
Compilation from Matlab to Process Networks Realized in
FPGA

Tim Harriss and Richard Walke
QinetiQ Ltd, Malvern, UK

Bart Kienhuis and Ed Deprettere
Leiden University (LIACS), Leiden, The Netherlands

April, 2002

Abstract. Compaan is a software tool that is capable of automatically translating nested
loop programs, written in Matlab, into parallel process network descriptions suitable for im-
plementation in hardware. In this article, we show a methodology and tool to convert these
process networks into FPGA implementations. We will show that we can in principle obtain
high performing realizations in a fraction of the design time currently employed to realize a
parameterized implementation. This allows us to rapidly explore a range of transformations,
such as loop unrolling and skewing, to generate a circuit that meets the requirements of a
particular application. The QR decomposition algorithm is used to demonstrate the capability
of the tool. We present results showing how the number of clock cycles and calculations-per-
second vary with these transformations using a simple implementation of the function units.
We also provide an indication of what we expect to achieve in the near future once the tools
are completed and applied the transformations to parallel, highly pipelined implementations
of the function units.

Keywords: Process Networks, Stream-based Model of computation, Nested Loop Programs,
Matlab, FPGA, Skewing, Unrolling.

1. Introduction

With the drive for mobility, it is a common requirement for computing sys-
tems to handle high bandwidth data signals, such as video, and transmit them,
possibly in real-time, via wireless and wired connections. The processing
needed to compress, protect, and transmit data is demanding and require-
ments for real-time performance and low power consumption motivate the
use of optimized hardware implementations. Fortunately, the repetitive and
regular nature of these signals results in the adoption of a data-flow model of
computation which is very amenable to a hardware implementation.

Data-flow processing has been commonplace within the military systems
application domain for many years. Sensor processing within real-time ap-
plications, such as sonar, radar, and communications, has demanded levels of
processing that in the past has required ASIC implementations or even multi-
ple board implementations. More recently, FPGA technology has provided a
configurable alternative. We have been exploiting this technology, in common
with the commercial communications sector, to provide digital receivers and

c� 2002 Kluwer Academic Publishers. Printed in the Netherlands.

daes.tex; 31/10/2002; 9:56; p.1

2 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

beamformers for military systems. The regular and repetitive operations, low-
wordlength, and fixed-point arithmetic found in these applications, make the
architecture of FPGAs particularly well suited.

Many digital signal processing applications are conveniently written in the
Matlab programming language. It is, however, very hard to obtain straight
from a Matlab program a good implementation onto an FPGA that is time
efficient (Haldar et al., 2001). The contribution of this article is that it shows
that by changing the model of computation of the Matlab program, which is
sequential, into a model of computation that is closer to data-flow models,
i.e. process networks, a time efficient implementation is possible on FPGAs.
These implementation can be obtained quickly and furthermore, this article
shows that high-level optimization like unrolling and skewing can be applied
directly to the Matlab program to further improve implementations.

1.1. FLOATING-POINT QR DECOMPOSITION IMPLEMENTATION

We have been experimenting with the use of configurable computing, in the
form of FPGA technology, to implement weight calculation in adaptive sys-
tems. Specifically, we have implemented floating-point arithmetic on FPGA
and used it to construct a processor for performing QR decomposition from
which a wide range of sensor array algorithms can be implemented. QR de-
composition is employed, as opposed to other techniques, to minimize the
arithmetic dynamic range requirements (Shepherd and McWhirter, 1993).
Substantial savings in operator size are obtained by reducing the wordlength
of the mantissa and exponent of our floating-point numbers to that which is
just sufficient to meet the accuracy requirements of our systems. The level of
optimization possibly depends on the application, but it has been found that
relatively low wordlengths are possible, and using 14-bit mantissa we obtain
in excess of 20 GigaFLOPS of computation on a single FPGA (Walke et al.,
1999).

The benefits of floating-point over fixed-point in FPGA are algorithm and
application dependent. For our applications, greater performance can be ob-
tained using QR decomposition with floating-point arithmetic. The dynamic
range provided by the exponent allows us to use a fast square-root free al-
gorithm, employing a reduced number of operations with lower wordlength
arithmetic compared to fixed-point arithmetic. Furthermore, the floating-point
exponent and mantissa can easily be increased to single1 or higher precision,
should that be required by the application. Although FPGA architectures
are currently not optimized for performing floating-point arithmetic, their
gate-count is now so high that they offer a solution in our application with
performance that is substantially higher than those based on programmable
processors.

1 which is defined by the IEEE as 24-bit mantissa and 8-bit exponent

daes.tex; 31/10/2002; 9:56; p.2

Compilation from Matlab to Process Networks Realized in FPGA 3

1.2. DESIGN TIME OF A PARAMETERIZED QR ARRAY PROCESSOR

The design time of an FPGA implementation has been a serious issue. The
transformations to obtain our architecture have had to be derived manually.
Furthermore, the scheduling and linear systolic processor implementation
that was produced, had to be described manually in a fashion that was pa-
rameterized. This took a single person almost a full year.

The intention is now to extend this design so that the size of the prob-
lem, specifically, the number of inputs, can be programmable at run-time. To
achieve this in the current design, the implementation must be regenerated.
Whilst this is acceptable within a lab, it is currently an unacceptable practice
within deployed systems. Although, in principle, a customer could recompile
the core for a new problem size, there are issues of distributing source code,
providing synthesis and physical tools on location, and supporting the activ-
ity. With regard to the latter, it is too time-consuming to test fully all possible
combinations of parameters. Consequently, it is not possible to guarantee a
successful build of any size, particularly, as the process is vulnerable to the
failure of the implementation tools.

