the stack frame needed to store the variables vars . Here we show a simplified but
representative version of the lemma that focuses only on the memory states.

∀ f m1 m2 m′
1 m′

2 sp vars,
mem_inject f m1 m2 ⇒
alloc_variables m1 vars = ⌊m′

1⌋ ⇒
alloc m2 (stack_size vars) = (m′

2, sp)⇒
∃ f ′, mem_inject f ′ m′

1 m′
2.

The lemma states that given two memory states m1 and m2 in injection by f , allocating
the local variables vars in m1 and the stack frame of size stack_size vars in m2 results
in memory states m′

1 and m′
2 that are in injection by another injection function f ′. This

is one of the most important results for the correctness of the Cminorgen pass.

m1 m2
mem_inject f

m′
2

1mem_inject f
m1

m′
2

mem_inject f

m′
1

∃f ′, mem_inject f ′

2

1. allocation of stack frame
2. allocation of local variables

Figure 8.10: Structure of match_callstack_alloc_variables’s proof in CompCert

The structure of the original proof is depicted in Figure 8.10 where plain arrows repre-
sent hypotheses and the dotted arrow the conclusion. The existing proof first establishes
that the existing injection between the initial memories m1 and m2 still holds between m1

and m′
2. In a second step, it constructs an injection between m′

1 and m′
2, thus concluding

the proof.

http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Cminorgenproof.html#match_callstack_alloc_variables

8.2. CONSTRUCTION OF STACK FRAMES 131

Our modified version of the lemma. Because of our finite memory model, we need
to modify the lemma so that it uses the palloc allocation function (that may fail) instead
of CompCert’s alloc. The theorem we need to prove becomes the following:

∀ f m1 m2 m′
1 m′

2 sp vars,
mem_inject f m1 m2 ⇒
alloc_variables m1 vars = ⌊m′

1⌋ ⇒
palloc m2 (stack_size vars) = ⌊(m′

2, sp)⌋ ⇒
∃ f ′, mem_inject f ′ m′

1 m′
2.

Note that the success of palloc is stated as an hypothesis. It can be proved from the
other hypotheses. Indeed, recall that the allocation succeeds if and only if the size of the
resulting memory is less than some threshold MAX. We know that the allocation succeeds in
m1 and that the size of m1 is greater than or equal to that of m2 (because of the injection).
Besides, since stack_size vars ≤ sz_vars vars , we conclude that the allocation succeeds
in m2 as well.

In order to prove that the injection is preserved by the allocations of the local variables
on one hand and the stack frame on the other hand, we need to show that the memory
state after injection uses fewer (or the same amount of) memory space. Because of this
additional property of injections, we cannot use the original two-step proof, because the
intermediate memory injection (mem_inject f m1 m

′
2) does not hold in our memory model.

We therefore perform the proof by direct induction on the number of allocated variables.
The idea is the following: if we have already proved an injection f for some list of variables
vars , we need to prove an injection f ′ for the list var :: vars . The injection f ′ is obtained
by updating f to inject the block associated to var in the stack frame at the first available
offset. Because the size of the stack frame depends on the list of variables, we can prove
that the relative sizes of the memory states are preserved by each induction step.

8.2.2.2 Preservation of injection by deallocation

Symmetrically, at function exit, the variables and the stack frame are freed from memory.
The lemma we wish to prove states that any injection that holds between memory states
before the deallocations, still holds after. The corresponding lemma in CompCert is called
match_callstack_freelist and is of the following form:

∀ f m1 m2 vars sp m′
1,

mem_inject f m1 m2 ⇒
free_variables m1 vars = ⌊m′

1⌋ ⇒
∃ m′

2, free m2 sp = ⌊m′
2⌋ ∧ mem_inject f m′

1 m′
2.

Similarly to the lemma about allocation and injection that we described previously, the
original proof is a two-step proof using intermediate injections which do not hold in our
model due to the size of the memories. The success of the free operation is guaranteed in
the same way it was in the original proof in CompCert (namely, it follows from the fact
that the free_variables operation succeeds in m1 and that m1 and m2 are in injection).

The proof of the injection (mem_inject f m′
1 m′

2) is more involved, in particular
because of the additional property that the size of m′

2 must be less than or equal to the
size of m′

1. A key insight for proving this is the following: the memory states m′
1 and m′

2

(after the free operation) have the same sizes as the memory states before the allocation
of the variables and stack frame, and those memory states were in injection and therefore
satisfied the decreasing size constraint.

http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Cminorgenproof.html#match_callstack_freelist

132 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

This intuition needs to be formalised and maintained as an invariant throughout the
simulation proof. We use the existing notion of call stack, which is a list of function
frames. A frame, as defined in the original proof of this pass in CompCert, is a proof
artifact relating C♯minor and Cminor program states. For our concerns, we will model a
frame as a record containing a field sz_vars and a field sz_stk that return respectively
the size of the C♯minor variables and the size of the Cminor stack frame.

frame ::= {sz_vars : Z; sz_stk : Z}

The predicate size_history : list mem -> list mem -> callstack -> Prop re-
members a history of the sizes of the memory states and it captures the intuition that before
allocating the local variables and the stack frame, the Cminor memory state was already
smaller than or the same size as the C♯minor memory state. The predicate maintains two
stacks of memory states (one for C♯minor memory states and the other for Cminor mem-
ory states). The third parameter is a call stack and is used to link a memory state to the
next on the stack. The left-hand side of Figure 8.11 gives the definition of size_history
as inference rules. The right-hand side represents the sizes of related memories. Stacked
rectangles represent memory states, building on top of each other. The information that
the size_history predicate captures is depicted by the dashed lines: it remembers the
relative size of the memories for each frame in the call stack.

SH-nil

size_mem m′
1 ≤ size_mem m1

size_history [m1] [m
′
1] []

SH-cons

size_mem m1 = size_mem m2 − sz_vars f
size_mem m′

1 = size_mem m′
2 − sz_stk f

size_mem m′
1 ≤ size_mem m1

size_history (m1 :: lm) (m′
1 :: lm

′) cs

size_history (m2 :: m1 :: lm) (m′
2 :: m

′
1 :: lm

′) (f :: cs)

m1

m′
1

m2

m′
2

m3

m′
3

sz_vars f

sz_stk f

C♯minor Cminor

Figure 8.11: The size_history predicate

Rule SH-nil is the base case of this predicate: it relates memory states m1 and m′
1

provided that size_mem m′
1 ≤ size_mem m1 when no frame has been allocated yet.

Rule SH-cons is the inductive constructor of size_history. In order to add memory
states m2 and m′

2 and a frame f to the size_history predicate, the sizes of m2 and m′
2

must be consistent with the frame f with respect to the previously top memory state. In
other words, if m1 was the memory state previously at the top of the history and we wish
to add a memory state m2 on top of it, then the size of m2 should be exactly the size of
m1 plus the size of the variables, as dictated by the frame f ; and likewise for m′

2.
With size_history as an invariant of the memory states throughout the execution of

C♯minor and Cminor programs, the memory injection, and in particular the size constraint,
can now be proved through simple reasoning about the sizes of the memory states after
allocation. At function entry, we push new memory states into this invariant, to remember
the relative sizes of memory states. At function exit, we use the size_history hypothesis
to prove the decreasing size property of injections.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Cminorgenproof.html#size_mem_preserved

8.3. OPTIMISATIONS 133

8.3 Optimisations

Most of CompCert’s optimisations are performed at the RTL level. These optimisations
are based on the result of static analyses whose results indicate for example the abstract
content of every register and memory cell. Depending on the abstract values at various
locations, several optimisations can be performed. For example, if it is statically known
that a given variable always holds the same value, constant propagation may be performed.
This section focuses on two optimisations, constant propagation and common subexpression
elimination, that share the same abstract domain for values and the same dataflow analysis.

First, we explain the principles of the value analysis of CompCert. Then, we introduce
the notion of pointer tracking. This notion is absent in CompCert version 2.4. Later
versions include such a notion, however no formal semantics can be given in CompCert

to this pointer tracking. We show that our model allows us to define its semantics. We
show that some transfer functions from CompCert are unsound in our model and explain
how to fix them. Finally, we use the resulting abstract model to reprove the constant
propagation and common subexpression elimination optimisations.

8.3.1 Value analysis of CompCert

Robert and Leroy [RL12] describe an early version of the value analysis of CompCert.
It aims at propagating constant pointers, but also at tracking whether stack pointers are
possibly passed as arguments of functions calls. This is essential to decide whether invari-
ants about stack variables are preserved across function calls. Indeed, if a pointer to the
current stack is passed to a function f, since f may modify arbitrarily the contents of the
whole stack, the only sound approach consists in invalidating the stack invariant.

When undefined operations are performed, it might be unclear whether a pointer is
passed to a function. The following code snippet illustrates such a situation.

int foo() {

int x = 7;

f(uintptr_t(&x)>>1);

return x;

}

void f(uintptr_t ptr) {

((int)(ptr << 1)) = 0;

}

Function foo initialises a (stack-allocated) local variable x with the value 7, then calls a
function f and finally returns x. The argument passed to f is the result of right-shifting the
address of x. Since this operation is undefined in CompCert’s semantics, it is sound for
the dataflow analysis to assume that the argument of f can never be a pointer. Since the
function call has no parameter that are pointers, it is mathematically sound for the compiler
to trigger constant propagation and for the compiled program to return 7. CompCert 2.4
has this aggressive behaviour.

However, the function f may forge a pointer to x because the integer that it receives as
an argument is derived from a pointer to x. In fact, with a concrete memory model such as
ours, since pointers to int must be aligned, we can always reconstruct the original pointer
by left-shifting the integer, as shown in the code snippet above. This is a delicate situation
where the original program returns 0, because of the update done by function f, and the
optimised program returns 7 because of the constant propagation.

134 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

Even if this behaviour looks wrong, it is important to realise that it is allowed in
CompCert because the original code does not have well-defined semantics, hence the
semantics of the program is stuck before the function call. The rest of the program may
therefore be optimised in any way.

Still, in order to disable such unintuitive optimisations, later versions of CompCert

take a more conservative approach and track whether a value may originate from a pointer,
as in the right-shifting example we have seen above. In such cases, the dataflow analysis
makes the conservative assumption that those pointers could be reconstructed and derefer-
enced. As this pointer tracking cannot be formally expressed with the existing CompCert

semantics, the weakness of this approach is that one needs to inspect the code of the transfer
functions to ensure that pointer variables never leak through integer variables.

Because our semantics defines arbitrary pointer arithmetic, our semantic preservation
theorem is forced to preserve these semantics. Hence, we now have a formal guarantee that
CompCertS cannot have the misbehaviour of CompCert 2.4 illustrated above, since it
would violate the theorem.