We have two choices to generate a software programmable core. Either
manually redesign the core to be software programmable, or develop a method
to generate such an implementation automatically. The former is time con-
suming, very specific to the problem, and difficult to get correct for all pa-
rameter values. The latter is fast, correct by construction, and generic, which
is strategically important as QR decomposition is the first of many require-
ments.

1.3. COMPAAN: A SOLUTION

Compaan is a set of tools for translating an algorithm expressed as a set of
nested for-loops within an imperative language such as Matlab into a de-
scription based on process networks (Kienhuis et al., 2000). The schedule
of each process is parameterized in terms of the original loop dimensions.
As a result, a software programmable implementation can be generated au-
tomatically. The processes will read on start-up the parameter values that are
stored in some registers, allowing a network to resize at run-time. Moreover,
the process networks employ buffered communication, which allows us to
partition processors across multiple devices without considering, in too much
detail, the precise latency of a path.

Compaan takes an affine nested loop program (NLP) (Held, 1996) and
uses a three-step flow (see Figure 1) to extract parallelism and produce a
parallel process network description based on the Stream Based Functions
(SBF) model of computation (MoC) (Kienhuis and Deprettere, 2001). Firstly,
the array dataflow analysis compiler MatParser (Kienhuis, 2000) extracts all
inherent parallelism from the Matlab code and produces a single assignment

daes.tex; 31/10/2002; 9:56; p.3

4 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

code (SAC) description of the algorithm in the form of a set of affine nested
loops. Next, DgParser reduces the data dependencies expressed in the SAC
into a polyhedral reduced dependence graph (PRDG). Finally, the third pro-
gram,Panda, translates the PRDG description into the SBF process network
description. We have extended the Compaan flow with a fourth step that trans-

MatParser

Panda

DgParser

VHDL Visitor

Matlab

Single Assignment Code

Polyhedral Reduced Dependence Graph

SBF Network SBF Objects

Network Entity Node Entities

Le
id

e
n

U
ni

ve
rs

ity
Q

in
et

iQ
MatParser

Panda

DgParser

VHDL Visitor

Matlab

Single Assignment Code

Polyhedral Reduced Dependence Graph

SBF Network SBF Objects

Network Entity Node Entities

Le
id

e
n

U
ni

ve
rs

ity
Q

in
et

iQ

Figure 1. The Compaan flow with the extension (as highlighted) that is discussed in this article
that deals with the translation of process networks written in the SBF model of computation
into hardware mapped on an FPGA.

lates the process networks into hardware (highlighted section in Figure 1).
This article focuses on this fourth step. The Panda tool constructs an abstract
data-structure of the process network using the SBF model of computation.
Our new tool translates this abstract description into a VHDL network entity
and a number of VHDL node entities. The translation is performed by means
of a Visitor (Gamma et al., 1994) - a software engineering technique that
makes it easy to operate on the various elements of the abstract data structure
generated by Panda.

The remainder of this article is structured as follows. In Section 2, we
discuss the MoC employed. Its architectural implementation in hardware is
considered in Section 3. As an example, QR decomposition is used to demon-
strate our methodology, and is briefly discuss in Section 4. The results of
a direct implementation of this example are presented in Section 5 using
highly pipelined functions. Since the resulting level of throughput is very
poor, improving transformations are described in Section 6 and applied using
simple functions in Section 7. This section demonstrates the effectiveness of
these transformations and indicates the level of performance we expect from
a single FPGA once our methodology is complete. We conclude this article
in Section 8.

daes.tex; 31/10/2002; 9:56; p.4

Compilation from Matlab to Process Networks Realized in FPGA 5

2. Stream-based Function Computation Model

The process network that is derived by Compaan is specified using the SBF
model of computation. This model is more general than any one of the deter-
minate dataflow models like homogeneous dataflow or synchronous dataflow.
It is as general as the Kahn process network model (Kahn, 1974) but has
process behavior that is more structured than general process models are. It
is a natural model for specifying stream based applications at a high level of
abstraction.

Node

FIFO
channel

Figure 2. An SBF Network.

Stream-based applications are described as a network of SBF objects com-
municating concurrently with each other using channels, as shown in Fig-
ure 2. The essential components are Stream-Based Function Objects and
Channels. These channels are defined as infinite FIFO buffers and buffer
possibly unbounded streams of tokens communicated between a producing
SBF object and a consuming SBF object. An SBF object accesses channels
with non-blocking writes and blocking reads, allowing asynchronous com-
munication between the independent nodes, which gives an SBF network its
deterministic behavior (Kahn, 1974).

An SBF object has an inside view and an outside view. Inside an SBF
object, the following three components are present as shown in Figure 3: a
set of functions, a controller, and a state. The set of functions is referred
to as the function repertoire of an SBF object and in Figure 3 consists of
the set ���� � � � � ���. At the outside, an SBF object exposes read and write
ports. These ports connect to channels, allowing SBF objects to communicate
streams with each other.

Each repertoire function knows from which ports it should read and to
which ports it should write to. All repertoire functions together define the
calculations that can be carried out by a node. However, the actual behavior of
the node is characterized by the order in which the functions of the repertoire
are executed. This order is dictated by the controller in terms of a binding and
transition function. The binding function specifies which repertoire function
to use in the current state and the transition function defines the next state
from the current state.

daes.tex; 31/10/2002; 9:56; p.5

6 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

Controller

fa

fb

fn

State

FIFO

Figure 3. An SBF Object

3. Realizing Process Networks in Hardware

Our philosophy is that an easy mapping can only take place if the model
of computation matches the model of the architecture (Kienhuis et al., 2002).
FPGAs are ideal for implementing distributed control structures due to the in-
herent parallelism available in FPGAs. However, the model of computation of
Matlab does not fit the parallelism available on the FPGA. As a consequence,
deriving an time efficient – as oppose to hardware efficient – implementa-
tion from the Matlab will be very hard and time consuming, although it is
tried (Haldar et al., 2001).

In Matlab, the for-loops impose sequential ordering and the matrices used
in the program are stored in some global memory, for example, the memory
of a PC. On the other hand, the SBF model of computation describes an
algorithm in terms of distributed control and memory. Each node in Figure 2
executes a control sequence as dictated by the controller, independently of
other nodes and synchronizes with others using blocking reads. The data
flowing through the network is stored in the distributed FIFO buffers imple-
menting the channels. In conclusion, the computational model of the process
network description is very different from the computational model of the
Matlab description which it is derived from.

It is the distributed control and memory of an SBF network that simpli-
fies the transition from a high abstract model of computation to a hardware
implementation on an FPGA. In this section, we discuss our architectural
model and indicate how the SBF objects map to this model. Because the
MoC of the SBF network matches this model of architecture, the mapping
is straightforward. This differentiates this work, for example, from high-level
synthesis that would take the control-dataflow graph (CDFG) (De Micheli,
1994) of the original Matlab program as their model of computation. The
CDFG model doesn’t deal effectively with task-level parallelism. Because the
model of computation matches our architectural model, the network descrip-
tion derived by Compaan can be directly converted into a this hardware model

daes.tex; 31/10/2002; 9:56; p.6

Compilation from Matlab to Process Networks Realized in FPGA 7

(See Figure 1). In that sense, Compaan can be seen as a compiler that converts
the sequential model of computation of Matlab into a process network model
of computation that is more amenable to the model of architecture mapped
onto FPGAs.

3.1. MODEL OF ARCHITECTURE

The model of architecture used for realizing a process network in hardware
is shown in Figure 4. It consists of two controllers, a number of input and
output switches, a function unit and some additional interfacing (glue) logic
(not considered further in this article). The FIFO buffers have been included
in the node to simplify the network level connections.

Function
Unit

Output
Ports

In
p

ut
s

O
ut

p
ut

s

Communication Channel
FIFO Buff er
Switch
Controller
Glue Logic

Figure 4. Hardware node model.

The function repertoire is not implemented as a number of functions, but is
instead mapped onto the function unit. After all, only one repertoire function
will execute at a time. We see the function unit as a programmable element
for which the instruction set is defined by the function repertoire. To get the
right data to and from the function unit, a number of switches are needed that
route data to and from channels.

Although in general the repertoire can contain many different functions,
the repertoire derived by Compaan currently consists of the same function
but with different connections to input and output ports. The same function
with different input/output connections is called a function variant (Kienhuis
and Deprettere, 2001). The function unit implements a single function, and
the function variant lead to multiplexers around it.

The control described by the binding and transition function are realized in
a node using nested if-statements and for-loops containing linear expressions
for the conditions and loop limits. They can easily be translated to logic.
The linear expressions can be implemented using arithmetic circuits, and the
decisions (i.e., how to set the switches for the right function variant) are made
using multiplexers driven by the results of the linear expression calculations.
Additional logic monitors the handshaking signals and when a data transfer
has occurred, i.e., a function has executed on the function unit, so triggering
the controller to update the state.

Compaan produces a network description containing a specification of the
control, but does not specify the content of the function units. To Compaan,

daes.tex; 31/10/2002; 9:56; p.7

8 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

the functions are black boxes that need to be implemented by a designer. It
will often be most effective to implement the function units as pipelines.

Pipelining enables increased throughput but introduces latency, which must
be accommodated within the schedule and the implementation of the con-
troller. Therefore, the architectural model shows two identical controllers:
one at the input and one at the output. A consequence of pipelining is that
the output data is delayed from the input data depending on the number of
pipeline stages used. Therefore, the input and output controller could work on
different states. For example, with a full pipeline of depth 10, whilst the out-
put switches are routing data associated with state 4, the input switches will
be routing data associated with state 14. Moreover, the difference between
the two states may not be constant if the input is stalled due to lack of data or
the output destination is full. Providing separate input and output controllers
allows the input and output switches to behave and operate independently.

The SBF process network model specifies that communications take place
through unbounded FIFO channels. In reality, the FIFO buffers must be bounded.
Through simulation, the bounds at which a particular algorithm will run dead-
lock free can be determined (Parks, 1995). Yet, it is possible that a FIFO can
become full and a source node is unable to output further data, forcing it to
stall. It is also possible that a stalled node is unable to accept input data from
a channel even if it is available on other channels the node is connected to.
To accommodate such situations, all the communication in the network use
an available/request handshaking protocol.

R matrix elements

Rotation angles

X matrix elements

Vectorize

Rotate

Figure 5. QR Data Dependencies.

4. An Example: QR Decomposition

QR decomposes a matrix � , using unitary rotations, into an upper-triangular
matrix �, which in our application can be back substituted to provide the least
squares weights. The QR algorithm employed is based around the iterative
Givens rotations method (Shepherd and McWhirter, 1993).

daes.tex; 31/10/2002; 9:56; p.8

Compilation from Matlab to Process Networks Realized in FPGA 9

%parameter N 1 16;
%parameter T 1 1000;
for k = 1 : 1 : T,
for j = 1 : 1 : N,

for i = j : 1 : N,
if i <= j,

[r(j,i),angle] = vec(r(j,i),x(k,i));
else

[r(j,i),x(k,i)] = rot(r(j,i),x(k,i),angle);
end

end
end

end

Figure 6. The QR algorithm in Matlab Code.