8.3.2 Formal tracking of pointer provenance

A crucial step to adapt the existing alias analysis of CompCert to our semantics consists
in formally defining what it means for a symbolic value to depend on a pointer. The
dataflow analysis of CompCert [RL12] is formalised as an abstract interpretation [CC77].
We first define an abstract domain aptr for pointers, largely inspired from CompCert.

aptr ::= ⊥ | Cst | Gl id ofs | Glo id | Glob | Stk ofs | Stack | ¬Stack | ⊤

We give semantics to these abstract pointers by defining a concretisation function γb :
aptr → P(sval) that maps each abstract element to a set of symbolic values, where
b is the block corresponding to the current stack frame. The ⊥ element represents the
empty set of symbolic values. Cst abstracts symbolic values that are constants, i.e. their
evaluation is independent of the memory layout. Stk ofs is the set of symbolic values
that evaluate to ptr(b, ofs) (i.e. offset ofs in the current stack frame). Stack represents
all symbolic values that depend in any way on the block of the current stack frame. Note
that it is not necessarily a pointer in the block b, but it might be a symbolic value like
ptr(b, o)≫ 1 as we have seen earlier. This notion of dependence is formalised by the dep

predicate defined in Figure 8.12: dep(sv , B) means that the symbolic value sv depends at
most on the concrete address of blocks b ∈ B, i.e. for all concrete memories allocating blocks
in B at the same addresses, the evaluation of the symbolic value sv is unchanged. Said
otherwise, the values of the blocks not belonging to B have no impact on the evaluation of
the symbolic value. Then, Gl id ofs captures the set of symbolic values that evaluate like
ptr(bid, ofs), where bid is the block associated with the global identifier id. Glo id is the
set of symbolic values that depend on the block bid . Glob is the set of symbolic values that
depend only on blocks that are associated with global identifiers. Finally, ⊤ is the set of
all symbolic values. All these concretisation relations are summed up in Figure 8.12, where
predicate is_glob_block id b holds if b is the block associated with global identifer id .

The difference with CompCert’s aptr domain is that our domain represents not only
pointers but also symbolic values that depend in any way on the concrete address of some
set of blocks. In CompCert, the γb concretisation function associates only actual pointers
ptr(b, o) to an abstract element aptr . Hence, CompCert can not model that a value
depends on some block without itself being a pointer, like the symbolic value ptr(b, o)≫ 1
for example. Another difference is that we include the abstract element Cst for symbolic
values that do not depend on any block.

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/ValueDomain.html#epmatch

8.3. OPTIMISATIONS 135

γb(⊥) = ∅
γb(Cst) = {sv | dep(sv , ∅)}
γb(Gl id ofs) = {sv | ∀cm im, JsvKimcm = cm(b′) + ofs ∧ is_glob_block id b′}
γb(Glo id) = {sv | dep(sv , {b′} ∧ is_glob_block id b′}
γb(Glob) = {sv | dep(sv , {b′ | ∃ id, is_glob_block id b′})}
γb(Stk o) = {sv | ∀cm im, JsvKimcm = cm(b) + o}
γb(Stack) = {sv | dep(sv , {b})}
γb(¬Stack) = {sv | dep(sv , block \ {b})
γb(⊤) = sval

where

dep(sv , B) = ∀cm cm ′ im, cm ≡B cm ′ ⇒ JsvKimcm = JsvKimcm ′

cm ≡B cm ′ = ∀b, b ∈ B ⇒ cm(b) = cm ′(b)

Figure 8.12: Concretisation of abstract pointers

⊤

¬Stack Stack

Stk i Stk jGlob

Glo id

Gl id ofs

Cst

⊥

Figure 8.13: Ordering of abstract pointers

Note that the definition of the concretisation is robust and takes into account the
semantics of symbolic values. For instance, the symbolic values 1, 1 + 1 and (b, 0) ∗ 0 + 1
are all in the concretisation of Cst , even if (b, 0) ∗ 0 + 1 mentions the block b, because its
evaluation is 1 in every concrete memory.

The domain of abstract pointers is partially ordered by ⊑ , which is depicted in
Figure 8.13. A least upper bound operator, written ⊔, can be defined such that for every
(x, y) ∈ aptr2, x ⊔ y is the least element such x ⊑ x ⊔ y and y ⊑ x ⊔ y.

8.3.3 Improving the transfer functions

In order to establish the abstract semantics of a program, one needs to give semantics
to every construction of the language on the abstract domain. In particular, we give the
semantics of arithmetic operations on the domain of abstract values, defined as follows:

aval ::= I i | Ptr aptr | . . .

http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/ValueDomain.html#epge

136 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

An abstract value is either an integer I i where i is a concrete 32-bit integer, or an
abstract pointer aptr . The actual definition also includes constant floating-point numbers
and 64-bit integers, which are omitted here for simplicity.

Let us now examine the transfer functions of a few operations. For example, consider
the abstract operation Stk i ≫ I(1). In CompCert 2.4, it returns Cst3, meaning that
this is not a pointer but a constant value; this is what causes the unintuitive optimisation
described in Section 8.3.1. In more recent versions of CompCert (2.5 and above) however,
it returns Stack because the transfer function takes into account the provenance of pointers.
However the Stack abstract element in CompCert does not have the same concretisation
as ours. In CompCert, Stack abstracts every pointer to the current stack block. In our
model, it abstracts any symbolic value that depends, in one way or another, on the current
stack block. While this is a good thing that CompCert is more conservative than it
could be for this case, this reasoning is not formal by any means, i.e. the quality of the
transfer function and the absence of bugs inside them is not formally assessed. Our transfer
function, on the other hand, has to be conservative because the underlying semantics of
pointer operations is more defined. It returns Stack also, but it could not have returned
Cst , because then we could not have proved that the transfer function is sound, namely in
our case:

∀ cm cm′ im, Jptr(b, i)≫ int(1)Kimcm = Jptr(b, i)≫ int(1)Kimcm ′

⇔
∀ cm cm′, (cm(b) + i)≫ 1 = (cm ′(b) + i)≫ 1

This equation is clearly not true: consider for example cm(b) = 16, cm ′(b) = 32 and
i = 0. We have on one side (cm(b) + i) ≫ 1 = 16 ≫ 1 = 8 and on the other side
(cm ′(b) + i)≫ 1 = 32≫ 1 = 16.

During the proof of the soundness of all transfer functions for all operators, we found
several such transfer functions which are unsound for our semantics. Those bugs have been
reported upstream and their impact is currently evaluated. In certain cases, the dependence
really looks benign. Anyhow, the fix consists in weakening the transfer functions and
therefore does not have any impact on the existing proof.

The constant propagation and common subexpression elimination passes exploit the
dataflow analysis to transform programs. We adapt the correctness proofs of these opti-
misations to account for our domain of symbolic values. This does not require to modify
the optimisation passes, but merely to use our memory improvement relation (defined in
Section 7.1) instead of the memory extension relation, as described in Section 2.5.3.2.

We use the same methodology to adapt the neededness domain used by the dead-code
elimination pass of CompCert. The neededness domain captures the set of bits of integer
values that are live at each program point and relies on the memory extension relation.
We lift this to a memory improvement relation and the whole transformation is straight-
forwardly reproved, with few adjustments.

8.4 Construction of Mach stack frames

CompCert is proved correct with respect to an unbounded memory model: memory
allocation never fails. Therefore, the semantic preservation guarantees do not account for
memory consumption. As a consequence, a compiled program may require more or less

3As we stated earlier, the abstract element Cst does not exist in CompCert 2.4, however the abstract
element returned by the transfer function for the right-shift is Ifptr ⊥ (see CompCert’s development for
further details), which has the same concretisation as our element Cst .

8.4. CONSTRUCTION OF MACH STACK FRAMES 137

memory than the source program. If the compiled program requires more memory, it may
exhaust the whole memory of the machine and crash. This is an unfortunate possibility
that CompCert’s theorem does not account for, because CompCert’s memory space is
unbounded. For example, the following program transformation can be proved sound with
respect to CompCert’s memory model:

int main(){

return 0;

}

dubious transformation

int main(){

int dumb_array[0x80000000];

return 0;

}
On the left-hand side, we have a C program that merely returns the integer 0. On the

right-hand side, the C program also returns 0 but has allocated a large array of integer
elements, for a total size of 0x80000000 * sizeof(int) bytes, i.e. 230 × 4 = 232 bytes,
therefore exhausting memory. This transformation can be proved sound in CompCert

because the allocation of the large array succeeds and does not impact the rest of the
program. However, when run, the programs will behave differently: one will safely return
0 while the other will crash at runtime because of an out-of-memory situation.

In CompCertS, we model a finite 32-bit addressed memory and the allocation opera-
tion may fail if it is unable to construct a concrete memory (as discussed in Section 5.4).
Since allocations may fail, it is important for the semantic preservation property that
whenever a source program succeeds in allocating a chunk of memory, the corresponding
compiled program succeeds as well in allocating the same chunk of memory. In other
words, compiled programs must use less memory than source programs. Said otherwise
again, compilation must decrease the memory usage of programs.

As a result, we are able to guarantee that, for any source program that has defined
semantics in C (in particular it does not exhaust the memory at the C level), then the
corresponding compiled program uses less memory and therefore does not crash with an
out-of-memory situation. This is an improvement over CompCert, because this rules out
the example program transformation we discussed above.

The decreasing memory space property is already satisfied by most compiler passes.
Only the Stacking pass does not have this behaviour. The purpose of this section is
therefore to focus on this pass, namely Stacking, and explain how we cope with it.

First, we introduce the Stacking compiler pass, whose purpose is to allocate callee-save
variables and metadata such as the return address in the stack frame of functions, in addi-
tion to the stack frame constructed in previous passes. Obviously, this is in contradiction
with the principle of decreasing memory usage that we just described. Then, we show how
we cope with this by provisioning memory in the semantics of all intermediate languages,
so that the compilation indeed decreases the memory usage of programs.

8.4.1 The Stacking transformation

The Stacking pass is the penultimate pass of the CompCert compiler (see Figure 2.2).
It transforms Linear programs into Mach programs. Linear is similar to RTL with the
differences that only a finite number of registers is available and the code of a given function
is linearised into a list of instructions instead of a control-flow graph. The Mach language
is very close to the Linear language, but with a more concrete view of the stack frames of
functions.

Figure 8.14 shows the structure of the Mach stack frames for the x86 architecture. In
particular, it contains the Linear stack frame, shifted by a given offset from the start of
the Mach stack frame. This will be modelled by an injection function in the proof of this
transformation, and pointers to the stack frame will need to be shifted by this offset (i.e.

138 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

return address
32

Linear stack frame

20
locals

16
callee-save registers

8
link to parent frame

4
outgoing arguments

0

Figure 8.14: The Mach stack frame

20 in the case of Figure 8.14). The stack frame also contains the return address of the
current function, slots for local variables, callee-save registers, a link to the stack frame of
the parent (caller) function and stack space for outgoing arguments.

The return address is a pointer to the code of the caller function, indicating where the
control should return once the current function has finished executing. This information
did not appear in the stack frame of the previous languages because the return address was
recorded in the semantic state of programs. However, the compiled program will run in an
low-level environment that does not record the return address automatically. Therefore, it
is the responsibility of the program itself to save its return address explicitly.

The local variables shown in Figure 8.14 are the RTL pseudo-registers that could not
be allocated to hardware registers during the register allocation pass (from RTL to LTL,
see Figure 2.2), and have been spilled into memory.

The callee-save registers are registers whose value should be preserved across function
calls. The Application Binary Interface (ABI) of different architectures describes which
calling conventions should be used and what registers should be callee-save. Such registers
may still be used by a called function, provided that the function ensures that the values
stored in those registers are restored at the end of its execution. It is the responsibility of
the callee (the called function) to save their values. Those registers are saved within the
stack frame of the function, as shown in Figure 8.14.

The link to the parent frame is a pointer to the caller’s stack frame at offset 0. This
pointer is used to access the parameters of the function call, stored in the caller’s frame.
This is required in CompCert because the stack frames are each allocated in their own
block, separated from the other blocks. In particular, there is no relation between the
concrete addresses of the block of the stack frame of a function and the block of its caller’s
stack frame. By contrast, in traditional compilation of functions into assembly, the calling
conventions dictate where the arguments are to be fetched from, e.g. at a known offset
from the stack register esp.

The outgoing arguments to a function call are also inserted into the stack frame of
functions. This space is reserved so that every function call has enough space to push its
arguments on the stack before transferring control to the callee.

8.4. CONSTRUCTION OF MACH STACK FRAMES 139

b

b′

f

Figure 8.15: Stacking’s proof in CompCert: memory injection

All this metadata, that was not present in the stack frames or in the memory state
in previous higher-level languages, is what we call the hidden cost of the C semantics.
This memory is required for the execution of programs in lower-level languages and is not
precisely accounted for in the semantics of C.

Hence, the Mach memory state is necessarily strictly larger than the corresponding
Linear memory state since it includes strictly more data in the stack frames. This con-
tradicts our hypothesis of decreasing memory usage, making it possible for a program to
have well-defined semantics before the Stacking pass and undefined semantics after this
pass – thus invalidating the current proof of correctness of the compiler.

8.4.2 Adapting the correctness proof with memory provisions

The existing proof of this pass in CompCert uses a memory injection of the form shown
in Figure 8.15, where one block b (the Linear stack frame) is injected into a larger block b′

(the Mach stack frame) at a given offset. The locations that are not injections of locations
of b are used to store all the metadata described in the previous section.

When we introduced our generalisation of memory injections in Chapter 7, we explained
that the size of the memory should be decreasing with injections. The injection used by
CompCert for the proof of the Stacking pass and depicted in Figure 8.15 does not satisfy
this condition, because the stack size grows and therefore we cannot formally ensure for
example that the allocation of the stack frame will succeed.

In order for this pass to fit in the decreasing memory usage framework, the solution
we choose is to make memory provisions in earlier languages, so that the memory used for
the hidden cost of the semantics of C are already accounted for in the semantics of C. In
other words, we modify the semantics of all languages from C to Linear so that at function
entry, one does not only allocate the local variables or the stack frame in the memory, but
also a certain amount of additional pieces of memory that serve as place holders for the
metadata that is inserted in Mach stack frames.

Using this solution, the injection used in the proof of correctness of the Stacking pass
resembles more the injection used in the Cminorgen pass (see Section 8.2). It is depicted in
Figure 8.16. In this situation, every location in b′ has a corresponding location either in b
or in one of the additional blocks used as memory provisions, hence the size of the memory
stays the same across the injection. Therefore we can prove that the two memory states
are in injection, using techniques similar to those we used for the proof of the Cminorgen

pass.

140 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

b

b′

Figure 8.16: Stacking’s proof in our symbolic model: memory injection

8.4.3 Memory provisions in the intermediate languages

The solution of provisioning memory allows to prove the correctness of the Stacking pass.
However, we need to explain how we provision memory for each function. Our solution
uses an oracle that gives, for every function, the amount of memory that it is necessary to
provision so that the stack frame can be allocated at the Mach level. First, we will show
how, given such an oracle, the provisioned memory is preserved across compilation up to
the Stacking pass. Second, we will show how to construct such an oracle from the result
of the compilation.

8.4.3.1 Preservation of the memory provision.

To propagate the provision of memory, we instrument the semantics of all the languages
from C to Linear in a similar fashion. We parameterise these semantics with a mapping
needed_stackspace : function -> nat that associates with each function the number
of additional bytes it requires for the Mach stack frame to be allocated, and therefore for
the Stacking pass to decrease the memory usage. At function entry into function f, we
allocate both the blocks needed for the local variables of f (or its stack frame, depending on
the language), and extra blocks of a total size of needed_stackspace f bytes. At function
exit, we free the blocks corresponding to the local variables and those additional blocks.
All the compiler passes from C to Linear simply preserve these extra blocks and leave
them untouched. Only the Stacking pass consumes these blocks to justify the use of extra
stack space for the construction of the stack space.

Note that this makes the requirement for a program to have a defined C semantics
slightly stronger. In CompCert, there is no requirement on the memory consumption
of programs that implies undefined semantics. In CompCertS, a given C program has
defined semantics only if all the allocations of the local variables succeed (which is itself
governed by the allocation algorithm described in Section 5.4). With this provisioning,
a C program has defined semantics only if the allocations of the local variables and the
provisioning blocks succeed. This is a stricter requirement than before. This makes our C
semantics stricter than that of CompCert in some sense, because we don’t give semantics
to C programs that exhaust the memory. However, as we have advocated in Section 6.2,
our semantics is more defined than that of CompCert for all other aspects, i.e. we give
semantics to more operations.

We show in Figure 8.17 how the stack space of functions is structured and how it evolves
throughout the compilation. Before the SimplLocals pass, each variable owns a memory
block (in white) and there are several provisioning memory blocks (in grey). After the
SimplLocals pass, some variables go out of memory and are transformed into provisioning
blocks. The Cminorgen pass leaves the provisioning blocks untouched and groups the

8.4. CONSTRUCTION OF MACH STACK FRAMES 141

extra blocks

SimplLocals Cminorgen Stacking

Figure 8.17: Structure of stack frames and memory provisions during compilation

variable blocks into one stack frame block. Finally, the Stacking pass consumes all the
provisioning blocks to allocate a bigger stack frame, as described earlier.

8.4.3.2 Computing the oracle.

The last step in making this provisioning technique work is to construct the oracle used
in the various semantics that gives the number of extra bytes that are necessary to ensure
that the compilation happens in decreasing memory usage. The computation of this or-
acle will actually be performed by the compiler. The compiler can be seen as a function
comp : progC ⇀ progASM . The assembly program that is output by the compiler con-
tains not only the assembly code of functions but also metadata about the functions that
we introduce during the compilation in order to remember some useful information. In
particular, if the output of the compiler is the assembly program tp, for each function f ,
we remember inside tp: a) the number of additional bytes required for the allocation of
the Mach stack frame, that we write ns(tp, f) (for needed stack-space); and b) the number
of bytes made available by the SimplLocals pass, that we write sl(tp, f). Those pieces
of information are available during the compilation and it is straightforward to remember
them.

C Clight1 Clight2 . . . Linear Mach Asm

memory provision

payload

stack frame size

ns

sl

ns − sl

Figure 8.18: Evolution of the size of function stack frames during compilation

The evolution of the memory consumption of the instrumented semantics is given by
Figure 8.18. It is another view of the information displayed by Figure 8.17 that allows to
quantify the amount of memory that needs to be provisioned. The lower grey part of the
diagram is the memory used by each function’s stack frame (or local variables, depending

142 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

on the language) in CompCert’s semantics. At the Clight2 level, which represents the
Clight language after the SimplLocals pass, the memory usage decreases because some
blocks are pulled out of memory. The memory usage is preserved by all passes until the
Stacking pass, which makes the memory usage increase again. Our solution of memory
provisioning is pictured by the higher, hatched area of the graph: we allocate the hatched
part of the memory (provision) on top of the grey part (the payload memory, i.e. the
memory that corresponds to actual data in the semantics of higher-level languages). We
can see that the overall memory usage stays constant all along the compilation.

Figure 8.18 shows that two oracles are actually needed: one for the languages from C
to Clight1, that we call o1, and the other for the languages from Clight2 to Linear, that we
call o2. Both associate with each function f the number of bytes that need to be allocated
at function entry. Following Figure 8.18, we define o1 and o2 as follows:

o1(tp) = λf. ns(tp, f)− sl(tp, f)
o2(tp) = λf. ns(tp, f)

We can now use these oracles to parameterise the semantics of the languages from
C to Linear, and the proof of correctness of the compiler. This construction may seem
circular at first sight (using the compiler to produce oracles that are used in its own proof
of correctness), however it is not. The compiler does not need any oracle as input, only the
semantics of the languages and the proofs of correctness of the individual compiler passes
do.

8.4.3.3 CompCertS’ theorem.

Theorem 8.4.1 is the final theorem of correctness of CompCert (see Section 2.5). It
relates behaviours of C programs and those of the compiled assembly programs. We recall
its statement below.

Theorem 8.4.1 (transf_c_program_preservation). For any C program p, if the com-
pilation succeeds in generating an assembly program tp, then every behaviour of tp is an
improvement over a behaviour of p. Formally,

∀ p tp, comp(p) = ⌊tp⌋ ⇒ ∀ B , tp ⇓ASM B , ∃ B ′, p ⇓C B ′ ∧ B ′ ⊆ B .

In Theorem 8.4.1, the ⇓L relation is such that p ⇓L B means that the execution of p
according to the semantics of language L exhibits behaviour B .

Since the semantics of the C language is parameterised by an oracle, compared to The-
orem 8.4.1, the semantic preservation theorem of CompCertS (Theorem 8.4.2) mentions
this oracle and the correctness is stated with respect to this oracle.

Theorem 8.4.2 (transf_c_program_preservation). For any C program p, if the com-
pilation succeeds in generating an assembly program tp, then every behaviour of tp is an
improvement over a behaviour of p according to the C semantics parameterised by the oracle
o1(tp). Formally,

∀ p tp, comp(p) = ⌊tp⌋ ⇒ ∀ B , tp ⇓ASM B , ∃ B ′, p ⇓
o1(tp)
C B ′ ∧ B ′ ⊆ B .

Here, p ⇓o1(tp)C beh means that the execution of program p according to the semantics of
C with oracle o1(tp) exhibits B . An interesting corollary of this theorem is the following:
for any C program p that compiles into a program tp, if p has a defined semantics according
to the oracle o1(tp), then executing tp does not produce out-of-memory errors. That is
because the C program has defined semantics, hence it uses a given amount of memory
that is less than the maximal amount of memory and we know that the assembly program
uses less memory than the C program.

http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Complements.html#transf_c_program_preservation
http://www.irisa.fr/celtique/wilke/phd/scc-doc//html/Complements.html#transf_c_program_preservation

8.5. CONCLUSION AND DISCUSSION 143

8.5 Conclusion and Discussion

In this chapter, we have covered the main changes we brought to the compiler passes of
CompCert to adapt to our symbolic memory model, in particular to the proof of correct-
ness of those passes. The final result is a complete compiler, that we call CompCertS,
that compiles C programs into assembly programs, with the guarantee that C programs are
compiled into safe assembly programs whose behaviours are improvements of the original
programs, like CompCert. However, unlike CompCert, our compiler gives more guaran-
tees about the generated assembly programs. First, the notion of behaviour improvement
gives the compiler the freedom to replace going-wrong, or stuck, behaviours by any be-
haviour. We reduce this freedom by giving a defined semantics to more programs, hence
fewer programs exhibit going-wrong behaviours that can be optimised in an unintuitive
manner by the compiler. This is an improvement over CompCert because more programs
can be compiled faithfully to the programmer’s intentions. Second, because our memory
model is a finite memory model, we account for the memory consumption of programs,
and our final correctness theorem ensures that the compiled program does not go out of
memory, provided that the source C program does not.