Figure 5 shows the data dependencies for QR. Two operations are em-
ployed: vectorize and rotate. Vectorize takes a vector, formed by an element
of � and an element of �, and rotates it through an angle such that the �

element is forced to zero. The rotate operation takes a similar vector but
rotates it through an angle previously calculated by a vectorize operation.
Within the QR implementation, these two operations are combined to rotate
a row of the � matrix vector against each row of the � matrix, zeroing the
leading element in the � row each time.

The Matlab code used by Compaan, is shown in Figure 6 and describes
a simple form of the Givens rotations calculations. For clarity, the loops
required to initialize the � matrix and read in the � matrix have not been
shown. Also, the loops required to obtain the resulting � data matrix is not
shown. In the description, three loop indices have been used: � counts down
the rows of the � matrix, � counts along each row of � and � counts com-
plete Givens rotations updates (i.e. rows of �). The loop bounds 	 and

are parameters whose values are the number of QR updates and number
of columns in the � matrix respectively. For these parameters a range of
acceptable values is given (i.e., using the %parameter keyword).

The process network produced by Compaan for this code consists of five
interconnected nodes as shown in Figure 7. The calculation is performed by
the vectorize nodes and rotate nodes. The other three handle all the initializa-
tion and input/output. It is worth noting that the network contains one node
for each function call in the original Matlab code. The detail of the calculation
performed by a node, in order to execute its function, is as yet undefined, and
is not relevant at this level of the design process. The designer must provide
the node detail. There is no reason why it cannot be another Compaan process

daes.tex; 31/10/2002; 9:56; p.9

10 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

network. We consider a specific implementation of these nodes later in this
article.

The VHDL produced by the visitor program contains the network inter-
connection and description of the nodes. Currently, the parameters 	 and

 are defined as VHDL generics, and the system can be synthesized for
any problem size. Alternatively, the parameters can be specified as inputs
to enable run-time resizing of the problem.

5. A Basic Implementation of QR

This section describes a real implementation of the QR decomposition al-
gorithm on an FPGA. The implementation is the direct realization of the
process network generated by Compaan and shown in Figure 7. The function
units were developed manually. We used the Squared Givens Rotation algo-
rithm, which is square-root free and employs fewer operations in the rotate
functions than conventional square-root algorithm. However, higher dynamic
range arithmetic is required. This can be accommodated by floating-point
arithmetic. Although as a rule, floating-point is relatively expensive to imple-
ment in FPGA, the mantissa size requirements are less than the wordlength of
fixed-point arithmetic. Furthermore, the reduced number of operations results
in floating-point arithmetic offering a significant overall saving over a fixed-
point implementation (Walke, 1997). Also, there is the additional benefit
of not having to scale input data. QinetiQ’s Quixilica library of floating-
point cores have been used. These are optimized for Xilinx Virtex families
of FPGA (QinetiQ Ltd, 2001). The floating-point units are highly pipelined

x

x

x

x

r

r

r

r

rout

output r

rotate

vectorize

initialise r

input x

r

r

angle

angle

x

x

x

x

r

r

r

r

rout

output r

rotate

vectorize

initialise r

input x

r

r

angle

angle

Figure 7. QR Process Network.

daes.tex; 31/10/2002; 9:56; p.10

Compilation from Matlab to Process Networks Realized in FPGA 11

and resulted in latencies of 41 and 61 for the rotate and vectorize units re-
spectively.

The VHDL network and node descriptions were converted to a circuit
netlist using Synplify, a commercial circuit synthesis tool, and then passed
through place-and-route tools from Xilinx. VHDL simulation yielded the
number of cycles taken to complete program execution and the place-and-
route tool provided the maximum achievable clock frequency for the system.
This data is summarized in Table I. The utilization of the rotate and vectorize

Table I. Results for the real QR implementation

Parameter Values Total Operations Utilization (%) Clock Performance

N=5, T=15 Cycles Vec Rot Vec Rot MHz Mega FLOPS

Basic QR 6937 75 150 1.09 2.18 27 12.6

functions is calculated as the percentage of cycles in which data entered the
functional unit. The vectorize and rotate functional units contain 11 and 16
floating point operations 2 respectively. Therefore, the full simulation con-
tains (75*11) + (150*16) = 3225 floating point operations. These operations
were executed in 6937 cycles leading to 3225/6937 = 0.46 floating point
operations per cycle. With a maximum clock frequency of 27MHz, this pro-
vides a computation rate of 27*0.46=12.6 million floating point operations
per second (MegaFLOPS).

The low computational rate is due to the low unit utilization and clock fre-
quency. The low utilization can be addressed using particular transformations
and will be shown in Section 6 and 7. A utilization rate approaching 100%
for the rotate and 50% for the vectorize unit can be achieved. From timing
analysis of the design, the low clock frequency is due to long combinatorial
logic paths in the controller implementation. However, pipelining the con-
troller design will improve the situation greatly and clock speeds of 100MHz
should be achievable.

6. Optimization Transforms

The Compaan tool chain results in a unique process network for a given
algorithm in Matlab. The unique process network for the QR algorithm is
given in Figure 7. However, this process network is unlikely to be of use
to the designer. As shown in Table I, a direct implementation results in low
utilization and computation rate. Therefore, we present in this section two

2 Add, subtract, multiply, or divide

daes.tex; 31/10/2002; 9:56; p.11

12 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

algorithmic transformations, i.e., unrolling and skewing, that change the be-
havior of the derived process network, but not the functionality. The changed
behavior leads to better implementations.