Similarly, Carbonneaux et al. [Car+14] propose a modified version of CompCert that
they call Quantitative CompCert and which makes several contributions related to the
question of memory consumption of C programs. First, they provide a Hoare-like logic
for C programs that they use to prove bounds on the stack-space usage of C functions.
Then, they prove that those bounds are preserved throughout the compilation. Finally,
they modify the assembly language into an ASM sz language, where a block of size sz

bytes is allocated at the beginning of the program and serves as the stack. Their theorem
states that: provided that the source program has defined semantics, and the bounds they
infer on the source program are lower than sz , then the compiled assembly program does
not stack overflow. Our work provides a similar conclusion, namely that the assembly
program does not run out of memory. While their work obtains space bounds through a
quantitative Hoare logic, our work uses the allocation algorithm described in Section 5.4 to
decide whether an allocation is possible or not.

In the following, we list a few limitations that the development of this compiler still
has, and explain how we hope to cope with those.

SimplLocals and indeterminate values. The SimplLocals pass is crucial because it
generates temporary variables in the Clight language, that are subsequently transformed
into RTL pseudo-registers. Those pseudo-registers are the main target of most of the op-
timisations performed at the RTL level, e.g. constant propagation, common subexpression
elimination, dead-code elimination. Recall that the proof of correctness of the SimplLocals
pass relies on a partial injection which, for each block b, either keeps it (injects it into itself)
or forgets it (does not inject it). Blocks that are not injected are replaced by temporary
variables, i.e. semantic objects that do not reside in memory.

In the existing proof of CompCert, the values inside the block being forgotten and
the corresponding temporary must be in injection. Local variables are initialised with
indet(b, i) values, whereas temporary variables are initialised with undef. Our injection
does not hold in this case because we do not have sval_inject f (indet(b, i)) undef;
indeterminate values only inject into other indeterminate values.

A solution we would therefore envision is to initialise temporary not with undef but with
indet(b′, i′) values. Now the problem becomes that of finding such a block b′. We could
allocate a block b′ for every temporary variable we create and state that f(b) = ⌊(b′, 0)⌋

144 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

to get the desired injection between indeterminate values, but that would imply that the
contents of both memories in blocks b and b′ should be in injection, which defeats the very
purpose of this transformation: pulling variables out of memory.

Another solution would be to invent a new domain temp_id of temporary identifiers,
and change the type of injection functions from block ⇀ (block×Z) into the more complex
block ⇀ ((block × Z) + reg) (where the type (A + B) is the sum type of A and B, i.e.
an element of this type is either an element of A or an element of B). In other words,
a block would be injected either in another block at a given offset (usual case) or into
a register. This is a more demanding solution because memory injections are already
a complex notion with many properties that would need to be reproved. However, this
approach looks promising and deserves further investigation.

The workaround used in the current proof is simply not to introduce indet(b, i) in-
determinate values in the allocated blocks, i.e. blocks are initialised with undef and the
injection holds trivially because undef injects into any value. This however prevents rea-
soning about the uninitialised contents of memory, mimicking the semantics of CompCert

in that regard.
Nevertheless, the proof we have done for all other passes works with indeterminate

values with very few changes. This claim is backed by an alternate version of the devel-
opment4 where the SimplLocals pass does nothing, i.e. it does not remove any variable
from the memory, and the blocks are initialised with indet(b, i). All the passes are then
proved correct by success, however the optimisations are not as good because they operate
mainly on temporaries.

Optimisations: inlining. CompCert also includes an inlining pass, which transforms
certain functions calls into the code of the function. This is a useful transformation es-
pecially for short functions whose code may subsequently optimised by intra-procedural
optimisations. The proof of this optimisation is based on a memory injection, however
the transformation may increase the memory usage of programs. We expect that memory
provisions similar to the technique we used for the Stacking pass will help us prove this
transformation correct. However it seems to be more complex. Consider the following code
snippet:

void f() {

...

g()

...

}

If the function g is inlined, then the stack frame of f has to be large enough to contain that
of g. Hence, the oracle for f must provision additional blocks for the stack frame of g to
fit in, for the inlining pass. However, at the C level, g is not inlined yet and must allocate
space for its local variables and provision blocks for its stack frame at the Mach level. This
results in a sub-optimal oracle that provisions stack space twice for the same function. It
is still to be investigated how to compute a better oracle with inlined functions.

To sum things up, we have adapted most passes of CompCert with the generalisa-
tions of various CompCert’s concepts that we presented all along this thesis: symbolic
values, concrete memories, normalisations, finite memory, memory relations and memory

4This alternate version is available online, see http://www.irisa.fr/celtique/wilke/phd/.

http://www.irisa.fr/celtique/wilke/phd/

8.5. CONCLUSION AND DISCUSSION 145

injections. We end up with a formally-verified compiler, CompCertS, for low-level C pro-
grams with respect to a finite memory model, which gives guarantees about the run-time
memory consumption of programs.

146 CHAPTER 8. SEMANTIC PRESERVATION OF THE COMPILER PASSES

Chapter 9

Conclusion

In this thesis, we have defined the first formally-verified compiler for C that accounts for
bit-level manipulation of pointers and uninitialised data. All the existing formally-verified
compilers and formal semantics for C give undefined semantics to such idioms. Only Kang
et al. [Kan+15] give defined semantics to such low-level manipulations, with the aim of
proving optimisations correct.

The semantics and memory model of C are complex objects. As an illustration, even
starting from CompCert’s development, we had to iterate several times before we found
the formalisation we present in this thesis. In particular, the notions of valid concrete
memories and of normalisations have had several less well-behaved specifications.

Making modifications inside the code of a large project like CompCert is somewhat
frightening at first, but in the end most of the structure of the CompCert compiler can
be reused and provide a strong basis to build upon. The main difficulty we encountered
was to find the right generalisation of semantic properties used to prove the correctness
theorems of each compiler pass. Although the generalisations we present here look simple
(equivalence of symbolic values, injection of symbolic values), there has been a number of
unsuccessful definitions for those notions before we got to the right ones, i.e. those that
enable us to prove the correctness of the CompCertS compiler.

Section 9.1 summarises the results we presented throughout this thesis. Short-term
improvements and extensions of the developement are presented in Section 9.2 and Sec-
tion 9.3. Finally, Section 9.4 gives somes ideas of applications of CompCertS.

9.1 Summary

With our daily lives becoming more and more dependent on software systems, it becomes
of paramount importance to gain confidence in the correctness and safety of those systems.
Formal methods are becoming mature enough to be applied to large-scale verification
endeavours, such as the static analysis of the primary flight control software of the Airbus
A340 series with Astrée [Bla+03], the verification of an industrial-strength C compiler,
CompCert [Ler09b], or even the functional correctness of an operating system kernel,
CertiKOS [Gu+15]. Still, those tools are based on a formal semantics of the C language.
The correctness of those approaches is stated with respect to this semantics.

In our work, we advocate that the existing C semantics do not capture the features
that programmers use and push into real-world projects such as the Linux operating system
kernel or implementations of the C standard library. On the contrary, low-level C idioms
that are not valid according to the C standard are nevertheless used by developers, that

147

148 CHAPTER 9. CONCLUSION

seem to share a common mental model, distinct from the C standard [ISO99], of how the
memory is managed in C.

This gap between the formal semantics and the commonly-assumed semantics is a source
of bugs and unintuitive compilations. Indeed, a low-level C program may be compiled un-
faithfully to what the programmer expected if the C program exhibits undefined behaviour.
The aim of this thesis is to bridge the gap between the formal semantics with respect to
which the correctness theorems are stated and the mental model of C programmers. In
particular, pointers can be manipulated as integers and uninitialised data can be reasoned
about with the additional property that indeterminate values are stable.

We propose a definition of symbolic values, which form the basis of our work and that
we incorporate into CompCert. This domain is more expressive than CompCert’s value
domain. In particular it models operations on pointers that would otherwise be undefined.
We also give a more concrete view of the memory than in CompCert, and establish the
notion of concrete memory that specifies a concrete layout of the memory space. Based
on those notions, we extend CompCert’s memory model with symbolic values and we
adapt the semantics of CompCert’s intermediate languages to operate over these symbolic
values.

Then, we show that the proof methods from CompCert need to be generalised to our
symbolic setting. In particular, memory injections describe how the memory is reorganised
by compiler passes. These memory injections need to be reworked to accomodate for our
finite low-level memory model. Finally, we have shown how to adapt the correctness proofs
of the individual compiler passes and stated a new end-to-end correctness theorem for our
symbolic compiler, CompCertS. The distinguishing feature of CompCertS, compared to
CompCert, is that low-level bitwise operations are given semantics and compiled programs
use no more memory than the source programs, thereby strengthening the formal guarantee
offered by the compiler.

9.2 Short-term improvements

We summarise in the following various limitations and places for improvements in the
current version of CompCertS. Most of these have been reported in the conclusions of
the individual chapters but are reported here as well for convenience.

9.2.1 External functions

In CompCert, the semantics of C programs performing calls to external functions, i.e.
functions whose code is not available at compile-time (either because they come from
different compilation units or library calls) is axiomatised. This means that no precise
semantics is assigned to such function calls, however it is assumed that the external func-
tions terminate in memory states that satisfy certain properties, as prescribed by the
extcall_properties predicate.

During the development of the correctness proof of CompCertS, we ruled out external
functions that allocate or free blocks, i.e. those that change the structure of the memory,
because they would affect the behaviour of the normalisation in the resulting memory
states. Unfortunately, we have built our development on intermediate lemmas that would
not be easily generalisable to memory transforming external functions. For example, we
state that the size of the memory state is invariant under external function calls. However,
the size of the memory states may change due to an external call, e.g. if a dynamic allocation

http://www.irisa.fr/celtique/wilke/phd/compcert-2.4-doc//html/Events.html#extcall_properties

9.3. EXTENSIONS 149

has been performed. Adapting the axiomatisation of external calls so that allocations are
possible should be possible, and would give a better model of external calls.

9.2.2 Formalisation of the SMT encoding of normalisations

As discussed in Section 6.3, we provide an implementation of the normalisation function
using an SMT solver. The translation of normalisation queries into SMT problems is
entirely written in OCaml with no guarantee whatsoever that the encoding is correct. We
merely have an assumption on the Coq side that the normalisation function is correct.

A more principled option would be to encode the normalisation into a formal model
of SMT queries inside Coq, and then state the correctness of the encoding with respect
to the correctness of the underlying SMT solver. In other words, instead of trusting our
encoding and the SMT solver, we would restrict ourselves to just trusting the SMT solver,
thus eliminating middle-end translation bugs.

To reduce further the trusted computing base (TCB) regarding the SMT solver, we
could imagine validating the output of the SMT solver [BCP11; Arm+11], i.e. verify that
the solution the SMT solver outputs is actually a valid solution.

9.2.3 Injection of Indeterminate Values

As discussed in Section 8.5, indeterminate values indet(b, i) can only be injected into other
indeterminate values indet(b′, i′). This works fine for all compiler passes but SimplLocals,
where some stack-allocated variables are transformed into register-allocated variables. The
issue is that registers are not initialised with indeterminate values, but rather with the
undef value.

Initialising registers with indeterminate values requires 1. to come up with unique
identifiers for registers; 2. modifying the type of indeterminate values to be also indexed by
register identifiers; and 3. modifying the type of injections to capture that an indeterminate
value indet(b, i) injects into a register rid .

This solution, however invasive, seems to be the one to follow: there is no fundamental
reason why registers could not hold some kind of indeterminate values.

As noted in Section 8.5, the workaround we use for the moment is not to initialise
the memory blocks with indeterminate values but with undef values, as was the case in
the existing CompCert releases. However, the proofs for the rest of the compiler passes
can be done with indeterminate values. This claim is backed by an alternate version of
CompCertS, where SimplLocals has been turned into an identity pass, i.e. it does not
transform any variable into temporaries, and for which all compiler transformations are
proved correct.

9.3 Extensions

In the following, we explain a few ideas we have for extending our work. Those ideas range
from tuning the fundamental notion of validity of concrete memories to handle special cases
to really extending the compiler with more passes.

9.3.1 Validity of concrete memories with lifetimes

We have seen in Section 6.2 that the validity relation on concrete memories is not preserved
by the primitive memory operations of our memory model. Said otherwise, given two
memory states m and m′ such that m′ is obtained after performing combinations of store,

150 CHAPTER 9. CONCLUSION

alloc and free operations on m, it is not true that every concrete memory cm ′ valid for
m′ is also valid for m. The counterexample is with the free operation, after which more
concrete memories are valid, because less blocks are constrained.

However, concrete memories are supposed to be concrete views of how the memory is
possibly laid out. A key insight is that blocks are not re-allocated at different concrete
addresses during the execution of a program. Said otherwise, if at some point, we have that
blocks b and b′ are valid and distinct, therefore pointers ptr(b, 0) and ptr(b′, 0) compare
unequal; then at any time later in the execution of the program, even if those blocks have
been deallocated, those pointers must compare unequal.

Note that this is different from what the C standard [ISO99] states, in §6.2.4.2 :

The value of a pointer becomes indeterminate when the object it points to
reaches the end of its lifetime.

As a consequence, comparing a pointer with a pointer to a freed object exhibits unde-
fined behaviour. This is the current behaviour of our symbolic semantics, because the
validity relation for concrete memories only considers currently allocated blocks and may
allocate freed blocks at any concrete address, therefore modelling that the pointer value is
indeterminate.

However, we wish to capture the fact that pointers that have been disjoint once, will
always be disjoint. One can see it as follows: at the beginning of the program, every
concrete memory is valid, i.e. any block identifier (allocated or not) can be mapped to
any concrete address. All along the program execution, the set of valid concrete memories
should become more and more restricted, pruning out concrete memories that allocate
disjoint blocks to overlapping concrete addresses.

To achieve this, we envision to enrich the memory state with a function that remem-
bers the lifetime of blocks, i.e. at what time they were allocated and at what time they
were freed. In CompCert, the block identifiers are positive numbers that are assigned
incrementally, hence the block identifier itself is the allocation time of the block. One must
only remember the deallocation time (the block identifier about to be allocated, i.e. the
nextblock field of the memory state).

Consider that lifetime(m, b) returns the time interval between which block b was
allocated, ∩ computes the intersection of time intervals and ∅ represents the empty interval.
Consider also the predicate was_valid(m, b, i) which holds if and only if there has been a
time where location (b, i) was valid. The no-overlap constraint of the validity property for
concrete memories will then be expressed as in the following:

∀ b1 i1 b2 i2, b1 6= b2 ∧ lifetime(m, b1) ∩ lifetime(m, b2) 6= ∅ ∧
was_valid(m, b1, i1) ∧ was_valid(m, b2, i2)⇒
cm(b1) + i1 6= cm(b2) + i2

Note that this property does not prevent one block from being allocated at the same
concrete address of another block, as long as those blocks do not share any live range.

This more relaxed notion of valid concrete memories would allow to perform the proof
of semantic refinement presented in Section 6.2 over the same semantics of Clight as in
the rest of the compiler, i.e. without introducing artificial simplifications in the semantics.
The rest of the compiler correctness proofs should not be affected much: we expect that
most fundamental properties of the normalisation will stay true in this relaxed model.

9.3. EXTENSIONS 151

9.3.2 More Optimisations

As we noted in Section 8.5, we have left out two optimisations for the moment, that were
in CompCert: dead-code elimination and inlining.

The former necessitates a specialised abstract domain that records the liveness of vari-
ables, i.e. at each program point, which variables will be used later before being overwritten.
If it can be determined that the value of a variable will not be used before being written
again, one might as well not write the value into the variable in the first place. We have not
yet reimplemented the abstract domain for our symbolic values, but we foresee no obstacle
in doing so.

The latter optimisation, inlining, necessitates more work. Inlining consists in replacing
certain selected function calls with the body of the functions being called. This is partic-
ularly efficient for small functions and avoids to waste some time switching contexts. It is
also very valuable from the point of view of optimisations because it makes the analysis
of the resulting code easier. Indeed, in intraprocedural analyses, functions are analysed
independently with few knowledge about their environment, e.g. the possible values of the
arguments. When the functions are inlined, it may be determined by subsequent analyses
that some condition always evaluates to true for example, and the code may therefore be
optimised.

The problem with inlining is that it may make functions increase the amount of memory
they need. Consider the following code snippet.

void g(){

int a;

// manipulate a

}

int f(){

if (condition) {

g();

}

return 0;

}

Function f tests whether condition is true. If so, function g is called. Afterwards, the
function exits with value 0. If g is inlined, the code of f may look like the following:

int f(){

int a;

if (condition) {

// manipulate a

}

return 0;

}

The problem with this program transformation is that, while the original function f did
not need any stack space for its local variables, the transformed function f now needs
to allocate the local variables of g, no matter whether the condition condition is ever
satisfied. This is a problem for our finite memory model, whereby the compilation must
decrease the memory usage. We could use the same memory provisioning technique that
we presented for the correctness of the Stacking pass, i.e. pre-allocate additional chunks
of memory at the C level so that the memory usage effectively decreases. However, as we

152 CHAPTER 9. CONCLUSION

noted in Section 8.5, it is unclear how to pre-allocate the memory space of g only when
necessary, i.e. not to pre-allocate the additional space both in f and g at the C level.

9.3.3 A More Concrete Assembly Language

There is still a gap between CompCert’s assembly language and the x86 assembly code
that is passed to the actual assembler, and then run. CompCert’s assembly language still
contains high-level pseudo-instructions Pallocframe and Pfreeframe that are responsible
for allocating and deallocating functions’ stack frames.

For instance, the semantics of the Pallocframe(sz,ofs_ra,ofs_link) (where sz is
the size of the stack frame to allocate, ofs_ra is the offset in the stack frame where the
return address should be written and ofs_link is the offset in the stack frame where the
link to the caller’s stack frame should be stored) is responsible for allocating the memory
region for the stack frame, and storing the return address and the pointer to the caller’s
stack frame at the appropriate locations. Note that the actual values to store at those
offsets are not given as parameters to the Pallocframe pseudo-instruction. The address
of the caller’s stack frame is actually stored in the register ESP, and the return address is
stored in a pseudo-register named RA.

On the other hand, this instruction is pretty-printed into the following sequence of
assembly instructions:

sub esp, sz

lea edx, [esp + sz + 4]

mov [esp + ofs_link], edx

The first instruction corresponds to the allocation of the stack frame. The second in-
struction stores in register edx the address of the caller’s stack frame. The third instruction
stores this address at the offset ofs_link from the current stack pointer. Here, the return
address is completely ignored, because it has already been set by the preceding Pcall

instruction.
This dissymmetry makes it difficult to convince oneself that the printing phase is cor-

rect. An interesting piece of further work would be to make the assembly language more
concrete. In order to match closely the sub esp, sz and the allocation of a stack frame,
one would need to pre-allocate a single block of fixed size for the stack. This is delicate in
CompCert because the memory is unbounded and therefore we have no guarantee that all
the stack frames will fit in this stack block. However, in CompCertS, we know that the
total amount of memory is less than some threshold (see Section 5.4 for details). Hence,
our memory model would enable us to create a more concrete assembly language, where
this large block represents the stack.

Also, the return address was not stored in the callee’s stack frame at the time of
the Pcall instruction because the stack frame was not allocated yet. With a single pre-
allocated stack block, this would no longer be an issue: the return address would be stored
at the time of the Pcall instruction, as it should be.

9.4 Perspectives

In this thesis, we have presented a formally-verified compiler for low-level C code: Comp-

CertS. Being able to model low-level operations, especially on pointers, makes it possible
to perform several security-enhancing program transformations, that exploit the binary
representation of pointers. In the following, we give a few ideas of applications of our
symbolic semantics.

9.4. PERSPECTIVES 153

9.4.1 Portable Software Fault Isolation

Software Fault Isolation (SFI) was first introduced by Wahbe et al. [Wah+93] as a mech-
anism to execute untrusted code in sandboxed environments. The idea is to determine a
memory region in which memory accesses are permitted, and to instrument the untrusted
program so that all memory accesses are performed inside the pre-determined safe memory
region. This is usually performed at the assembly level, introducing a bitwise mask of
pointers before every memory access.

In 2014, Appel et al. [KSA14] proposed a method for Portable Software Fault Isolation.
Their method is portable in the sense that it does not transform assembly programs but
rather C programs. This work is based on the CompCert compiler and is formalised in
Coq. They have proved in Coq that the instrumented programs are secure, i.e. all the
memory accesses are effectively performed inside the safe memory region.

However, because the masking function (the function that transforms a pointer into
a pointer inside the safe memory region) has to be expressed with bitwise operations, it
has no well-defined semantics and it cannot be reasoned about precisely. Instead, the
masking function is merely axiomatised as an external function in their development. An
inconvenient side-effect of this is that calls to this function may not be optimised by
subsequent passes of the compiler (since the code is unknown) and the instrumentation
may therefore incur a high overhead.

In actual implementations of SFI (Rocksalt [Mor+12], NaCl [Yee+10]), the safe memory
region is a chunk of memory of size 2n that is 2n-byte aligned, i.e. the 32 − n higher bits
constitute what is called a tag that entirely identifies a block.

Using our memory model, we could give defined semantics to a program that retrieves
this tag and computes the masking function using bitwise operations.

9.4.2 Obfuscations

Program obfuscations [CTL97] are semantic-preserving program transformations which in-
crease the complexity of programs, i.e. programs become harder to understand and reverse
engineer. The goal of these obfuscations is to reach some kind of security by obscurity, to
preserve some secret inside the code of a program or to make reverse engineering harder,
e.g. for intellectual property issues.