The transformations take as input an NLP and a set of parameters. The
output of the unrolling transformation is an NLP, which is functionally equiv-
alent to the input program but with enhanced task-level parallelism. The
skewing transformation makes the potential parallelism in the input NLP
explicit. We have implemented these transformations in a toolbox called Mat-
Transform (Stefanov et al., 2002), which operates directly on the NLP source
code without using some intermediate representation like dependence graphs,
signal-flow graphs, or data-flow graphs corresponding to the NLP.

Nevertheless, to explain unrolling and skewing, we will use a dependence
graph (DG, see Figure 8) as it represents a graphical representation of an
NLP. The nodes in the DG represent the NLP functions that are executed in
each loop-iteration and the edges represent the data dependencies between
the functions.

end
end

[y(i), x(j)] = F(y(i), x(j));

for j = 1:1:4,
for i = 1:1:3,

end
end

for j =
for i =

[y(i), x(j−i)] = F(y(i), x(j−i));

 2:1:4+3,
max(1,j−4):1:min(j−1,3),

[y(i), x(j)] = F(y(i), x(j));
end

end

[y(i), x(j)] = F(y(i), x(j));
end

end

end

for i = 1:1:3,

for i = 1:1:3,

for j = 1:1:4,
if (j mod 2) = 1,

if (j mod 2) = 0,

i

j

y(1)

y(2)

y(3)

x(1) x(2) x(3) x(4)

F

F

F F

F

F F F

F F

FF

i

j
x(1) x(2) x(3) x(4)

y(1) F FFF

y(2) FF F F

y(3) FF F F

i

j

y(1)

y(2)

y(3)

x(1) x(2) x(3) x(4)

F F F

F

F

F F

F

F

F F F

b) NLP with unfolded j−loop by factor 2 c) NLP with skewed i−loop

a) Application program (NLP) and its dependence graph

Figure 8. The unrolling and skewing transformations.

6.1. UNROLLING AND SKEWING

The transformation of unrolling is to create a new NLP with enhanced task-
level parallelism. For example, the NLP in Figure 8-a has two loops (with
iterators j, i), which can be unrolled. Figure 8-b shows the NLP in which the
j-loop is unrolled by a factor of 2. The two pieces of code bounded by the ”if”
statements in Figure 8-b have become mutually exclusive. This characteristic
is exploited by MatParser to partition the program into two processes (tasks)
that can operate in parallel. Unlike common approaches, in which either the
loop control is removed through loop unrolling (Muchnick, 1997) or the DG
is folded (Parhi, 1999), our approach to get the desired degree of parallelism
- at the task level - is to copy a loop body a number of times in such a way
that these copies are mutually exclusive.

daes.tex; 31/10/2002; 9:56; p.12

Compilation from Matlab to Process Networks Realized in FPGA 13

The transformation of skewing is to create a new NLP in which the bounds
of the loops and the indices of the variables are changed to make the potential
parallelism in the original NLP explicit. For example, skewing the i-loop
of the program in Figure 8-a leads to the NLP in Figure 8-c. The effect of
our skewing transformation is visualized by the dependence graph (DG) in
Figure 8-c. This DG explicitly shows that the nodes inside a dashed box can
be executed in parallel because there are no data dependences between these
nodes. This property can again be exploited by MatParser to partition the
program into processes that run in parallel. Moreover, inside these processes
code can be executed effectively in a pipeline fashion because there are no
data-dependencies between nodes that could cause stalls.

7. Assessment of Optimizing Transforms

In comparing the transforms, we are particularly interested in the number of
cycles taken to complete a simulation. So for the purpose of these compar-
isons, the function units have been implemented as simple delays with single
cycle latency. Again, we use the algorithm shown in Section 4. The results are
based on an implementation that takes fifteen input vectors, each containing
five values (i.e. N=5, T=15). The remainder of this section will describe what
is obtained from each transformation, and then present and discuss the results.

7.1. THE EFFECT OF SKEWING ON QR

The main calculations of the QR problem are performed in the rotate and
vectorize function units in the nodes of Figure 7. To make best use of the
hardware resources, both these units should be fully utilized. As can be seen
from the data dependence graph (See Figure 5), there are a greater number
of rotate operations than vectorize operations and, thus, the utilization of the
vectorize unit must be less than that of the rotate unit. For the case of the prob-
lem size specified above (N=5), an update contains 10 rotate and 5 vectorize
operations, indicating that the vectorize unit is expected to have a maximum
possible utilization of half the utilization of the rotate unit. Therefore, the best
we can aim for is 100% utilization of the rotate unit and 50% utilization of
the vectorize unit.

A direct implementation of the QR process network results in very ineffi-
cient utilization of the function units (see Table I); nodes stall whilst waiting
for results of the preceding operations. As explained in the previous section,
skewing should increase the utilization of the function units by re-ordering
the operations such that data is available when needed. Skewing can be per-
formed both vertically (j axis) and horizontally (i axis) to give the following
four possibilities:

daes.tex; 31/10/2002; 9:56; p.13

14 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

a.) Basic (non-transformed)
b.) i-axis skewed
c.) j-axis skewed
d.) i and j axes skewed

For each of these possibilities, we have generated and simulated a VHDL
implementation and found the results as shown in Table II and Table III.
[!hbt] Table II contains results for the complete simulation run, and Table III

Table II. Results of skewing QR for the complete simulation

Operation Total Operations Utilization (%)

N=5, T=15 Cycles Vec Rot Vec Rot

Basic 456 75 150 16.45 32.89

Skew j by 1 344 75 150 21.80 43.60

Skew i by 1 206 75 150 36.41 72.82

Skew i and j by 1 171 75 150 43.86 87.72

contains results for just a single update, i.e., not within the run-in and run-
out periods. As can be seen, the run-in and run-out periods account for a
large difference between the two tables. With a larger value for T (number of
input vectors), the overall utilization shown in Table II would become nearer
to those in Table III. Note that the utilization of the Rotate and Vectorize
functions is higher then the utilization given in Table I because the functions
are not pipelined.

To understand the effect of skewing, it is necessary to consider these direct
data dependencies and the order of the operations. Figure 9 shows the critical
direct dependencies for the four QR implementations. The critical dependen-
cies define the number of cycles taken to complete one update. Note that the
majority of the critical data dependencies exist between operations on the
same row.

Consider Figure 9-a; the direct data dependencies along each row mean
that each iteration of the rotate node must wait for the previous one to com-

Table III. Results of skewing QR for a single normal update

Operation Total Operations Utilization (%)

N=5, T=15 Cycles Vec Rot Vec Rot

Basic 30 5 10 16.67 33.33

Skew j by 1 22 5 10 22.73 45.45

Skew i by 1 12 5 10 41.67 83.33

Skew i and j by 1 10 5 10 50.00 100.00

daes.tex; 31/10/2002; 9:56; p.14

Compilation from Matlab to Process Networks Realized in FPGA 15

1

7

2

5

43

6

10

8 9

1

2

3

5

4

i

j

10

5

rotate operation

vectorize operation

The numbers indicate
the execution order of
the operations

data dependence

critical

Note:
For clarity , only
data dependencies
between operations
in the same update
are shown.

1

2

3

5

4

1

7

2

5

43

6

10

8 9

1

2

3

5

4

1

7

2

5

43

6

10

8 9

1

2

3

5

4

1

7

2

5

43

6

10

8 9

(b)

(c)

(a)

(d)

1

7

2

5

43

6

10

8 9

1

7

2

5

43

6

10

8 9

1

2

3

5

4

1

2

3

5

4

i

j

10

5

rotate operation

vectorize operation

The numbers indicate
the execution order of
the operations

data dependence

critical

Note:
For clarity , only
data dependencies
between operations
in the same update
are shown.

1

2

3

5

4

1

7

2

5

43

6

10

8 9

1

7

2

5

43

6

10

8 9

1

2

3

5

4

1

2

3

5

4

1

7

2

5

43

6

10

8 9

1

2

3

5

4

1

7

2

5

43

6

10

8 9

(b)

(c)

(a)

(d)

Figure 9. Critical direct data dependencies in QR with (a) no skew, (b) j axis skewed, (c) i
axis skewed, (d) i and j axis skewed.

plete. In addition, on the first row, the vectorize operation must be completed
before the first rotate operation can start. Each of the critical data depen-
dencies introduces a two cycle delay (the latency of the FIFO). The nine
critical dependencies in addition to the ten rotate operations, give twenty-
eight cycles. A further two cycles are introduced by the first and last vectorize
operations, providing a total of thirty cycles to complete one update:

��� �� � �� � � � 	� cycles� (1)

This can be generalized to (note: only valid for N�2):

Cycles per update for basic QR =

�

�
�
 � ���
 � ��

�
� 	

�
�

�

�
 � ��

�

�
���

(2)

where N is the number of elements in the input vectors.
Skewing the j axis effectively removes the vertical critical dependencies,

as shown in Figure 9-b, and the two cycle delays. Another effect is that the
first and last vectorize operations do not affect the number of cycles since
they can now be performed in parallel with the rotate operations. The number
of cycles is now given by:

Cycles per update for QR with j skewed =

�

�
�
 � ���
 � ��

�

�
�

�

�
 � ��

�

�
�

(3)

daes.tex; 31/10/2002; 9:56; p.15

16 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

Likewise, skewing the i axis removes the horizontal critical dependencies.
Skewing i has a greater effect than skewing j because the majority of critical
data dependencies are horizontal (See Figure 9-c). The following equation
gives the number of cycles per update:

Cycles per update for QR with i skewed =

�

�
�

�
�

�

�
 � ��

�

�
�

(4)

Finally, combining these two yields the best results by removing all the
critical data dependencies (see Figure 9-d). For this, the number of cycles for
one normal update is simply the number of rotate operations, providing the
100% utilization as shown in Table III.

7.2. THE EFFECT OF UNROLLING ON QR

In hardware, greater throughput can be gained by introducing spatial paral-
lelism into a system. With Compaan, this can be achieved by applying the
unrolling transformation to one or more of the loops in the algorithm. Here,
we demonstrate this by unrolling the � loop of our QR algorithm for varying
factors. This has the effect of generating process networks with more than one
vectorize and rotate operation and scheduling different updates on different
pairs of vectorize and rotate nodes. With a greater number of function units
performing calculations, we should expect to see the number of cycles fall
at approximately the reciprocal of the unroll factor. For example, with an
unroll factor of two, we should see a halving of the number of cycles taken
to complete the simulation. The simulations were performed for fifteen input

Table IV. Results of unrolling QR for the complete simula-
tion

Operation Total Operations Utilization (%)

N=5, T=15 Cycles Vec Rot Vec Rot

Unroll k by 1 456 75 150 16.45 32.89

Unroll k by 2 246 75 150 15.24 30.49

Unroll k by 3 166 75 150 15.06 30.12

Unroll k by 4 136 75 150 13.79 27.57

Unroll k by 5 119 75 150 12.61 25.21

vectors, each containing five samples (i.e., T=15, N=5) and with a function
unit latency of one. Table IV shows the results for unrolling factors one to five
where a factor one is the same as non-transformed. Only the results for the

daes.tex; 31/10/2002; 9:56; p.16

Compilation from Matlab to Process Networks Realized in FPGA 17

complete simulation are included here since the utilization of the units over a
single normal update are the same as shown in the first row of Table III.