There has been recent work by Blazy and Trieu [BT16] that formalises a control-flow
graph flattening obfuscation inside the CompCert compiler. This is an advanced obfusca-
tion that could be improved by combining it with simple data obfuscations such as variable
splitting [CTL97]. The idea is to split occurences of a given variable x into two variables
x1 and x2, such that x can be expressed as a combination of x1 and x2, i.e. no information
is lost. A standard way of splitting variables relies on Euclidean division: x1 = x / 10

and x2 = x % 10. Then, x can be recomposed as: x == x1 * 10 + x2. The problem of
formalising this obfuscation in the CompCert compiler is that it is not possible to de-
compose and recombine x when it is a pointer. Indeed, the multiplication is undefined on
pointers in C. Blazy and Trieu would therefore benefit from our low-level memory model
for their work on formally-verified obfuscations, because pointers are a primary target for
obfuscations, especially function pointers.

9.4.3 A Lower-Level Static Analyser

We have discussed in the introduction a formally verified static analyser, Verasco [Jou+15],
whose distinguishing feature is to be embedded within CompCert and to be proved correct

154 CHAPTER 9. CONCLUSION

in Coq. The aim of Verasco is to prove the absence of run-time errors at the C level. To
do so, it formalises multiple abstract domains for program states and numerical domains,
relational and non-relational.

However, their approach is inherently limited by the formal semantics they use. In
particular, they cannot prove anything about programs that perform low-level manipulation
of pointers or of uninitialised data. Though it would require a large amount of work
(Verasco is a large Coq development – around 34 thousand lines of code), we believe
that a low-level static analyser would be profitable to treat low-level code, and it would
discharge the hypothesis of the final theorem of our compiler CompCertS.

Bibliography

[ANS89] Americal National Standards Institute (ANSI). Programming Language C.
Technical Report. 1989.

[Arm+11] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Werner. “A Modular Integration of SAT/SMT Solvers to
Coq through Proof Witnesses”. In: Certified Programs and Proofs - First Inter-
national Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Pro-
ceedings. Ed. by Jean-Pierre Jouannaud and Zhong Shao. Vol. 7086. Lecture
Notes in Computer Science. Springer, 2011, pp. 135–150. isbn: 978-3-642-25378-2.
doi: 10.1007/978-3-642-25379-9_12. url: http://dx.doi.org/10.1007/
978-3-642-25379-9_12.

[Bar+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snow-
bird, UT, USA, July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrish-
nan and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer,
2011, pp. 171–177. isbn: 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-
1_14. url: http://dx.doi.org/10.1007/978-3-642-22110-1_14.

[BBW14] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “A Precise and Abstract
Memory Model for C Using Symbolic Values”. In: Programming Languages
and Systems - 12th Asian Symposium, APLAS 2014, Singapore, November
17-19, 2014, Proceedings. Ed. by Jacques Garrigue. Vol. 8858. Lecture Notes in
Computer Science. Springer, 2014, pp. 449–468. isbn: 978-3-319-12735-4. doi:
10.1007/978-3-319-12736-1_24. url: http://dx.doi.org/10.1007/978-
3-319-12736-1_24.

[BBW15] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “A Concrete Memory
Model for CompCert”. In: Interactive Theorem Proving - 6th International
Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings. Ed.
by Christian Urban and Xingyuan Zhang. Vol. 9236. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 67–83. isbn: 978-3-319-22101-4. doi: 10.
1007/978-3-319-22102-1_5. url: http://dx.doi.org/10.1007/978-3-
319-22102-1_5.

[BCP11] Frédéric Besson, Pierre-Emmanuel Cornilleau, and David Pichardie. “Modular
SMT Proofs for Fast Reflexive Checking Inside Coq”. In: Certified Programs
and Proofs - First International Conference, CPP 2011, Kenting, Taiwan,
December 7-9, 2011. Proceedings. Ed. by Jean-Pierre Jouannaud and Zhong
Shao. Vol. 7086. Lecture Notes in Computer Science. Springer, 2011, pp. 151–
166. isbn: 978-3-642-25378-2. doi: 10.1007/978-3-642-25379-9_13. url:
http://dx.doi.org/10.1007/978-3-642-25379-9_13.

155

http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-319-12736-1_24
http://dx.doi.org/10.1007/978-3-319-12736-1_24
http://dx.doi.org/10.1007/978-3-319-12736-1_24
http://dx.doi.org/10.1007/978-3-319-22102-1_5
http://dx.doi.org/10.1007/978-3-319-22102-1_5
http://dx.doi.org/10.1007/978-3-319-22102-1_5
http://dx.doi.org/10.1007/978-3-319-22102-1_5
http://dx.doi.org/10.1007/978-3-642-25379-9_13
http://dx.doi.org/10.1007/978-3-642-25379-9_13

156 BIBLIOGRAPHY

[BDL06] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. “Formal Verification of a C
Compiler Front-End”. In: FM 2006: Formal Methods, 14th International Sym-
posium on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceed-
ings. Ed. by Jayadev Misra, Tobias Nipkow, and Emil Sekerinski. Vol. 4085.
Lecture Notes in Computer Science. Springer, 2006, pp. 460–475. isbn: 3-540-37215-6.
doi: 10.1007/11813040_31. url: http://dx.doi.org/10.1007/11813040_
31.

[Bed+12] Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy, Marc
Pantel, and Jean Souyris. “Formally verified optimizing compilation in ACG-
based flight control software”. In: ERTS2 2012: Embedded Real Time Soft-
ware and Systems. AAAF, SEE. Toulouse, France, Feb. 2012. url: https:
//hal.inria.fr/hal-00653367.

[BFT15] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.5. Technical Report. Available at www.SMT-LIB.org. Department of
Computer Science, The University of Iowa, 2015.

[Bla+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. “A Static Analyzer for
Large Safety-critical Software”. In: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation. PLDI ’03.
San Diego, California, USA: ACM, 2003, pp. 196–207. isbn: 1-58113-662-5.
doi: 10.1145/781131.781153. url: http://doi.acm.org/10.1145/781131.
781153.

[Bla07] Sandrine Blazy. “Experiments in validating formal semantics for C”. In: C/C++
Verification Workshop. Raboud University Nijmegen report ICIS-R07015, 2007.

[BLS12] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. “The Security Impact
of a New Cryptographic Library”. In: Progress in Cryptology - LATINCRYPT
2012 - 2nd International Conference on Cryptology and Information Security
in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings. Ed. by
Alejandro Hevia and Gregory Neven. Vol. 7533. Lecture Notes in Computer
Science. Springer, 2012, pp. 159–176. isbn: 978-3-642-33480-1. doi: 10.1007/
978-3-642-33481-8_9. url: http://dx.doi.org/10.1007/978-3-642-
33481-8_9.

[BR10] Gogul Balakrishnan and Thomas Reps. “WYSINWYX: What You See is
Not What You eXecute”. In: ACM Transactions on Programming Languages
and Systems 32.6 (Aug. 2010), 23:1–23:84. issn: 0164-0925. doi: 10.1145/
1749608.1749612. url: http://doi.acm.org/10.1145/1749608.1749612.

[BT16] Sandrine Blazy and Alix Trieu. “Formal Verification of Control-flow Graph
Flattening”. In: CPP’16. To appear. ACM, 2016.

[Car+14] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong
Shao. “End-to-end verification of stack-space bounds for C programs”. In:
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014.
Ed. by Michael F. P. O’Boyle and Keshav Pingali. ACM, 2014, p. 30. isbn:
978-1-4503-2784-8. doi: 10.1145/2594291.2594301. url: http://doi.acm.
org/10.1145/2594291.2594301.

http://dx.doi.org/10.1007/11813040_31
http://dx.doi.org/10.1007/11813040_31
http://dx.doi.org/10.1007/11813040_31
https://hal.inria.fr/hal-00653367
https://hal.inria.fr/hal-00653367
http://dx.doi.org/10.1145/781131.781153
http://doi.acm.org/10.1145/781131.781153
http://doi.acm.org/10.1145/781131.781153
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1145/1749608.1749612
http://dx.doi.org/10.1145/1749608.1749612
http://doi.acm.org/10.1145/1749608.1749612
http://dx.doi.org/10.1145/2594291.2594301
http://doi.acm.org/10.1145/2594291.2594301
http://doi.acm.org/10.1145/2594291.2594301

BIBLIOGRAPHY 157

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints”. In: Conference Record of the Fourth ACM Symposium on Princi-
ples of Programming Languages, Los Angeles, California, USA, January 1977.
Ed. by Robert M. Graham, Michael A. Harrison, and Ravi Sethi. ACM, 1977,
pp. 238–252. doi: 10.1145/512950.512973. url: http://doi.acm.org/10.
1145/512950.512973.

[CS94] J. V. Cook and S. Subramanian. A formal semantics for C in Nqthm. Technical
Report. Trusted Information Systems, 1994.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of ob-
fuscating transformations. Technical Report. Department of Computer Sci-
ence, The University of Auckland, New Zealand, 1997.

[Doc12] Robert Dockins. “Operational Refinement for Compiler Correctness”. PhD the-
sis. Princeton University, 2012.

[DS07] David Delmas and Jean Souyris. “Astrée: From Research to Industry”. In:
Static Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby,
Denmark, August 22-24, 2007, Proceedings. Ed. by Hanne Riis Nielson and
Gilberto Filé. Vol. 4634. Lecture Notes in Computer Science. Springer, 2007,
pp. 437–451. isbn: 978-3-540-74060-5. doi: 10.1007/978-3-540-74061-2_27.
url: http://dx.doi.org/10.1007/978-3-540-74061-2_27.

[Dur+14] Zakir Durumeric et al. “The Matter of Heartbleed”. In: Proceedings of the 2014
Conference on Internet Measurement Conference. IMC ’14. Vancouver, BC,
Canada: ACM, 2014, pp. 475–488. isbn: 978-1-4503-3213-2. doi: 10.1145/
2663716.2663755. url: http://doi.acm.org/10.1145/2663716.2663755.

[ER12] Chucky Ellison and Grigore Rou. “An Executable Formal Semantics of C
with Applications”. In: SIGPLAN Not. 47.1 (Jan. 2012), pp. 533–544. issn:
0362-1340. url: http://doi.acm.org/10.1145/2103621.2103719.

[Flo67] Robert W Floyd. “Assigning meanings to programs”. In: Mathematical aspects
of computer science 19.19-32 (1967), p. 1.

[GH92] Yuri Gurevich and James K. Huggins. “The Semantics of the C Programming
Language”. In: Computer Science Logic, 6th Workshop, CSL ’92, San Miniato,
Italy, September 28 - October 2, 1992, Selected Papers. Ed. by Egon Börger,
Gerhard Jäger, Hans Kleine Büning, Simone Martini, and Michael M. Richter.
Vol. 702. Lecture Notes in Computer Science. Springer, 1992, pp. 274–308.
isbn: 3-540-56992-8. doi: 10.1007/3-540-56992-8_17. url: http://dx.
doi.org/10.1007/3-540-56992-8_17.