From the table we can see that as expected, increasing the unroll factor re-
duces the number of cycles taken to complete the simulation. Figure 10 shows
a plot of the actual number of cycles taken compared with a 1/X trend. The
difference between the two curves is due firstly to input and output periods
similar to those in Section 7.1 and, secondly, to run-in and run-out periods
introduced by the � dependencies between updates of the QR algorithm.
The second of these causes a node scheduled to perform an operation in one
update to wait for the corresponding operation in the previous update. For
example, with an unroll factor of two, the odd updates are scheduled onto
nodes 3 and 4, and the even scheduled onto 5 and 6. In order for node 5 to
perform its first operation, node 3 must have finished its first operations and
produced the � value. This effect would be more dramatic if larger latency
function units were used.

The size of the disparity between the two curves grows with the unroll
factor due to an increase in the relative significance of the of run-in and run-
out cycles to the total number of cycles.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

0 1 2 3 4 5 6

Unroll Factor
Actual 1/X Trend

Figure 10. Cycles for simulation.

7.3. THE EFFECT OF UNROLLING AND SKEWING ON QR

The skewing transformation allows manipulation of the scheduling to pro-
vide maximum utilization of pipelined function units. Unrolling provides the
designer with the ability to vary the amount of parallelism in a system. Typ-
ically, a designer will want to combine unrolling and skewing to create the
optimal implementation for the system requirements. To demonstrate this, a
number of simulations were performed for algorithms with the � axis skewed
and the � loop unrolled for varying factors and the results are shown in Ta-
ble V. By combining the two transformations, we would expect to achieve
similar function unit utilization as with just the � axis skewed but with in-

daes.tex; 31/10/2002; 9:56; p.17

18 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

Table V. Results of unrolling and skewing QR for the complete simulation

Total Operations Utilization (%)

Operation Cycles Vec Rot Vec Rot

Skew j by 1 and unroll k by 1 344 75 150 21.80 43.60

Skew j by 1 and unroll k by 2 184 75 150 20.38 40.76

Skew j by 1 and unroll k by 3 142 75 150 17.61 35.21

Skew j by 1 and unroll k by 4 118 75 150 15.89 31.78

Skew j by 1 and unroll k by 5 113 75 150 13.27 26.55

creased spatial parallelism, thus reducing the overall number of cycles taken
to complete.

As in Section 7.2, the number of cycles decreases as the unroll factor
increases. As before, the function unit utilization for a single normal update is
the same for all unroll factors, but overall, the utilization drops. This drop is
due to the combined run-in and run-out periods from skewing and unrolling
as described in previous sub-sections.

It should be noted that unrolling and skewing will make the control more
complex, requiring more time to update the control state and more logic re-
sources to implement. These effects are not considered in this article as the
control logic in our application is small relative to the functional units and the
extra controller time can be accommodated with greater depth of pipelining
without loss in clock rate. The additional latency of this pipelining in the
controller will only have a very minor impact on the total number of clock
cycles for a QR decomposition.

7.4. ESTIMATION OF SKEW AND UNROLL RESULTS FOR THE FLOATING

POINT QR IMPLEMENTATION

As demonstrated in Section 5, a direct implementation of the process network
for QR decomposition is extremely inefficient. On the other hand, in this
section it has been shown how the throughput of an implementation can be
drastically improved using transformations. The results have been presented
for a simple processor with a latency of 1 cycle (a total latency of 3 cycles
including the FIFOs). Nevertheless, the much higher latencies of the actual
function implementations can be accommodated by applying greater levels
of skew. This is work currently being undertaken and we do not yet have
implementation results. However, we can provide the reader with an estimate
of the expected level of performance to be achieved for a single FPGA using
this route when complete.

Single rotate and vectorize functions were used in the QR decomposition
process network and the nature of the problem is such that the vectorize func-

daes.tex; 31/10/2002; 9:56; p.18

Compilation from Matlab to Process Networks Realized in FPGA 19

tion was under-utilized. For the presented case of N=5 the vectorize function
is used half as often as the rotate function. For N=20, the utilization of the
vectorize drops to 10.5%. To improve utilization, we can reduce the through-
put of the vectorize function and save resources. If the vectorize function
is implemented using a single multiplier and adder, then both components
will have a similar level of utilization for the case of N=16. The vectorize
function will take longer, but is used less frequently and thus is active for
the same amount of time as the rotate function. For N above 16, the uti-
lization of the vectorize function will drop further, but this will have little
effect on the overall utilization, as it employs only 2 operators whereas the
rotate function employs 16. On the other hand, an interesting alternative to
redesigning the implementation of the vectorize function may be to only un-
roll the rotate function (i.e., obtain multiple rotate functions for one vectorize
function). Using the proposed design flow it will be easy to perform such
design exploration.

The total size of a vectorize and rotate function pair is approximately 3,000
slices (where a slice is a basic unit of Xilinx Virtex FPGAs). This represents
7.8% of an XC2V6000 - currently the largest FPGA in production. If an unroll
factor of 10 were used, then 78% of the chip would be utilized. As discussed
in Section 5, a pipelined controller is expected to run at a clock rate in excess
of 100MHz on current FPGA devices. Hence, a total computation rate of 18
GigaFLOPS would be achieved from a single FPGA running at 100MHz.
This is close to what has been achieved manually and in a fraction of time
compared to the manual design.

It should be noted that this estimate assumes that the number of ’run-in’
and ’run-out’ cycles is minimized. For high skew factors and small arrays,
the number of these cycles can be very large relative to the intervening period
over which the array is fully occupied. However, in our applications, the QR
decomposition is performed repeatedly, so we can arrange for one problem to
be ’run-in’ as another is ’run-out’. In Compaan this can be achieved by em-
ploying a further outer loop that repeatedly executes the QR decomposition
function.

8. Conclusions and Future Work

In this article, we have presented a tool flow which will enable us to take
an NLP written in Matlab and implement it automatically in FPGA. This
translation process takes minutes rather than months, and so significantly
reduces the design time of a system over a VHDL-only design flow. Currently,
it takes a single person a full year to design a parameterized implementation
of QR onto an FPGA. As shown in this article, Compaan has the potential to
reduce the design time of QR to days or even minutes should the exploration

daes.tex; 31/10/2002; 9:56; p.19

20 Harriss et al. (Kluwer Journal on Design Automation of Embedded Systems, Vol 7, Issue 4 2002)

be simple. Even though we have not implemented in FPGA a skewed and
unrolled version of QR using the pipelined vectorize and rotate units, we
have shown that we can perform the skewing and unrolling necessary for an
efficient implementation.

We illustrated the use of network transformations for design optimization.
These transformations are parameterized and can be made automatically, pro-
viding the potential for extensive design space explorations to be undertaken
quickly. These can either be performed automatically as a batch job and the
best picked. Alternatively, the designer can use their knowledge and experi-
ence to refine the design. Since the optimizations can be applied automatically
at a high level means the designer does not need to worry about the complex
low-level designs and thus can concentrate on the higher-level issues.

To increase the range of potential applications, the Visitor program re-
quires many refinements to further improve the VHDL implementation. Cur-
rently, the control forms a bottleneck for the clock speed but a generic archi-
tecture for the controller has been designed so that it can be easily pipelined.

This work also demonstrates that the SBF model of computation, used to
express the process networks translate well into hardware. There is a clear
correspondence between the elements of the SBF Object and the model of
architecture. Because the semantic model of the SBF process network and
the hardware model is the same, we know what to expect at a very high level
of abstraction. We also showed how distributed control can produce efficient
implementations. Although only a single FPGA is currently targeted in the
examples, this distributed control can be further exploited to target systems
with multiple FPGAs and microprocessors.

9. Acknowledgments

The development of the VHDL visitor has been sponsored by the United
Kingdom Ministry of Defence Corporate Research Programme. The Mat-
Transform has been sponsored by the Program for Research on Embedded
Systems & Software (Progress) program of STW, the Netherlands, contract
AES5021. The Compaan tool chain has been establish by various research
efforts done at University of California at Berkeley, Technical University
Delft, and the University of Leiden, LIACS.

References

De Micheli, G.: 1994, Synthesis and Optimization of Digital Circuits. McGraw-Hill
International Editions.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides: 1994, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series.

daes.tex; 31/10/2002; 9:56; p.20

Compilation from Matlab to Process Networks Realized in FPGA 21

Haldar, M., A. Nayak, A. Choudhary, and P. Banerjee: 2001, ‘A System for Synthesizing op-
timized FPGA hardware from Matlab’. In: Proceedings of IEEE international conference
on Computer Aided Design ICCAD’2001. San Jose, USA, pp. 314 – 319.

Held, P.: 1996, ‘Functional Design of Data-Flow Networks’. PhD thesis, Delft University of
Technology, The Netherlands.

Kahn, G.: 1974, ‘The Semantics of a Simple Language For Parallel Programming’. In: Proc.
of the IFIP Congress 74. North-Holland Publishing Co.

Kienhuis, B.: 2000, ‘MatParser: An array dataflow analysis compiler’. Technical report,
University of California at Berkeley. UCB/ERL M00/9.

Kienhuis, B., E. Deprettere, P. van der Wolf, and K. Vissers: 2002, A Methodology to Design
Programmable Embedded Systems, Vol. 2268 of LNCS, pp. 18 – 37. Springer Verlag.

Kienhuis, B. and E. F. Deprettere: 2001, ‘Modeling Stream-Based Applications using the SBF
model of computation’. In: Proceedings of IEEE workshop on Signal Processing Systems
(SIPS’2000). Antwerp, Belgium.

Kienhuis, B., E. Rijpkema, and E. F. Deprettere: 2000, ‘Compaan: Deriving Process Net-
works from Matlab for Embedded Signal Processing Architectures’. In: 8th International
Workshop on Hardware/Software Codesign (CODES’2000). San Diego, USA.

Muchnick, S.: 1997, Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, Inc.

Parhi, K.: 1999, VLSI Digital Signal Processing Systems: Design and Implementation. John
Wiley & Sons, Inc.

Parks, T.: 1995, ‘Bounded Scheduling of Process Networks’. Ph.D. thesis, University of
California at Berkeley.

QinetiQ Ltd: 2001, ‘Quixilica Floating-Point FPGA Cores’.
http://www.quixilica.com/pdf/qx fpl.pdf.

Shepherd, T. and J. McWhirter: 1993, ‘Systolic Adaptive Beamforming – Radar Array
Processing’. In: Springer Series in Information Sciences, Vol. 25. Berlin: Springer-Verlag.

Stefanov, T., B. Kienhuis, and E. Deprettere: 2002, ‘Algorithmic Transformation Techniques
for Efficient Exploration of Alternative Application Instances’. In: Proceedings of 10th
International Symposium on Hardware/Software Codesign. Colorado, USA.

Walke, R. L.: 1997, ‘High-Sample Rate Givens Rotations for Recursive Least Squares’. Ph.D.
thesis, University of Warwick.

Walke, R. L., R. W. M. Smith, and G. Lightbody: 1999, ‘20GFLOPS QR processor on a Xilinx
Virtex-E FPGA’. In: proceedings of SPIE advanced signal.

daes.tex; 31/10/2002; 9:56; p.21

daes.tex; 31/10/2002; 9:56; p.22