[Gu+15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan
(Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. “Deep Speci-
fications and Certified Abstraction Layers”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015. Ed. by Sriram K.
Rajamani and David Walker. ACM, 2015, pp. 595–608. isbn: 978-1-4503-3300-9.
doi: 10.1145/2676726.2676975. url: http://doi.acm.org/10.1145/
2676726.2676975.

http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://dx.doi.org/10.1007/978-3-540-74061-2_27
http://dx.doi.org/10.1145/2663716.2663755
http://dx.doi.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/2103621.2103719
http://dx.doi.org/10.1007/3-540-56992-8_17
http://dx.doi.org/10.1007/3-540-56992-8_17
http://dx.doi.org/10.1007/3-540-56992-8_17
http://dx.doi.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/2676726.2676975

158 BIBLIOGRAPHY

[Hal+08] Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S.
Clark, Benessa Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and William
H. Maisel. “Pacemakers and Implantable Cardiac Defibrillators: Software Ra-
dio Attacks and Zero-Power Defenses”. In: 2008 IEEE Symposium on Secu-
rity and Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA.
IEEE Computer Society, 2008, pp. 129–142. isbn: 978-0-7695-3168-7. doi:
10.1109/SP.2008.31. url: http://dx.doi.org/10.1109/SP.2008.31.

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Rou. “Defining the undefined-
ness of C”. In: PLDI’15. ACM, 2015, pp. 336–345.

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Com-
mun. ACM 12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782. doi: 10.1145/
363235.363259. url: http://doi.acm.org/10.1145/363235.363259.

[ISO] ISO. WG14 Defect Report #260. url: http://www.open-std.org/jtc1/
sc22/wg14/www/docs/dr_260.htm.

[ISO11] ISO. C Standard 2011. Technical Report. ISO, 2011. url: http://www.open-
std.org/JTC1/SC22/WG14/www/docs/n1570.pdf.

[ISO99] ISO. C Standard 1999. Technical Report. ISO, 1999. url: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

[Jou+15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and
David Pichardie. “A formally-verified C static analyzer”. In: POPL 2015: 42nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. Mumbai, India: ACM, Jan. 2015, pp. 247–259. doi: 10.1145/2676726.
2676966. url: https://hal.inria.fr/hal-01078386.

[JR78] Stephen C. Johnson and Dennis M. Ritchie. “UNIX Time-Sharing System:
Portability of C Programs and the UNIX System”. In: Bell System Technical
Journal 57.6 (1978), pp. 2021–2048. issn: 1538-7305. doi: 10.1002/j.1538-
7305.1978.tb02141.x. url: http://dx.doi.org/10.1002/j.1538-

7305.1978.tb02141.x.

[JS11] Jean-Pierre Jouannaud and Zhong Shao, eds. Certified Programs and Proofs
- First International Conference, CPP 2011, Kenting, Taiwan, December 7-9,
2011. Proceedings. Vol. 7086. Lecture Notes in Computer Science. Springer,
2011. isbn: 978-3-642-25378-2. doi: 10.1007/978- 3- 642- 25379- 9. url:
http://dx.doi.org/10.1007/978-3-642-25379-9.

[Kan+15] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve
Zdancewic, and Viktor Vafeiadis. “A formal C memory model supporting
integer-pointer casts”. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015. Ed. by David Grove and Steve Blackburn. ACM,
2015, pp. 326–335. isbn: 978-1-4503-3468-6. doi: 10.1145/2737924.2738005.
url: http://doi.acm.org/10.1145/2737924.2738005.

[Kir+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. “Frama-C: A software analysis perspective”. In: Formal
Aspects of Computing 27.3 (2015), pp. 573–609. issn: 1433-299X. doi: 10.
1007/s00165-014-0326-7. url: http://dx.doi.org/10.1007/s00165-
014-0326-7.

http://dx.doi.org/10.1109/SP.2008.31
http://dx.doi.org/10.1109/SP.2008.31
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://dx.doi.org/10.1145/2676726.2676966
http://dx.doi.org/10.1145/2676726.2676966
https://hal.inria.fr/hal-01078386
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02141.x
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02141.x
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02141.x
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02141.x
http://dx.doi.org/10.1007/978-3-642-25379-9
http://dx.doi.org/10.1007/978-3-642-25379-9
http://dx.doi.org/10.1145/2737924.2738005
http://doi.acm.org/10.1145/2737924.2738005
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7

BIBLIOGRAPHY 159

[KR78] Brian W. Kernighan and Dennis Ritchie. The C Programming Language.
Prentice-Hall, 1978. isbn: 0-13-110163-3.

[Kre15] Robbert Krebbers. “The C standard formalized in Coq”. PhD thesis. Radboud
Universiteit Nijmegen, 2015.

[KSA14] Joshua A. Kroll, Gordon Stewart, and Andrew W. Appel. “Portable Soft-
ware Fault Isolation”. In: CFS 2014. IEEE, 2014, pp. 18–32. url: http :

//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6954678.

[KV08] Johannes Kinder and Helmut Veith. “Jakstab: A Static Analysis Platform
for Binaries”. In: Computer Aided Verification: 20th International Conference,
CAV 2008 Princeton, NJ, USA, July 7-14, 2008 Proceedings. Ed. by Aarti
Gupta and Sharad Malik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 423–427. isbn: 978-3-540-70545-1. doi: 10.1007/978-3-540-70545-1_40.
url: http://dx.doi.org/10.1007/978-3-540-70545-1_40.

[LB08] Xavier Leroy and Sandrine Blazy. “Formal Verification of a C-like Memory
Model and Its Uses for Verifying Program Transformations”. In: Journal of
Automated Reasoning 41.1 (2008), pp. 1–31. doi: 10.1007/s10817- 008-

9099-0. url: http://dx.doi.org/10.1007/s10817-008-9099-0.

[Lea] Doug Lea. A Memory Allocator. http://gee.cs.oswego.edu/dl/html/
malloc.html.

[Ler+14] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. “The
CompCert memory model”. In: Program Logics for Certified Compilers. Cam-
bridge University Press, 2014. isbn: 9781107048010. url: http://hal.inria.
fr/hal-00905435.

[Ler09a] Xavier Leroy. “A Formally Verified Compiler Back-end”. In: J. Autom. Rea-
soning 43.4 (2009), pp. 363–446. doi: 10.1007/s10817-009-9155-4. url:
http://dx.doi.org/10.1007/s10817-009-9155-4.

[Ler09b] Xavier Leroy. “Formal verification of a realistic compiler”. In: Communications
of the ACM 52.7 (2009), pp. 107–115. doi: 10.1145/1538788.1538814. url:
http://doi.acm.org/10.1145/1538788.1538814.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Ed. by C. R. Ra-
makrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer Science.
Springer, 2008, pp. 337–340. isbn: 978-3-540-78799-0. doi: 10.1007/978-3-
540-78800-3_24. url: http://dx.doi.org/10.1007/978-3-540-78800-
3_24.

[Mem+16] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis,
David Chisnall, Robert N. M. Watson, and Peter Sewell. “Into the depths
of C: elaborating the de facto standards”. In: Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. Ed. by Chandra
Krintz and Emery Berger. ACM, 2016, pp. 1–15. isbn: 978-1-4503-4261-2.
doi: 10.1145/2908080.2908081. url: http://doi.acm.org/10.1145/
2908080.2908081.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6954678
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6954678
http://dx.doi.org/10.1007/978-3-540-70545-1_40
http://dx.doi.org/10.1007/978-3-540-70545-1_40
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1007/s10817-008-9099-0
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://hal.inria.fr/hal-00905435
http://hal.inria.fr/hal-00905435
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/2908080.2908081
http://doi.acm.org/10.1145/2908080.2908081
http://doi.acm.org/10.1145/2908080.2908081

160 BIBLIOGRAPHY

[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer sci-
ence. Prentice Hall, 1989. isbn: 978-0-13-115007-2.

[Mor+12] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Ed-
ward Gan. “RockSalt: better, faster, stronger SFI for the x86”. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012. Ed. by Jan Vitek, Haibo
Lin, and Frank Tip. ACM, 2012, pp. 395–404. isbn: 978-1-4503-1205-9. doi:
10.1145/2254064.2254111. url: http://doi.acm.org/10.1145/2254064.
2254111.

[Mot04] Motor Industry Software Reliability Association. MISRA-C: 2004 – Guidelines
for the use of the C language in critical systems. 2004.

[Nor98] Michael Norrish. “C formalised in HOL”. PhD thesis. University of Cambridge,
1998.

[Plo81] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Lecture
Notes. University of Aarhus, 1981. url: http://citeseer.ist.psu.edu/
plotkin81structural.html.

[Ric53] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems”. In: Trans. Amer. Math. Soc. 74 (1953), pp. 358–366.

[RL12] Valentin Robert and Xavier Leroy. “A Formally-Verified Alias Analysis”. In:
Certified Programs and Proofs - Second International Conference, CPP 2012,
Kyoto, Japan, December 13-15, 2012. Proceedings. Ed. by Chris Hawblitzel
and Dale Miller. Vol. 7679. Lecture Notes in Computer Science. Springer, 2012,
pp. 11–26. isbn: 978-3-642-35307-9. doi: 10.1007/978-3-642-35308-6_5.
url: http://dx.doi.org/10.1007/978-3-642-35308-6_5.

[Sam14] Miro Samek. Are we shooting ourselves in the foot with Stack Overflow? http:

//embeddedgurus.com/state-space/2014/02/are-we-shooting-ourselves-

in-the-foot-with-stack-overflow/. Blog post. 2014.

[Sev+11] Jaroslav Sevcík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagan-
nathan, and Peter Sewell. “Relaxed-memory concurrency and verified compi-
lation”. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, Jan-
uary 26-28, 2011. Ed. by Thomas Ball and Mooly Sagiv. ACM, 2011, pp. 43–
54. isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926393. url: http:
//doi.acm.org/10.1145/1926385.1926393.

[SS71] Dana S Scott and Christopher Strachey. Toward a mathematical semantics for
computer languages. Vol. 1. Oxford University Computing Laboratory, Pro-
gramming Research Group, 1971.

[Tan+16] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott
Owens, and Michael Norrish. “A New Verified Compiler Backend for CakeML”.
In: ICFP’16. ACM, 2016.

[Wah+93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
“Efficient Software-Based Fault Isolation”. In: Proceedings of the Fourteenth
ACM Symposium on Operating System Principles, SOSP 1993, The Grove
Park Inn and Country Club, Asheville, North Carolina, USA, December 5-8,
1993. Ed. by Andrew P. Black and Barbara Liskov. ACM, 1993, pp. 203–216.

http://dx.doi.org/10.1145/2254064.2254111
http://doi.acm.org/10.1145/2254064.2254111
http://doi.acm.org/10.1145/2254064.2254111
http://citeseer.ist.psu.edu/plotkin81structural.html
http://citeseer.ist.psu.edu/plotkin81structural.html
http://dx.doi.org/10.1007/978-3-642-35308-6_5
http://dx.doi.org/10.1007/978-3-642-35308-6_5
http://embeddedgurus.com/state-space/2014/02/are-we-shooting-ourselves-in-the-foot-with-stack-overflow/
http://embeddedgurus.com/state-space/2014/02/are-we-shooting-ourselves-in-the-foot-with-stack-overflow/
http://embeddedgurus.com/state-space/2014/02/are-we-shooting-ourselves-in-the-foot-with-stack-overflow/
http://dx.doi.org/10.1145/1926385.1926393
http://doi.acm.org/10.1145/1926385.1926393
http://doi.acm.org/10.1145/1926385.1926393

BIBLIOGRAPHY 161

isbn: 0-89791-632-8. doi: 10.1145/168619.168635. url: http://doi.acm.
org/10.1145/168619.168635.

[Wan+12] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and
M. Frans Kaashoek. “Undefined behavior: what happened to my code?” In:
Asia-Pacific Workshop on Systems, APSys ’12, Seoul, Republic of Korea,
July 23-24, 2012. ACM, 2012, p. 9. isbn: 978-1-4503-1669-9. doi: 10.1145/
2349896.2349905. url: http://doi.acm.org/10.1145/2349896.2349905.

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and un-
derstanding bugs in C compilers”. In: Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011. Ed. by Mary W. Hall
and David A. Padua. ACM, 2011, pp. 283–294. isbn: 978-1-4503-0663-8. doi:
10.1145/1993498.1993532. url: http://doi.acm.org/10.1145/1993498.
1993532.

[Yee+10] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. “Native
Client: a sandbox for portable, untrusted x86 native code”. In: Commun. ACM
53.1 (2010), pp. 91–99. doi: 10.1145/1629175.1629203. url: http://doi.
acm.org/10.1145/1629175.1629203.

[You89] William D. Young. “A Mechanically Verified Code Generator”. In: J. Autom.
Reason. 5.4 (Nov. 1989), pp. 493–518. issn: 0168-7433. url: http://dl.acm.
org/citation.cfm?id=83471.83479.

http://dx.doi.org/10.1145/168619.168635
http://doi.acm.org/10.1145/168619.168635
http://doi.acm.org/10.1145/168619.168635
http://dx.doi.org/10.1145/2349896.2349905
http://dx.doi.org/10.1145/2349896.2349905
http://doi.acm.org/10.1145/2349896.2349905
http://dx.doi.org/10.1145/1993498.1993532
http://doi.acm.org/10.1145/1993498.1993532
http://doi.acm.org/10.1145/1993498.1993532
http://dx.doi.org/10.1145/1629175.1629203
http://doi.acm.org/10.1145/1629175.1629203
http://doi.acm.org/10.1145/1629175.1629203
http://dl.acm.org/citation.cfm?id=83471.83479
http://dl.acm.org/citation.cfm?id=83471.83479

162 BIBLIOGRAPHY

Appendices

163

Appendix A

Notations

Partial functions. We use the notation A ⇀ B to denote partial function types. The
actual type in the Coq implementation uses option types and reads A→ option B. When
the function is defined and returns a value v, we write ⌊v⌋ (Some v in Coq). Otherwise,
when it fails to produce a value, we write ∅ (None in Coq).

Function update. The notation f [x 7→ y] represents a function which behaves as f
except for input x, for which the function returns y.

Array notation. We use the array notation for accesses to finite maps in CompCert.
Finite maps are used to model the contents of the memory, for example. We write m[b][o]
for the access to the offset o in block b in the memory state m.

Boolean values. When talking about C programs that manipulate boolean values, we
write true for int(1) and false for int(0), as is standard.

165

VU:
Le Directeur de Thèse

(Nom et Prénom)

VU:
Le Responsable de l’École Doctorale

VU pour autorisation de soutenance
Rennes, le

Le Président de l’Université de Rennes 1

David ALIS

VU après soutenance pour autorisation de publication

Le Président de Jury
(Nom et Prénom)

	Remerciements
	Résumé étendu en français
	Valeurs symboliques.
	Modèle mémoire de bas-niveau.
	Sémantiques formelles symboliques.
	Transformations de la mémoire.
	Passes de compilation et Théorème de préservation sémantique.
	Notes sur le développement Coq associé.

	1 Introduction
	Contributions
	Outline

	2 Background
	2.1 The C Standard And Underspecified Behaviours
	2.2 Formal Semantics
	Formal Semantics for C.

	2.3 Formally-Verified Compilation
	Verified compilers and their correctness properties.

	2.4 Simulation Relations
	2.5 CompCert
	2.5.1 Overall architecture of the CompCert compiler
	2.5.1.1 CompCert's front-end
	2.5.1.2 CompCert's back-end

	2.5.2 The Memory Model of CompCert
	2.5.2.1 Locations and values
	2.5.2.2 Memory and Operations
	2.5.2.3 Pointer Arithmetic

	2.5.3 Memory Transformations
	2.5.3.1 Memory Injections in CompCert
	2.5.3.2 Memory Extensions

	2.6 Notations

	3 Motivation: Low-Level C Code In The Wild
	3.1 Bitwise Pointer Arithmetic
	3.1.1 Storing information in spare bits
	3.1.2 System call return value
	3.1.3 Red-Black Trees
	3.1.4 XOR-linked lists
	3.1.5 Portable Software Fault Isolation
	3.1.6 Variable Splitting Obfuscations
	3.1.7 Checking pointer alignment

	3.2 Manipulation Of Uninitialised Data
	3.2.1 Flag setting in an integer variable
	3.2.2 Bit-Fields in CompCert
	3.2.3 Using uninitialised data as random seed

	3.3 Conclusion

	4 Symbolic Values and Normalisation
	4.1 Symbolic Values
	4.2 Evaluation of Symbolic Values
	4.3 Well-formedness Condition for Concrete Memories
	4.3.1 Towards a notion of validity for concrete memories
	Address space and location overlap.
	Alignment constraints

	4.3.2 Preservation of validity of concrete memories by memory operations

	4.4 Normalisation of Symbolic Values
	4.4.1 Sound normalisation
	4.4.2 The normalisation is functional
	Existence of a normalisation function.

	4.4.3 Syntactic appearance and normalisation

	4.5 Conclusion

	5 A Novel Memory Model Using Symbolic Values
	5.1 Encoding And Decoding Of Symbolic Values In Memory
	5.2 Good Variable Properties
	5.3 Uninitialised Data As Indeterminate Values
	5.4 Memory Allocation and Finite Memory
	5.4.1 Allocation Algorithm
	Valid alignment constraint.
	Existence of a valid concrete memory.

	5.4.2 Allocation Properties

	5.5 Conclusion and Discussion
	Loading from and storing to the memory.
	Allocation in a finite memory.
	

	6 More Defined Semantics For CompCert
	6.1 Updating The Semantics Of CompCert's Languages
	Symbolic values instead of values.
	Evaluation of expressions into symbolic values.
	Functions expecting pointers.
	Memory accesses.
	Conditional branches.
	Lazy operators.
	Return value of programs.

	6.2 Our Semantics Is A Refinement Of CompCert's
	6.2.1 Forward simulation between CompCert Clight and CompCertS Clight
	6.2.2 An opportunity to discover bugs
	Pointers one-past-the-end.
	Comparison with NULL.

	6.3 An Executable Semantics For C
	6.3.1 SMT solvers
	6.3.2 Axiomatising the memory
	6.3.3 Translating symbolic values into logical expressions
	6.3.4 Normalisation as SMT queries
	6.3.4.1 Normalising into an integer.
	6.3.4.2 Normalising into a pointer.

	6.3.5 Relaxation and Optimisation of the SMT Encoding

	6.4 Experiments
	6.4.1 Stubs in the interpreter
	6.4.2 Patterns and Idioms of Low-Level C Code
	6.4.2.1 Pointer Arithmetic Using Alignment and Bitwise Operations
	6.4.2.2 Comparison Between Pointers and (void*)(-1)
	6.4.2.3 Operations on Uninitialised Values
	6.4.2.4 Copying Bytes between Memory Areas with memmove

	6.5 Conclusion and Discussion

	7 Memory Relations
	7.1 Structure-Preserving Memory Relations
	7.1.1 Structural Equivalence
	7.1.2 Symbolic Values Relations
	7.1.2.1 Memory Equivalence
	7.1.2.2 Memory Improvement

	7.1.3 Compatibility With Normalisation And Memory Operations
	7.1.3.1 Compatibility With Normalisation
	7.1.3.2 Compatibility With Memory Operations

	7.2 Memory Injections
	7.2.1 Injection of Symbolic Values
	7.2.2 Injection of Memories
	Absence of offset overflows.
	Alignment constraints
	The size constraint

	7.2.3 Preservation of Normalisation by Injection
	7.2.3.1 Existence of the injection of the normalisation.
	7.2.3.2 Injection of concrete memories and indeterminate memories.
	7.2.3.3 Construction of concrete and indeterminate pre-memories.
	7.2.3.4 Proof of the final theorem.

	7.3 Conclusion and Discussion
	Finding the right generalisation

	8 Semantic Preservation Of The Compiler Passes
	8.1 Generation Of Temporaries
	8.1.1 Description of the transformation
	8.1.2 Correctness arguments
	8.1.3 Proof of coqSimplLocals in CompCertS
	8.1.3.1 Restrictions over injection functions.
	8.1.3.2 Proof sketch for Theorem 8.1.1 about forgetful injections.
	If size_mem m2 next_addr m2 cm2,
	If next_addr m2 cm2 > size_mem m2,

	8.2 Construction Of Stack Frames
	8.2.1 Description of the transformation
	8.2.2 Adaptation of the existing proof
	8.2.2.1 Preservation of injection by allocation
	The existing lemma and its proof.
	Our modified version of the lemma.

	8.2.2.2 Preservation of injection by deallocation

	8.3 Optimisations
	8.3.1 Value analysis of CompCert
	8.3.2 Formal tracking of pointer provenance
	8.3.3 Improving the transfer functions

	8.4 Construction of coqMach stack frames
	8.4.1 The coqStacking transformation
	The return address
	The local variables
	The callee-save registers
	The link to the parent frame
	The outgoing arguments

	8.4.2 Adapting the correctness proof with memory provisions
	8.4.3 Memory provisions in the intermediate languages
	8.4.3.1 Preservation of the memory provision.
	8.4.3.2 Computing the oracle.
	8.4.3.3 CompCertS' theorem.

	8.5 Conclusion and Discussion
	coqSimplLocals and indeterminate values.
	Optimisations: inlining.
	

	9 Conclusion
	9.1 Summary
	9.2 Short-term improvements
	9.2.1 External functions
	9.2.2 Formalisation of the SMT encoding of normalisations
	9.2.3 Injection of Indeterminate Values

	9.3 Extensions
	9.3.1 Validity of concrete memories with lifetimes
	9.3.2 More Optimisations
	9.3.3 A More Concrete Assembly Language

	9.4 Perspectives
	9.4.1 Portable Software Fault Isolation
	9.4.2 Obfuscations
	9.4.3 A Lower-Level Static Analyser

	Appendices
	A Notations
	Partial functions.
	Function update.
	Array notation.
	Boolean values.

